en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

杨芳儿,女,1962年出生,教授级高工,硕士研究生导师。主要研究方向为材料表面工程、金属材料热处理和电接触材料。E-mail:yfe1230@163.com;

郑晓华(通信作者),男,1971年出生,博士,副教授,硕士研究生导师。主要研究方向为材料表面工程、电接触材料。E-mail:zhengxh@zjut.edu.cn

中图分类号:TQ153

DOI:10.11933/j.issn.1007−9289.20210331001

参考文献 1
胡会利,李宁,于元春,等.纳米粉体在化学复合镀中的应用[J].电镀与涂饰,2005(2):36-39.HU Huili,LI Ning,YU Yuanchun,et al.Applications of nano-powders in electroless composite plating[J].Electroless & Finishing,2005(2):36-39.(in Chinese)
参考文献 2
李宁.化学镀实用技术[M].北京:化学工业出版社,2012:2−5.LI Ning.Practical technology of electroless plating[M].Beijing:Chemical Industry Press,2012:2-5.(in Chinese)
参考文献 3
姜晓霞,沈伟.化学镀理论及实践[M].北京:国防工业出版社,2000:3-4.JIANG Xiaoxia,SHEN Wei.Fundamentals and practice of electroless plating[M].Beijing:National Defence Industry Press,2000:3-4.(in Chinese)
参考文献 4
李富军.化学镀 Ni-P/PTFE 复合镀层及其摩擦性能研究[D].贵阳:贵州大学,2020.LI Fujun.Study on chemical plating Ni-P/PTFE composite coating and its frictional properties[D].Guiyang:Guizhou University,2020.(in Chinese)
参考文献 5
CHENG Y H,CHEN H Y,HAI D T,et al.Effect of PTFE addition on the properties of electroless Ni-Cu-P-PTFE deposits[J].Rare Metal Materials & Engineering,2014,43(5):1025-1030.
参考文献 6
林翠,张弘弘,李进,等.钛合金表面化学镀 Ni-P-MoS2 耐磨性能研究[J].南昌航空大学学报(自然科学版),2014,28(3):51-56.LIN Cui,ZHANG Honghong,LI Jin,et al.Wear resistance of electroless Ni-P-MoS2 coating on TC4 titanium alloy[J].Journal of Nanchang Hangkong University(Natural Science),2014,28(3):51-56.(in Chinese)
参考文献 7
SIVANDIPOOR I,ASHRAFIZADEH F.Synthesis and tribological behaviour of electroless Ni-P-WS2 composite coatings[J].Applied Surface Science,2012,263:314-319.
参考文献 8
蒋正权.油溶性二硫化钨纳米微粒的制备及其摩擦学性能研究[D].郑州:河南大学,2016.JIANG Zhengquan.Preparation and tribological behavior of oil-miscible tungsten disulfide and its nanocomposites over wide temperature range[D].Zhengzhou:Henan University,2016.(in Chinese)
参考文献 9
吴壮志.纳米结构二硫化钼(钨)的制备及其性能研究[D].长沙:中南大学,2012.WU Zhuangzhi.Synthesis of molybdenum(tungsten)disulfide nanostructures and their properties[D].Changsha;Central South University,2012.(in Chinese)
参考文献 10
段昭宇,李长生,开绍森,等.镀镍石墨/NiCrW 合金复合材料的微观组织和摩擦学性能[J].材料保护,2021,54(4):1-6,14.DUAN Zhaoyu,LI Changsheng,KAI Shaosen,et al.Microstructures and wear behavior of nickel-coated graphite/NiCrW alloy composite [J].Materials Protection,2021,54(4):1-6,14.(in Chinese)
参考文献 11
郑晓华,刘辉,章荣,等.不同纳米氧化铝含量 Ni-P-Al2O3化学镀层的高温磨损性能[J].中国有色金属学报,2014,24(7):1804-1811.ZHENG Xiaohua,LIU Hui,ZHANG Rong,et al.High-temperature wear properties of electroless Ni-P-Al2O3 composite coatings with various contents of nano-Al2O3[J].The Chinese Journal of Nonferrous Metals,2014,24(7):1804-1811.(in Chinese)
参考文献 12
VETRIVEZHAN P,AYYANAR C,ARUNRAJ P,et al.Electroless deposition of aluminium alloy LM25 by SiC and Ni-P nano coating[J].Materials Today:Proceedings,2021,45(1):6449-6453.
参考文献 13
时海芳,王红蕾.SiC 对氩弧熔覆AlCuFeNiCo高熵合金涂层组织性能的影响[J].中国表面工程,2020,33(5):75-82.SHI Haifang,WANG Honglei.Effects of SiC on microstructure and properties of AlCuFeNiCo high-entropy alloy coating prepared by argon arc cladding[J].China Surface Engineering,2020,33(5):75-82.(in Chinese)
参考文献 14
CHINTADA V B,KOONA R.Influence of SiC nano particles on microhardness and corrosion resistance of electroless Ni-P coatings[J].Journal of Bio-and Tribo-Corrosion,2018,4(4):1-8.
参考文献 15
RAM D D,GOBINDA G,KSHETRI Y K,et al.Influence of SiC and TiC nanoparticles reinforcement on the microstructure,tribological,and scratch resistance behavior of electroless Ni-P coatings[J].Nanotechnology,2020,31(10):104001.
参考文献 16
DHAKAL D R,KSHETRI Y K,GYAWALI G,et al.Understanding the effect of Si3N4 nanoparticles on wear resistance behavior of electroless nickel-phosphorus coating through structural investigation[J].Applied Surface Science,2021,541:148403-1~12.
参考文献 17
ARAGHI A,PAYDAR M H.Electroless deposition of Ni–P–B4C composite coating on AZ91D magnesium alloy and investigation on its wear and corrosion resistance[J].Materials & Design,2010,31(6):3095-3099.
参考文献 18
ZHOU H M,JIA Y,LI J,et al.Corrosion and wear resistance behaviors of electroless Ni-Cu-P-TiN composite coating[J/OL].Rare Metals,2016[2016-03-12].https://doi.org/10.1007/s12598-015-0663-6.
参考文献 19
MAFI R I,DEHGHANIAN C.Studying the effects of the addition of TiN nanoparticles to Ni-P electroless coatings[J].Applied Surface Science,2011,258(5):1876-1880.
参考文献 20
徐安阳,王晓明,朱胜,等.集束电极电火花合成沉积TiN涂层组织及耐磨性能[J].中国表面工程,2019,32(3):115-122.XU Anyang,WANG Xiaoming,ZHU Sheng,et al.Microstructure and wear resistance of TiN coating synthesized by electric spark deposition with cluster electrode[J].China Surface Engineering,2019,32(3):115-122.(in Chinese)
参考文献 21
余刘辉,黄维刚,赵旭.Ni-P-TiN(纳米)化学复合镀层研究[J].表面技术,2009,38(5):17-19.YU Liuhui,HUANG Weigang,ZHAO Xu.Study on Ni-P-nano TiN electroless composite coating[J].Surface Technology,2009,38(5):17-19.(in Chinese)
参考文献 22
朱砚葛,马春阳,高媛媛,等.石油管道基材表面化学沉积 Ni-P-TiN 镀层研究[J].兵器材料科学与工程,2016,39(2):27-29.ZHU Yange,MA Chunyang,GAO Yuanyuan,et al.Ni⁃ P⁃ TiN coating prepared on surface of oil pipeline substrates by electroless deposition[J].Ordnance Material Science and Engineering,2016,39(2):27-29.(in Chinese)
参考文献 23
雷晓蓉,黎永钧.化学复合镀 Ni-P-PTFE 共沉积机理研究[J].西安交通大学学报,1997(3):55-60.LEI Xiaorong,LI Yongjun.An investigation on mechanism of electroless Ni-P-PTFE co-deposition [J].Journal of Xi’ an Jiaotong University,1997(3):55-60.(in Chinese)
参考文献 24
YING L X,LIU Y,LIU G N.Preparation and properties of electroless plating wear resistant and antifriction composite coatings Ni-P-SiC-WS2[J].Rare Metal Materials and Engineering,2015,44(1):28-31.
参考文献 25
翟方慧.Ni-P-纳米TiN化学复合镀镀层性能研究[D].齐齐哈尔:齐齐哈尔大学,2017.ZHAI Fanghui.A study on properties of Ni-P-nano-TiN composite plating[D].Qiqihar:Qiqihar University,2017.(in Chinese)
参考文献 26
石柳婷.镁、铝合金表面纳米复合涂层的制备与耐磨、 耐蚀性能研究[D].重庆:重庆大学,2017.SHI Liuting.Study on preparation and properties of wear and anti-corrosion resisting nano-composite coatings on Mg,Al alloy surface[D].ChongQing:Chongqing University,2017.(in Chinese)
目录contents

    摘要

    Ni-P-TiN 化学复合镀层具有比 Ni-P 镀层更高的硬度和耐磨性,但其表面粗糙度大,与对偶件之间的摩擦因数高,应用潜力受到限制。通过在化学镀液中添加不同用量的纳米 WS2颗粒和固定用量的 TiN 颗粒,在低碳钢表面制备 Ni-P-TiN-WS2 复合镀层。采用 X 射线能谱仪(EDS)、扫描电子显微镜(SEM)和 X 射线衍射仪(XRD)对镀层的化学成分(质量分数)、 表面形貌及微观结构进行表征,并利用球盘式摩擦磨损试验机测试复合镀层的摩擦磨损性能。结果表明:纳米 WS2颗粒与纳米 TiN 颗粒的共沉积可使镀层表面更加致密、平整。随着镀液中纳米 WS2 用量的增加,复合镀层的硬度先减小后增大,与氮化硅陶瓷球的摩擦因数则先升后降,磨损率显著下降,耐磨性增强。镀液中纳米 WS2粉末的用量为 2.5 g / L 时复合镀层的摩擦学性能最佳。 纳米 WS2颗粒的加入及用量优化可显著改善复合镀层的综合性能,可为发展高耐磨低摩擦因数的先进涂层提供借鉴。

    Abstract

    Ni-P-TiN electroless coating has higher hardness and better wear resistance than Ni-P electroless coating, however, its large roughness and high friction factor with the counterparts restrict its application potential. Ni-P-TiN-WS2 composite coatings are prepared on the surface of mild steel using electroless plating with a controlled dosage of nano-WS2 and a fixed dosage of nano-TiN particles in bath. The morphology, microstructure and chemical composition of the coatings are characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD) and energy disperse spectroscopy (EDS). The tribologiacl properties of the composite coatings are investigated by wear testing with a ball-on-disc configuration. The results show that the co-deposition of nano-WS2 and nano-TiN particles can form a compact and smooth surface. With the increase of nano-WS2 dosage in bath, the Vickers hardness of the coatings decreases first and then increases, while the friction factor creases first and then decreases as sliding against Si3N4 balls, the wear rate of the composite coatings decreases significantly and the wear resistance have been enhanced. The composite coating deposited under a nano-WS2 dosage of 2.5 g / L in bath exhibits the best tribological performance. The results that the addition of nano-WS2 particles with the optimal dosage significantly improves the comprehensive performance of the composite coatings, can provide a reference for the development of advanced coatings with high wear resistance and low friction coefficient.

  • 0 前言

  • 纳米复合化学镀镍是指将纳米级别的微粒加入到化学镀镍溶液中,使微粒与Ni、P原子共沉积在材料表面,从而获得不同性质的复合镀层的表面工艺[1]。复合化学镀层的性能与所添加纳米粒子的性质密切相关,从而实现对传统化学镀Ni-P合金的功能改性。这种工艺具有镀层性能易调整、工艺简单、成本相对低廉等特点,特别是在多元金属化学镀的研究方面有重要意义,因此在航天、化工和电子设备等诸多领域都有应用[2-3]

  • 通过复合镀技术在镀液中添加质软的惰性粒子,如PTFE[4-5]、MoS2 [6]、WS2 [7-9]、石墨[10]等,可实现镀层的低摩擦因数和自润滑性能,从而延长摩擦对偶件的寿命;另一方面,在镀液中添加硬质惰性粒子如Al2O3 [11]、SiC[12-15]、Si3N4 [16]、B4C[17]等,可实现镀层自身硬度和耐磨性的大幅度提升,从而延长被镀工件的服役时间。TiN纳米颗粒因其高硬度和高稳定性也常被用来增强化学镀层[18-20],但进一步提高其用量后镀层的表面粗糙度增大、耐磨性明显降低[21],已成为制约其发展的主要因素之一。

  • 鉴于高耐磨性和低摩擦因数对延长球面轴承或关节轴承的首次维护期及全寿命周期具有重要意义,本文以Ni-P-TiN化学复合镀为基础,通过在镀液中添加WS2 纳米颗粒制备Ni-P-TiN-WS2 复合镀层,分析不同WS2 用量下镀层的形貌、结构及摩擦学性能,阐明WS2 用量对镀层的影响,为丰富和发展高耐磨低摩擦因数镍磷复合镀层体系,优化Ni-P-TiN-WS2 镀层的性能,探索其在关节轴承摩擦面的应用提供理论和实验基础。

  • 1 试验

  • 1.1 复合镀层制备

  • 本试验采用的施镀材料为Q235A钢,其尺寸为25mm×20mm×1.5mm。所用的WS2和TiN粉末为市售商业粉末,平均粒度约为100nm。试验设计镀液中TiN纳米粉的用量均为4.0g/L,WS2纳米粉的用量共计六组,分别为0、0.5、1.0、1.5、2.0、2.5g/L。

  • 纳米粉的前处理:根据所需用量称重,然后将两种粉末转移至适量的去离子水中,并加入适量活性剂(十二烷基苯磺酸钠),超声波搅拌15min,备用。

  • 镀层样品的制备流程:预磨(选用320~1200目的砂纸,使施镀材料光滑、平整)→水洗→碱性环境脱脂(在88±2℃环境下,浸泡10min)→水洗→去锈(室温下10%体积百分数的稀盐酸中浸泡60s)→水洗→活化(10%体积百分数的稀盐酸中浸泡5~8s)→水洗→施镀。

  • 所用化学镀液成分与操作条件如表1所示。待镀液到温后,将分散好的纳米粉悬浊液匀速加入到镀液中,用时1min。镀液所使用的搅拌方式为机械搅拌,转速300r/min。施镀时间为120min,镀覆完成后对样品进行水洗,热风干燥后备用。

  • 表1 镀液配方

  • Table1 Components of electroless plating bath (g·L−1)

  • Notes:Temperature=(88±2)℃;pH=(4.4-4.5); loading capacity=0.4dm2 ·L−1

  • 1.2 性能测试和表征方法

  • 镀层的微观结构采用X’Pert PRO型X射线衍射仪(XRD)进行分析。衍射角扫描范围为10 °~80 °,Cu靶,Kα 射线,波长为0.154 1nm,工作电压为40kV,工作电流为40mA,步长为0.016 7 (°)/s。采用Nova Nano 450型扫描电子显微镜观察试样的表面形貌,加速电压设置为15kV。采用电子显微镜自带的能谱仪(EDS)对镀层的化学成分(质量分数)进行分析,采样时间为60s,测量时任意选取5个部位,取平均值作为镀层的化学成分。

  • 镀层的硬度用HX-1000TM型维氏硬度计进行测试。将载荷设置为0.98N,保持15s,随机测量7个点取数据的平均值作为镀层硬度值。

  • 镀层的摩擦学特性在HT-600高温摩擦磨损试验机上进行测试。将镀态试样置于常温环境下进行摩擦磨损测试,摩擦盘为试样,对偶件为表面抛光的氮化硅陶瓷球(硬度HV1 200,直径3mm),所用法向载荷为1.96N,测试时长为15min,滑行速率为0.176m/s。使用表面轮廓仪随机测量磨痕上6处横截面的轮廓,得到磨损面积平均值,然后通过积分算出镀层的磨损体积,最后通过磨损体积、滑行距离和法向载荷计算出镀层的磨损率。

  • 2 结果与讨论

  • 2.1 复合镀层的成分和组织结构

  • 表2 所示为能谱法测得的镀层化学成分(质量分数),镀层中除了Ni、P、Ti、N、W、S元素外,还有Fe元素和O元素。Fe元素的出现是因为镀层厚度较薄(金相法测得镀层的厚度为6.7~8.5 μm),而O元素主要来自于镀层表面的吸附氧。为消除Fe元素和O元素的干扰,将它们的含量扣除并对其余元素的含量作归一化处理,随后将所得Ti和N的含量之和作为TiN的含量,W和S的含量之和作为WS2 的含量,其结果如图1所示。由图1可知,随着镀液中WS2 用量的增加,镀层中WS2 的含量几乎呈线性增加,而TiN的含量则小幅度波动且明显低于不含WS2 的镀层。可见,WS2 粉末可能占据了TiN粒子的沉积位点或对其起到一定的遮蔽作用,从而使TiN的沉积量有所下降。另外,所有镀层的P含量十分相近。

  • 表2 镀层的化学成分(质量分数)

  • Table2 Composition of Ni-P-TiN-WS2 coatings

  • 图1 扣除Fe和O元素后镀层中TiN、WS2 及P的归一化含量

  • Fig.1 Normalized content of TiN, WS2, P in the coatings after the removal of the contents of Fe and O element

  • 图2 所示为不同WS2 用量下镀层的表面形貌。通过对比可知,图2a中Ni-P-TiN镀层表面粗糙,存在较多空隙,大量细小颗粒棱角尖锐且不规则地密集堆积,形状杂乱无章[22]。而图2b、2c中镀层表面趋于平整且呈现出比较规则、排列紧密的胞状结构,间隙和空洞大为减少。可见,镀液中的WS2 纳米颗粒被碰撞或吸附到镀层表面后改变了TiN颗粒的沉积环境。图2d中Ni-P-TiN-WS2 镀层表面出现严重的颗粒松散堆积以及大量空隙,致密性较差,图2e中颗粒松散堆积及空隙等情况比图2d有所改善,而图2f中镀层表面的胞状结构特征减弱,虽然表面仍黏附有大尺寸的颗粒团聚体但镀层相当致密。大尺寸颗粒团聚体的出现主要是由于纳米粉末超过一定量后难以分散,表面的纳米粒子产生团聚效应,质地不均匀[23-25]。此外,这些团聚体外形较为圆润,推测应该是其已被Ni-P合金完整包覆。

  • 图3 所示为不同WS2 用量的化学镀层的XRD图谱。各组样品在2θ=45°处均有一个明显的漫散射峰,与镍磷合金相对应,可推断存在无定形或微晶结构。而图谱中可以观察到在2θ=37°、43°和62°附近存在3个强烈的尖锐衍射峰,这说明镀层中存在TiN纳米颗粒且呈晶相结构。此外,镀液中添加了WS2粉末的各镀层除了上述衍射峰外,还在2θ=14°、 29°、33°、34°和40°位置出现了5个强烈的尖锐衍射峰,与晶态2H-WS2相对应,说明WS2颗粒已经被成功镀覆在化学镀层中。2θ=44.7 °和65 °对应于 α-Fe的衍射峰,这是由于镀层厚度较小被X射线完全穿透所致。

  • 图2 不同WS2用量的化学镀层的表面形貌

  • Fig.2 Surface morphologies of electroless coatings with various tungsten WS2 in bath

  • 图3 不同WS2用量的化学镀层的XRD谱

  • Fig.3 XRD patterns of coatings with various WS2 concentration in bath

  • 2.2 复合镀层的硬度和摩擦学性能

  • 图4 所示为化学镀层的维氏硬度与不同WS2 用量的关系。由图4可知,在TiN用量不变的情况下,添加WS2 使得镀层的硬度呈现“V”型关系,WS2 用量为1.5g/L时硬度达到最小值。这一现象可以解释为:WS2 纳米粉末硬度很低,在受力时极易发生变形,因此在相同载荷作用下含有WS2 纳米颗粒的复合镀层将产生更大的变形,从而表现出镀层硬度降低[24]。当WS2 用量大于1.5g/L时,WS2与TiN共沉积形成镀层(参见图2e、 2f)使TiN颗粒被良好地固定在表面而不易脱落,且镀层表面的胞状结构尺寸减小,从而使得镀层的硬度提高。WS2 用量为1.5g/L的镀层,由于形成了极为疏松的表面结构,硬度测量时变形量大,从而呈现出很低的硬度。

  • 图4 WS2 用量与化学镀层维氏硬度的关系

  • Fig.4 Relationship between Vickers hardness of coatings and WS2 dosage in bath

  • 图5 为不同WS2 用量化学镀层与氮化硅陶瓷球对摩测试过程中的瞬时摩擦因数,可见Ni-P-TiN镀层与氮化硅陶瓷球的瞬时摩擦因数在磨合期内(30s)快速爬升至2.0附近趋于稳定,WS2 用量为1.5g/L和2.0g/L的Ni-P-TiN-WS2 复合镀层与氮化硅陶瓷球的瞬时摩擦因数变化趋势与Ni-P-TiN镀层类似;而WS2 用量为0.5g/L和1.0g/L的Ni-P-TiN-WS2 复合镀层的磨合期较长,分别约为3.5min(摩擦因数最高可达2.4)和9.8min(摩擦因数最高可达2.5)。WS2 用量为2.5g/L的Ni-P-TiN-WS2 复合镀层与氮化硅陶瓷球的瞬时摩擦因数曲线相对平滑。

  • 图5 不同WS2 用量的化学镀层的瞬时摩擦因数

  • Fig.5 Instantaneous friction factor of coatings with various tungsten WS2 in bath

  • 对整个测试周期内的瞬时摩擦因数求算术平均得到平均摩擦因数,如图6所示。可见,随着WS2 用量的增加,复合镀层与氮化硅陶瓷球的摩擦因数总体上先增大后减小,在用量为2.5g/L时达到最小值1.95,而用量为1.5g/L时出现明显偏差。作者认为,这一现象与镀层中TiN和WS2 的含量、镀层剪切强度、表面致密程度以及摩擦机理有关。首先,由图2可知,随着溶液中WS2 粉末用量的增加,起初复合镀层表面出现致密化倾向,在WS2 用量为1.5g/L时镀层表面十分疏松,而随着WS2 含量的进一步增加镀层又呈现致密沉积。一般说来,在其他条件一致的情况下,镀层表面越致密、越光滑,剪切阻力越大,因而摩擦因数越高。其次,WS2 粒子产生润滑作用,可以有效降低摩擦因数。Ni-P-TiN镀层由于表面黏附有大量TiN颗粒,这些硬粒子在摩擦过程中除了梨削镀层之外,还可以发生滚动摩擦而降低摩擦因数,因而Ni-P-TiN镀层与氮化硅陶瓷球的摩擦因数比低WS2 含量的致密Ni-P-TiN-WS2 复合镀层稍低一些。WS2 颗粒在低WS2含量的Ni-P-TiN-WS2复合镀层中主要起到紧实镀层的作用,润滑作用不明显,可能是因为含量较低。当镀层中WS2 含量较高时,其润滑作用逐渐增大,故随着WS2 用量的增加,摩擦因数又出现下降趋势。WS2用量为1.5g/L时镀层表面疏松、硬度低、剪切阻力小且含有一定量的WS2 粒子,因而摩擦因数较低,偏离了摩擦因数先升后降这一趋势。

  • 图6 WS2 用量对化学镀层摩擦因数的影响

  • Fig.6 Effects of WS2 dosage in bath on friction factor of electroless plating coatings

  • 图7 所示为经过磨损测试之后化学镀层的表面形貌。通过对比可知,所有镀层经摩擦后表面均黏附有大面积、带裂纹的磨屑,有明显的黏着效应和磨屑剥落效应。通常,纯Ni-P镀层表现为黏着磨损,在压扁的磨屑中很少出现裂纹。当添加了TiN颗粒和WS2 颗粒后,磨屑变得容易断裂和脱落。WS2 用量为0g/L的Ni-P-TiN复合镀层因TiN纳米颗粒的抛光效应使得磨屑表面极为光滑,而随着镀液中WS2 用量的不断增加,磨屑表面的划痕有先变宽变多后又变窄变少的趋势,其原因可能与镀层的致密程度先降低后升高有关,镀层的低致密性使粗大颗粒发生犁削时的阻力降低,因而更容易出现粗划痕。总体上,复合镀层的磨损机理以黏着磨损为主,磨粒磨损为辅,且随着WS2 用量的增加,磨粒磨损机制的贡献有逐渐增强趋势。

  • 图7 不同WS2用量的化学镀层磨损后的表面形貌(a-d)及其局部放大图(e-h)

  • Fig.7 Surface morphologies (a-d) and their enlargements (e-h) of wear scars of coatings with various WS2 dosages in bath after wear testing

  • 图8 所示为镀层的磨损率与镀液中WS2用量的关系。由图8可知,在镀液中的TiN用量不变的情况下,随着镀液中WS2纳米粉末用量的增加,镀层的磨损率呈现下降趋势。这说明随着镀液中WS2用量的增加镀层的耐磨性能得到了有效提升。在通常情况下,TiN粉末是硬质纳米微粒,耐磨性较高。但单一TiN颗粒复合化学镀得到的镀层表面粗糙且存在大量空隙,TiN颗粒未被充分包覆因而在摩擦时容易脱落,导致镀层的磨损率较高[26]。当加入WS2 颗粒后,WS2颗粒与TiN颗粒的共沉积可以在金属表面形成致密的胞状表面,减少表面颗粒脱落,既能为镀层提供有效的承载能力,又降低了摩擦因数,从而有效增加镀层表面的耐磨性能。

  • 图8 WS2 用量与化学镀层磨损率的关系

  • Fig.8 Relationship between wear rate of coatings and WS2 dosage in bath

  • 3 结论

  • (1) 纳米WS2 颗粒与纳米TiN颗粒的共沉积可有效改善镀层的表面形貌、致密度和力学性能,可为发展高耐磨低摩擦因数高性能镀层提供新思路。

  • (2) 镀层的致密度还有进一步提升的可能,这有待通过后续表面活性剂的优选来实现。

  • 参考文献

    • [1] 胡会利,李宁,于元春,等.纳米粉体在化学复合镀中的应用[J].电镀与涂饰,2005(2):36-39.HU Huili,LI Ning,YU Yuanchun,et al.Applications of nano-powders in electroless composite plating[J].Electroless & Finishing,2005(2):36-39.(in Chinese)

    • [2] 李宁.化学镀实用技术[M].北京:化学工业出版社,2012:2−5.LI Ning.Practical technology of electroless plating[M].Beijing:Chemical Industry Press,2012:2-5.(in Chinese)

    • [3] 姜晓霞,沈伟.化学镀理论及实践[M].北京:国防工业出版社,2000:3-4.JIANG Xiaoxia,SHEN Wei.Fundamentals and practice of electroless plating[M].Beijing:National Defence Industry Press,2000:3-4.(in Chinese)

    • [4] 李富军.化学镀 Ni-P/PTFE 复合镀层及其摩擦性能研究[D].贵阳:贵州大学,2020.LI Fujun.Study on chemical plating Ni-P/PTFE composite coating and its frictional properties[D].Guiyang:Guizhou University,2020.(in Chinese)

    • [5] CHENG Y H,CHEN H Y,HAI D T,et al.Effect of PTFE addition on the properties of electroless Ni-Cu-P-PTFE deposits[J].Rare Metal Materials & Engineering,2014,43(5):1025-1030.

    • [6] 林翠,张弘弘,李进,等.钛合金表面化学镀 Ni-P-MoS2 耐磨性能研究[J].南昌航空大学学报(自然科学版),2014,28(3):51-56.LIN Cui,ZHANG Honghong,LI Jin,et al.Wear resistance of electroless Ni-P-MoS2 coating on TC4 titanium alloy[J].Journal of Nanchang Hangkong University(Natural Science),2014,28(3):51-56.(in Chinese)

    • [7] SIVANDIPOOR I,ASHRAFIZADEH F.Synthesis and tribological behaviour of electroless Ni-P-WS2 composite coatings[J].Applied Surface Science,2012,263:314-319.

    • [8] 蒋正权.油溶性二硫化钨纳米微粒的制备及其摩擦学性能研究[D].郑州:河南大学,2016.JIANG Zhengquan.Preparation and tribological behavior of oil-miscible tungsten disulfide and its nanocomposites over wide temperature range[D].Zhengzhou:Henan University,2016.(in Chinese)

    • [9] 吴壮志.纳米结构二硫化钼(钨)的制备及其性能研究[D].长沙:中南大学,2012.WU Zhuangzhi.Synthesis of molybdenum(tungsten)disulfide nanostructures and their properties[D].Changsha;Central South University,2012.(in Chinese)

    • [10] 段昭宇,李长生,开绍森,等.镀镍石墨/NiCrW 合金复合材料的微观组织和摩擦学性能[J].材料保护,2021,54(4):1-6,14.DUAN Zhaoyu,LI Changsheng,KAI Shaosen,et al.Microstructures and wear behavior of nickel-coated graphite/NiCrW alloy composite [J].Materials Protection,2021,54(4):1-6,14.(in Chinese)

    • [11] 郑晓华,刘辉,章荣,等.不同纳米氧化铝含量 Ni-P-Al2O3化学镀层的高温磨损性能[J].中国有色金属学报,2014,24(7):1804-1811.ZHENG Xiaohua,LIU Hui,ZHANG Rong,et al.High-temperature wear properties of electroless Ni-P-Al2O3 composite coatings with various contents of nano-Al2O3[J].The Chinese Journal of Nonferrous Metals,2014,24(7):1804-1811.(in Chinese)

    • [12] VETRIVEZHAN P,AYYANAR C,ARUNRAJ P,et al.Electroless deposition of aluminium alloy LM25 by SiC and Ni-P nano coating[J].Materials Today:Proceedings,2021,45(1):6449-6453.

    • [13] 时海芳,王红蕾.SiC 对氩弧熔覆AlCuFeNiCo高熵合金涂层组织性能的影响[J].中国表面工程,2020,33(5):75-82.SHI Haifang,WANG Honglei.Effects of SiC on microstructure and properties of AlCuFeNiCo high-entropy alloy coating prepared by argon arc cladding[J].China Surface Engineering,2020,33(5):75-82.(in Chinese)

    • [14] CHINTADA V B,KOONA R.Influence of SiC nano particles on microhardness and corrosion resistance of electroless Ni-P coatings[J].Journal of Bio-and Tribo-Corrosion,2018,4(4):1-8.

    • [15] RAM D D,GOBINDA G,KSHETRI Y K,et al.Influence of SiC and TiC nanoparticles reinforcement on the microstructure,tribological,and scratch resistance behavior of electroless Ni-P coatings[J].Nanotechnology,2020,31(10):104001.

    • [16] DHAKAL D R,KSHETRI Y K,GYAWALI G,et al.Understanding the effect of Si3N4 nanoparticles on wear resistance behavior of electroless nickel-phosphorus coating through structural investigation[J].Applied Surface Science,2021,541:148403-1~12.

    • [17] ARAGHI A,PAYDAR M H.Electroless deposition of Ni–P–B4C composite coating on AZ91D magnesium alloy and investigation on its wear and corrosion resistance[J].Materials & Design,2010,31(6):3095-3099.

    • [18] ZHOU H M,JIA Y,LI J,et al.Corrosion and wear resistance behaviors of electroless Ni-Cu-P-TiN composite coating[J/OL].Rare Metals,2016[2016-03-12].https://doi.org/10.1007/s12598-015-0663-6.

    • [19] MAFI R I,DEHGHANIAN C.Studying the effects of the addition of TiN nanoparticles to Ni-P electroless coatings[J].Applied Surface Science,2011,258(5):1876-1880.

    • [20] 徐安阳,王晓明,朱胜,等.集束电极电火花合成沉积TiN涂层组织及耐磨性能[J].中国表面工程,2019,32(3):115-122.XU Anyang,WANG Xiaoming,ZHU Sheng,et al.Microstructure and wear resistance of TiN coating synthesized by electric spark deposition with cluster electrode[J].China Surface Engineering,2019,32(3):115-122.(in Chinese)

    • [21] 余刘辉,黄维刚,赵旭.Ni-P-TiN(纳米)化学复合镀层研究[J].表面技术,2009,38(5):17-19.YU Liuhui,HUANG Weigang,ZHAO Xu.Study on Ni-P-nano TiN electroless composite coating[J].Surface Technology,2009,38(5):17-19.(in Chinese)

    • [22] 朱砚葛,马春阳,高媛媛,等.石油管道基材表面化学沉积 Ni-P-TiN 镀层研究[J].兵器材料科学与工程,2016,39(2):27-29.ZHU Yange,MA Chunyang,GAO Yuanyuan,et al.Ni⁃ P⁃ TiN coating prepared on surface of oil pipeline substrates by electroless deposition[J].Ordnance Material Science and Engineering,2016,39(2):27-29.(in Chinese)

    • [23] 雷晓蓉,黎永钧.化学复合镀 Ni-P-PTFE 共沉积机理研究[J].西安交通大学学报,1997(3):55-60.LEI Xiaorong,LI Yongjun.An investigation on mechanism of electroless Ni-P-PTFE co-deposition [J].Journal of Xi’ an Jiaotong University,1997(3):55-60.(in Chinese)

    • [24] YING L X,LIU Y,LIU G N.Preparation and properties of electroless plating wear resistant and antifriction composite coatings Ni-P-SiC-WS2[J].Rare Metal Materials and Engineering,2015,44(1):28-31.

    • [25] 翟方慧.Ni-P-纳米TiN化学复合镀镀层性能研究[D].齐齐哈尔:齐齐哈尔大学,2017.ZHAI Fanghui.A study on properties of Ni-P-nano-TiN composite plating[D].Qiqihar:Qiqihar University,2017.(in Chinese)

    • [26] 石柳婷.镁、铝合金表面纳米复合涂层的制备与耐磨、 耐蚀性能研究[D].重庆:重庆大学,2017.SHI Liuting.Study on preparation and properties of wear and anti-corrosion resisting nano-composite coatings on Mg,Al alloy surface[D].ChongQing:Chongqing University,2017.(in Chinese)

  • 参考文献

    • [1] 胡会利,李宁,于元春,等.纳米粉体在化学复合镀中的应用[J].电镀与涂饰,2005(2):36-39.HU Huili,LI Ning,YU Yuanchun,et al.Applications of nano-powders in electroless composite plating[J].Electroless & Finishing,2005(2):36-39.(in Chinese)

    • [2] 李宁.化学镀实用技术[M].北京:化学工业出版社,2012:2−5.LI Ning.Practical technology of electroless plating[M].Beijing:Chemical Industry Press,2012:2-5.(in Chinese)

    • [3] 姜晓霞,沈伟.化学镀理论及实践[M].北京:国防工业出版社,2000:3-4.JIANG Xiaoxia,SHEN Wei.Fundamentals and practice of electroless plating[M].Beijing:National Defence Industry Press,2000:3-4.(in Chinese)

    • [4] 李富军.化学镀 Ni-P/PTFE 复合镀层及其摩擦性能研究[D].贵阳:贵州大学,2020.LI Fujun.Study on chemical plating Ni-P/PTFE composite coating and its frictional properties[D].Guiyang:Guizhou University,2020.(in Chinese)

    • [5] CHENG Y H,CHEN H Y,HAI D T,et al.Effect of PTFE addition on the properties of electroless Ni-Cu-P-PTFE deposits[J].Rare Metal Materials & Engineering,2014,43(5):1025-1030.

    • [6] 林翠,张弘弘,李进,等.钛合金表面化学镀 Ni-P-MoS2 耐磨性能研究[J].南昌航空大学学报(自然科学版),2014,28(3):51-56.LIN Cui,ZHANG Honghong,LI Jin,et al.Wear resistance of electroless Ni-P-MoS2 coating on TC4 titanium alloy[J].Journal of Nanchang Hangkong University(Natural Science),2014,28(3):51-56.(in Chinese)

    • [7] SIVANDIPOOR I,ASHRAFIZADEH F.Synthesis and tribological behaviour of electroless Ni-P-WS2 composite coatings[J].Applied Surface Science,2012,263:314-319.

    • [8] 蒋正权.油溶性二硫化钨纳米微粒的制备及其摩擦学性能研究[D].郑州:河南大学,2016.JIANG Zhengquan.Preparation and tribological behavior of oil-miscible tungsten disulfide and its nanocomposites over wide temperature range[D].Zhengzhou:Henan University,2016.(in Chinese)

    • [9] 吴壮志.纳米结构二硫化钼(钨)的制备及其性能研究[D].长沙:中南大学,2012.WU Zhuangzhi.Synthesis of molybdenum(tungsten)disulfide nanostructures and their properties[D].Changsha;Central South University,2012.(in Chinese)

    • [10] 段昭宇,李长生,开绍森,等.镀镍石墨/NiCrW 合金复合材料的微观组织和摩擦学性能[J].材料保护,2021,54(4):1-6,14.DUAN Zhaoyu,LI Changsheng,KAI Shaosen,et al.Microstructures and wear behavior of nickel-coated graphite/NiCrW alloy composite [J].Materials Protection,2021,54(4):1-6,14.(in Chinese)

    • [11] 郑晓华,刘辉,章荣,等.不同纳米氧化铝含量 Ni-P-Al2O3化学镀层的高温磨损性能[J].中国有色金属学报,2014,24(7):1804-1811.ZHENG Xiaohua,LIU Hui,ZHANG Rong,et al.High-temperature wear properties of electroless Ni-P-Al2O3 composite coatings with various contents of nano-Al2O3[J].The Chinese Journal of Nonferrous Metals,2014,24(7):1804-1811.(in Chinese)

    • [12] VETRIVEZHAN P,AYYANAR C,ARUNRAJ P,et al.Electroless deposition of aluminium alloy LM25 by SiC and Ni-P nano coating[J].Materials Today:Proceedings,2021,45(1):6449-6453.

    • [13] 时海芳,王红蕾.SiC 对氩弧熔覆AlCuFeNiCo高熵合金涂层组织性能的影响[J].中国表面工程,2020,33(5):75-82.SHI Haifang,WANG Honglei.Effects of SiC on microstructure and properties of AlCuFeNiCo high-entropy alloy coating prepared by argon arc cladding[J].China Surface Engineering,2020,33(5):75-82.(in Chinese)

    • [14] CHINTADA V B,KOONA R.Influence of SiC nano particles on microhardness and corrosion resistance of electroless Ni-P coatings[J].Journal of Bio-and Tribo-Corrosion,2018,4(4):1-8.

    • [15] RAM D D,GOBINDA G,KSHETRI Y K,et al.Influence of SiC and TiC nanoparticles reinforcement on the microstructure,tribological,and scratch resistance behavior of electroless Ni-P coatings[J].Nanotechnology,2020,31(10):104001.

    • [16] DHAKAL D R,KSHETRI Y K,GYAWALI G,et al.Understanding the effect of Si3N4 nanoparticles on wear resistance behavior of electroless nickel-phosphorus coating through structural investigation[J].Applied Surface Science,2021,541:148403-1~12.

    • [17] ARAGHI A,PAYDAR M H.Electroless deposition of Ni–P–B4C composite coating on AZ91D magnesium alloy and investigation on its wear and corrosion resistance[J].Materials & Design,2010,31(6):3095-3099.

    • [18] ZHOU H M,JIA Y,LI J,et al.Corrosion and wear resistance behaviors of electroless Ni-Cu-P-TiN composite coating[J/OL].Rare Metals,2016[2016-03-12].https://doi.org/10.1007/s12598-015-0663-6.

    • [19] MAFI R I,DEHGHANIAN C.Studying the effects of the addition of TiN nanoparticles to Ni-P electroless coatings[J].Applied Surface Science,2011,258(5):1876-1880.

    • [20] 徐安阳,王晓明,朱胜,等.集束电极电火花合成沉积TiN涂层组织及耐磨性能[J].中国表面工程,2019,32(3):115-122.XU Anyang,WANG Xiaoming,ZHU Sheng,et al.Microstructure and wear resistance of TiN coating synthesized by electric spark deposition with cluster electrode[J].China Surface Engineering,2019,32(3):115-122.(in Chinese)

    • [21] 余刘辉,黄维刚,赵旭.Ni-P-TiN(纳米)化学复合镀层研究[J].表面技术,2009,38(5):17-19.YU Liuhui,HUANG Weigang,ZHAO Xu.Study on Ni-P-nano TiN electroless composite coating[J].Surface Technology,2009,38(5):17-19.(in Chinese)

    • [22] 朱砚葛,马春阳,高媛媛,等.石油管道基材表面化学沉积 Ni-P-TiN 镀层研究[J].兵器材料科学与工程,2016,39(2):27-29.ZHU Yange,MA Chunyang,GAO Yuanyuan,et al.Ni⁃ P⁃ TiN coating prepared on surface of oil pipeline substrates by electroless deposition[J].Ordnance Material Science and Engineering,2016,39(2):27-29.(in Chinese)

    • [23] 雷晓蓉,黎永钧.化学复合镀 Ni-P-PTFE 共沉积机理研究[J].西安交通大学学报,1997(3):55-60.LEI Xiaorong,LI Yongjun.An investigation on mechanism of electroless Ni-P-PTFE co-deposition [J].Journal of Xi’ an Jiaotong University,1997(3):55-60.(in Chinese)

    • [24] YING L X,LIU Y,LIU G N.Preparation and properties of electroless plating wear resistant and antifriction composite coatings Ni-P-SiC-WS2[J].Rare Metal Materials and Engineering,2015,44(1):28-31.

    • [25] 翟方慧.Ni-P-纳米TiN化学复合镀镀层性能研究[D].齐齐哈尔:齐齐哈尔大学,2017.ZHAI Fanghui.A study on properties of Ni-P-nano-TiN composite plating[D].Qiqihar:Qiqihar University,2017.(in Chinese)

    • [26] 石柳婷.镁、铝合金表面纳米复合涂层的制备与耐磨、 耐蚀性能研究[D].重庆:重庆大学,2017.SHI Liuting.Study on preparation and properties of wear and anti-corrosion resisting nano-composite coatings on Mg,Al alloy surface[D].ChongQing:Chongqing University,2017.(in Chinese)

  • 手机扫一扫看