en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

邹慧,女,1976年出生,博士,副教授,硕士研究生导师。主要研究方向为材料表面工程。E-mail:hzou@cauc.edu.cn;

孙铭阳,男,1997年出生,硕士研究生。主要研究方向为材料表面工程。E-mail:2270649962@qq.com;

丁坤英(通信作者),男,1981年出生,博士,副教授,硕士研究生导师。主要研究方向为表面工程技术。E-mail:dingkunying@126.com

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20210824001

参考文献 1
孙建刚,马春春,王会.高温超高速试验系统及封严涂层评价体系的研究进展[J].热喷涂技术,2019,11(2):5-11.SUN Jiangang,MA Chunhui,WANG hui.Research progress of high temperature and high speed test system and seal coating evaluation system[J].Thermal Spraying Technology,2019,11(2):5-11.(in Chinese)
参考文献 2
DADOUCHE A,CONLON M,DMOCHOWSKI W,et al.Experimental evaluation of abradable seal performance at high temperature[J].Proceedings of ASME Turbo Expo,2008(6):9-13.
参考文献 3
CHUPP R E,HENDRICKS R C,LATTIME S B,et al.Sealing in Turbomachine[J].Journal of Propulsion and Power,2006,22(2):313-349.
参考文献 4
LUDWIG L P,BILL R C.Gas path sealing in turbine engines[J].Asle Transactions,1980,23(1):1-22.
参考文献 5
刘雨薇.影响摩擦磨损的接触热动力学特性研究[D].北京:北京理工大学,2015.LIU Yuwei.Research on contact thermal dynamics of friction and wear [D].Beijing:Beijing Institute of Technology,2015.(in Chinese)
参考文献 6
张利华.考虑微凸体相互作用的各向异性粗糙表面接触特性研究[D].西安:西安理工大学,2020.ZHANG Lihua.Study on contact characteristics of anisotropic rough surfaces considering the interaction of microconvexes[D].Xi’ an:Xi’ an University of Technology,2020.(in Chinese)
参考文献 7
鲍羽.涡轮叶片刮磨传热特性研究[D].南京:南京航空航天大学,2016.BAO Yu.Research on heat transfer characteristics ofturbine blade scraping[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2016.(in Chinese)
参考文献 8
张佳平,高禩洋,李浩宇,等.高速刮擦条件下两种铝基封严涂层的可刮削性[J].中国表面工程,2018,31(6):90-97.ZHANG Jiaping,GAO Siyang,LI Haoyu,et al.High-speed scratch under the condition of two kinds of aluminum seal coating can be scraping resistance [J].China Surface Engineering,2018,31(6):90-97.(in Chinese)
参考文献 9
郑海亮,高禩洋,薛伟海,等.高速刮擦条件下封严涂层热物性对叶片损伤行为的影响[J].中国表面工程,2017,30(6):149-157.ZHENG Hailiang,GAO Siyang,XUE Weihai,et al.Effect of thermal propertles of sealing coating on blade damage behavlor under high speed scraping[J].China Surface Engineering,2017,30(6):149-157.(in Chinese)
参考文献 10
张佳平,芦国强,李浩宇,等.Al/BN 涂层性能及高速刮削下与TA11合金叶片的磨损行为[C]//中国航空学会.探索创新交流(第7集)——第七届中国航空学会青年科技论坛文集(上册).中国航空学会:中国航空学会,2016:7.ZHANG Jiaping,LU Guoqiang,LI haoyu,et al.Al/BN coating properties and wear behavior of TA11 alloy blade under high speed scraping[C]//Chinese Aeronautical Society.Exploration and Innovation Exchange(Vol.7)— The 7th Youth Science and Technology Forum of Chinese Aeronautical Society(Vol.1).Chinese Society of Aeronautics:Chinese Society of Aeronautics,2016:7.(in Chinese)
参考文献 11
GHASRIPOOR F,SCHMID R,DORFMAN M.A review of clearance control wear mechanism for low temperature aluminium silicon alloys[C]//Proceedings of the 15th International Thermal Spray Conference,1998:139-144.
参考文献 12
FOIS N,WATSON M,STRINGER J,et al.An investigation of the relationship between wear and contact force for abradable materials[J].Proc.Inst.Mech.Engineers Part J.Eng.Tribol.Online Publ,2014:1-15.
参考文献 13
FOIS N,STRINGER J,MARSHALL M.Adhesive transfer in aero-engine abradable linings contact[J].Wear 2013,304(1-2):202-210.
参考文献 14
STRINGER J,MARSHALL M,High speed wear testing of an abradable coating[J].Wear,2012,294-295:257-263.
参考文献 15
BÉRENGER B,BATAILLY A,STAINIER L,et al.Phenomenological modeling of abradable wear in turbomachines[J].Mechanical Systems and Signal Processing,2018,98:770-785.
参考文献 16
KALIN M.Influence of flash temperatures on the tribological behaviour in low-speed sliding:A review[J].Materials Science and Engineering,2004,A374:390-397.
参考文献 17
ARCHARD J.The temperature of rubbing surfaces[J].Wear,1958,2:438-455.
参考文献 18
CARSLAW H,JAEGERJ.The conduction of heat in solids[M].London:Oxford University Press,1947:56.
参考文献 19
DELEBARRE C,WAGNER V,PARIS J,et al.An experimental study of the high speed interaction between a labyrinth seal and an abradable coating in a turbo-engine application[J].Wear,2014,316:109-118.
参考文献 20
Metco® 601NS Aluminum-polyester powder[M].SulzerMetco:Technical Bulletin #10-141,2000.
目录contents

    摘要

    为了探究航空发动机可磨耗封严涂层与叶片在高速刮磨过程中磨损和黏附情况,使用大气等离子喷涂方法制备 AlSi-PHB 中低温封严涂层,对其进行高速刮磨试验,并对涂层和叶尖形貌和黏附形态进行研究。通过高速转子试验台测得刮磨过程中径向力和切向力并拟合刮磨温度曲线。采用共聚焦显微镜和扫描电镜设备获取涂层和叶尖表截面形貌、EDS 面扫描能谱以及涂层表面粗糙度,采用高精度电子秤测得涂层和叶尖失重量并计算失重速率,进一步佐证刮磨温度变化趋势。结果表明:高速刮磨时的单次切削量影响涂层失重速率,且产生不同的刮磨温度,刮磨温度影响叶尖黏附物状态;叶尖黏附物形态进一步影响刮磨后的涂层表面形貌,最终影响涂层封严性能。对高速刮磨过程中涂层刮磨形貌和叶尖黏附形态进行定性和定量分析,可为判断不同刮磨形态对涂层使用性能影响提供参考。

    Abstract

    In order to investigate the wear and adhesion of the abrasion-sealing coating and blade blade in the process of high-speed scraping, the atmospheric plasma spraying method is used to prepare AlSi-PHB sealing coating, and the high-speed scraping test is carried out. The radial force and tangential force in the process of scraping are measured by high-speed rotor test bench and the temperature curve of scraping is fitted. The scraping and adhesion morphology of the coating and blade tip are studied. The curves of radial and tangential force are measured,and the temperature curve of scraping is calculated. The surface of the coating and blade tip, EDS surface scanning and surface roughness are obtained. The weight loss of the coating and blade tip is measured and the rate is calculated to further support the trend of scraping temperature. The results show that the occurrence of adhesion transfer affects the surface morphology of the coating after scraping, and then affects the application efficiency of the coating. The scraping temperature indirectly affects the blade tip adhesion state by affecting the weight loss rate of the coating, and affects the safety of the coating, which is an important factor affecting the adhesion transfer. The weight loss rate of blade tip adhesion was low, but the weight loss rate of flake was high. This paper presents a qualitative and quantitative analysis of the coating scraping morphology and tip adhesion patterns during high-speed scraping, which provides a data reference for determining the effect of different scraping patterns on the coating performance.

  • 0 前言

  • 可磨耗封严涂层作为航空发动机转动部件与机匣之间的保护性涂层,在工作过程中通过磨耗自身保护叶片和发动机,控制压气机转子与配合机匣之间的间隙,减少发动机加速过程中的喘振概率,降低油耗,提高发动机工作效率和使用寿命[1-4]。封严涂层在叶片高速进给过程中,首先是叶尖的微观凸起[5-6]对涂层凸起处进行微观切削,随着进给进行,刮磨力和刮磨温度逐渐升高,涂层上因刮磨产生的碎屑黏附至叶尖,部分转移成分会在高温状态下逐渐累积最终凝固成各种形态[7-10]。GHASRIPOOR等[11]研究了不同工况下刮磨温度对封严涂层塑性变形的影响,认为高进给速率导致的冲击作用和温度升高是导致涂层塑性变形的重要因素,并根据不同刮磨工况绘制出基于叶尖转速和侵入率的封严涂层磨损图。 FOIS[12-13]和STRINGER[14]利用频闪成像技术观察到叶尖碰磨涂层过程中的高温火花,认为较高的刮磨温度出现在侵入率较低时,而侵入率较高时观察到明显的低温状态切削现象。BÉRENGER[15] 基于可磨耗封严涂层的刮磨机制建立了以刮磨温度和角速度为参数基础的封严涂层磨损轮廓图。这些研究包括对高速刮磨过程中产生的现象和涂层刮磨形貌进行定性分析,但缺少刮磨过程中的定量分析和对叶尖黏附形态的分析。

  • 基于上述研究,本文探究AlSi-PHB封严涂层和TC4叶片在不同单次切削量工况下刮磨温度对二者刮磨形貌的影响,使用高速转子试验台模拟发动机的不同刮磨工况并计算对应刮磨温度曲线,结合AlSi-PHB封严涂层和叶尖刮磨失重速率、金相形貌和涂层表面粗糙度等参数对黏附形态进行分析,为判断不同刮磨形态对涂层使用性能影响提供参考。

  • 1 试验

  • 1.1 试验材料

  • 试验选用等离子喷涂方法制备AlSi-40%PHB中低温封严涂层,原料成分如表1所示。基体材料选用低碳钢(φ 25.4mm×6mm),底层沉积厚度约0.1mm,总沉积厚度约2mm。喷涂工艺如表2所示。涂层制备后,采用KGS-618M磨床搭配180目和400目金刚石砂轮将涂层表面粗糙度打磨至 Ra <2 μm,打磨厚度不小于0.5 μm。进行金相试样制备时必须采用真空冷镶嵌法,并使用规格3 μm及以下的低回复性抛光布配合对应规格的抛光液进行抛光。AlSi-PHB截面金相形貌如图1所示。

  • 表1 AlSi-40%PHB封严涂层原料成分

  • Table1 Material composition of AlSi-40%PHB sealing coatings

  • 表2 AlSi-40%PHB封严涂层喷涂参数

  • Table2 Spraying parameters of AlSi-40%PHB sealing coatings

  • 图1 AlSi-40%PHB封严涂层金相形貌

  • Fig.1 Metallographic morphology of AlSi-40%PHB sealing coatings

  • 1.2 试验条件

  • 高速刮磨试验设备采用自制的高速转子试验台,图2显示了高速转子试验台的工作原理图。为确保不同叶尖转速下叶片与涂层对磨的行程相同,刮磨次数一致,试验以单次切削量为变量标准,控制刮磨深度不变,进而改变刮磨工况,刮磨参数如表3所示。对磨副材料为Ti6Al4V,叶尖尺寸为3mm× 25mm,试验前叶片尖端需用800 #、1200 #金刚石砂纸进行预打磨以保证叶尖平整。为避免叶片因高转速产生的离心力伸长触碰涂层,需控制叶尖与涂层的初始距离大于0.2mm。设定参数后开机,待叶片转速达到设定值后开始进给。数据采集频率为1kHz。试验前后叶片和涂层质量用高精度电子天平称量,称量至少3次,并取平均数计算质量变化。将试验后的叶尖用刀片刮去黑色黏附物质,并用高精度电子天平称量黏附物质和叶片以减小误差。

  • 图2 高速转子试验台工作原理

  • Fig.2 Working principle of high speed rotor test bench

  • 表3 高速刮磨试验参数

  • Table3 High speed scraping grinding test parameters

  • 1.3 刮磨温度的计算

  • 当两粗糙表面之间发生相对滑动时,物体产生的热量首先通过接触的微凸体向内扩散[5]。扩散过程中热量集中在接触面上,接触点处的温度远高于对磨副表面平均温升,接触点温度被称为“闪点温度”。为了方便计算分析,通常假设结合面上温度分布连续[16]。ARCHARD[17]在对闪点温度的计算过程中,认为高速接触过程中,接触期间热量穿透的深度与接触的尺寸较小,因此可以忽略侧向热流,将其视为半无限固体平面的导热问题。对于表面温度计算公式如下:

  • θ=2qt0.5/(πKρc)0.5
    (1)
  • 式中,q 为单位面积的传热速率,t 为接触时间,K 为导热系数,ρ 为密度,c 为比热容。

  • 对于高速刮磨过程中的导热问题,假设摩擦产生的热量全部流入涂层表面和叶尖,且以恒定的速率传导至接触平面,这样刮磨产生热量的传导问题可认为是恒定表面热流密度下的半无限大媒介间的瞬态导热问题[5,18]。刮磨产生的热量 Q 将以固定比例系数 C 分配到两接触面上。比例系数 C 的计算公式为:

  • C=Kckb0.5/Kbkc0.5
    (2)
  • 式中,k b 为叶尖热扩散率,k c 为涂层热扩散率。根据能量守恒定律,在刮磨面上存在公式[18]

  • FxL=Q+Wr
    (3)
  • 式中,F x 为刮磨力,L 为刮磨总长度,Q 为刮磨产生的能量,W r为切削能。

  • 2 结果与讨论

  • 2.1 涂层刮磨力与温度分析

  • 2.1.1 涂层刮磨力分析

  • 图3 显示封严涂层高速刮磨过程中刮磨力最大值。由于径向力 Fz最大值代表刮磨过程中对磨副之间的作用程度[19],随着转速增加,Fz 作用的占比减小,对磨副之间相互作用减少,最终导致黏附行为减少,磨损行为增加[19]。在低单次切削量工况下,较小的刮磨力对叶尖黏附物的挤压效果越弱,而高单次切削量工况下刮磨力较大,对叶尖上黏附物的挤压效果明显。

  • 图3 涂层刮磨力最大值

  • Fig.3 Maximum abrasive force of coating

  • 2.1.2 涂层刮磨温度分析

  • 通过式(1)得出的刮磨温度曲线如图4所示。随着转速增加,刮磨温度上升速率和最高温度呈现上升趋势。结合图3可见,刮磨深度不变时低单次切削量工况下刮磨力较小,但刮磨时间较长,叶尖能够保持稳定的刮磨行程,转速增加使得稳定刮磨时间变短,径向力峰值降低,磨损行为增加,即摩擦做功增加。在不考虑磨屑带走热量的前提下,刮磨做功累积使得温度上升。同时刮磨结束前温度均大于300℃,远高于环境温度。这说明涂层在高速刮磨过程中因热失效导致自身磨损加剧[20]。在高单次切削量工况下,由于单次进给的深度增加,每一次切削所做的功更大,使得刮磨做功的速率高于低单次切削量工况,因此该工况下刮磨温度上升速率高于低单次切削量工况。

  • 图4 封严涂层高速刮磨温度变化曲线

  • Fig.4 Temperature variation curve of high speed scraping of sealing coating

  • 2.2 涂层和叶尖刮磨形貌和失重分析

  • 2.2.1 刮磨形貌分析

  • 图5 为低单次切削量工况下刮磨后涂层和叶尖表面形貌。涂层表面出现较平整的切削区和较粗糙的刮磨区,粗糙区域沿刮磨方向扩展明显,说明此处对应叶尖区域磨损严重,出现明显的局部开裂和塑性变形。从叶尖形貌图中发现明显的块状凸起,经图6叶尖EDS能谱分析显示,该凸起物质主要元素为Al、Si和Ti元素,其中Al、Si元素为涂层组分元素。该块状凸起成分集中在叶片切出侧,而叶片切入侧较平整,说明在刮磨进程中,叶片切入侧主要受到切削作用,而叶片切出侧主要受黏附转移作用。该结论同样适用于高单次切削量工况(如图7所示)。

  • 高单次切削量工况下刮磨表面形貌如图7所示,刮磨区域粗糙区面积明显减少,涂层表面以较平整的切削区为主。叶尖处黏附成分呈层状铺展在叶尖表面,反映出高单次切削量工况下由于进给速率较高,黏附至叶尖的物质受到更强的挤压作用。结合图8叶尖和涂层EDS能谱可见黏附转移出现在全工况下,转移物主要聚集在叶片切出侧。

  • 图5 低单次切削量工况对磨副表面刮磨形貌

  • Fig.5 Effects of low bite per strike condition on the surface scraping morphology

  • 图6 低单次切削量工况对磨副EDS面扫描能谱

  • Fig.6 EDS surface scanning energy spectrum of grinding pair under low bite per strike condition

  • 图7 高单次切削量工况对磨副表面刮磨形貌

  • Fig.7 Effects of high bite per strike on the surface scraping morphology

  • 图8 高单次切削量工况对磨副EDS面扫描能谱

  • Fig.8 EDS surface scanning energy spectrum of grinding pair under high bite per strike condition

  • 2.2.2 刮磨失重分析

  • 表4 为刮磨后涂层及叶片失重速率,可以看出在相同工况下,高转速会增加叶片和涂层磨损[14]; 而在相同转速下,提高进给速率会增加对磨副的磨损。但根据表5涂层和叶尖失重率比值可以看出,转速增加对叶片磨损更严重,而在低转速时对磨次数提高会降低叶片磨损速率。

  • 表4 高速刮磨后涂层和叶尖失重速率

  • Table4 High speed scraping coating and tip weight loss rate

  • 表5 高速刮磨涂层失重率/叶尖失重率

  • Table5 High speed scraping coating weight loss divided by tip weight loss(weightlessness rate)

  • 2.3 涂层表面粗糙度分析

  • 图9 为刮磨后涂层的表面粗糙度,可以看出低单次切削量工况的表面粗糙度高于25 μm,高单次切削量工况的粗糙度低于20 μm。结合涂层和叶尖表面形貌可以说明,叶尖黏附物质形状是影响表面粗糙度的重要因素。黏附物质为块状表明该工况下刮磨机制是叶尖、转移物颗粒与涂层之间的三体磨粒磨损,最终形成图5中粗糙刮磨区形貌,因此涂层表面粗糙度较大。黏附物质为层状表明该工况下刮磨机制是叶尖与涂层之间二体磨损,粗糙刮磨区面积较小导致表面粗糙度较小。另外,随着转速的增加,叶尖对涂层的刮磨程度加剧,涂层刮磨面起伏增加,即叶片与涂层的间隙扩大,发动机更容易因此导致其内部气体流动不连续而导致喘振,进而对航空器的使用造成更大威胁。而高单次切削量工况由于进给速率较高,对涂层的挤压作用较低单次切削量工况更明显。因此,高单次切削量工况的使用对航空发动机的威胁最小。

  • 图9 涂层刮磨表面粗糙度

  • Fig.9 Coating scraping surface roughness

  • 2.4 基于刮磨温度的黏附转移分析

  • 图10 为涂层失重速率与温度、刮磨力比的关系图。可以看出,刮磨温度与涂层失重速率变化趋势相同,在低单次切削工况下,叶尖黏附物质以块状为主,高单次切削工况下以层片状为主。在相同工况下,涂层失重速率小于0.2g/s时,刮磨温度升高导致失重速率和Fx/Fz上升,说明涂层失重主要来源于高温状态下的摩擦磨损作用。同时,单次进给深度较小导致黏附范围变大,最终黏附状态为块状。当涂层失重速率大于0.2g/s,刮磨温度上升,但Fx/Fz下降,说明此时涂层刮磨面受挤压作用大于磨损和切削作用。而且,刮磨时间缩短导致黏附发生时间缩短,单次进给深度较大使得单次的黏附量减少,黏附状态为层片状。

  • 图10 涂层失重速率-温度-刮磨力比关系图

  • Fig.10 Coating weight loss rate-temperature-abrasive force ratio diagram

  • 3 结论

  • 对AlSi-PHB封严涂层在不同工况下高速刮磨后涂层和叶片的刮磨温度、金相组织和表面粗糙度进行测试和分析,探究该封严涂层与TC4叶片对磨在不同工况下的刮磨行为,得出结论如下:

  • (1) AlSi-40%PHB封严涂层刮磨形貌中,低单次切削量工况下涂层表面出现明显的局部开裂和塑性变形,高单次切削量工况下涂层表面刮磨粗糙区面积减小。

  • (2) 刮磨温度是影响黏附转移的重要因素,当刮磨温度远高于环境温度时会加剧涂层和叶尖的磨损和黏附。

  • (3) 高速刮磨过程中存在涂层向叶尖的黏附转移,单次切削量较小时表面粗糙度大于25 μm,单次切削量较大时表面粗糙度低于20 μm。

  • (4) 涂层失重速率小于0.2g/s时Fx/Fz与涂层失重速率呈正相关,叶尖呈块状黏附,当涂层失重速率大于0.2g/s时Fx/Fz与涂层失重速率呈负相关,叶尖呈层片状黏附。

  • 参考文献

    • [1] 孙建刚,马春春,王会.高温超高速试验系统及封严涂层评价体系的研究进展[J].热喷涂技术,2019,11(2):5-11.SUN Jiangang,MA Chunhui,WANG hui.Research progress of high temperature and high speed test system and seal coating evaluation system[J].Thermal Spraying Technology,2019,11(2):5-11.(in Chinese)

    • [2] DADOUCHE A,CONLON M,DMOCHOWSKI W,et al.Experimental evaluation of abradable seal performance at high temperature[J].Proceedings of ASME Turbo Expo,2008(6):9-13.

    • [3] CHUPP R E,HENDRICKS R C,LATTIME S B,et al.Sealing in Turbomachine[J].Journal of Propulsion and Power,2006,22(2):313-349.

    • [4] LUDWIG L P,BILL R C.Gas path sealing in turbine engines[J].Asle Transactions,1980,23(1):1-22.

    • [5] 刘雨薇.影响摩擦磨损的接触热动力学特性研究[D].北京:北京理工大学,2015.LIU Yuwei.Research on contact thermal dynamics of friction and wear [D].Beijing:Beijing Institute of Technology,2015.(in Chinese)

    • [6] 张利华.考虑微凸体相互作用的各向异性粗糙表面接触特性研究[D].西安:西安理工大学,2020.ZHANG Lihua.Study on contact characteristics of anisotropic rough surfaces considering the interaction of microconvexes[D].Xi’ an:Xi’ an University of Technology,2020.(in Chinese)

    • [7] 鲍羽.涡轮叶片刮磨传热特性研究[D].南京:南京航空航天大学,2016.BAO Yu.Research on heat transfer characteristics ofturbine blade scraping[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2016.(in Chinese)

    • [8] 张佳平,高禩洋,李浩宇,等.高速刮擦条件下两种铝基封严涂层的可刮削性[J].中国表面工程,2018,31(6):90-97.ZHANG Jiaping,GAO Siyang,LI Haoyu,et al.High-speed scratch under the condition of two kinds of aluminum seal coating can be scraping resistance [J].China Surface Engineering,2018,31(6):90-97.(in Chinese)

    • [9] 郑海亮,高禩洋,薛伟海,等.高速刮擦条件下封严涂层热物性对叶片损伤行为的影响[J].中国表面工程,2017,30(6):149-157.ZHENG Hailiang,GAO Siyang,XUE Weihai,et al.Effect of thermal propertles of sealing coating on blade damage behavlor under high speed scraping[J].China Surface Engineering,2017,30(6):149-157.(in Chinese)

    • [10] 张佳平,芦国强,李浩宇,等.Al/BN 涂层性能及高速刮削下与TA11合金叶片的磨损行为[C]//中国航空学会.探索创新交流(第7集)——第七届中国航空学会青年科技论坛文集(上册).中国航空学会:中国航空学会,2016:7.ZHANG Jiaping,LU Guoqiang,LI haoyu,et al.Al/BN coating properties and wear behavior of TA11 alloy blade under high speed scraping[C]//Chinese Aeronautical Society.Exploration and Innovation Exchange(Vol.7)— The 7th Youth Science and Technology Forum of Chinese Aeronautical Society(Vol.1).Chinese Society of Aeronautics:Chinese Society of Aeronautics,2016:7.(in Chinese)

    • [11] GHASRIPOOR F,SCHMID R,DORFMAN M.A review of clearance control wear mechanism for low temperature aluminium silicon alloys[C]//Proceedings of the 15th International Thermal Spray Conference,1998:139-144.

    • [12] FOIS N,WATSON M,STRINGER J,et al.An investigation of the relationship between wear and contact force for abradable materials[J].Proc.Inst.Mech.Engineers Part J.Eng.Tribol.Online Publ,2014:1-15.

    • [13] FOIS N,STRINGER J,MARSHALL M.Adhesive transfer in aero-engine abradable linings contact[J].Wear 2013,304(1-2):202-210.

    • [14] STRINGER J,MARSHALL M,High speed wear testing of an abradable coating[J].Wear,2012,294-295:257-263.

    • [15] BÉRENGER B,BATAILLY A,STAINIER L,et al.Phenomenological modeling of abradable wear in turbomachines[J].Mechanical Systems and Signal Processing,2018,98:770-785.

    • [16] KALIN M.Influence of flash temperatures on the tribological behaviour in low-speed sliding:A review[J].Materials Science and Engineering,2004,A374:390-397.

    • [17] ARCHARD J.The temperature of rubbing surfaces[J].Wear,1958,2:438-455.

    • [18] CARSLAW H,JAEGERJ.The conduction of heat in solids[M].London:Oxford University Press,1947:56.

    • [19] DELEBARRE C,WAGNER V,PARIS J,et al.An experimental study of the high speed interaction between a labyrinth seal and an abradable coating in a turbo-engine application[J].Wear,2014,316:109-118.

    • [20] Metco® 601NS Aluminum-polyester powder[M].SulzerMetco:Technical Bulletin #10-141,2000.

  • 参考文献

    • [1] 孙建刚,马春春,王会.高温超高速试验系统及封严涂层评价体系的研究进展[J].热喷涂技术,2019,11(2):5-11.SUN Jiangang,MA Chunhui,WANG hui.Research progress of high temperature and high speed test system and seal coating evaluation system[J].Thermal Spraying Technology,2019,11(2):5-11.(in Chinese)

    • [2] DADOUCHE A,CONLON M,DMOCHOWSKI W,et al.Experimental evaluation of abradable seal performance at high temperature[J].Proceedings of ASME Turbo Expo,2008(6):9-13.

    • [3] CHUPP R E,HENDRICKS R C,LATTIME S B,et al.Sealing in Turbomachine[J].Journal of Propulsion and Power,2006,22(2):313-349.

    • [4] LUDWIG L P,BILL R C.Gas path sealing in turbine engines[J].Asle Transactions,1980,23(1):1-22.

    • [5] 刘雨薇.影响摩擦磨损的接触热动力学特性研究[D].北京:北京理工大学,2015.LIU Yuwei.Research on contact thermal dynamics of friction and wear [D].Beijing:Beijing Institute of Technology,2015.(in Chinese)

    • [6] 张利华.考虑微凸体相互作用的各向异性粗糙表面接触特性研究[D].西安:西安理工大学,2020.ZHANG Lihua.Study on contact characteristics of anisotropic rough surfaces considering the interaction of microconvexes[D].Xi’ an:Xi’ an University of Technology,2020.(in Chinese)

    • [7] 鲍羽.涡轮叶片刮磨传热特性研究[D].南京:南京航空航天大学,2016.BAO Yu.Research on heat transfer characteristics ofturbine blade scraping[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2016.(in Chinese)

    • [8] 张佳平,高禩洋,李浩宇,等.高速刮擦条件下两种铝基封严涂层的可刮削性[J].中国表面工程,2018,31(6):90-97.ZHANG Jiaping,GAO Siyang,LI Haoyu,et al.High-speed scratch under the condition of two kinds of aluminum seal coating can be scraping resistance [J].China Surface Engineering,2018,31(6):90-97.(in Chinese)

    • [9] 郑海亮,高禩洋,薛伟海,等.高速刮擦条件下封严涂层热物性对叶片损伤行为的影响[J].中国表面工程,2017,30(6):149-157.ZHENG Hailiang,GAO Siyang,XUE Weihai,et al.Effect of thermal propertles of sealing coating on blade damage behavlor under high speed scraping[J].China Surface Engineering,2017,30(6):149-157.(in Chinese)

    • [10] 张佳平,芦国强,李浩宇,等.Al/BN 涂层性能及高速刮削下与TA11合金叶片的磨损行为[C]//中国航空学会.探索创新交流(第7集)——第七届中国航空学会青年科技论坛文集(上册).中国航空学会:中国航空学会,2016:7.ZHANG Jiaping,LU Guoqiang,LI haoyu,et al.Al/BN coating properties and wear behavior of TA11 alloy blade under high speed scraping[C]//Chinese Aeronautical Society.Exploration and Innovation Exchange(Vol.7)— The 7th Youth Science and Technology Forum of Chinese Aeronautical Society(Vol.1).Chinese Society of Aeronautics:Chinese Society of Aeronautics,2016:7.(in Chinese)

    • [11] GHASRIPOOR F,SCHMID R,DORFMAN M.A review of clearance control wear mechanism for low temperature aluminium silicon alloys[C]//Proceedings of the 15th International Thermal Spray Conference,1998:139-144.

    • [12] FOIS N,WATSON M,STRINGER J,et al.An investigation of the relationship between wear and contact force for abradable materials[J].Proc.Inst.Mech.Engineers Part J.Eng.Tribol.Online Publ,2014:1-15.

    • [13] FOIS N,STRINGER J,MARSHALL M.Adhesive transfer in aero-engine abradable linings contact[J].Wear 2013,304(1-2):202-210.

    • [14] STRINGER J,MARSHALL M,High speed wear testing of an abradable coating[J].Wear,2012,294-295:257-263.

    • [15] BÉRENGER B,BATAILLY A,STAINIER L,et al.Phenomenological modeling of abradable wear in turbomachines[J].Mechanical Systems and Signal Processing,2018,98:770-785.

    • [16] KALIN M.Influence of flash temperatures on the tribological behaviour in low-speed sliding:A review[J].Materials Science and Engineering,2004,A374:390-397.

    • [17] ARCHARD J.The temperature of rubbing surfaces[J].Wear,1958,2:438-455.

    • [18] CARSLAW H,JAEGERJ.The conduction of heat in solids[M].London:Oxford University Press,1947:56.

    • [19] DELEBARRE C,WAGNER V,PARIS J,et al.An experimental study of the high speed interaction between a labyrinth seal and an abradable coating in a turbo-engine application[J].Wear,2014,316:109-118.

    • [20] Metco® 601NS Aluminum-polyester powder[M].SulzerMetco:Technical Bulletin #10-141,2000.

  • 手机扫一扫看