en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李波,男,1971年出生,高级工程师。主要研究方向为电力设备服役安全与可靠性。E-mail:9154007@qq.com;

杨明(通信作者),男,1981年出生,博士,副教授,硕士研究生导师。主要研究方向为先进金属材料。E-mail:myang5@gzu.edu.cn

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20210325001

参考文献 1
DAI X Y.Structure and properties of an ultra-high strength 7xxx aluminum alloy contained Sc and Zr[J].Journal of University of Science and Technology Beijing,2008,15(3):276-279.
参考文献 2
孙会,沈忱.铝合金中间形变热处理工艺方法及研究进展[J].金属热处理,2019,44(7):217-223.SUN Hui,SHEN Chen.Technology and research progress of intermediate deformation heat treatment of aluminum alloy[J].Metal Heat Treatment,2019,44(7):217-223.(in Chinese)
参考文献 3
SONG K H,LEE O H.Improvement of fracture toughness in 7XXX series aluminum alloy forings[J].Journal of the Korean Society for Heat Treatment,1998,11(3):200-206.
参考文献 4
GUZMAN L,BONINI G,ADAMI M,et al.Mechanical behaviour of nitrogen-implanted aluminium alloys[J].Surface and Coatings Technology,1996,83(1):284-289.
参考文献 5
WATKINS K G,LIU Z,MCMAHON M,et al.Influence of the overlapped area on the corrosion behaviour of laser treated aluminium alloys[J].Materials Science and Engineering:A,1998,252(2):292-300.
参考文献 6
张宇婷,朱国强,崔芙红.表面处理技术的种类和发展 [J].化工管理,2019,31:4-5.ZHANG Yuting,ZHU Guoqiang,CUI Fuhong.Types and development of surface treatment technology[J].Chemical Management,2019,31:4-5.(in Chinese)
参考文献 7
YOO S,KIM S G,KIM S W.Surface nanocrystallization technology and characteristics[J].Journal of the Korean Society for Heat Treatment,2007,20(5):259-269.
参考文献 8
TAO N R.Surface nanocrystallization of iron induced by ultrasonic shot peening[J].Nanostructured Materials,1999,11(4):433-440.
参考文献 9
吴敏,孙勇.铝及其合金表面处理的研究现状[J].表面技术,2003,32(3):13-15.WU Min,SUN Yong.Research status of aluminum and its alloy surface treatment[J].Surface Technology,2003,32(3):13-15.(in Chinese)
参考文献 10
DHAKAL B,SWAROOP S.Effect of laser shock peening on mechanical and microstructural aspects of 6061-T6 aluminum alloy[J].Journal of Materials Processing Technology,2020,282:1-15
参考文献 11
KUMAR S,PANDEY V,CHATTOPADHYAY K,et al.Surface nanocrystallization induced by ultrasonic shot peening and its effect on corrosion resistance of Ti-6Al-4V Alloy[J].Transactions of the Indian Institute of Metals,2019,72(3):789-792.
参考文献 12
WANG Z B,LU J,LU K.Wear and corrosion properties of a low carbon steel processed by means of SMAT followed by lower temperature chromizing treatment[J].Surface & Coatings Technology,2006,201(6):2796-2801.
参考文献 13
黄海威,王镇波,刘莉,等.马氏体不锈钢上梯度纳米结构表层的形成及其对电化学腐蚀行为的影响[J].金属学报,2015,51(5):513-518.HUANG Haiwei,WANG Zhenbo,LIU Li,et al.Formation of gradient nanostructured surface layer on martensitic stainless steel and its effect on electrochemical corrosion behavior[J].Acta Metallurgica Sinica,2015,51(5):513-518.(in Chinese)
参考文献 14
ZHAO F,XU H,LI D,et al.Surface nanocrystallization of 35# type carbon steel induced by ultrasonic impact treatment(UIT)[J].Procedia Engineering,2012,27:1718-1722.
参考文献 15
WANG C M.Enhanced corrosion behavior and mechanical properties of Al-Zn-Mg-Cu sheet alloy by ultrasonic surface rolling treatment[J].Metallurgical and Materials Transactions,2020,51(5):1967-1971.
参考文献 16
王婷.超声表面滚压加工改善40Cr钢综合性能研究[D].天津:天津大学,2009.WANG Ting.Research on improving the comprehensive properties of 40Cr steel by ultrasonic surface rolling processing[D].Tianjin:Tianjin University,2009(in Chinese).
参考文献 17
唐洋洋,李林波,王超,等.超声表面滚压纳米化技术研究现状[J].表面技术,2021,50(2):160-169.TANG Yangyang,LI Linbo,WANG Chao,et al.Research status of ultrasonic surface rolling nanotechnology[J].Surface Technology,2021,50(2):160-169.
参考文献 18
XU X C.Influence of ultrasonic rolling on surface integrity and corrosion fatigue behavior of 7B50-T7751 aluminum alloy[J].International Journal of Fatigue,2019,125:237-248.
参考文献 19
WU X,TAO N,HONG Y,et al.Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of Al-alloy subjected to USSP[J].Acta Materialia,2002,50(8):2075-2084.
参考文献 20
FRANKLIN F J,WIDIYARTA I,KAPOOR A.Computer simulation of wear and rolling contact fatigue[J].Wear,2001,251(1):949-955.
参考文献 21
LU L X.Study on surface characteristics of 7050-T7451 aluminum alloy by ultrasonic surface rolling process[J].The International Journal of Advanced Manufacturing Technology,2016,87(9-12):2533-2539.
参考文献 22
XU X C,LIU D X,ZHANG X H,et al.Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J].Journal of Materials Science & Technology,2020,40(5):88-98.
参考文献 23
KIM D H.Comparison of electrochemical corrosion properties of permanent mold casting GZ21 alloy and AZ91 Alloy[J].Journal of Korea Foundry Society,2016,36(2):60-66.
参考文献 24
ABUL H.Effect of Cu content on the electrochemical corrosion behavior of peak-aged Al-6Si-0.5Mg alloys in sodium chloride solution[J].Rajshahi University Journal of Science and Engineering,2016,44:29-35.
参考文献 25
XU X,LIU D,ZHANG X,et al.Effects of ultrasonic surface rolling on the localized corrosion behavior of 7B50-T7751 aluminum alloy[J].Materials,2020,13(3):738.
参考文献 26
WANG S Q,ZHANG D K,WANG D G,et al.Electrochemical corrosion behavior of steel wires in a coalmine with a corrosive medium[J].Mining Science and Technology(China),2011,21(1):71-76.
参考文献 27
崔腾飞.应力与环境因素耦合对铝合金耐久性能的影响[D].西安:西北工业大学,2017.CUI Tengfei The effect of the coupling of stress and environmental factors on the durability of aluminum alloys[D].Xi’ an:Northwestern Polytechnical University,2017.(in Chinese)
参考文献 28
YE H,SUN X,LIU Y,et al.Effect of ultrasonic surface rolling process on mechanical properties and corrosion resistance of AZ31B Mg alloy[J].Surface and Coatings Technology,2019,372:288-298.
参考文献 29
LIU X,FRANKEL G S,ZOOFAN B,et al.Effect of applied tensile stress on intergranular corrosion of AA2024-T3[J].Corrosion Science,2004,46(2):405-425.
参考文献 30
叶作彦,刘道新,吴剑,等.喷丸强化与应力因素对 2E12-T3铝合金剥蚀行为的影响[J].腐蚀科学与防护技术,2013,25(6):445-450.YE Zuoyan,LIU Daoxin,WU Jian,et al.Effects of shot peening and stress factors on the exfoliation behavior of 2E12-T3 aluminum alloy[J].Corrosion Science and Protection Technology,2013,25(6):445-450(in Chinese).
参考文献 31
XU M H.Impact of surface roughness and humidity onX70 steel corrosion in supercritical CO2 mixture with SO2,H2O,and O2[J].The Journal of Supercritical Fluids,2016,107:286-297.
参考文献 32
徐善华,何羽玲,秦广冲,等.钢材锈蚀率与表面三维粗糙度参数的关系[J].材料科学与工程学报,2016,34(2):292-295.XU Shanhua,HE Yuling,QIN Guangchong,et al.The relationship between steel corrosion rate and three-dimensional surface roughness parameters[J].Chinese Journal of Materials Science and Engineering,2016,34(2):292-295.(in Chinese)
目录contents

    摘要

    表面纳米化处理是一种有效改善耐腐蚀性能的手段,但受表面粗糙度和残余应力等因素的影响,其相关机制并不清晰。 运用透射电镜(TEM)和扫描电镜(SEM)研究经超声表面滚压工艺(USRP)处理后 7075 铝合金的组织和性能。结果表明: 经 1 道次和 15 道次 USRP 处理后,7075 铝合金表面粗糙度减小并且引入了残余压应力。滚压 15 个道次的试样表面能获得平均晶粒尺寸为 52 nm 的纳米晶。相较于未处理试样,经 1 道次和 15 道次 USRP 处理后试样的耐腐蚀性能均显著提高。其中, 滚压 15 个道次试样的耐腐蚀性能提升更为显著。这主要是因为纳米晶可以使材料表面形成更加致密的钝化膜,导致其耐腐蚀性能显著提高,而表面粗糙度降低和引入残余压应力是提升耐腐蚀性能的次要因素。对比分析残余应力、表面粗糙度和表面纳米晶对 7075 铝合金耐腐蚀性能的影响,揭示了 7075 铝合金经表面纳米化处理后耐腐蚀性能提升的机制。

    Abstract

    Surface nanocrystallization is an effective means to improve corrosion resistance, but it is affected by factors such as surface roughness and residual stress, and the related mechanism is not clear. The microstructure and corrosion properties of 7075 aluminum alloy treated by ultrasonic surface rolling process (USRP) are investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results show that after 1 pass and 15 passes of USRP treatment, the surface roughness of 7075 aluminum alloy is reduced and residual compressive stress is introduced. After 15 passes of rolling, nanocrystals with an average grain size of 52 nm can be obtained on the surface of the sample. Compared with the untreated sample, the corrosion resistance of the sample after 1 pass and 15 passes of USRP treatment is significantly improved. Among them, the corrosion resistance of the 15-pass rolling sample has been improved more significantly. This is mainly because the presence of nanocrystals can form a denser passivation film on the surface of the material, leading to a significant improvement in its corrosion resistance. The reduction of surface roughness and the introduction of residual compressive stress are secondary factors to improve the corrosion resistance. This paper analyzes the effects of residual stress, surface roughness and surface nanocrystals on the corrosion resistance of 7075 aluminum alloy, and reveals the mechanism of the corrosion performance of 7075 aluminum alloy after surface nanocrystallization.

  • 0 前言

  • 7XXX铝合金由于具有低成本、高比强度和力学性能好等特点被广泛应用于航空航天、交通运输和建筑等行业[1-3]。然而,大量研究表明,在海洋大气环境下,7XXX铝合金易在材料表面发生腐蚀,这在很大程度上限制了材料的应用与发展[4-5]

  • 相较于研发新的材料,通过表面纳米化处理来提高其表面性能可以节省大量成本[6]。传统的表面纳米化处理方法包括激光冲击技术LSP(Laser shock peening)、表面机械研磨处理SMAT(Surface mechanical attrition treatment)和超声表面喷丸处理USSP(Ultrasonic surface shot peening)等[7-10]。 KUMAR等[11]研究发现,对Ti-6Al-4V合金进行超声喷丸处理可改善其耐腐蚀性能,这是由晶界数量的大量增加和残余压应力的引入造成的。WANG等[12]通过表面机械研磨处理(SMAT)形成的纳米晶层增强了低碳钢的耐腐蚀性。黄海威等[13]采用表面机械滚压处理(SMRT)在Z5CND16-4马氏体不锈钢上制备出梯度纳米结构表层,发现表面粗糙度降低、表面纳米化以及残余压应力的引入均有利于提高其耐点蚀能力。由此可见,表面纳米化处理是一种有效改善耐腐蚀性能的手段,但其受材料体系、表面粗糙度和残余应力等因素的影响,机制较为复杂。在7XXX铝合金中,关于表面纳米化对耐腐蚀性能影响的研究较少,相关的机制也并不清晰。

  • 相比于传统表面纳米化技术,新型超声表面滚压工艺(USRP)可使材料具有更低的表面粗糙度、更大的残余压应力及塑性变形等,有利于耐腐蚀性能的改善[14-17]。因此本文以7075铝合金为研究对象,通过USRP技术在合金表面形成纳米晶表层,分别探讨残余应力、表面粗糙度和表面纳米晶对7075铝合金腐蚀行为的影响,为扩大铝合金和USRP技术在工业上的应用范围提供实验依据。

  • 1 材料和方法

  • 1.1 材料和样品制备

  • 本文中所用原始材料为7075-T6铝合金。进行超声表面滚压处理前,通过线切割机将7075铝合金加工成圆棒样(长度:100mm,直径:30mm)。 USRP加工示意图如图1所示。超声滚压机床参数如下所示:车床转速设定为110r/min、进给量设定为0.10mm/r、超声滚压压强为0.15MPa,超声频率为27.8kHz。超声表面滚压处理的控制变量为超声滚压道次。未经USRP处理的试样称为BM,经过1道次、7道次、15道次、19道次和24道次超声滚压处理的试样分别称为UR1、UR7、UR15、 UR19和UR24。对上述试样进行微观结构表征、浸泡试验和电化学测量。每次测量选择三个平行样品,取数据的平均值。试样经超声滚压加工后,现场立即采用丙酮除去表面润滑油,经冷风干燥后备用。

  • 图1 超声表面滚压加工示意图

  • Fig.1 Schematic diagram of ultrasonic surface rolling processing

  • 1.2 微观组织表征

  • 使用ZEISS HAL-100型金相显微镜观察合金的金相组织,腐蚀剂为Keller试剂,其配比为1.0%HF+1.5%HCl+2.5%HNO3+95%H2O[18]。采用超景深激光共聚焦显微镜(日本OLMPUS,LEXT OLS5000)观测试样的表面形貌,该显微镜能够实现曲面试样的多维细节观测与三维重构,其纵深方向分辨率大约可达到2nm。从滚压试样中段切取需要观察的试样,对试样进行镶样处理,然后用砂纸对截面进行打磨之后抛光,采用场发射扫描电镜(德国蔡司SUPRA 40)对试样进行显微形貌观察。采用透射电镜(美国FEI,Talos F200X)对不同试样的表面微观结构进行表征,加速电压为200kV。采用GNR型X射线残余应力仪测量表面残余应力。扫描方式为固定 Ψ 法,Ψ 角度取0°、15°、30°、45°。选用Cr靶辐射,衍射晶面Al(311),管电压为20kV,管电流为5mA,准直管直径为φ 4mm。

  • 1.3 腐蚀性能测试

  • 按照JBT7901《金属材料试验室均匀腐蚀全浸试验方法》标准对试样进行浸泡试验。将不同滚压处理试样放置在腐蚀溶液中,用硅胶密封非腐蚀面,所用腐蚀溶液为3.5%NaCl溶液,腐蚀温度设置为室温(30℃),腐蚀时间为7d,每组设置三个平行试样用来进行腐蚀形貌分析。通过扫描电镜和激光共聚焦显微镜观察试样的表面腐蚀形貌,统计不同试样的腐蚀深度。

  • 进行电化学测试前,在各试样端面预制螺纹孔,与铜线连接后作为工作电极。非加工区域采用热缩管进行包裹处理,并采用硅胶密封热缩管与试样之间的缝隙,以防止腐蚀液从缝隙流入非加工区域,暴露的工作电极面积为4.08cm2。电化学动电位极化曲线测试采用以待测试样为工作电极、饱和甘汞电极(SCE)为参比电极和铂(Pt)电极为辅助电极的三电极体系。测试在CS350电化学工作站(武汉科思特)上进行。电解液为3.5%NaCl溶液,电解池置于恒温水浴中控温(30±1)℃。以开路电位(OCP) 为基准进行动电位扫描,扫描电位区间为−0.8~1.5V,扫描速率设置为0.5mV/s。交流阻抗谱EIS于OCP下测量,正弦波振幅±10mV,频率范围为100kHz~0.01Hz。

  • 2 试验结果

  • 2.1 超声滚压力对表面微观结构的影响

  • 7075铝合金经USRP处理前后的横截面如图2所示。从图中可以看出,铝合金经USRP后,在振动超声冲击力和剪切应力的共同作用下,表面附近晶粒沿剪切方向逐渐旋转和拉长,试样表层在空间上呈现出梯度结构。随着滚压道次的增加,梯度形变层深逐渐增加,表层晶粒细化程度增大。当滚压道次达到15道次后,随着滚压道次增加,试样的梯度形变层深变化不大。而滚压19道次和24道次试样表层明显观察到滚压裂痕,表面裂纹的产生会显著降低材料的耐腐蚀性能。由此文中主要选取了未处理试样、1个道次和15个道次的试样进行分析,讨论超声滚压后,晶粒尺寸、表面粗糙度和表面残余应力差异对耐腐蚀性能的影响。

  • 图3 中TEM图像显示了USRP前后7075铝合金的表面微观结构。在未处理样品中(图3a),可以清楚地观察到许多球形G.P.区和一些条状析出相 (η'-MgZn2)均匀分布在晶粒内,此外晶界处存在不连续分布的析出相 η-MgZn2和无析出带(PFZ)。对于UR1样品,由于USRP产生了塑性变形,在晶粒中形成了一些位错墙(DWs)和位错缠结(DTs)(图3b)。此外,UR1样品中存在细小分散的G.P.区和 η'-MgZn2以及 η-MgZn2。根据UR15试样的TEM图像和相应的选区电子衍射(SAED)图案得知(参见图3c~3e),试样表面形成了大小均匀、取向随机的等轴状纳米晶。同时,在暗场像中析出相数量变少, UR15样品中析出相部分回溶。根据UR15试样表面的大量明场像统计出晶粒尺寸约为52nm,如图3e所示。可以看出,经1道次和15道次超声滚压处理后,7075铝合金表层晶粒细化,其中滚压15道次试样的表层组织细化为平均晶粒尺寸为52nm的纳米组织。

  • 图2 7075铝合金USRP处理前后的微观结构

  • Fig.2 Microstructure of 7075aluminum alloy before and after USRP treatment

  • 图3 透射图:(a) BM、(b) UR1和(c) UR15表面的微观结构 (插图显示了相应的暗场像); (d)对应于(c)的SAED图; (e)统计粒度分布图

  • Fig.3 Transmission image showing the microstructure of (a) BM, (b) UR1and (c) UR15surfaces (the inset shows the corresponding dark field images); (d) the SAED diagram corresponding to (c); (e) Statistical granularity distribution

  • 超声滚压所致的塑性形变是诱导材料表层晶粒细化的主要机制。7075铝合金在USRP过程中的晶粒细化由位错运动主导。变形过程中,铝合金表面位错密度迅速增加,内部形成大量位错墙和位错缠结,由于位错的重排及相互作用,产生大量的亚晶界。随着变形量的继续增加,亚晶界逐渐演变为具有更大取向的亚晶界乃至大角晶界,最后逐渐形成均匀、等轴的纳米晶粒。这与WU等的研究结果一致,即塑性形变造成的位错密度增加是诱导材料表层晶粒细化的主要机制[19]。此外,我们研究发现超声滚压会导致7075铝合金中的析出相回溶。

  • 2.2 超声滚压力对表面形貌和表面残余应力的影响

  • 图4 显示了7075铝合金超声滚压处理前后的表面形貌和平均表面粗糙度。可以看到,BM试样表面有大量的纵向加工痕迹,表面极其不平整,试样的 Ra 值为0.46 μm。经过不同道次的超声滚压后,UR1和UR15试样表面变得十分光滑,加工痕迹基本消失,试样的 Ra 值分别为0.06 μm和0.12 μm。相较于BM试样,经1道次和15道次USRP处理后试样的表面粗糙度都有所降低。而UR15样品的表面粗糙度比UR1样品高。这是因为通过反复滚动接触,7075铝合金表面积累了高水平的剪切应变,一旦合金达到其临界剪切应变,由于延展性耗尽使合金表面产生微裂纹,从而导致表面粗糙度上升[20-21]

  • 图4 7075铝合金USRP处理前后的表面形貌图:

  • Fig.4 Surface morphology of 7075aluminum alloy before and after USRP treatment

  • 超声滚压过程中,在振动的超声冲击力和剪切应力的共同作用下,材料表层产生塑性变形且位错密度增加,从而产生了残余压应力[22]。如图5显示了经USRP处理后,样品表面引入了轴向残余应力,其中负值表示残余压应力。为了研究超声滚压处理引入的残余应力因素对铝合金腐蚀行为的影响,采用循环加载法将超声滚压处理后试样的残余应力进行消除(用“UR-R”表示该状态),而后进行腐蚀试验。图5统计得知BM、UR1、UR1-R、UR15和UR15-R试样表面残余压应力数值分别为28± 14MPa、724±24MPa、288±21MPa、781±20MPa和414±18MPa。UR1-R的残余压应力值比UR1试样低60%,而UR15-R的残余压应力值只比UR15试样低47%。这说明UR15样品的表面残余压应力比UR1样品更稳定。

  • 图5 7075铝合金USRP处理前后的表面残余应力值

  • Fig.5 Surface residual stress values of 7075aluminum alloy before and after USRP treatment

  • 2.3 超声滚压力对耐腐蚀性能的影响

  • 2.3.1 浸泡腐蚀

  • 图6 显示了未处理和USRP处理后试样在3.5%NaCl溶液中浸泡7d后的表面形貌。从图中可以看出,BM试样表面腐蚀情况严重,存在大量的腐蚀坑。而经1道次和15道次USRP处理后试样表面腐蚀程度减轻,腐蚀坑的面积大量减少。如图6f所示,BM、UR1、UR1-R、UR15和UR15-R试样的平均点蚀面积百分比分别为71.1%、36.3%、60.5%、15.3%和17.9%。BM试样的平均点蚀面积百分比最大,UR1、UR1-R、 UR15和UR15-R试样分别比BM样品低49.95%、 14.91%、78.48%和74.82%。UR15试样的平均点蚀面积百分比比UR1试样更小,其耐腐蚀性能最好。

  • 图6 7075铝合金浸泡试验后的表面腐蚀形貌

  • Fig.6 Surface corrosion morphology of 7075aluminum alloy after immersion test

  • 由于激光共聚焦显微镜具有较高的空间分辨率,因此可直接获取图7a~7e所示白色圆圈区域的腐蚀纵深信息(右上角插图显示了相应区域的腐蚀纵深图)。从每个样品中的20个不同腐蚀坑获得腐蚀深度,然后进行统计分析。图7f显示了不同试样的平均腐蚀深度统计结果,结果表明,经1道次和15道次USRP处理后试样的平均腐蚀深度显著减小,耐腐蚀性明显改善。UR1、UR1-R、UR15和UR15-R样品的平均腐蚀深度(1.87、3.69、1.45和1.56 μm)分别比BM样品(3.91 μm)降低52.17%、 5.63%、62.92%和60.10%。

  • 图7 7075铝合金浸泡试验后的截面腐蚀形貌

  • Fig.7 Section corrosion morphology of 7075aluminum alloy after immersion test

  • 2.3.2 电化学腐蚀

  • 图8a显示了不同样品在3.5%NaCl溶液中随测试时间的开路电位变化曲线。不同试样的开路电位按从小到大排列为BM<UR1-R<UR1< UR15-R<UR15。相较于未处理试样,经1道次和15道次USRP处理后试样的开路电位均有所上升,耐腐蚀性能得到改善。图8b为未处理试样和USRP试样在3.5%NaCl溶液中的动电位极化曲线。可以看出,7075铝合金经不同道次超声滚压后,表层的阳极极化行为出现了明显差异。相较于未处理试样,经1道次和15道次USRP处理后试样的钝化区均发生了左移,致钝电流与维钝电流均有所减小。相较于滚压1道次后的样品,具有纳米晶表层的UR15试样的致钝电流与维钝电流更小。表1列出了USRP处理前后试样的自腐蚀电位(E corr)、自腐蚀电流(I corr)和腐蚀速率(CR) 值。如表中所示,试样按Icorr 大小排列为UR15< UR15-R< UR1< UR1-R< BM,经1道次和15道次USRP处理后试样的耐腐蚀性能都有所上升,其中UR15试样的耐腐蚀性能最好。

  • 图8 不同样品在3.5%NaCl溶液中的开路电位和极化曲线

  • Fig.8 Open circuit potential and polarization curves of different samples in 3.5%NaCl solution

  • 表1 极化曲线拟合结果

  • Table1 Results of polarization curve fitting

  • 图9 显示了未处理试样和USRP处理后试样在3.5%NaCl溶液中浸泡后的典型电化学阻抗谱结果。

  • 如图9a所示,不同试样都获得了形状相似的Nyquist图。所有的图都由一个容抗弧和一个感抗弧组成。相较于BM试样,经1道次和15道次USRP处理后试样的容抗弧半径都显著增大。容抗弧半径越大,即表面的氧化层电阻越大,试样的耐腐蚀性能越好[23-24]。相较于UR1试样,UR15试样的容抗弧半径更大,耐腐蚀性能更好。图9b为Bode图,由图可知不同试样的相位角曲线都包含1个正值的波峰和1个负值的波谷,表明了两个时间常数的相互作用。时间常数的数量对应于电子元件的数量[25-26],因此选用了如图10所示的等效电路图进行拟合。

  • 图9 不同样品在3.5%NaCl溶液中的阻抗谱图

  • Fig.9 Impedance spectra of different samples in 3.5%NaCl solution

  • 图10 等效电路图

  • Fig.10 Equivalent circuit diagram

  • 电容元件C采用常相角元件CPE1表示,R1和R2分别为溶液电阻和电荷转移电阻。从表2的拟合结果可以看出,相较于未处理试样,经1道次和15道次USRP处理后,试样表面表现出良好的钝化特性,具有较高的电荷转移电阻R2。其中UR15试样的R2值远远高于UR1试样,表面的微区腐蚀活性大幅降低,耐腐蚀性能明显改善。

  • 表2 阻抗谱拟合结果

  • Table2 Impedance spectrum fitting results

  • 3 讨论

  • 与相同成分的传统粗晶材料相比,纳米晶材料的腐蚀行为会有明显不同,但关于纳米化具体如何影响腐蚀行为目前尚不明确。分别探讨了残余应力、表面粗糙度和表面纳米化对7075铝合金腐蚀行为的影响。铝合金在3.5%NaCl溶液中浸泡时,在Cl-的作用下表面的氧化膜局部遭到破坏导致开裂,铝合金基体暴露在腐蚀液中,基体被腐蚀[27]。随着腐蚀产物的不断堆积产生了横向楔入力,导致氧化膜发生破裂,材料的耐腐蚀性能下降[28-30]。而根据图5可知,USRP处理后的7075铝合金会在表层引入残余压应力,这些残余压应力可以抵消掉由腐蚀产物堆积引起的部分横向楔入力,大大增强了抗腐蚀裂纹萌生和扩展的能力,有利于其耐腐蚀性能的提高[28-30]。因此,7075铝合金经1道次和15道次USRP处理后,其腐蚀速率均有所降低,耐腐蚀性能增强 (参见表1)。通过对比不同试样的腐蚀坑形态(参见图6和图7)发现,相较于UR1试样,经残余应力松弛后的UR1-R试样的腐蚀面积由36.3%增加至60.5%,腐蚀深度由1.87 μm增加至3.69 μm,变化明显,说明残余压应力对1道次USRP处理试样的耐腐蚀性能的影响十分显著。而对比UR15和UR15-R试样发现,残余应力松弛前后试样的腐蚀面积和腐蚀深度变化不大,这说明残余压应力对具有纳米晶表面的USRP处理样品的耐腐蚀性能没有显著影响。

  • 此外,表面粗糙度大小会对铝合金腐蚀行为造成影响[31-32]。由图11可以看到,经1道次USRP处理后7075铝合金表面粗糙度显著降低。这会导致铝合金和腐蚀介质的接触面积减小,不容易积聚腐蚀性介质,从而降低腐蚀速率,提高耐腐蚀性能。因此,UR1试样的腐蚀速率比未处理试样慢,耐腐蚀性能更好。单从表面粗糙度的角度来看,材料表面粗糙度越小其耐腐蚀性能越好。然而根据图11我们可以观察到腐蚀速率的变化与试样的表面粗糙度并没有很好的对应关系。UR15试样的表面粗糙度比UR1试样高,但其腐蚀速率却比UR1试样低,耐腐蚀性能更好。这是因为在UR15试样上形成的纳米晶表层会显著提高其耐腐蚀性能,而表面粗糙度并不是提高其耐腐蚀性能的主要因素。

  • 图11 表面粗糙度对腐蚀速率的影响

  • Fig.11 Effect of surface roughness on corrosion rate

  • 经15道次USRP处理后试样表面晶粒尺寸细化至52nm(参见图3)。纳米材料由于具有大量的晶界和细小颗粒,其腐蚀行为与普通粗晶材料有显著区别。对于在一定体系下发生活性溶解的金属材料,其晶粒尺寸减小到纳米级别后,表面活性点增多,加剧了其活性溶解行为,从而会导致耐腐蚀性能下降。然而,7075铝合金在NaCl溶液中发生了钝化和点蚀(图8),对于该类腐蚀行为,纳米化则会显著提高材料的钝化和抗腐蚀能力。一方面,铝合金经USRP处理后生成的纳米晶表层中存在大量晶界,使钝化元素在钝化膜内快速富集,从而形成了更加致密的钝化膜。另一方面,纳米化可以降低亚稳态点蚀向稳态点蚀转变的速度,抑制稳态点蚀生长,提高材料的抗点蚀能力。因此,经15道次USRP处理后试样的腐蚀速率相较于未处理试样降低了91%,平均腐蚀深度比未处理试样降低了62.92%,耐腐蚀性能显著提高。

  • 4 结论

  • (1) 7075铝合金经1道次和15道次USRP处理后,表面粗糙度均减小,且能形成梯度变形层和残余压应力场。其中,经15道次USRP处理后试样的表面粗糙度更大,形成的梯度变形层和残余压应力场也更大,此时试样表面能获得平均晶粒尺寸为52nm的纳米晶。

  • (2) 相较于未处理试样,经1道次和15道次USRP处理后试样的耐腐蚀性能均显著提高。其中,滚压1个道次的试样腐蚀速率降低了40%,而滚压15个道次的试样腐蚀速率降低了91%。这表明超声滚压是一种有效的改善7075铝合金耐腐蚀性能的方法。

  • (3) 通过对比分析残余应力、表面粗糙度和表面纳米晶对7075铝合金耐腐蚀性能的影响发现,表面纳米晶的形成对7075铝合金耐腐蚀性能的影响更为显著,这主要是因为纳米晶的存在可以使材料表面形成更加致密的钝化膜,导致其耐腐蚀性能显著提高,而表面粗糙度降低和引入残余压应力是提升耐腐蚀性能的次要因素。这揭示了7075铝合金经表面纳米化处理后耐腐蚀性能提升的机制。

  • 参考文献

    • [1] DAI X Y.Structure and properties of an ultra-high strength 7xxx aluminum alloy contained Sc and Zr[J].Journal of University of Science and Technology Beijing,2008,15(3):276-279.

    • [2] 孙会,沈忱.铝合金中间形变热处理工艺方法及研究进展[J].金属热处理,2019,44(7):217-223.SUN Hui,SHEN Chen.Technology and research progress of intermediate deformation heat treatment of aluminum alloy[J].Metal Heat Treatment,2019,44(7):217-223.(in Chinese)

    • [3] SONG K H,LEE O H.Improvement of fracture toughness in 7XXX series aluminum alloy forings[J].Journal of the Korean Society for Heat Treatment,1998,11(3):200-206.

    • [4] GUZMAN L,BONINI G,ADAMI M,et al.Mechanical behaviour of nitrogen-implanted aluminium alloys[J].Surface and Coatings Technology,1996,83(1):284-289.

    • [5] WATKINS K G,LIU Z,MCMAHON M,et al.Influence of the overlapped area on the corrosion behaviour of laser treated aluminium alloys[J].Materials Science and Engineering:A,1998,252(2):292-300.

    • [6] 张宇婷,朱国强,崔芙红.表面处理技术的种类和发展 [J].化工管理,2019,31:4-5.ZHANG Yuting,ZHU Guoqiang,CUI Fuhong.Types and development of surface treatment technology[J].Chemical Management,2019,31:4-5.(in Chinese)

    • [7] YOO S,KIM S G,KIM S W.Surface nanocrystallization technology and characteristics[J].Journal of the Korean Society for Heat Treatment,2007,20(5):259-269.

    • [8] TAO N R.Surface nanocrystallization of iron induced by ultrasonic shot peening[J].Nanostructured Materials,1999,11(4):433-440.

    • [9] 吴敏,孙勇.铝及其合金表面处理的研究现状[J].表面技术,2003,32(3):13-15.WU Min,SUN Yong.Research status of aluminum and its alloy surface treatment[J].Surface Technology,2003,32(3):13-15.(in Chinese)

    • [10] DHAKAL B,SWAROOP S.Effect of laser shock peening on mechanical and microstructural aspects of 6061-T6 aluminum alloy[J].Journal of Materials Processing Technology,2020,282:1-15

    • [11] KUMAR S,PANDEY V,CHATTOPADHYAY K,et al.Surface nanocrystallization induced by ultrasonic shot peening and its effect on corrosion resistance of Ti-6Al-4V Alloy[J].Transactions of the Indian Institute of Metals,2019,72(3):789-792.

    • [12] WANG Z B,LU J,LU K.Wear and corrosion properties of a low carbon steel processed by means of SMAT followed by lower temperature chromizing treatment[J].Surface & Coatings Technology,2006,201(6):2796-2801.

    • [13] 黄海威,王镇波,刘莉,等.马氏体不锈钢上梯度纳米结构表层的形成及其对电化学腐蚀行为的影响[J].金属学报,2015,51(5):513-518.HUANG Haiwei,WANG Zhenbo,LIU Li,et al.Formation of gradient nanostructured surface layer on martensitic stainless steel and its effect on electrochemical corrosion behavior[J].Acta Metallurgica Sinica,2015,51(5):513-518.(in Chinese)

    • [14] ZHAO F,XU H,LI D,et al.Surface nanocrystallization of 35# type carbon steel induced by ultrasonic impact treatment(UIT)[J].Procedia Engineering,2012,27:1718-1722.

    • [15] WANG C M.Enhanced corrosion behavior and mechanical properties of Al-Zn-Mg-Cu sheet alloy by ultrasonic surface rolling treatment[J].Metallurgical and Materials Transactions,2020,51(5):1967-1971.

    • [16] 王婷.超声表面滚压加工改善40Cr钢综合性能研究[D].天津:天津大学,2009.WANG Ting.Research on improving the comprehensive properties of 40Cr steel by ultrasonic surface rolling processing[D].Tianjin:Tianjin University,2009(in Chinese).

    • [17] 唐洋洋,李林波,王超,等.超声表面滚压纳米化技术研究现状[J].表面技术,2021,50(2):160-169.TANG Yangyang,LI Linbo,WANG Chao,et al.Research status of ultrasonic surface rolling nanotechnology[J].Surface Technology,2021,50(2):160-169.

    • [18] XU X C.Influence of ultrasonic rolling on surface integrity and corrosion fatigue behavior of 7B50-T7751 aluminum alloy[J].International Journal of Fatigue,2019,125:237-248.

    • [19] WU X,TAO N,HONG Y,et al.Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of Al-alloy subjected to USSP[J].Acta Materialia,2002,50(8):2075-2084.

    • [20] FRANKLIN F J,WIDIYARTA I,KAPOOR A.Computer simulation of wear and rolling contact fatigue[J].Wear,2001,251(1):949-955.

    • [21] LU L X.Study on surface characteristics of 7050-T7451 aluminum alloy by ultrasonic surface rolling process[J].The International Journal of Advanced Manufacturing Technology,2016,87(9-12):2533-2539.

    • [22] XU X C,LIU D X,ZHANG X H,et al.Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J].Journal of Materials Science & Technology,2020,40(5):88-98.

    • [23] KIM D H.Comparison of electrochemical corrosion properties of permanent mold casting GZ21 alloy and AZ91 Alloy[J].Journal of Korea Foundry Society,2016,36(2):60-66.

    • [24] ABUL H.Effect of Cu content on the electrochemical corrosion behavior of peak-aged Al-6Si-0.5Mg alloys in sodium chloride solution[J].Rajshahi University Journal of Science and Engineering,2016,44:29-35.

    • [25] XU X,LIU D,ZHANG X,et al.Effects of ultrasonic surface rolling on the localized corrosion behavior of 7B50-T7751 aluminum alloy[J].Materials,2020,13(3):738.

    • [26] WANG S Q,ZHANG D K,WANG D G,et al.Electrochemical corrosion behavior of steel wires in a coalmine with a corrosive medium[J].Mining Science and Technology(China),2011,21(1):71-76.

    • [27] 崔腾飞.应力与环境因素耦合对铝合金耐久性能的影响[D].西安:西北工业大学,2017.CUI Tengfei The effect of the coupling of stress and environmental factors on the durability of aluminum alloys[D].Xi’ an:Northwestern Polytechnical University,2017.(in Chinese)

    • [28] YE H,SUN X,LIU Y,et al.Effect of ultrasonic surface rolling process on mechanical properties and corrosion resistance of AZ31B Mg alloy[J].Surface and Coatings Technology,2019,372:288-298.

    • [29] LIU X,FRANKEL G S,ZOOFAN B,et al.Effect of applied tensile stress on intergranular corrosion of AA2024-T3[J].Corrosion Science,2004,46(2):405-425.

    • [30] 叶作彦,刘道新,吴剑,等.喷丸强化与应力因素对 2E12-T3铝合金剥蚀行为的影响[J].腐蚀科学与防护技术,2013,25(6):445-450.YE Zuoyan,LIU Daoxin,WU Jian,et al.Effects of shot peening and stress factors on the exfoliation behavior of 2E12-T3 aluminum alloy[J].Corrosion Science and Protection Technology,2013,25(6):445-450(in Chinese).

    • [31] XU M H.Impact of surface roughness and humidity onX70 steel corrosion in supercritical CO2 mixture with SO2,H2O,and O2[J].The Journal of Supercritical Fluids,2016,107:286-297.

    • [32] 徐善华,何羽玲,秦广冲,等.钢材锈蚀率与表面三维粗糙度参数的关系[J].材料科学与工程学报,2016,34(2):292-295.XU Shanhua,HE Yuling,QIN Guangchong,et al.The relationship between steel corrosion rate and three-dimensional surface roughness parameters[J].Chinese Journal of Materials Science and Engineering,2016,34(2):292-295.(in Chinese)

  • 参考文献

    • [1] DAI X Y.Structure and properties of an ultra-high strength 7xxx aluminum alloy contained Sc and Zr[J].Journal of University of Science and Technology Beijing,2008,15(3):276-279.

    • [2] 孙会,沈忱.铝合金中间形变热处理工艺方法及研究进展[J].金属热处理,2019,44(7):217-223.SUN Hui,SHEN Chen.Technology and research progress of intermediate deformation heat treatment of aluminum alloy[J].Metal Heat Treatment,2019,44(7):217-223.(in Chinese)

    • [3] SONG K H,LEE O H.Improvement of fracture toughness in 7XXX series aluminum alloy forings[J].Journal of the Korean Society for Heat Treatment,1998,11(3):200-206.

    • [4] GUZMAN L,BONINI G,ADAMI M,et al.Mechanical behaviour of nitrogen-implanted aluminium alloys[J].Surface and Coatings Technology,1996,83(1):284-289.

    • [5] WATKINS K G,LIU Z,MCMAHON M,et al.Influence of the overlapped area on the corrosion behaviour of laser treated aluminium alloys[J].Materials Science and Engineering:A,1998,252(2):292-300.

    • [6] 张宇婷,朱国强,崔芙红.表面处理技术的种类和发展 [J].化工管理,2019,31:4-5.ZHANG Yuting,ZHU Guoqiang,CUI Fuhong.Types and development of surface treatment technology[J].Chemical Management,2019,31:4-5.(in Chinese)

    • [7] YOO S,KIM S G,KIM S W.Surface nanocrystallization technology and characteristics[J].Journal of the Korean Society for Heat Treatment,2007,20(5):259-269.

    • [8] TAO N R.Surface nanocrystallization of iron induced by ultrasonic shot peening[J].Nanostructured Materials,1999,11(4):433-440.

    • [9] 吴敏,孙勇.铝及其合金表面处理的研究现状[J].表面技术,2003,32(3):13-15.WU Min,SUN Yong.Research status of aluminum and its alloy surface treatment[J].Surface Technology,2003,32(3):13-15.(in Chinese)

    • [10] DHAKAL B,SWAROOP S.Effect of laser shock peening on mechanical and microstructural aspects of 6061-T6 aluminum alloy[J].Journal of Materials Processing Technology,2020,282:1-15

    • [11] KUMAR S,PANDEY V,CHATTOPADHYAY K,et al.Surface nanocrystallization induced by ultrasonic shot peening and its effect on corrosion resistance of Ti-6Al-4V Alloy[J].Transactions of the Indian Institute of Metals,2019,72(3):789-792.

    • [12] WANG Z B,LU J,LU K.Wear and corrosion properties of a low carbon steel processed by means of SMAT followed by lower temperature chromizing treatment[J].Surface & Coatings Technology,2006,201(6):2796-2801.

    • [13] 黄海威,王镇波,刘莉,等.马氏体不锈钢上梯度纳米结构表层的形成及其对电化学腐蚀行为的影响[J].金属学报,2015,51(5):513-518.HUANG Haiwei,WANG Zhenbo,LIU Li,et al.Formation of gradient nanostructured surface layer on martensitic stainless steel and its effect on electrochemical corrosion behavior[J].Acta Metallurgica Sinica,2015,51(5):513-518.(in Chinese)

    • [14] ZHAO F,XU H,LI D,et al.Surface nanocrystallization of 35# type carbon steel induced by ultrasonic impact treatment(UIT)[J].Procedia Engineering,2012,27:1718-1722.

    • [15] WANG C M.Enhanced corrosion behavior and mechanical properties of Al-Zn-Mg-Cu sheet alloy by ultrasonic surface rolling treatment[J].Metallurgical and Materials Transactions,2020,51(5):1967-1971.

    • [16] 王婷.超声表面滚压加工改善40Cr钢综合性能研究[D].天津:天津大学,2009.WANG Ting.Research on improving the comprehensive properties of 40Cr steel by ultrasonic surface rolling processing[D].Tianjin:Tianjin University,2009(in Chinese).

    • [17] 唐洋洋,李林波,王超,等.超声表面滚压纳米化技术研究现状[J].表面技术,2021,50(2):160-169.TANG Yangyang,LI Linbo,WANG Chao,et al.Research status of ultrasonic surface rolling nanotechnology[J].Surface Technology,2021,50(2):160-169.

    • [18] XU X C.Influence of ultrasonic rolling on surface integrity and corrosion fatigue behavior of 7B50-T7751 aluminum alloy[J].International Journal of Fatigue,2019,125:237-248.

    • [19] WU X,TAO N,HONG Y,et al.Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of Al-alloy subjected to USSP[J].Acta Materialia,2002,50(8):2075-2084.

    • [20] FRANKLIN F J,WIDIYARTA I,KAPOOR A.Computer simulation of wear and rolling contact fatigue[J].Wear,2001,251(1):949-955.

    • [21] LU L X.Study on surface characteristics of 7050-T7451 aluminum alloy by ultrasonic surface rolling process[J].The International Journal of Advanced Manufacturing Technology,2016,87(9-12):2533-2539.

    • [22] XU X C,LIU D X,ZHANG X H,et al.Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J].Journal of Materials Science & Technology,2020,40(5):88-98.

    • [23] KIM D H.Comparison of electrochemical corrosion properties of permanent mold casting GZ21 alloy and AZ91 Alloy[J].Journal of Korea Foundry Society,2016,36(2):60-66.

    • [24] ABUL H.Effect of Cu content on the electrochemical corrosion behavior of peak-aged Al-6Si-0.5Mg alloys in sodium chloride solution[J].Rajshahi University Journal of Science and Engineering,2016,44:29-35.

    • [25] XU X,LIU D,ZHANG X,et al.Effects of ultrasonic surface rolling on the localized corrosion behavior of 7B50-T7751 aluminum alloy[J].Materials,2020,13(3):738.

    • [26] WANG S Q,ZHANG D K,WANG D G,et al.Electrochemical corrosion behavior of steel wires in a coalmine with a corrosive medium[J].Mining Science and Technology(China),2011,21(1):71-76.

    • [27] 崔腾飞.应力与环境因素耦合对铝合金耐久性能的影响[D].西安:西北工业大学,2017.CUI Tengfei The effect of the coupling of stress and environmental factors on the durability of aluminum alloys[D].Xi’ an:Northwestern Polytechnical University,2017.(in Chinese)

    • [28] YE H,SUN X,LIU Y,et al.Effect of ultrasonic surface rolling process on mechanical properties and corrosion resistance of AZ31B Mg alloy[J].Surface and Coatings Technology,2019,372:288-298.

    • [29] LIU X,FRANKEL G S,ZOOFAN B,et al.Effect of applied tensile stress on intergranular corrosion of AA2024-T3[J].Corrosion Science,2004,46(2):405-425.

    • [30] 叶作彦,刘道新,吴剑,等.喷丸强化与应力因素对 2E12-T3铝合金剥蚀行为的影响[J].腐蚀科学与防护技术,2013,25(6):445-450.YE Zuoyan,LIU Daoxin,WU Jian,et al.Effects of shot peening and stress factors on the exfoliation behavior of 2E12-T3 aluminum alloy[J].Corrosion Science and Protection Technology,2013,25(6):445-450(in Chinese).

    • [31] XU M H.Impact of surface roughness and humidity onX70 steel corrosion in supercritical CO2 mixture with SO2,H2O,and O2[J].The Journal of Supercritical Fluids,2016,107:286-297.

    • [32] 徐善华,何羽玲,秦广冲,等.钢材锈蚀率与表面三维粗糙度参数的关系[J].材料科学与工程学报,2016,34(2):292-295.XU Shanhua,HE Yuling,QIN Guangchong,et al.The relationship between steel corrosion rate and three-dimensional surface roughness parameters[J].Chinese Journal of Materials Science and Engineering,2016,34(2):292-295.(in Chinese)

  • 手机扫一扫看