en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

徐鹏辉,男,1996年出生,硕士。主要研究方向为金属表面工程。E-mail:1455919020@qq.com;

王胜民(通讯作者),男,1977年出生,博士,教授,硕士研究生导师。主要研究方向为金属表面工程。E-mail:wsmkm2000@sina.com

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20211010001

参考文献 1
金水.腐蚀带来的危害[J].防灾博览,2019(4):70-71.JIN Shui.Damage from corrosion[J].Disaster Prevention Expo,2019(4):70-71.(in Chinese)
参考文献 2
XIAO Y G,PER E V,VENVIK H J,et al.Inhibition of metal dusting corrosion on Fe-based alloy by combined near surface severe plastic deformation(NS-SPD)and thermochemical treatment[J].Corrosion Science,2021,190,14:109702.
参考文献 3
GONG X G,XU W W,CUI C,et al.Exploring alloying effect on phase stability and mechanical properties of γ″-Ni3Nb precipitates with first-principles calculations[J].Materials & Design,2020,196:109174.
参考文献 4
高磊智,王长昊,郭根材,等.Cu-Ni 合金结构稳定性的第一性原理计算研究[J].云南化工,2020,47(11):31-33.GAO Leizhi,WANG Changhao,GUO Gencai,et al.First principle calculation of Cu-Ni alloy structure stability[J].Yunnan Chemical Technology,2020,47(11):31-33.(in Chinese)
参考文献 5
CASCINI L,PORTIOLI F,LANDOLFO R.Probabilistic time variant assessment of thin-walled steel members under atmospheric corrosion attack[J].Journal of Civil Engineering and Management,2014,20(3):404-414.
参考文献 6
焦迪,王萍.热处理工艺对 Mg-Gd-Y 合金组织及耐腐蚀性能的影响[J].材料热处理学报,2020,41(9):59-66.JIAO Di,WANG Ping.Effect of heat treatment process on microstructure and corrosion resistance of Mg-Gd-Y alloy[J].Transactions of Materials and Heat Treatment,2020,41(9):59-66.(in Chinese)
参考文献 7
ASHASSI-SORKHABI H,RAFIZADEH S H.Effect of coating time and heat treatment on structures and corrosion characteristics of electroless Ni-P alloy deposits[J].Surface & Coatings Technology,2004,176(3):318-326.
参考文献 8
NARASAK S,PANYAWAT W,YUTTANANT B.The effects of heat treatments on hardness and wear resistance in Ni-W alloy coatings[J].Surface & Coatings Technology,2011,206(6):1096-1101.
参考文献 9
XU S S,WANG H,WANG N,et al.Fabrication of hierarchical structures on steel mesh with good superhydrophobicity and anti-corrosion property[J/OL].Colloids and Surfaces A:Physicochemical and EngineeringAspects,2020,602[2021-10-07].https://doi.org/10.1016/j.colsurfa.2020.125168.
参考文献 10
胡建军,赵雪,郭宁,等.40Cr 钢表面包埋渗Mo涂层组织及摩擦性能[J].中国表面工程,2021,34(1):60-69.HU Jianjun,ZHAO Xue,GUO Ning,et al.Microstructure and tribological properties of Mo-coating prepared by pack-cementation on 40Cr steel[J].China Surface Engineering,2021,34(1):60-69.(in Chinese)
参考文献 11
李微,黄煌,黄伟颖,等.钢表面粉末包埋渗铝的表面状态及元素扩散机理研究进展[J].中国表面工程,2021,34(3):25-39.LI Wei,HUNAG Huang,HUANG Weiying,et al.Research progress on surface state and element diffusion mechanism of steel with surface coating prepared by pack aluminizing method[J].China Surface Engineering,2021,34(3):25-39.(in Chinese)
参考文献 12
王胜民,赵晓军,何明奕.机械镀技术的现状及发展[J].材料导报,2017,31(5):117-122.WANG Shengming,ZHAO Xiaojun,HE Mingyi.Research status and development of mechanical plating[J].Materials Reports,2017,31(5):117-122.(in Chinese)
参考文献 13
轩立卓,杨堃,沙春鹏,等.以锌镍合金镀层替代航空用镀镉、镀镉钛层的研究[J].材料保护,2014,47(10):15-16.XUAN Lizhuo,YANG Kun,SHA Chunpeng,.et al.Replacing cadmium and titanium coating with Zn-Ni alloy coating for aviation[J].Materials Protection,2014,47(10):15-16.(in Chinese)
参考文献 14
卢锦堂,陈锦虹,许乔瑜,等.热浸锌镍合金工艺及镀层性能[J].材料保护,1996(9):11-14.LU Jingtang,CHEN Jinghong,XU Qiaoyu,et al.Hot dip zinc-nickel alloy process and coating properties[J].Materials Protection,1996(9):11-14.(in Chinese)
参考文献 15
NINDHIA T,NEGARA D,SAPUTRA I et al.Development method for nickel electroplating on aluminum[J].IOP Conference Series:Materials Science and Engineering,2020,1007(1):1-5.
参考文献 16
李五坡,王守忠.45 钢表面 B-Si-Ce 多元共渗试验研究 [J].热加工工艺,2009,38(22):161-164.LI Wupo,WANG Shouzhong.Experimental research of multicomponent cementation of B-Si-Ce on 45 steel tube surface[J].Hot Working Technology,2009,38(22):161-164.(in Chinese)
参考文献 17
张艳梅,李忠厚,徐重.W-Mo-Co 多元共渗扩散交互作用规律研究[J].太原理工大学学报,2009,40(3):283-286.ZAHNG Yanmei,LI Zhonghou,XU Z.Interaction of W-Mo-Co in co-diffusion[J].Journal of Taiyuan University of Technology,2009,40(3):283-286.(in Chinese)
参考文献 18
袁庆龙,苏永安.纯铜表面 Al-Ni 基自熔合金粉末共渗研究[J].太原理工大学学报,2002(3):320-323.YUAN Qinlong,SU Yongan.Multielement penetration of Al and Ni-based self-fusion alloy powder on the surface of pure copper[J].Journal of Taiyuan University of Technology,2002(3):320-323.(in Chinese)
参考文献 19
李春红,杜安,马瑞娜,等.42CrMo 钢锌铝共渗层的组织及性能[J].金属热处理,2017,42(10):47-51.LI Chunhong,DU An,MA Ruina,et al.Microstructure and properties of Zn-Al thermochemical threated on 42CrMo steel[J].Heat Treatment of Metals,2017,42(10):47-51.(in Chinese)
参考文献 20
彭淀.低碳钢表面锌铜合金渗层的制备及组织性能研究[D].湘潭:湘潭大学,2019.PENG Ding.Preparation and microstructure of Zn-Cu alloy coating on low carbon steel[D].Xiangtan:Xiangtan University,2019.(in Chinese)
参考文献 21
高聪.粉末渗锌工艺及其对组织和耐蚀性的影响[D].天津:河北工业大学,2015:23-46.GAO Cong.Sherardizing process and its effect on microstructure and corrosion resistance[D].Journal of Hebei University of Technology,2015:23-46.(in Chinese)
参考文献 22
何祖新,苏旭平,彭浩平,等.机械能助 Al-Zn-Cr 共渗工艺及渗层组织[J].中国表面工程,2016,29(6):44-51.HE Zuxin,SU Xuping,PENG Haoping,et al.Al-Zn-Cr diffusion process aided by Mechanical energy and microstructure of alloying layer[J].China Surface Engineering,2016,29(6):44-51.(in Chinese)
参考文献 23
赵秀霞.镍基合金在酸性条件下的腐蚀行为研究[D].哈尔滨:哈尔滨工程大学,2009:22-51.ZHAO Xiuxia.Corrosion behavior of Ni-based alloys under acidic conditions[D].Harbin:Harbin Engineering University,2009:22-51.(in Chinese)
参考文献 24
张建策,龚升高.金属镍的电化学腐蚀行为及其影响因素[J].化工技术与开发,2020,49(Z1):42-46.ZHANG Jiance,GONG Shenglong.Electrochemical corrosion behavior and its influencing factors of metal Nickel[J].Technology & Development of Chemical Industry,2020,49(Z1):42-46.(in Chinese)
参考文献 25
孔纲,王世卫,车淳山,等.锡、镍对高硅钢表面热浸镀锌层生长的影响[J].电镀与涂饰,2012,31(2):23-26.KONG Gang,WANG Shiwei,CHE Chunshan,et al.Effect of Tin and Nickel on the growth of hot-dip galvanized coating on high silicon steel surface[J].Electroplating & Finishing,2012,31(2):23-26.(in Chinese)
参考文献 26
BROWN M E,DELMON B,GALWEY A K,et al.Nucleus formation and the kinetics of thermal decomposition of nickel formate[J].Journal de Chimie Physique,1978,75:147-158.
参考文献 27
FOX P G,EHRETSMANN J,BROWN C E.The development of internal structure during thermal decomposition:Nickel formate dihydrate [J].Journal of Catalysis,1971,20(1):67-73.
参考文献 28
BIRCUMSHAW L L,EDWARDS J.The kinetics of the decomposition of nickel formate[J].Journal of the Chemical Society,1950,1(1):1800-1809.
参考文献 29
李东刚.异质金属体系扩散行为和界面反应的强磁场控制研究[D].沈阳:东北大学,2009.LI Donggang.Study on diffusion behavior and interfacial reaction of heterogeneous metal systems controlled by high magnetic fields[D].Shenyang:Northeastern University,2009.(in Chinese)
参考文献 30
郭领军,李贺军,王镜堂.锌镍铸造阳极合金金相组织的观察[J].铸造技术,2002(2):114-117.GUO Lingjun,LI Hejun,WANG Jingtang.Observation on the microstructure of Zn-Ni alloy as dissolvable positive electrode[J].Foundry Technology,2002(2):114-117.(in Chinese)
参考文献 31
TAN Y K,ZHUANG R J,YANG G L,et al.Diffusional behaviors and mechanical properties of Ni-Zn system[J].Journal of Alloys and Compounds,2021,881:160581.
参考文献 32
李泽民,王胜民,张俊,等.氧化石墨烯掺杂对机械镀锌层腐蚀性能的影响[J].中国表面工程,2019,32(6):81-89.LI Zeming,WANG Shengming,ZHANG Jun.Effects of GO doping on corrosion performance of mechanical galvanized plating[J].China Surface Engineering,2019,32(6):81-89.(in Chinese)
目录contents

    摘要

    为改善传统渗锌层组织结构及腐蚀性能,采用甲酸镍和锌粉作为渗剂金属,通过机械能助渗法在 Q235 钢表面制备 Zn-Ni 合金渗层。结合扫描电镜(SEM)、EDS 能谱和 X 射线衍射仪(XRD),分析 Zn-Ni 合金渗层的表面、截面和断口形貌; 利用极化曲线和电化学阻抗谱(EIS),表征 Zn-Ni 合金渗层在 3.5%NaCl 溶液中的电化学行为;通过中性盐雾试验测试 Zn-Ni 合金渗层的耐腐蚀性能。结果表明:制备得到 Zn-Ni 合金渗层的厚度为 153 μm;渗层主要由 Γ(Fe11Zn40)相、ζ(FeZn15)相和 Ni2Zn11 金属间化合物组成,渗层结合方式属于冶金结合;Zn-Ni 渗层中性盐雾试验出现红锈的时间相比渗锌层延长 240 h, 自腐蚀电位从−1.222 V 正移至−0.957 V,渗层电阻提高 352 Ω·cm2 ;Ni 对改善渗层表面组织状态和提高渗层耐腐蚀性具有显著价值。通过添加甲酸镍制备的 Zn-Ni 合金渗层相比渗锌层组织结构和腐蚀性能得到明显改善。

    Abstract

    In order to improve the structure and corrosion performance of the traditional sherardizing layer, nickel formate and zinc powder are used as the infiltrating agent metal, and the Zn-Ni cementation layer is prepared on the surface of Q235 steel by the mechanical energy assisted technology. The surface, cross-section and fracture morphology of the Zn-Ni cementation layer are characterized by scanning electron microscope (SEM), EDS spectroscopy and X-ray diffractometer (XRD); Electrochemical behavior of Zn-Ni cementation layer immersed in 3.5%NaCl solution is analyzed by polarization curve and electrochemical impedance spectroscopy(EIS). Corrosion resistance of Zn-Ni cementation layer is tested by neutral salt spray test. The results show that the thickness of the Zn-Ni cementation layer is 153 μm; the layer is mainly composed of Γ (Fe11Zn40) phase, ζ (FeZn15) phase and Ni2Zn11 intermetallic compound, cementation layer combination method belongs to metallurgical bonding. The neutral salt spray experiment of Zn-Ni cementation layer is longer 240 h than Zn cementation layer when appearing red rust spots, the self-corrosion potential move from −1.222 V to −0.957 V, impedance modulus of layer resistance is increased by 352 Ω·cm2 ; Ni has significant value in improving the surface structure and the corrosion resistance of the infiltration layer. Comprehensively show that the Zn-Ni cementation layer prepared by adding nickel formate has significantly improved structure and performance compared to the sherardizing layer.

  • 0 前言

  • 钢结构件的腐蚀不仅带来巨额的直接经济损失,而且间接严重危害着公共安全[1-2]。解决钢铁腐蚀问题的主要途径有两方面:一方面从源头控制钢结构成分[3-5]、组织状态提高钢结构件的耐腐蚀性能[6-8],另一方面通过在终端成品钢结构件表面制备涂镀层或渗层从而提高产品的耐腐蚀性能[9]。钢结构件表面制备防腐层的技术手段主要有热浸镀、机械镀、电镀、喷涂和渗镀。粉末渗镀是通过渗剂金属原子扩散进入基体晶格与基体金属结合形成金属间化合物或固溶体,从而在基体表面形成扩散层保护基体不被腐蚀[10-11]。渗剂金属原子扩散进入基体以特殊的结合方式与基体结合,相比物理沉积,机械咬合等结合方式的结合强度更高[12-13];渗镀工艺过程中渗剂金属粉末可以循环多次使用直至被完全利用,相比热浸镀资源节约性更好[14];渗镀工艺过程中无废液排放相比电镀环保性能更好[15]。单一纯渗锌层防腐性能被随后发展起来的多元合金渗层所超越[16-18]

  • 目前,国内外已有大量人员在渗锌基础上引入其他组元金属制备合金渗层。李春红等[19]采用机械能助渗法在渗锌基础上添加铝粉制备锌-铝合金渗层,结果表明锌-铝合金渗层耐腐蚀性相比渗锌层略有提高。彭淀[20]采用包埋法在低碳钢表面制备锌-铜合金渗层,然而并未得到含有一定铜元素的铜-锌渗层,制备得到的渗层耐腐蚀性能没有明显提升。高聪[21]研究渗锌过程机理以及铝元素对渗层腐蚀性能的影响,结果表明铝在腐蚀过程中生成ZnAl2O在渗层表面形成一层致密的保护层,减缓腐蚀的发生。何祖新等[22]利用机械能助渗法在600℃制备Al-Zn-Gr合金渗层,随着渗剂中铬含量的增加渗层中铬的溶解量增加,但渗层耐腐蚀性能并没有得到明显改善。对多元合金渗层的研究表明,当渗层含有引入金属元素时渗层组织结构、腐蚀性能得到明显改善。相比金属铝、铜、铬,金属镍的耐蚀性更加优异,以及在热浸镀锌浴中添加镍元素对组织结构的改善具有显著效果[23-25]。直接在渗锌过程中添加镍粉,虽可以提供镍源,但是镍的熔点高,扩散过程依靠镍粉表面提供活性镍原子具有较大的难度。研究发现甲酸镍具有作为前驱体替代镍粉充当镍源,提供高活性镍原子的潜在价值。甲酸镍作为制备镍纳米晶和镍基催化剂的直接原料[26-28], 240℃时受热即可完全分解,分解产生单质镍和还原性气体CO、H2 和CH4。分解产生的单质镍可充当渗剂金属中的镍源,同时还原性气体提供的还原性气氛对渗层的制备具有积极意义。

  • 本文采用氯化铵作为催化剂,在渗锌基础上添加甲酸镍作为镍源,利用机械能助渗法在Q235钢垫片试样表面制备Zn-Ni合金渗层。采用系列表征手段分析Zn-Ni合金渗层的组织结构,对比纯渗锌层评价Zn-Ni合金渗层的腐蚀性能。以期促进Zn-Ni合金共渗技术的应用。

  • 1 材料与方法

  • 1.1 原材料

  • 渗剂金属为锌粉和甲酸镍粉末,催化剂为氯化铵,分散剂为氧化铝粉末。锌粉表面形貌如图1所示,锌粉颗粒均呈球形,最大锌粉颗粒直径小于8 μm。基体试样采用43mm×22mm×5mm的Q235B圆形垫片。原材料相关参数如表1所示。

  • 图1 锌粉SEM形貌

  • Fig.1 SEM images of zinc powder

  • 表1 试验原材料

  • Table1 Raw materials of experimental

  • 1.2 试样制备

  • 采用机械能助渗法制备Zn-Ni合金渗层。试样制备工艺流程如图2所示,试样通过300℃保温1h进行除油,抛丸除锈。进行渗层制备前将锌粉和氧化铝粉充分混合并升温至200℃保温1h,进行预热。预热结束后加入甲酸镍、氯化铵和Q235钢基体试样进行渗层的制备,制备温度为600℃,保温时间为5h。制备结束后随炉冷却至室温。粉料配比成分及含量如表2所示。

  • 图2 工艺流程图

  • Fig.2 Process flowchart

  • 表2 粉料成分及含量

  • Table2 Powder ratio and content

  • 1.3 分析方法

  • 采用HITACHI-S4800型扫描电镜(SEM、自带能谱仪)和D/max-2500型日本理学X射线衍射仪 (XRD)分析渗层组织结构及物相。XRD测试扫描范围20°~100°,测试速度为2(°)/min。

  • 采用上海辰华CHI604E型三电极电化学测试仪(工作电极、参比电极为232型饱和甘汞电极、辅助电极为铂片电极)分析渗层在3.5%NaCl溶液中的电化学行为。测试面积1cm2,扫描速度1mV/s,极化扫描范围-1 400~600mV。阻抗谱测试前,先将试样在3.5%NaCl溶液中浸泡35min以使OCP稳定。EIS测试频率范围:10mHz~100kHz,正弦交流信号振幅:10mV,每组测试3个取平行试样,阻抗数据采用ZSimpWin软件进行等效电路拟合。

  • 采用JK-60型中性盐雾试验箱参照国标GB/T10125—2012进行中性盐雾试试验。盐溶液为5%NaCl溶液,沉降量为18mL/(80cm2 ·h),连续喷雾72h改变试样位置。消除位置因素对试验结果的影响。

  • 2 结果与讨论

  • 2.1 渗层的组织结构

  • Zn-Ni渗层试样的表面形貌如图3所示。由图3a黑色箭头所指可见Zn-Ni渗层表面存在明显凸起,白色箭头所指存在明显裂纹。与基体试样直接接触的锌粉在升温过程中内能增加,当激活能足够突破能垒时锌原子向基体扩散,随着热量的持续传递扩散持续进行,当积累在基体表面的活性锌原子数量超过能够通过反应扩散进入基体时的锌原子数量时,锌原子在渗层外表面聚集,形成凸起的锌团。锌粉与基体表面不同部位接触的概率不同导致凸起的锌团在基体表面的分布并不均匀。催化剂氯化铵分解产生的HCl蒸汽和甲酸镍分解产生的还原性气体CO、H2 净化基体试样表面,增强基体表面活性,此时锌原子扩散迁移到基体表面与基体表面发生反应扩散的程度最剧烈,渗层的生长速度最快。当温度升高至240℃ 后,氯化铵和甲酸镍分解完全,不再有新的气体产生,分解产生的还原性气体充满整个渗筒,为渗层的增厚提供良好的还原性气氛。渗层表面存在明显裂纹主要由两个方面导致:一方面渗层的快速增长导致渗层存在较大的内应力,随温度的不断升高晶体颗粒不断长大内应力同时增大,当应力大于渗层金属原子间结合力时,结合键断裂从而萌生裂纹;另一方面Fe、Zn、Ni三种金属的热膨胀系数不同,通过相互扩散形成的合金渗层在冷却过程中体积收缩导致裂纹的萌生。图3b为图3a黑色圆圈处的局部放大图,对此区域进行面扫,结果如图4所示。渗层表面的主要元素为Fe和Zn,分布有少量的Ni,镍元素均匀分布在渗层表面。见图3b黑色箭头所指渗层表面分布有少量细小颗粒,通过对比面扫结果,分析细小颗粒为甲酸镍受热分解产生的金属镍。

  • 图3 渗层表面形貌

  • Fig.3 Micrographs of layer surface

  • 图4 Zn-Ni渗层表面EDS能谱图

  • Fig.4 EDS energy spectrum of Zn-Ni co-cementation layer on surface

  • 通过扫描电镜(SEM)观察Zn-Ni层截面形貌,如图5所示。渗层厚度为153 μm,渗层分为A、B两个区域,区域的组织结构区别明显。A区域厚度为46 μm,占整个渗层厚度的30%,组织经腐蚀液腐蚀后未显露晶界。B区域厚度为107 μm,占整个渗层厚度的70%,组织经腐蚀液腐蚀后呈现大量条纹,沿纵向分布的条纹长,沿其他方向分布的条纹相对较短。见白色箭头所指渗层最外层还存在明显孔隙,存在一层10 μm厚度的多孔层。在渗锌层制备的基础上提高温度促进锌的扩散加剧,渗层增长速率增大,同时甲酸镍分解产生的镍扩散至渗层表面封堵锌发生扩散的通道,抑制锌的扩散导致渗层厚度的增长减缓。为分析A、B区域的元素种类和物相组成,采用EDS能谱和X射线衍射仪对渗层进行检测,测试结果如图6所示。图6a为渗层EDS能谱检测结果,渗层存在元素Fe、Zn、C、O和Ni,Ni原子质量比为0.8%,镍含量低,主要分布于渗层表层区域。

  • 图5 Zn-Ni渗层形貌

  • Fig.5 Mcrograh of Zn-Ni cementation layer

  • 图6 渗层EDS图和XRD图

  • Fig.6 EDS energy spectrum and XRD pattern of cementation layer

  • 在金属镍晶体结构中,镍原子挣脱相邻原子的束缚所需要克服的能量势垒大,理论上在远低于镍熔点以下温度难以激发镍的扩散,然而渗镀过程中各金属原子的扩散行为相比纯金属间的扩散行为更为复杂,除了温度、合金成分、空位浓度和位错的影响外,机械能助渗过程中试样与粉末间的相对运动不可忽略[29]。锌的熔点低,扩散激活能相对较低,扩散容易进行。锌在铁基体中扩散系数大于镍在铁基体中的扩散系数,锌优先扩散进入铁基体,并且活性锌原子供应充足,扩散能持续进行,渗层逐渐增厚。渗锌层的快速增厚导致镍向铁基体扩散的路径延长,镍首先向纯锌层和锌-铁合金层扩散,镍的扩散可能仅在整个渗层的外表层。采用XRD检测方法对渗层物相进行分析,测试结果如图6b所示。渗层存在FeZn15、 Fe11Zn40和Ni2Zn11金属间化合物,根据李春红等[19]、彭淀[20]对渗锌层的物相分析结论,并结合Fe-Zn二元相图分析可知A区域为 Γ(Fe11Zn40)相区,B区域为 ζ(FeZn15)相,ζ 相的晶体组织结构呈等轴晶,腐蚀液优先沿等轴晶晶界腐蚀,显露出方向各异的晶界条纹。纵向较长的条纹可能是由于内应力集中引发形成的渗层裂纹。XRD检测存在Ni2Zn11金属间化合物,表明甲酸镍受热分解产生的镍与锌通过反应扩散结合形成金属间化合物。根据Zn-Ni合金二元相图[30] 可见(图7)在Ni含量为0.25%时存在共晶,结晶温度为418.5℃,Ni2Zn11为锌-镍合金发生相变过程中的中间相,与TAN等 [31]对Zn-Ni固-固扩散行为研究中观察到的 γ 相(Ni2Zn11)相吻合。

  • 图7 锌-镍合金二元相图

  • Fig.7 Phase diagram of Zn-Ni alloy

  • 为分析渗层结合状态,观察Zn-Ni合金渗层冲击断口形貌。如图5b所示为断口微观SEM形貌,黑色箭头所指为平整光滑的断裂面,渗层发生脆性断裂形成的准解离面,表明渗层塑性差,呈脆性。图5b白色箭头所指区域对应于图5a形成的多孔层区域。当Zn-Ni渗层的制备温度高于锌的熔点一定温度时,表层的锌蒸发产生的锌蒸汽伴随渗层的增长形成平均厚度为10 μm的多孔层。

  • 2.2 渗层耐腐蚀性能

  • 利用Tafel图对渗层电化学行为进行评价。如图8所示,为Zn-Ni渗层与渗锌层在3.5%NaCl溶液中的极化曲线。两种渗层存在相似的极化行为,在阳极极化过程中均存在两个连续钝化区,Zn-Ni渗层所不同的是在阳极极化末端存在额外的钝化区,如图8区域A所示。溶液中的Cl-首先以点腐蚀的形式破坏阳极Zn2+离子与阴极HO-离子形成的钝化膜[32]。随着腐蚀产物的集聚,以及溶液中溶解的氧不断修复被破坏的钝化膜,在极化曲线中出现二次钝化区间。Zn-Ni渗层存在少量的镍元素,在极化末端,镍参与形成的钝化膜抑制腐蚀进程,然而镍含量低,形成的钝化区较窄,钝化膜很快被破坏。Zn-Ni渗层相比渗锌层试样自腐蚀电位(E corr)正移265mV。自腐蚀电位表示失去电子的难易程度,作为评价渗层腐蚀性能的主要因素。表明Zn-Ni渗层试样相比渗锌层试样具有更优异的耐腐蚀性能。渗层极化电阻和电流密度对应数值如表3所示。渗锌层试样极化电阻R P为8 Ω·cm 2,电流密度I corr 为2 594 μA·cm-2。Zn-Ni渗层极化电阻R P为18 Ω·cm 2,电流密度I corr为1 147 μA·cm-2。极化电阻相比渗Zn层试样变化并不明显,电流密度明显降低。极化电阻表明氯离子腐蚀渗层表面钝化膜后继续深入腐蚀基体过程的难易程度。由于渗层中镍含量远低于锌的含量,Zn-Ni渗层的极化电阻和电流密度差异并不明显。

  • 图8 3.5%NaCl溶液中渗Zn试样和Zn-Ni共渗试样极化曲线

  • Fig.8 Polarization curves of sherardized sample and Zn-Ni co-cementation sample in 3.5%NaCl solution

  • 表3 Tafel拟合极化曲线参数

  • Table3 Tafel fit parameters for the polarization curves

  • 利用电化学阻抗谱(EIS)对Zn-Ni渗层腐蚀行为作进一步分析。渗层Nyquist图如图9所示,可见渗Zn层和Zn-Ni渗层均由高频容抗弧组成,Zn-Ni渗层弧半径明显大于渗Zn层,弧半径越大反映渗层对腐蚀介质扩散的抑制作用越强。如图10所示,为对应等效电路图,拟合参数如表4所示,拟合误差均小于15%。在等效电路R s(C d.lR coat(Q 1R corr))(C body d.lR pore)和R s(C d.lR coat)(C body d.lR pore)中R s 为渗层表面溶液电阻,R coat为渗层电阻,R corr为腐蚀产物的电阻, R pore为腐蚀空隙内的溶液电阻,C d.l为电极表面的双电层电容,C body d.l 为腐蚀产物与金属表面的双电层电容,Q 为常相位角元件代表非理想电容,Q 1为电极表面双电层电容,Q 2为溶液与腐蚀产物的双电层电容,n 为弥散指数。Zn-Ni渗层表面存在的镍元素相比铁、锌,更容易发生钝化,形成的钝化膜抑制腐蚀过程中电荷的转移,由Zn-Ni渗层电阻R coat明显大于渗Zn层电阻R coat 得到验证,同时在渗层腐蚀过程中有镍的参与形成新的腐蚀产物可能延缓腐蚀速率。

  • 图9 3.5%NaCl溶液中渗Zn试样和Zn-Ni共渗试样阻抗谱图

  • Fig.9 Impedance spectra of sherardized sample and Zn-Ni co-cementation sample in 3.5%NaCl solution

  • 采用中性盐雾试验检测试样腐蚀性能。渗锌层试样出现红锈的时间为48h,Zn-Ni合金渗层试样出现红锈的时间为288h,与电化学测试结果相符,均表明Zn-Ni渗层耐腐蚀性更加优异。纯渗锌层腐蚀288h表面形貌如图11a所示,表面存在白色团絮状腐蚀产物,无翘起和剥落,分布有大量裂纹,裂纹相互连通。Zn-Ni渗层腐蚀288h表面形貌如图11b所示,表面存在少量的团絮状白色腐蚀产物,无翘起和剥落,存在少量裂纹,但裂纹扩展宽度远小于渗锌层试样。Zn-Ni渗层表层存在的多孔层阻碍裂纹的延伸和交错,同时随腐蚀产物的不断产生填满孔隙,由孔隙内向外延伸的腐蚀产物与基体结合致密,当腐蚀产物完全覆盖试样表面时对腐蚀介质的进一步侵蚀具有阻挡作用。Ni与Zn、O形成的化合物改变了渗层组织表面状态,形成的金属间化合物和钝化膜相比纯锌层对Cl的侵蚀具有更加明显的抑制作用。表面C元素对腐蚀性可能存在影响,具体影响机理有待进一步验证。

  • 图10 等效电路图Zn-Ni共渗试样等效电路

  • Fig.10 Equivalent circuit diagram

  • 表4 EIS等效电路拟合参数

  • Table4 Fitting parameters of EIS equivalent circuit

  • 综合表明,在渗锌基础上添加甲酸镍制备的Zn-Ni合金渗层相比纯渗锌层具有更加优异的耐腐蚀性能。此外,研究温度和甲酸镍含量对渗层制备过程的影响机理对促进Zn-Ni合金渗层技术的应用具有积极意义。

  • 图11 盐雾腐蚀288h表面形貌

  • Fig.11 Surface morphology of 288h corroded by salt spray

  • 3 结论

  • 在Q235钢表面制备Zn-Ni合金渗层,结合相应分析手段证实了渗层中含有镍元素,并研究了Zn-Ni合金渗层的组织结构及腐蚀性能,得到以下结论:

  • (1) 制备得到Zn-Ni合金渗层主要由 Γ(Fe11Zn40) 相、ζ(FeZn15)相和Ni2Zn11相组成,渗层结合方式属于冶金结合,渗层塑性差,呈脆性。

  • (2) 渗层中引入Ni元素改变了渗层电位,使自腐蚀电位相比渗Zn层正移265mV,渗层表面均匀分布的镍元素填充部分孔隙抑制腐蚀介质的侵入,渗层电阻提高352 Ω·cm 2,提高了渗层的耐腐蚀性能。

  • (3) 甲酸镍分解产生的还原性气体使渗层均匀致密,表面裂纹减少。Ni与Zn、O形成的化合物在腐蚀过程中形成新的钝化层,抑制腐蚀介质的扩散,使中性盐雾试验出现红锈的时间相比渗锌层延长240h。

  • 参考文献

    • [1] 金水.腐蚀带来的危害[J].防灾博览,2019(4):70-71.JIN Shui.Damage from corrosion[J].Disaster Prevention Expo,2019(4):70-71.(in Chinese)

    • [2] XIAO Y G,PER E V,VENVIK H J,et al.Inhibition of metal dusting corrosion on Fe-based alloy by combined near surface severe plastic deformation(NS-SPD)and thermochemical treatment[J].Corrosion Science,2021,190,14:109702.

    • [3] GONG X G,XU W W,CUI C,et al.Exploring alloying effect on phase stability and mechanical properties of γ″-Ni3Nb precipitates with first-principles calculations[J].Materials & Design,2020,196:109174.

    • [4] 高磊智,王长昊,郭根材,等.Cu-Ni 合金结构稳定性的第一性原理计算研究[J].云南化工,2020,47(11):31-33.GAO Leizhi,WANG Changhao,GUO Gencai,et al.First principle calculation of Cu-Ni alloy structure stability[J].Yunnan Chemical Technology,2020,47(11):31-33.(in Chinese)

    • [5] CASCINI L,PORTIOLI F,LANDOLFO R.Probabilistic time variant assessment of thin-walled steel members under atmospheric corrosion attack[J].Journal of Civil Engineering and Management,2014,20(3):404-414.

    • [6] 焦迪,王萍.热处理工艺对 Mg-Gd-Y 合金组织及耐腐蚀性能的影响[J].材料热处理学报,2020,41(9):59-66.JIAO Di,WANG Ping.Effect of heat treatment process on microstructure and corrosion resistance of Mg-Gd-Y alloy[J].Transactions of Materials and Heat Treatment,2020,41(9):59-66.(in Chinese)

    • [7] ASHASSI-SORKHABI H,RAFIZADEH S H.Effect of coating time and heat treatment on structures and corrosion characteristics of electroless Ni-P alloy deposits[J].Surface & Coatings Technology,2004,176(3):318-326.

    • [8] NARASAK S,PANYAWAT W,YUTTANANT B.The effects of heat treatments on hardness and wear resistance in Ni-W alloy coatings[J].Surface & Coatings Technology,2011,206(6):1096-1101.

    • [9] XU S S,WANG H,WANG N,et al.Fabrication of hierarchical structures on steel mesh with good superhydrophobicity and anti-corrosion property[J/OL].Colloids and Surfaces A:Physicochemical and EngineeringAspects,2020,602[2021-10-07].https://doi.org/10.1016/j.colsurfa.2020.125168.

    • [10] 胡建军,赵雪,郭宁,等.40Cr 钢表面包埋渗Mo涂层组织及摩擦性能[J].中国表面工程,2021,34(1):60-69.HU Jianjun,ZHAO Xue,GUO Ning,et al.Microstructure and tribological properties of Mo-coating prepared by pack-cementation on 40Cr steel[J].China Surface Engineering,2021,34(1):60-69.(in Chinese)

    • [11] 李微,黄煌,黄伟颖,等.钢表面粉末包埋渗铝的表面状态及元素扩散机理研究进展[J].中国表面工程,2021,34(3):25-39.LI Wei,HUNAG Huang,HUANG Weiying,et al.Research progress on surface state and element diffusion mechanism of steel with surface coating prepared by pack aluminizing method[J].China Surface Engineering,2021,34(3):25-39.(in Chinese)

    • [12] 王胜民,赵晓军,何明奕.机械镀技术的现状及发展[J].材料导报,2017,31(5):117-122.WANG Shengming,ZHAO Xiaojun,HE Mingyi.Research status and development of mechanical plating[J].Materials Reports,2017,31(5):117-122.(in Chinese)

    • [13] 轩立卓,杨堃,沙春鹏,等.以锌镍合金镀层替代航空用镀镉、镀镉钛层的研究[J].材料保护,2014,47(10):15-16.XUAN Lizhuo,YANG Kun,SHA Chunpeng,.et al.Replacing cadmium and titanium coating with Zn-Ni alloy coating for aviation[J].Materials Protection,2014,47(10):15-16.(in Chinese)

    • [14] 卢锦堂,陈锦虹,许乔瑜,等.热浸锌镍合金工艺及镀层性能[J].材料保护,1996(9):11-14.LU Jingtang,CHEN Jinghong,XU Qiaoyu,et al.Hot dip zinc-nickel alloy process and coating properties[J].Materials Protection,1996(9):11-14.(in Chinese)

    • [15] NINDHIA T,NEGARA D,SAPUTRA I et al.Development method for nickel electroplating on aluminum[J].IOP Conference Series:Materials Science and Engineering,2020,1007(1):1-5.

    • [16] 李五坡,王守忠.45 钢表面 B-Si-Ce 多元共渗试验研究 [J].热加工工艺,2009,38(22):161-164.LI Wupo,WANG Shouzhong.Experimental research of multicomponent cementation of B-Si-Ce on 45 steel tube surface[J].Hot Working Technology,2009,38(22):161-164.(in Chinese)

    • [17] 张艳梅,李忠厚,徐重.W-Mo-Co 多元共渗扩散交互作用规律研究[J].太原理工大学学报,2009,40(3):283-286.ZAHNG Yanmei,LI Zhonghou,XU Z.Interaction of W-Mo-Co in co-diffusion[J].Journal of Taiyuan University of Technology,2009,40(3):283-286.(in Chinese)

    • [18] 袁庆龙,苏永安.纯铜表面 Al-Ni 基自熔合金粉末共渗研究[J].太原理工大学学报,2002(3):320-323.YUAN Qinlong,SU Yongan.Multielement penetration of Al and Ni-based self-fusion alloy powder on the surface of pure copper[J].Journal of Taiyuan University of Technology,2002(3):320-323.(in Chinese)

    • [19] 李春红,杜安,马瑞娜,等.42CrMo 钢锌铝共渗层的组织及性能[J].金属热处理,2017,42(10):47-51.LI Chunhong,DU An,MA Ruina,et al.Microstructure and properties of Zn-Al thermochemical threated on 42CrMo steel[J].Heat Treatment of Metals,2017,42(10):47-51.(in Chinese)

    • [20] 彭淀.低碳钢表面锌铜合金渗层的制备及组织性能研究[D].湘潭:湘潭大学,2019.PENG Ding.Preparation and microstructure of Zn-Cu alloy coating on low carbon steel[D].Xiangtan:Xiangtan University,2019.(in Chinese)

    • [21] 高聪.粉末渗锌工艺及其对组织和耐蚀性的影响[D].天津:河北工业大学,2015:23-46.GAO Cong.Sherardizing process and its effect on microstructure and corrosion resistance[D].Journal of Hebei University of Technology,2015:23-46.(in Chinese)

    • [22] 何祖新,苏旭平,彭浩平,等.机械能助 Al-Zn-Cr 共渗工艺及渗层组织[J].中国表面工程,2016,29(6):44-51.HE Zuxin,SU Xuping,PENG Haoping,et al.Al-Zn-Cr diffusion process aided by Mechanical energy and microstructure of alloying layer[J].China Surface Engineering,2016,29(6):44-51.(in Chinese)

    • [23] 赵秀霞.镍基合金在酸性条件下的腐蚀行为研究[D].哈尔滨:哈尔滨工程大学,2009:22-51.ZHAO Xiuxia.Corrosion behavior of Ni-based alloys under acidic conditions[D].Harbin:Harbin Engineering University,2009:22-51.(in Chinese)

    • [24] 张建策,龚升高.金属镍的电化学腐蚀行为及其影响因素[J].化工技术与开发,2020,49(Z1):42-46.ZHANG Jiance,GONG Shenglong.Electrochemical corrosion behavior and its influencing factors of metal Nickel[J].Technology & Development of Chemical Industry,2020,49(Z1):42-46.(in Chinese)

    • [25] 孔纲,王世卫,车淳山,等.锡、镍对高硅钢表面热浸镀锌层生长的影响[J].电镀与涂饰,2012,31(2):23-26.KONG Gang,WANG Shiwei,CHE Chunshan,et al.Effect of Tin and Nickel on the growth of hot-dip galvanized coating on high silicon steel surface[J].Electroplating & Finishing,2012,31(2):23-26.(in Chinese)

    • [26] BROWN M E,DELMON B,GALWEY A K,et al.Nucleus formation and the kinetics of thermal decomposition of nickel formate[J].Journal de Chimie Physique,1978,75:147-158.

    • [27] FOX P G,EHRETSMANN J,BROWN C E.The development of internal structure during thermal decomposition:Nickel formate dihydrate [J].Journal of Catalysis,1971,20(1):67-73.

    • [28] BIRCUMSHAW L L,EDWARDS J.The kinetics of the decomposition of nickel formate[J].Journal of the Chemical Society,1950,1(1):1800-1809.

    • [29] 李东刚.异质金属体系扩散行为和界面反应的强磁场控制研究[D].沈阳:东北大学,2009.LI Donggang.Study on diffusion behavior and interfacial reaction of heterogeneous metal systems controlled by high magnetic fields[D].Shenyang:Northeastern University,2009.(in Chinese)

    • [30] 郭领军,李贺军,王镜堂.锌镍铸造阳极合金金相组织的观察[J].铸造技术,2002(2):114-117.GUO Lingjun,LI Hejun,WANG Jingtang.Observation on the microstructure of Zn-Ni alloy as dissolvable positive electrode[J].Foundry Technology,2002(2):114-117.(in Chinese)

    • [31] TAN Y K,ZHUANG R J,YANG G L,et al.Diffusional behaviors and mechanical properties of Ni-Zn system[J].Journal of Alloys and Compounds,2021,881:160581.

    • [32] 李泽民,王胜民,张俊,等.氧化石墨烯掺杂对机械镀锌层腐蚀性能的影响[J].中国表面工程,2019,32(6):81-89.LI Zeming,WANG Shengming,ZHANG Jun.Effects of GO doping on corrosion performance of mechanical galvanized plating[J].China Surface Engineering,2019,32(6):81-89.(in Chinese)

  • 参考文献

    • [1] 金水.腐蚀带来的危害[J].防灾博览,2019(4):70-71.JIN Shui.Damage from corrosion[J].Disaster Prevention Expo,2019(4):70-71.(in Chinese)

    • [2] XIAO Y G,PER E V,VENVIK H J,et al.Inhibition of metal dusting corrosion on Fe-based alloy by combined near surface severe plastic deformation(NS-SPD)and thermochemical treatment[J].Corrosion Science,2021,190,14:109702.

    • [3] GONG X G,XU W W,CUI C,et al.Exploring alloying effect on phase stability and mechanical properties of γ″-Ni3Nb precipitates with first-principles calculations[J].Materials & Design,2020,196:109174.

    • [4] 高磊智,王长昊,郭根材,等.Cu-Ni 合金结构稳定性的第一性原理计算研究[J].云南化工,2020,47(11):31-33.GAO Leizhi,WANG Changhao,GUO Gencai,et al.First principle calculation of Cu-Ni alloy structure stability[J].Yunnan Chemical Technology,2020,47(11):31-33.(in Chinese)

    • [5] CASCINI L,PORTIOLI F,LANDOLFO R.Probabilistic time variant assessment of thin-walled steel members under atmospheric corrosion attack[J].Journal of Civil Engineering and Management,2014,20(3):404-414.

    • [6] 焦迪,王萍.热处理工艺对 Mg-Gd-Y 合金组织及耐腐蚀性能的影响[J].材料热处理学报,2020,41(9):59-66.JIAO Di,WANG Ping.Effect of heat treatment process on microstructure and corrosion resistance of Mg-Gd-Y alloy[J].Transactions of Materials and Heat Treatment,2020,41(9):59-66.(in Chinese)

    • [7] ASHASSI-SORKHABI H,RAFIZADEH S H.Effect of coating time and heat treatment on structures and corrosion characteristics of electroless Ni-P alloy deposits[J].Surface & Coatings Technology,2004,176(3):318-326.

    • [8] NARASAK S,PANYAWAT W,YUTTANANT B.The effects of heat treatments on hardness and wear resistance in Ni-W alloy coatings[J].Surface & Coatings Technology,2011,206(6):1096-1101.

    • [9] XU S S,WANG H,WANG N,et al.Fabrication of hierarchical structures on steel mesh with good superhydrophobicity and anti-corrosion property[J/OL].Colloids and Surfaces A:Physicochemical and EngineeringAspects,2020,602[2021-10-07].https://doi.org/10.1016/j.colsurfa.2020.125168.

    • [10] 胡建军,赵雪,郭宁,等.40Cr 钢表面包埋渗Mo涂层组织及摩擦性能[J].中国表面工程,2021,34(1):60-69.HU Jianjun,ZHAO Xue,GUO Ning,et al.Microstructure and tribological properties of Mo-coating prepared by pack-cementation on 40Cr steel[J].China Surface Engineering,2021,34(1):60-69.(in Chinese)

    • [11] 李微,黄煌,黄伟颖,等.钢表面粉末包埋渗铝的表面状态及元素扩散机理研究进展[J].中国表面工程,2021,34(3):25-39.LI Wei,HUNAG Huang,HUANG Weiying,et al.Research progress on surface state and element diffusion mechanism of steel with surface coating prepared by pack aluminizing method[J].China Surface Engineering,2021,34(3):25-39.(in Chinese)

    • [12] 王胜民,赵晓军,何明奕.机械镀技术的现状及发展[J].材料导报,2017,31(5):117-122.WANG Shengming,ZHAO Xiaojun,HE Mingyi.Research status and development of mechanical plating[J].Materials Reports,2017,31(5):117-122.(in Chinese)

    • [13] 轩立卓,杨堃,沙春鹏,等.以锌镍合金镀层替代航空用镀镉、镀镉钛层的研究[J].材料保护,2014,47(10):15-16.XUAN Lizhuo,YANG Kun,SHA Chunpeng,.et al.Replacing cadmium and titanium coating with Zn-Ni alloy coating for aviation[J].Materials Protection,2014,47(10):15-16.(in Chinese)

    • [14] 卢锦堂,陈锦虹,许乔瑜,等.热浸锌镍合金工艺及镀层性能[J].材料保护,1996(9):11-14.LU Jingtang,CHEN Jinghong,XU Qiaoyu,et al.Hot dip zinc-nickel alloy process and coating properties[J].Materials Protection,1996(9):11-14.(in Chinese)

    • [15] NINDHIA T,NEGARA D,SAPUTRA I et al.Development method for nickel electroplating on aluminum[J].IOP Conference Series:Materials Science and Engineering,2020,1007(1):1-5.

    • [16] 李五坡,王守忠.45 钢表面 B-Si-Ce 多元共渗试验研究 [J].热加工工艺,2009,38(22):161-164.LI Wupo,WANG Shouzhong.Experimental research of multicomponent cementation of B-Si-Ce on 45 steel tube surface[J].Hot Working Technology,2009,38(22):161-164.(in Chinese)

    • [17] 张艳梅,李忠厚,徐重.W-Mo-Co 多元共渗扩散交互作用规律研究[J].太原理工大学学报,2009,40(3):283-286.ZAHNG Yanmei,LI Zhonghou,XU Z.Interaction of W-Mo-Co in co-diffusion[J].Journal of Taiyuan University of Technology,2009,40(3):283-286.(in Chinese)

    • [18] 袁庆龙,苏永安.纯铜表面 Al-Ni 基自熔合金粉末共渗研究[J].太原理工大学学报,2002(3):320-323.YUAN Qinlong,SU Yongan.Multielement penetration of Al and Ni-based self-fusion alloy powder on the surface of pure copper[J].Journal of Taiyuan University of Technology,2002(3):320-323.(in Chinese)

    • [19] 李春红,杜安,马瑞娜,等.42CrMo 钢锌铝共渗层的组织及性能[J].金属热处理,2017,42(10):47-51.LI Chunhong,DU An,MA Ruina,et al.Microstructure and properties of Zn-Al thermochemical threated on 42CrMo steel[J].Heat Treatment of Metals,2017,42(10):47-51.(in Chinese)

    • [20] 彭淀.低碳钢表面锌铜合金渗层的制备及组织性能研究[D].湘潭:湘潭大学,2019.PENG Ding.Preparation and microstructure of Zn-Cu alloy coating on low carbon steel[D].Xiangtan:Xiangtan University,2019.(in Chinese)

    • [21] 高聪.粉末渗锌工艺及其对组织和耐蚀性的影响[D].天津:河北工业大学,2015:23-46.GAO Cong.Sherardizing process and its effect on microstructure and corrosion resistance[D].Journal of Hebei University of Technology,2015:23-46.(in Chinese)

    • [22] 何祖新,苏旭平,彭浩平,等.机械能助 Al-Zn-Cr 共渗工艺及渗层组织[J].中国表面工程,2016,29(6):44-51.HE Zuxin,SU Xuping,PENG Haoping,et al.Al-Zn-Cr diffusion process aided by Mechanical energy and microstructure of alloying layer[J].China Surface Engineering,2016,29(6):44-51.(in Chinese)

    • [23] 赵秀霞.镍基合金在酸性条件下的腐蚀行为研究[D].哈尔滨:哈尔滨工程大学,2009:22-51.ZHAO Xiuxia.Corrosion behavior of Ni-based alloys under acidic conditions[D].Harbin:Harbin Engineering University,2009:22-51.(in Chinese)

    • [24] 张建策,龚升高.金属镍的电化学腐蚀行为及其影响因素[J].化工技术与开发,2020,49(Z1):42-46.ZHANG Jiance,GONG Shenglong.Electrochemical corrosion behavior and its influencing factors of metal Nickel[J].Technology & Development of Chemical Industry,2020,49(Z1):42-46.(in Chinese)

    • [25] 孔纲,王世卫,车淳山,等.锡、镍对高硅钢表面热浸镀锌层生长的影响[J].电镀与涂饰,2012,31(2):23-26.KONG Gang,WANG Shiwei,CHE Chunshan,et al.Effect of Tin and Nickel on the growth of hot-dip galvanized coating on high silicon steel surface[J].Electroplating & Finishing,2012,31(2):23-26.(in Chinese)

    • [26] BROWN M E,DELMON B,GALWEY A K,et al.Nucleus formation and the kinetics of thermal decomposition of nickel formate[J].Journal de Chimie Physique,1978,75:147-158.

    • [27] FOX P G,EHRETSMANN J,BROWN C E.The development of internal structure during thermal decomposition:Nickel formate dihydrate [J].Journal of Catalysis,1971,20(1):67-73.

    • [28] BIRCUMSHAW L L,EDWARDS J.The kinetics of the decomposition of nickel formate[J].Journal of the Chemical Society,1950,1(1):1800-1809.

    • [29] 李东刚.异质金属体系扩散行为和界面反应的强磁场控制研究[D].沈阳:东北大学,2009.LI Donggang.Study on diffusion behavior and interfacial reaction of heterogeneous metal systems controlled by high magnetic fields[D].Shenyang:Northeastern University,2009.(in Chinese)

    • [30] 郭领军,李贺军,王镜堂.锌镍铸造阳极合金金相组织的观察[J].铸造技术,2002(2):114-117.GUO Lingjun,LI Hejun,WANG Jingtang.Observation on the microstructure of Zn-Ni alloy as dissolvable positive electrode[J].Foundry Technology,2002(2):114-117.(in Chinese)

    • [31] TAN Y K,ZHUANG R J,YANG G L,et al.Diffusional behaviors and mechanical properties of Ni-Zn system[J].Journal of Alloys and Compounds,2021,881:160581.

    • [32] 李泽民,王胜民,张俊,等.氧化石墨烯掺杂对机械镀锌层腐蚀性能的影响[J].中国表面工程,2019,32(6):81-89.LI Zeming,WANG Shengming,ZHANG Jun.Effects of GO doping on corrosion performance of mechanical galvanized plating[J].China Surface Engineering,2019,32(6):81-89.(in Chinese)

  • 手机扫一扫看