en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

马清,男,1997年出生,硕士。主要研究方向为激光增材制造与表面工程技术。E-mail:172899002@qq.com;

卢冰文(通信作者),1990年出生,博士,高级工程师。主要研究方向为激光增材制造与表面工程技术。E-mail:lubingwen@gdinm.com

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20210908002

参考文献 1
YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes[J].AdvancedEngineering Materials,2004,6(5):299-303.
参考文献 2
蔡召兵.NiCo(CrTiV,FeAlCu)系高熵合金及涂层的制备与性能研究[D].哈尔滨:哈尔滨工程大学,2018.CAI Zhaobing.Preparation and properties of NiCo(CrTiV,FeAlCu)high-entropy alloys and coatings[D].Harbin:Journal of Harbin Engineering University,2018.(in Chinese)
参考文献 3
CAI Y,CHEN Y,LUO Z,et al.Manufacturing of FeCoCrNiCux medium-entropy alloy coating using laser cladding technology[J].Materials & Design,2017,133:91-108.
参考文献 4
李梦娇,董应虎,张瑞卿,等.高熵合金的制备方法及其应用进展[J].航空制造技术,2019,62(22):58-63.LI Mengjiao,DONG Yinghu,ZHANG Ruiqing,et al.Preparation and application progress of high entropy alloys[J].Aeronautical Manufacturing Technology,2019,62(22):58-63.(in Chinese)
参考文献 5
姚陈忠,马会宣,童叶翔.非晶纳米高熵合金薄膜 Nd-Fe-Co-Ni-Mn 的电化学制备及磁学性能[J].应用化学,2011,28(10):1189-1194.YAO Chenzhong,MA Huixuan,TONG Yexiang.Electrochemical preparation and magnetic study of amorphous nanostructured Nd-Fe-Co-Ni-Mn high entropy alloy film[J].Chinese Journal of Applied Chemistry,2011,28(10):1189-1194.(in Chinese)
参考文献 6
邵霞,张云鹏,周航.粉末冶金制备 AlCrFeNixCoCuTi 高熵合金的组织及性能研究[J].铸造技术,2013,34(3):283-285.SHAO Xiao,ZHANG Yunpeng,ZHOU Hang.Microstructure and mechanical properties of AlCrFeNixCoCuTi high entropy alloys prepared by powder metallurgy[J].Foundry Technology,2013,34(3):283-285.(in Chinese)
参考文献 7
ZHANG Y,ZUO T T,TANG Z,et al.Microstructures and properties of high-entropy alloys[J].Progress in Materials Science,2014,61:1-93.
参考文献 8
黄留飞,孙耀宁,王国建.激光熔覆技术制备高熵合金涂层研究进展[J].激光与光电子学进展,2019,56(24):240003.HUANG Liufei,SUN Yaoning,WANG Guojian.Research progress of laser cladding high-entropy alloy coating[J].Laser & Optoelectronics Progress,2019,56(24):240003.(in Chinese)
参考文献 9
章奇,李忠文,于治水.45#钢激光熔覆FeNiMoCoCrTi高熵合金涂层工艺参数优化[J].机械强度,2021,43(2):308-312.ZHANG Qi,LI Zhongwen,YU Zhishui.Optimization of process parameters of FeNiMoCoCrTi high entropy alloy coating on 45# steel surface[J].Journal of Mechanical Strength,2021,43(2):308-312.(in Chinese)
参考文献 10
LI Y,SHI Y.Microhardness,wear resistance,and corrosion resistance of AlxCrFeCoNiCu high-entropy alloy coatings on aluminum by laser cladding[J].Optics & Laser Technology,2021,134:106632.
参考文献 11
陈国进.激光熔覆 FeCoCrNiBx 高熵合金涂层组织与性能的研究[D].福州:福州大学,2014.Chen Guojin.The study of FeCoCrNiBx high entropy alloy coating prepared by laser cladding for the microstructure and property[D].Fuzhou:Journal of Fuzhou University,2014.(in Chinese)
参考文献 12
ZHANG L,WANG C,HAN L,et al.Influence of laser power on microstructure and properties of laser clad Co-based amorphous composite coatings[J].Surfaces and Interfaces,2017,6:18-23.
参考文献 13
CAI Y,CHEN Y,MANLADAN S M,et al.Influence of dilution rate on the microstructure and properties of FeCrCoNi high-entropy alloy coating[J].Materials & Design,2018,142:124-137.
参考文献 14
李大艳.304 不锈钢表面激光熔覆高熵合金涂层研究[D].大连:大连理工大学,2018.LI Dayan.Research of laser cladding high-entropy alloy coatings on 304 stainless steel surface[D].Dalian:Journal of Dalian University of Technology,2018.(in Chinese)
参考文献 15
MIRACLE D B,SENKOV O N.A critical review of high entropy alloys and related concepts[J].Acta Materialia,2017,122:448-511.
参考文献 16
王成磊,高原,张光耀.CeO2对铝合金表面激光熔覆增材制造Ni60合金层组织及耐蚀性影响[J].稀有金属材料与工程,2017,46(8):2306-2312.WANG Chenglei,GAO Yuan,ZHANG Guangyao.Effect of CeO2 addition on interface structure and corrosion resistance of laser cladding additive manufactured Ni60 alloy layers on the surface of Al alloy[J].Rare Metal Materials and Engineering,2017,46(8):2306-2312.(in Chinese)
参考文献 17
李根.TiC 增强钴基合金激光熔覆层组织及性能的研究[D].济南:山东大学,2016.LI Gen.Microstructure and properties of Co-based alloy laser cladding layer reinforcement by TiC[D].Jinan:Journal of Shandong University,2016.(in Chinese)
参考文献 18
HSU Y J,CHIANG W C,WU J K.Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution[J].Materials Chemistry and Physics,2005,92(1):112-117.
参考文献 19
ZHI T,LU H,WEI H,et al.Alloying and processing effects on the aqueous corrosion behavior of high-entropyalloys[J].Entropy,2014,16(2):895-911.
参考文献 20
LI B,GU J,WANG Q,et al.Cluster formula of Fe-containing Monel alloys with high corrosion-resistance[J].Materials Characterization,2012,68:94-101.
参考文献 21
TIAN Z,ZHAO Y,JIANG Y,et al.Investigation of microstructure and properties of FeCoCrNiAlMox alloy coatings prepared by broadband-beam laser cladding technology[J].Journal of Materials Science,2020,55(10):4478-4492.
参考文献 22
褚清坤,邓朝阳,闫星辰,等.中间合金粉对激光选区熔化TMZF合金电化学性能的影响[J].中国表面工程,2020,33(6):128-135.CHU Qingkun,DENG Zhaoyang,YAN Xingchen,et al.Effects of master alloy powders on electrochemical performance of selective laser melted TMZF alloy[J].China Surface Engineering,2020,33(6):128-135.(in Chinese)
参考文献 23
YAN X,SHI C,LIU T,et al.Effect of heat treatment on the corrosion resistance behavior of selective laser melted Ti6Al4V ELI[J].Surface and Coatings Technology,2020,396:125955.
参考文献 24
WANG Z B,HU H X,LIU C B,et al.The effect of fluoride ions on the corrosion behavior of pure titanium in 0.05M sulfuric acid[J].Electrochimica Acta,2014,135:526-535.
目录contents

    摘要

    针对激光熔覆高熵合金涂层的成分设计已有较多探究,但激光工艺参数对涂层结构与性能的影响尚缺乏系统研究。采用激光熔覆技术在 316L 不锈钢基体表面制备 FeCoNiCr 高熵合金涂层,系统探究激光功率(1.2 ~2.0 kW)对 FeCoNiCr 高熵合金涂层的组织结构以及耐腐蚀性能的影响规律。不同激光功率制备的 FeCoNiCr 涂层均由典型的单一面心立方结构(FCC) 组成,但随着激光功率的增大,涂层逐渐出现择优取向。FeCoNiCr 涂层呈现典型的双层组织结构特征,底部为柱状晶,顶部为等轴晶,但随着激光功率增加,顶部等轴晶逐渐向柱状晶转变。随着激光功率的增加,FeCoNiCr 涂层混合熵值逐渐下降。 FeCoNiCr 涂层具有优异的耐腐蚀性能,但随激光功率的增加而逐渐减弱。其中,当功率为 1.2 kW 时,涂层的自腐蚀电流密度最小,自腐蚀电压最大且涂层表面无腐蚀坑,具有最佳的耐腐蚀性能,优于 316L 基体以及 Stellite6 和 Ni60 等常规激光熔覆涂层。通过优化激光功率获得具有良好耐腐蚀性能的激光熔覆 FeCoNiCr 高熵合金涂层,可对该类涂层的开发、制备和应用提供一定的理论指导和技术支持。

    Abstract

    The design of composition of high entropy alloy coatings fabricated by laser cladding has been explored by many scholars, but the influence of laser processing parameters on the structure and porpersity of the coating is still lack of systematic analysis. FeCoNiCr high entropy alloy coatings are fabricated on the surface of 316L stainless steel by laser cladding. The effects of laser power (1.2~2.0 kW) on the microstructure and corrosion resistance of FeCoNiCr coatings are investigated systematically. FeCoNiCr coatings fabricated with different laser powers have a typical single face centered cubic (FCC) structure, but with the increase of laser power, the coatings gradually show preferred orientation. FeCoNiCr coating presents typical double-layer structure, with columnar crystal at the bottom and equiaxed crystal at the top. However, with the increase of laser power, the equiaxed crystal at the top gradually changes to columnar crystal. Also, with the increase of laser power, the mixing entropy of FeCoNiCr coatings decreases gradually. The corrosion resistance of FeCoNiCr coating is good, but it gradually weakens with the increase of laser power. When the laser power is 1.2 kW, the self-corrosion current density of the coating reaches the lowest point and the self-corrosion voltage obtains its highest value. Moreover, there are no corrosion pits on the coating surface indicating that it has the best corrosion resistance, which is better than 316L stainless steel substrate and conventional laser cladding coatings such as Stellite6 and Ni60. The laser cladding of FeCoNiCr high entropy alloy coatings with good corrosion resistance is obtained by optimizing the laser power, which provides some theoretical guidance and technical supports for the development, preparation and application of this type of coatings.

  • 0 前言

  • 高熵合金是将四至五种或更多的元素作为主元,按5%~35%的原子分数占比混合在一起获得的多组元新型合金[1],具有高熵、迟滞扩散、晶格畸变和鸡尾酒四大效应[2],进而拥有优异的力学性能、耐磨性、耐腐蚀性、抗高温软化性、抗辐照性能等[3],成为国内外材料领域的研究热点,具有巨大的应用潜力。目前,高熵合金的主要制备方法有熔炼、机械合金化、磁控溅射、热喷涂、电化学沉积、激光熔覆等[4-6]。其中,熔炼是高熵合金块体最常用的制备方法,但其制备成分均匀的大尺寸高熵合金难度较大且成本较高,导致其在工程应用上存在较大的局限性[7]。激光熔覆技术具有制备过程自动化、熔覆层材料选择范围广、涂层与基体呈冶金结合、涂层致密且组织细小、稀释率低、尺寸限制小等其他技术无法比拟的优势,有望成为高熵合金实现大规模推广应用的主要制备方法之一,已成为国内外高熵合金领域的热点研究方向之一[8, 9]

  • 目前,针对激光熔覆高熵合金的研究主要集中在成分设计方面。例如: LI等 [10] 发现AlxCrFeCoNiCu(x=0~1.8)高熵合金涂层的耐腐蚀性优于基体且自腐蚀电流密度随Al含量的增加表现出先减小后增大再减小的规律;陈国进等[11]发现FeCoCrNiBxx=0.5、0.75、1.0、1.25)高熵合金涂层耐腐蚀性随B含量增加先升高后降低。工艺参数同样是影响激光熔覆涂层组织结构与性能的关键点[12],但目前激光功率、扫描速度等激光熔覆工艺参数对高熵合金涂层组织结构与性能影响的系统性研究较少。因此,本文以典型的FeCoNiCr高熵合金涂层为研究对象,系统探究激光功率对激光熔覆FeCoNiCr高熵合金涂层的宏观形貌、相组成、微观组织以及耐腐蚀性能的影响规律,进而为激光熔覆高熵合金涂层技术的推广应用提供一定的技术和理论指导。

  • 1 试验准备

  • 1.1 试验材料

  • 选用江苏威拉里新材料公司气雾化生产的FeCoNiCr等原子比合金粉末作为熔覆原材料,粉末粒径为45~150 μm,其形貌如图1所示,球形度高,成分均匀。选用316L不锈钢(100mm×100mm× 10mm)作为基体材料。

  • 图1 FeCoNiCr合金粉末形貌

  • Fig.1 Morphology of FeCoNiCr alloy powder

  • 1.2 试验工艺参数

  • 本文采用6kW的TruDisk6006型激光熔覆系统进行试样的制备。试验前用角磨机将基体材料表面打磨至光滑,合金粉末提前放置于DZF-6050真空干燥箱中进行干燥。熔覆过程中采用氦气作为送粉气源,氩气作为激光器保护气。试据前期单道实验优化结果,本文多道搭接熔覆试验选取的工艺参数为光斑直径4mm、激光扫描速率6mm/s、送粉量10.5g/min、搭接率50%,激光功率选取1.2、1.4、1.6、1.8和2.0kW这5个参数作为研究变量。

  • 1.3 性能表征与测试

  • 激光熔覆制备的涂层先用线切割设备切成10mm×10mm×10mm的方块,再用80#、180#、 240#、500#、1000#、2000#砂纸打磨并进行抛光。使用王水(硝酸∶盐酸=1∶3)对涂层进行腐蚀,腐蚀时间为45s,使用酒精清洗后吹干,再采用Leica DmirmMW-550型金相显微镜观察涂层截面组织形貌。而涂层的显微组织与元素分布则采用Nova NanoSEM430型场发射扫描电镜进行观测。采用Smartlab-9kW型X射线衍射仪对涂层的晶体结构进行分析,扫描范围为20°~100°,扫描步长为2(°)/min。采用CS350H电化学工作站与CS Studio5软件测试涂层耐腐蚀性能,腐蚀液选择3.5%NaCl溶液、0.1M NaOH溶液与0.1M HCl溶液,扫描电位分别为−0.5~0.6V、−1.0~1.5V和−0.5~1.0V,扫描速率1mV/s。

  • 2 结果与讨论

  • 2.1 涂层宏观形貌

  • 图2a是不同激光功率制备FeCoNiCr涂层的宏观形貌与横截面形貌图。从图中可以发现,不同激光功率制备的FeCoNiCr涂层成形质量较好,表面平整且未发现明显裂纹,涂层与基体形成了较好的冶金结合界面。图2b为不同激光功率制备FeCoNiCr涂层的厚度与稀释率。稀释率反映的是涂层与基体的结合情况,通过式(1) 进行计算。其中,η 为稀释率,h 为熔池深度,H 为涂层厚度。

  • η=hH+h
    (1)
  • 对涂层厚度进行统计后发现,随激光功率的增加,涂层的厚度先增大后减小。这是由于激光功率增加,激光输入能量增加,熔化更多的粉末,进而涂层厚度增加。此外,对涂层稀释率进行计算,发现FeCoNiCr涂层整体稀释率较低,在10%~20%,但随激光功率的增加表现出先增加后减小的趋势,与涂层厚度变化规律类似。这是由于激光功率较低时,激光对基材的热影响较弱,稀释率较低;当激光功率增加时产生更多的热量,熔化更多的基材,致使其稀释率增加。

  • 2.2 物相分析

  • 图3为不同激光功率制备FeCoNiCr涂层的XRD衍射图。由图3可知,不同激光功率制备的FeCoNiCr涂层均由单一的面心立方相(FCC)组成,说明激光功率未改变涂层的相组成。但是,由图中可以看出不同激光功率下43.60°与74.68°处衍射峰的强度变化较大,此现象可能与择优取向有关。采用峰强比值法判断是否出现择优取向,计算结果表明激光功率为1.2、1.4、1.6kW时衍射峰强比值大于1,无择优取向;而当功率上升到1.8kW与2.0kW时比值小于1,由(111)转变为(220)择优取向。

  • 图2 FeCoNiCr涂层的宏观形貌分析

  • Fig.2 Macro morphology analysis of FeCoNiCr coatings

  • 图3 FeCoNiCr涂层的XRD衍射图

  • Fig.3 XRD patterns of FeCoNiCr coatings

  • 2.3 显微组织及成分分析

  • 图4 为不同激光功率制备FeCoNiCr涂层的双层结构示意图与顶部、底部区域的显微组织形貌。从图中可以看出,不同激光功率制备FeCoNiCr涂层主要由底部的柱状晶和顶部的等轴晶组成。根据凝固理论[13],固液界面的温度梯度很大,过冷度较大,使得晶粒沿纵向沉积方向上生长,故底部易形成柱状晶区。而顶部的温度梯度较小,过冷度小,易形成等轴晶。但随着激光功率的增加,顶部多边形等轴晶逐渐向长条形的柱状晶转变,且沿着一定角度生长,这与XRD衍射图中的择优取向现象相吻合。这可能是由于激光功率增加,输入能量加大,搭接处已熔化部分与未熔区域温度梯度过大,进而沿搭接方向生长形成柱状晶。

  • 图4 FeCoNiCr涂层双层结构与显微组织

  • Fig.4 Double layer structure and microstructure of FeCoNiCr coatings

  • 对不同激光功率制备FeCoNiCr涂层的成分进行EDS分析,利用EDS测试结果,根据摩尔混合熵计算公式[14],对其混合熵值进行计算,计算结果如图5a所示。随着激光功率的增大,涂层的混合熵逐渐减小,且混合熵的波动性越大。其中,1.2kW时混合熵值最大(1.38R)且波动性最小。上述现象的出现与两方面原因相关,一方面,Fe、Co、Ni、Cr元素间沸点存在高低差异,随着激光功率增加,能量密度逐渐增大,导致元素烧损量不同,进而造成涂层内存在元素偏析,故涂层混合熵下降[15]。另一方面,对1.2kW制备涂层进行从基体到涂层区域的EDS线扫测试(图5b),发现Fe元素从316L不锈钢基体中逐渐向FeCoNiCr涂层扩散,影响涂层成分,且随着激光功率增大,稀释率越大,从基体向涂层扩散的Fe元素越多,进而导致涂层混合熵的下降。

  • 图5 FeCoNiCr涂层的混合熵及激光功率1.2kW制备的FeCoNiCr涂层EDS线扫结果

  • Fig.5 Mixing entropy of FeCoNiCr coatings and EDS line scan results of FeCoNiCr coating fabricated with 1.2kW

  • 通过对2.0kW激光功率制备的FeCoNiCr涂层的EDS面扫结果(图6)分析发现,FeCoNiCr涂层的顶部等轴晶区域和底部柱状晶区域的Fe、Co、Ni、 Cr各元素整体分布较为均匀,没有出现明显的偏聚现象。但是晶界和晶内存在一定差别,晶界处的Cr和Ni元素含量略高于晶内。

  • 图6 激光熔覆2.0kW制备FeCoNiCr涂层顶部等轴晶与底部柱状晶的EDS面扫

  • Fig.6 EDS mapping of top equiaxed crystal and bottom columnar crystal of FeCoNiCr coating fabricated with 2.0kW

  • 2.4 耐腐蚀性能

  • 图7a为不同激光功率制备FeCoNiCr涂层与316L不锈钢基体在不同溶液中的电化学极化曲线,图7b为CS Studio5软件拟合塔菲尔曲线斜率计算得到的不同激光功率制备FeCoNiCr涂层自腐蚀电流密度与自腐蚀电位结果。由图7a可知,在3.5%NaCl溶液中,不同激光功率制备FeCoNiCr涂层均存在明显的钝化区,如激光功率1.2kW制备FeCoNiCr涂层在电压0.201V时发生钝化现象,在0.501V时达到临界值,钝化现象的产生能够增加涂层的耐腐蚀性能[13]。但随着激光功率的增加,极化曲线钝化区间逐渐减小,间接说明涂层耐腐蚀性能逐渐下降。从图7b中可以发现,随着激光功率的增加,涂层的自腐蚀电压不断增加,自腐蚀电流密度呈现不断减小的趋势,这表明随着激光功率的增加,涂层的耐腐蚀性能逐渐下降,激光功率1.2kW制备的FeCoNiCr涂层拥有较好的耐腐蚀性能。同样,FeCoNiCr涂层在0.1M NaOH溶液与0.1M HCl溶液中,自腐蚀电压与自腐蚀电流密度有着与NaCl溶液中涂层的自腐蚀电压与自腐蚀电流密度相似的变化规律,自腐蚀电压随激光功率的增加而减小;而0.1M NaOH中自腐蚀电流密度却呈逐渐增加趋势,但其变化幅度较小。故结合FeCoNiCr涂层在不同溶液中的耐腐蚀表现,可以得出随着激光功率的增加涂层的耐腐蚀性能逐渐下降的结论。

  • 图7 FeCoNiCr涂层电化学测试结果

  • Fig.7 Electrochemical test results of FeCoNiCr coatings

  • 选择3.5%NaCl溶液作为重点研究的腐蚀溶液。图8为激光功率1.2kW制备FeCoNiCr涂层与其他常规激光熔覆涂层和耐蚀材料在3.5%NaCl溶液中的腐蚀性能对比示意图[16-20]。通过对比发现,激光功率1.2kW制备FeCoNiCr高熵合金涂层对比316L和304L不锈钢、Ni60、Stellite6以及FeCoNiCrCu和FeCoNiCrAl高熵合金涂层拥有更低的自腐蚀电流密度以及更高的自腐蚀电位。越小的自腐蚀电流密度表明涂层发生腐蚀的速率越慢,越大的自腐蚀电位表明涂层越不容易发生腐蚀[21],故本文中激光功率1.2kW制备FeCoNiCr涂层具有优异的耐腐蚀性能。

  • 图8 不同合金在3.5%NaCl溶液中自腐蚀电位与自腐蚀电流密度情况对比[16-20]

  • Fig.8 Comparison of self-corrosion potential and self-corrosion current density of different alloys in 3.5%NaCl solution [16-20]

  • 对耐腐蚀性能最好的激光功率1.2kW制备的FeCoNiCr涂层和316L不锈钢基体进行3.5%NaCl溶液中的阻抗谱测试(EIS),Nyquist图与Bode图如图9所示。由图9a的Nyquist图可以发现,激光功率1.2kW制备的FeCoNiCr涂层和316L不锈钢都表现出单一容抗弧特征,且激光功率1.2kW制备FeCoNiCr涂层容抗弧半径明显大于316L不锈钢,说明FeCoNiCr涂层耐腐蚀性能更好[22]。图9a中包含激光功率1.2kW制备FeCoNiCr涂层的EIS结果模拟等效电路图,采取Randles(R(QR))模型对其表面进行电化学状态模拟[23]。其中R s 为溶液电阻,CPE为恒相位元件,用于表征具有电容特性的钝化层,Rp 为钝化层电阻。通过CS5Studio软件的快速拟合,发现参数误差均小于6%,故该模型适用。由图9b的Bode图可以发现,在高频率范围内(103~105 Hz),|Z| 值接近于NaCl溶液电阻且相位角缓慢增加。随着频率的降低,|Z|值呈线性增加趋势,相位角达到峰值,其中激光功率1.2kW制备的FeCoNiCr涂层的相位角略高于316L不锈钢的相位角峰值,在10Hz时接近于90°,这表明在此频率下,形成了高度稳定、致密的膜且具有伪电容特性[24]。而在低频率区间时(<10-1 Hz),激光功率1.2kW制备的FeCoNiCr涂层的阻抗明显高于316L不锈钢,故耐腐蚀性能更好。

  • 图10 为FeCoNiCr涂层和316L不锈钢基体电化学测试结束后腐蚀样品表面形貌图。不同激光功率制备FeCoNiCr涂层表面都未出现明显的腐蚀产物。在扫描电镜下观察发现耐蚀性最好的1.2kW激光功率制备的FeCoNiCr涂层表面依然保持光滑,并且没有出现腐蚀坑,放大至5 000倍也只能观察到原始划痕。而316L不锈钢上则出现了较多的腐蚀坑,腐蚀坑的直径大小大约为25~150 μm。

  • 图9 1.2kW激光功率制备的FeCoNiCr涂层和316L不锈钢基体在3.5%NaCl溶液中的EIS测试

  • Fig.9 EIS test of FeCoNiCr coating fabricated with 1.2kW laser power and 316L stainless steel substrate in 3.5%NaCl solution

  • 图10 激光功率1.2kW制备FeCoNiCr涂层及316L不锈钢基体腐蚀后表面形貌

  • Fig.10 Surface morphology of FeCoNiCr coating fabricated with 1.2kW laser power and 316L stainless steel substrate after corrosion

  • 3 结论

  • 系统研究激光功率对激光熔覆制备FeCoNiCr高熵合金涂层的物相组成、显微组织与耐腐蚀性能的影响规律,得到如下结论:

  • (1) 激光功率1.2~2.0kW制备FeCoNiCr高熵合金涂层的宏观成形质量均较好,且不同激光功率制备FeCoNiCr涂层均由单一FCC相组成;涂层微观组织为双层结构,顶部为等轴晶,底部为柱状晶,但随着激光功率的增加,涂层顶部区域等轴晶向呈角度生长的柱状晶转变,形成择优取向。

  • (2) FeCoNiCr涂层呈现出良好的耐腐蚀性能,在3.5%NaCl溶液中存在明显的钝化膜,自腐蚀电流密度随激光功率的增加而增大,自腐蚀电压随激光功率的增加而下降,说明涂层耐腐蚀性能随激光功率的增加而逐渐变差;

  • 所得结果为FeCoNiCr系高熵合金的制备提供一定的技术支持。后续将继续对激光扫描速度等工艺参数进行探究,完善工艺参数对涂层性能影响规律的探究。

  • 参考文献

    • [1] YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes[J].AdvancedEngineering Materials,2004,6(5):299-303.

    • [2] 蔡召兵.NiCo(CrTiV,FeAlCu)系高熵合金及涂层的制备与性能研究[D].哈尔滨:哈尔滨工程大学,2018.CAI Zhaobing.Preparation and properties of NiCo(CrTiV,FeAlCu)high-entropy alloys and coatings[D].Harbin:Journal of Harbin Engineering University,2018.(in Chinese)

    • [3] CAI Y,CHEN Y,LUO Z,et al.Manufacturing of FeCoCrNiCux medium-entropy alloy coating using laser cladding technology[J].Materials & Design,2017,133:91-108.

    • [4] 李梦娇,董应虎,张瑞卿,等.高熵合金的制备方法及其应用进展[J].航空制造技术,2019,62(22):58-63.LI Mengjiao,DONG Yinghu,ZHANG Ruiqing,et al.Preparation and application progress of high entropy alloys[J].Aeronautical Manufacturing Technology,2019,62(22):58-63.(in Chinese)

    • [5] 姚陈忠,马会宣,童叶翔.非晶纳米高熵合金薄膜 Nd-Fe-Co-Ni-Mn 的电化学制备及磁学性能[J].应用化学,2011,28(10):1189-1194.YAO Chenzhong,MA Huixuan,TONG Yexiang.Electrochemical preparation and magnetic study of amorphous nanostructured Nd-Fe-Co-Ni-Mn high entropy alloy film[J].Chinese Journal of Applied Chemistry,2011,28(10):1189-1194.(in Chinese)

    • [6] 邵霞,张云鹏,周航.粉末冶金制备 AlCrFeNixCoCuTi 高熵合金的组织及性能研究[J].铸造技术,2013,34(3):283-285.SHAO Xiao,ZHANG Yunpeng,ZHOU Hang.Microstructure and mechanical properties of AlCrFeNixCoCuTi high entropy alloys prepared by powder metallurgy[J].Foundry Technology,2013,34(3):283-285.(in Chinese)

    • [7] ZHANG Y,ZUO T T,TANG Z,et al.Microstructures and properties of high-entropy alloys[J].Progress in Materials Science,2014,61:1-93.

    • [8] 黄留飞,孙耀宁,王国建.激光熔覆技术制备高熵合金涂层研究进展[J].激光与光电子学进展,2019,56(24):240003.HUANG Liufei,SUN Yaoning,WANG Guojian.Research progress of laser cladding high-entropy alloy coating[J].Laser & Optoelectronics Progress,2019,56(24):240003.(in Chinese)

    • [9] 章奇,李忠文,于治水.45#钢激光熔覆FeNiMoCoCrTi高熵合金涂层工艺参数优化[J].机械强度,2021,43(2):308-312.ZHANG Qi,LI Zhongwen,YU Zhishui.Optimization of process parameters of FeNiMoCoCrTi high entropy alloy coating on 45# steel surface[J].Journal of Mechanical Strength,2021,43(2):308-312.(in Chinese)

    • [10] LI Y,SHI Y.Microhardness,wear resistance,and corrosion resistance of AlxCrFeCoNiCu high-entropy alloy coatings on aluminum by laser cladding[J].Optics & Laser Technology,2021,134:106632.

    • [11] 陈国进.激光熔覆 FeCoCrNiBx 高熵合金涂层组织与性能的研究[D].福州:福州大学,2014.Chen Guojin.The study of FeCoCrNiBx high entropy alloy coating prepared by laser cladding for the microstructure and property[D].Fuzhou:Journal of Fuzhou University,2014.(in Chinese)

    • [12] ZHANG L,WANG C,HAN L,et al.Influence of laser power on microstructure and properties of laser clad Co-based amorphous composite coatings[J].Surfaces and Interfaces,2017,6:18-23.

    • [13] CAI Y,CHEN Y,MANLADAN S M,et al.Influence of dilution rate on the microstructure and properties of FeCrCoNi high-entropy alloy coating[J].Materials & Design,2018,142:124-137.

    • [14] 李大艳.304 不锈钢表面激光熔覆高熵合金涂层研究[D].大连:大连理工大学,2018.LI Dayan.Research of laser cladding high-entropy alloy coatings on 304 stainless steel surface[D].Dalian:Journal of Dalian University of Technology,2018.(in Chinese)

    • [15] MIRACLE D B,SENKOV O N.A critical review of high entropy alloys and related concepts[J].Acta Materialia,2017,122:448-511.

    • [16] 王成磊,高原,张光耀.CeO2对铝合金表面激光熔覆增材制造Ni60合金层组织及耐蚀性影响[J].稀有金属材料与工程,2017,46(8):2306-2312.WANG Chenglei,GAO Yuan,ZHANG Guangyao.Effect of CeO2 addition on interface structure and corrosion resistance of laser cladding additive manufactured Ni60 alloy layers on the surface of Al alloy[J].Rare Metal Materials and Engineering,2017,46(8):2306-2312.(in Chinese)

    • [17] 李根.TiC 增强钴基合金激光熔覆层组织及性能的研究[D].济南:山东大学,2016.LI Gen.Microstructure and properties of Co-based alloy laser cladding layer reinforcement by TiC[D].Jinan:Journal of Shandong University,2016.(in Chinese)

    • [18] HSU Y J,CHIANG W C,WU J K.Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution[J].Materials Chemistry and Physics,2005,92(1):112-117.

    • [19] ZHI T,LU H,WEI H,et al.Alloying and processing effects on the aqueous corrosion behavior of high-entropyalloys[J].Entropy,2014,16(2):895-911.

    • [20] LI B,GU J,WANG Q,et al.Cluster formula of Fe-containing Monel alloys with high corrosion-resistance[J].Materials Characterization,2012,68:94-101.

    • [21] TIAN Z,ZHAO Y,JIANG Y,et al.Investigation of microstructure and properties of FeCoCrNiAlMox alloy coatings prepared by broadband-beam laser cladding technology[J].Journal of Materials Science,2020,55(10):4478-4492.

    • [22] 褚清坤,邓朝阳,闫星辰,等.中间合金粉对激光选区熔化TMZF合金电化学性能的影响[J].中国表面工程,2020,33(6):128-135.CHU Qingkun,DENG Zhaoyang,YAN Xingchen,et al.Effects of master alloy powders on electrochemical performance of selective laser melted TMZF alloy[J].China Surface Engineering,2020,33(6):128-135.(in Chinese)

    • [23] YAN X,SHI C,LIU T,et al.Effect of heat treatment on the corrosion resistance behavior of selective laser melted Ti6Al4V ELI[J].Surface and Coatings Technology,2020,396:125955.

    • [24] WANG Z B,HU H X,LIU C B,et al.The effect of fluoride ions on the corrosion behavior of pure titanium in 0.05M sulfuric acid[J].Electrochimica Acta,2014,135:526-535.

  • 参考文献

    • [1] YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes[J].AdvancedEngineering Materials,2004,6(5):299-303.

    • [2] 蔡召兵.NiCo(CrTiV,FeAlCu)系高熵合金及涂层的制备与性能研究[D].哈尔滨:哈尔滨工程大学,2018.CAI Zhaobing.Preparation and properties of NiCo(CrTiV,FeAlCu)high-entropy alloys and coatings[D].Harbin:Journal of Harbin Engineering University,2018.(in Chinese)

    • [3] CAI Y,CHEN Y,LUO Z,et al.Manufacturing of FeCoCrNiCux medium-entropy alloy coating using laser cladding technology[J].Materials & Design,2017,133:91-108.

    • [4] 李梦娇,董应虎,张瑞卿,等.高熵合金的制备方法及其应用进展[J].航空制造技术,2019,62(22):58-63.LI Mengjiao,DONG Yinghu,ZHANG Ruiqing,et al.Preparation and application progress of high entropy alloys[J].Aeronautical Manufacturing Technology,2019,62(22):58-63.(in Chinese)

    • [5] 姚陈忠,马会宣,童叶翔.非晶纳米高熵合金薄膜 Nd-Fe-Co-Ni-Mn 的电化学制备及磁学性能[J].应用化学,2011,28(10):1189-1194.YAO Chenzhong,MA Huixuan,TONG Yexiang.Electrochemical preparation and magnetic study of amorphous nanostructured Nd-Fe-Co-Ni-Mn high entropy alloy film[J].Chinese Journal of Applied Chemistry,2011,28(10):1189-1194.(in Chinese)

    • [6] 邵霞,张云鹏,周航.粉末冶金制备 AlCrFeNixCoCuTi 高熵合金的组织及性能研究[J].铸造技术,2013,34(3):283-285.SHAO Xiao,ZHANG Yunpeng,ZHOU Hang.Microstructure and mechanical properties of AlCrFeNixCoCuTi high entropy alloys prepared by powder metallurgy[J].Foundry Technology,2013,34(3):283-285.(in Chinese)

    • [7] ZHANG Y,ZUO T T,TANG Z,et al.Microstructures and properties of high-entropy alloys[J].Progress in Materials Science,2014,61:1-93.

    • [8] 黄留飞,孙耀宁,王国建.激光熔覆技术制备高熵合金涂层研究进展[J].激光与光电子学进展,2019,56(24):240003.HUANG Liufei,SUN Yaoning,WANG Guojian.Research progress of laser cladding high-entropy alloy coating[J].Laser & Optoelectronics Progress,2019,56(24):240003.(in Chinese)

    • [9] 章奇,李忠文,于治水.45#钢激光熔覆FeNiMoCoCrTi高熵合金涂层工艺参数优化[J].机械强度,2021,43(2):308-312.ZHANG Qi,LI Zhongwen,YU Zhishui.Optimization of process parameters of FeNiMoCoCrTi high entropy alloy coating on 45# steel surface[J].Journal of Mechanical Strength,2021,43(2):308-312.(in Chinese)

    • [10] LI Y,SHI Y.Microhardness,wear resistance,and corrosion resistance of AlxCrFeCoNiCu high-entropy alloy coatings on aluminum by laser cladding[J].Optics & Laser Technology,2021,134:106632.

    • [11] 陈国进.激光熔覆 FeCoCrNiBx 高熵合金涂层组织与性能的研究[D].福州:福州大学,2014.Chen Guojin.The study of FeCoCrNiBx high entropy alloy coating prepared by laser cladding for the microstructure and property[D].Fuzhou:Journal of Fuzhou University,2014.(in Chinese)

    • [12] ZHANG L,WANG C,HAN L,et al.Influence of laser power on microstructure and properties of laser clad Co-based amorphous composite coatings[J].Surfaces and Interfaces,2017,6:18-23.

    • [13] CAI Y,CHEN Y,MANLADAN S M,et al.Influence of dilution rate on the microstructure and properties of FeCrCoNi high-entropy alloy coating[J].Materials & Design,2018,142:124-137.

    • [14] 李大艳.304 不锈钢表面激光熔覆高熵合金涂层研究[D].大连:大连理工大学,2018.LI Dayan.Research of laser cladding high-entropy alloy coatings on 304 stainless steel surface[D].Dalian:Journal of Dalian University of Technology,2018.(in Chinese)

    • [15] MIRACLE D B,SENKOV O N.A critical review of high entropy alloys and related concepts[J].Acta Materialia,2017,122:448-511.

    • [16] 王成磊,高原,张光耀.CeO2对铝合金表面激光熔覆增材制造Ni60合金层组织及耐蚀性影响[J].稀有金属材料与工程,2017,46(8):2306-2312.WANG Chenglei,GAO Yuan,ZHANG Guangyao.Effect of CeO2 addition on interface structure and corrosion resistance of laser cladding additive manufactured Ni60 alloy layers on the surface of Al alloy[J].Rare Metal Materials and Engineering,2017,46(8):2306-2312.(in Chinese)

    • [17] 李根.TiC 增强钴基合金激光熔覆层组织及性能的研究[D].济南:山东大学,2016.LI Gen.Microstructure and properties of Co-based alloy laser cladding layer reinforcement by TiC[D].Jinan:Journal of Shandong University,2016.(in Chinese)

    • [18] HSU Y J,CHIANG W C,WU J K.Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution[J].Materials Chemistry and Physics,2005,92(1):112-117.

    • [19] ZHI T,LU H,WEI H,et al.Alloying and processing effects on the aqueous corrosion behavior of high-entropyalloys[J].Entropy,2014,16(2):895-911.

    • [20] LI B,GU J,WANG Q,et al.Cluster formula of Fe-containing Monel alloys with high corrosion-resistance[J].Materials Characterization,2012,68:94-101.

    • [21] TIAN Z,ZHAO Y,JIANG Y,et al.Investigation of microstructure and properties of FeCoCrNiAlMox alloy coatings prepared by broadband-beam laser cladding technology[J].Journal of Materials Science,2020,55(10):4478-4492.

    • [22] 褚清坤,邓朝阳,闫星辰,等.中间合金粉对激光选区熔化TMZF合金电化学性能的影响[J].中国表面工程,2020,33(6):128-135.CHU Qingkun,DENG Zhaoyang,YAN Xingchen,et al.Effects of master alloy powders on electrochemical performance of selective laser melted TMZF alloy[J].China Surface Engineering,2020,33(6):128-135.(in Chinese)

    • [23] YAN X,SHI C,LIU T,et al.Effect of heat treatment on the corrosion resistance behavior of selective laser melted Ti6Al4V ELI[J].Surface and Coatings Technology,2020,396:125955.

    • [24] WANG Z B,HU H X,LIU C B,et al.The effect of fluoride ions on the corrosion behavior of pure titanium in 0.05M sulfuric acid[J].Electrochimica Acta,2014,135:526-535.

  • 手机扫一扫看