en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李群,男,1987年出生,博士研究生。主要研究方向为轮轨黏着行为。E-mail:liqun6901@126.com;

李佳辛(通信作者),男,1997年出生,硕士研究生。主要研究方向为轮轨摩擦调节剂应用。E-mail:877900058@qq.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20210909002

参考文献 1
XIN T,WANG S,GAO L.Field measurement of rail corrugation influence on environmental noise and vibration:A case study in China[J].Measurement,2020,164:108084.
参考文献 2
HAN J,XIAO X,WU Y,et al.Effect of rail corrugation on metro interior noise and its control[J].Applied Acoustics,2018,130:63-70.
参考文献 3
POMBO J C,AMBRSIO J A C.Application of a wheel-rail contact model to railway dynamics in small radius curved tracks[J].Multibody System Dynamics,2008,19:91-114.
参考文献 4
JIN X S,WEN Z F,XIAO X B,et al.A numerical methodfor prediction of curved rail wear[J].Multibody System Dynamics,2007,18(4):531-557.
参考文献 5
LI X,YANG T,ZHANG J,et al.Rail wear on the curve of a heavy haul line-numerical simulations and comparison with field measurements[J].Wear,2016:131-138.
参考文献 6
KURZECK B.Combined friction induced oscillations of wheelset and track during the curving of metros and their influence on corrugation[J].Wear,2011,271(1):299-310.
参考文献 7
DING J,LEWIS R,BEAGLES A,et al.Application of grinding to reduce rail side wear in straight track[J].Wear-Lausanne,2018,402(1):71-79.
参考文献 8
徐凯,李芾,吴文逸,等.高速铁路小半径曲线钢轨侧磨研究[J].铁道学报,2021,43(2):45-51.(in Chinese)XU Kai,LI Fu,WU Wenyi,et al.Research on side wear of rails on small radius curves on high-speed railway[J].Journal of the China Railway Society,2021,43(2):45-51.
参考文献 9
KALOUSEK J,JOHNSON K.An investigation of short pitch wheel and rail corrugations on the Vancouver mass transit system[J].Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail and Rapid Transit,1992,206(2):127-135.
参考文献 10
EGANA J I,VINOLAS J,GIL-NEGRETE N.Effect of liquid high positive friction(HPF)modifier on wheel-rail contact and rail corrugation[J].Tribology International,2005,38(8):769-774.
参考文献 11
陆鑫,凯尔文·欧德劳.通过轮轨界面的摩擦管理控制滚动接触疲劳破坏[J].中国铁路,2014,(12):82-86.LU Xin,AUDLOW K.The rolling contact fatigue failure is controlled by friction management at the wheel-rail interface[J].Chinese Railways,2014,(12):82-86.(in Chinese)
参考文献 12
GALAS R,MILAN O,MILAN K,et al.Case study:The influence of oil-based friction modifier quantity on tram braking distance and noise[J].Tribology in Industry,2017,39(2):198-206.
参考文献 13
EADIE D T,SANTORO M,KALOUSEK J.Railway noise and the effect of top of rail liquid friction modifiers:Changes in sound and vibration spectral distributions in curves[J].Wear,2005,258(7-8):1148-1155.
参考文献 14
EADIE D T,SANTORO M.Top-of-rail friction control for curve noise mitigation and corrugation rate reduction[J].Journal of Sound and Vibration,2006,293:747-757.
参考文献 15
李跻添,杜敏涛.城市轨道交通轨顶摩擦调节剂降噪技术应用[J].现代城市轨道交通,2019(7):72-76.(in Chinese)LI Jitian,DU Mintao.Application of noise control technology of rail-top friction regulator in urban rail transit[J].Modern Urban Transit,2019(7):72-76.
参考文献 16
GALAS R,KVARDA D,OMASTA M,et al.The role of constituents contained in water-based friction modifiers for top-of-rail application[J].Tribology International,2018,117:87-97.
参考文献 17
EADIE D T,ELVIDGE D,OLDKNOW K,et al.The effects of top of rail friction modifier on wear and rolling contact fatigue:Full-scale rail-wheel test rig evaluation,analysis and modelling[J].Wear,2008,265(9-10):1222-1230.
参考文献 18
SUDA Y,IWASA T,KOMINE H,et al.Development of onboard friction control[J].Wear,2005,258(7-8):1109-1114.
参考文献 19
肖祥龙,陈光雄,莫继良,等.摩擦调节剂抑制钢轨波磨的机理研究[J].振动与冲击,2013,32(8):166-170.XIAO Xianglong,CHEN Guangxiong,MO Jiliang,et al.Study on the mechanism for friction modifier suppressing wear-type rail corrugation[J].Journal of Vibration and Shock.2013,32(8):166-170.(in Chinese)
参考文献 20
LUNDBERG J,RANTATALO M,WANHAINEN C,et al.Measurements of friction coefficients between rails lubricated with a friction modifier and the wheels of an IORE locomotive during real working conditions[J].Wear,2015,324-325:109-117.
参考文献 21
曹熙,王文健,刘启跃,等.激光离散淬火对轮轨材料磨损与损伤性能的影响[J].中国表面工程,2016,29(5):72-79.CAO Xi,WANG Wenjian,LIU Qiyue,et al.Effects of laser dispersed quenching on wear and damage performances of wheel/rail materials.[J].China Surface Engineering,2016,29(5):72-79.(in Chinese)
参考文献 22
HU Y,GUO L C,MAIORINO M,et al.Comparison of wear and rolling contact fatigue behaviours of bainitic and pearlitic rails under various rolling-sliding conditions[J].Wear,2020,460-461:203455.
参考文献 23
刘腾飞,王文健,郭火明,等.介质作用下轮轨增粘特性[J].中国表面工程,2013,26(1):79-85.LIU Tengfei,WANG Wenjian,GUO Huoming,et al.Improving adhesion characteristics of wheel/rail under the medium conditions[J].China Surface Engineering,2013,26(1):79-85.(in Chinese)
参考文献 24
YANG Q,HUANG P,FANG Y.A novel Reynolds equation of non-Newtonian fluid for lubrication simulation[J].Tribology International,2016,94:458-463.
参考文献 25
WU B,WEN Z,WANG H,et al.Numerical analysis on wheel/rail adhesion under mixed contamination of oil and water with surface roughness[J].Wear,2014,314(1-2):140-147.
参考文献 26
PATIR N,CHENG H S.Effects of surface roughness orientation on the central film thickness in E.H.D contacts[J].Proceedings of the 5th Leeds-Lyon Symposium on Tribology,1978:15-21.
参考文献 27
KNIG F,SOUS C,JACOBS G.Numerical prediction of the frictional losses in sliding bearings during start-stop operation[J].Friction,2021,9(3):583-597.
参考文献 28
SHI X,WANG L,QIN F.Relative fatigue life prediction of high-speed and heavy-load ball bearing based on surface texture[J].Tribology International,2016,101:364-374.
目录contents

    摘要

    摩擦调节剂(FM)在轮轨界面黏着行为调控方面具有广阔的应用前景,但目前针对其作用下的恢复过程研究开展较少。在 MJP-30A 轮轨滚动磨损与接触疲劳试验机上进行 FM 及基本液体组分水和丙三醇溶液不同加入量工况下的轮轨黏着恢复试验,获得不同加入量工况下黏着系数随循环转数恢复过程的完整曲线,分析三种液体恢复时间及润滑状态。结果表明: 不同液体介质下的轮轨黏着恢复过程曲线有较大差异,与干态相比,水、丙三醇溶液、FM 界面状态使黏着系数明显降低, 且水、丙三醇溶液工况下黏着系数出现二次减小后逐渐恢复增加至稳定水平;随 FM 加入量的增加,恢复时间逐渐增加直至趋于为稳定,加入足量 FM 后,恢复过程润滑状态先后经历弹性流体润滑、混合润滑、边界润滑,直至最后干摩擦;FM 加入量为 200 µL 时,出现黏着系数降低至 0.1 以下现象,试验工况下 FM 极限加入量为 200 µL;随循环转数的增加,FM 的流变指数逐渐减小,FM 承担压力逐渐减小,固体微凸体承担压力逐渐增加,流变指数由 1 减小至 0.75 时固体承载率由 1%增加至 46%。揭示了水基 FM 作用下轮轨黏着恢复机理,可为其在实际现场应用提供参考依据。

    Abstract

    Friction modifier (FM) has broad application prospects in the field of the control of wheel/rail interface adhesion behavior, however, the studies on the recovery process are rarely carried out. The wheel-rail adhesion recovery test under the conditions of water, glycerol and FM is carried out on the MJP-30A wheel-rail rolling-sliding wear and contact fatigue test machine. The recovery curves of the adhesion coefficient as the function of the number of cycles under different quantities of liquid are obtained. The recovery time and lubrication state are studied under three liquid conditions. The results show that the wheel-rail adhesion curves of recovery process under different liquid conditions are quite different. Compared with the dry condition, the water, glycerin solution and FM conditions could result in a significant decrease in the adhesion coefficient. Under the conditions of water and glycerin solution, the adhesion coefficient was declined twice, and then gradually increased to a stable level. The recovery time gradually increased subsequently to a stable level with the increase in the quantity of FM. With the excess of FM, the lubrication state of the recovery process experienced the elastohydrodynamic lubrication, mixed lubrication, boundary lubrication, and the dry condition at last. When the addition amount was 200 µL, the initial adhesion coefficient was reduced to less than 0.1 and the limit of FM addition was 200 µL. With the increase in cycle revolutions, the rheological index of FM gradually and the pressure carried by FM gradually were decreased, and the pressure carried by asperity was gradually increased. The load carried by asperity was increased from 1% to 46% with the rheological index decreasing from 1 to 0.75. The research reveals the wheel/rail adhesion recovery mechanism under the action of water-based FM, which provides and accumulates reference basis for its practical field application.

  • 0 前言

  • 列车在正常运行条件下,通过小半径弯道和特殊路段时容易出现轮轨异常磨损和尖叫噪声,严重影响轮轨服役寿命和乘客舒适性[1-2]。针对上述问题,在保证轮轨运行安全的情况下,目前可通过对轮轨界面摩擦行为进行减摩调控达到理想状态,从而减轻黏着系数过高造成的轮轨异常磨损及噪声等不利影响,提升列车运行的品质和经济性。

  • 在轨道交通线路的小半径曲线上股,较大横向力造成轮轨剧烈摩擦和快速磨耗问题[3-8],很大程度上缩短了轮轨材料服役寿命,增加了运营维护成本。轨顶FM(Friction modifier, 摩擦调节剂) 可以很好地解决上述问题。FM可用于控制轮轨界面的摩擦特性,对轮轨的异常磨损和振动噪声有很好的抑制作用。FM可分为固体FM、水基FM和油基FM。应用时将FM涂敷于钢轨轨顶,以实现对轮轨滚动接触界面的润滑,将轮轨界面黏着系数调控至适中水平。经过几十年的发展, FM的调控管理研究取得了长足的进步,最早的固体FM研究显示其有效抑制轮轨的表面震荡[9],到后来的FM对钢轨的波磨[10-11]及噪声[12-15]的抑制作用,以及FM添加物对黏附及成膜方面作用的研究[16]均使得FM的应用越来越广泛。FM还具有同时减少钢轨磨损和RCF损伤的潜力,在重载现场条件下,应用FM可使钢轨磨损减少30%~60%[17-18]。在仿真研究方面,肖祥龙[19]发现FM通过控制摩擦因数可以有效消除或抑制钢轨波磨。

  • 在轨道小半径曲线段上涂覆FM是一种合适的方法来减少损伤、振动和波磨。但涂覆量过多会导致黏着系数过小,对牵引或制动产生不利影响[20]。针对上述问题,本文探讨黏着恢复过程与加入量之间的关系。首先采用轮轨滚动磨损与接触疲劳试验机对FM、水和丙三醇溶液进行试验,随后对FM恢复过程及润滑状态进行分析。试验研究了FM与其基本液体组成成分的加入量对恢复时间和流体特性的影响规律。本文的研究结论对轮轨FM现场应用提供合理的理论支撑和技术参考。

  • 1 材料和试验方法

  • 试验在MJP-30A轮轨滚动磨损与接触疲劳试验机上进行[21-23],如图1所示。试验中上试样为车轮试样,取自CL60车轮踏面;下试样为钢轨试样,取自U71Mn热轧钢轨轨头。试样直径均为56mm,取样位置和试样结构如图2所示。试验前试样在试验机上进行预试验,直至黏着系数稳定后,拆下试样测量表面粗糙度 Ra 约0.45 µm。每组试验前均使用无水乙醇在超声波清洗仪中清洗试样20min,确保试样表面无油污、磨屑等污染。

  • 图1 MJP-30A轮轨滚动磨损与接触疲劳试验机结构简图

  • Fig.1 Structural diagram of MJP-30A rolling-sliding wear and contact fatigue apparatus

  • 图2 轮轨试样取样位置及结构

  • Fig.2 Sampling position and scheme of wheel and rail samples

  • 试验过程中使用移液器来完成相应液体添加,添加方式及添加位置如图2b所示。试验中丙三醇溶液为含水20%的丙三醇溶液。轮轨试样分别由两个独立的伺服电机驱动,转速范围100~2 000r/min,精度0.1r/min。试样法向载荷通过液压加载获得,加载范围0~30kN,精度0.1N。试验过程中,分别通过液压缸上的薄膜式压力传感器测得法向力和下试样主轴连接的扭矩传感器测得摩擦力矩,并通过测控系统获得实时的黏着系数。黏着系数表示车辆牵引力或制动力传递给钢轨的可能程度,即车轮圆周方向的切向力与车轮垂向载荷之比的最大值。

  • μ=TP
    (1)
  • 式中,µ 为试验过程中的轮轨黏着系数;T 为接触界面间传递的切向力;P 为轮轨试样间的法向载荷。

  • 蠕滑率是影响轮轨界面黏着的关键因素之一,表示蠕滑速度与车轮行进速度之比。车轮实际行进速度与理论纯滚动速度之差称为蠕滑速度。模拟实验中蠕滑率按下式等效计算:

  • λ=v2-v1v2=n2d2-n1d1n2d2
    (2)
  • 式中,λ 为蠕滑率;v1v2分别为模拟轮轨试样的线速度;n1n2 分别为模拟轮轨试样的转速;d1d2 分别为模拟轮轨试样的直径。

  • 试验首先根据运行工况预先设定试验参数,当上下试样间的转速和法向力加载至目标值后,设定两试样之间蠕滑率,继而使用移液器分别加入不同量液体获得完整黏着恢复曲线。使用移液器控制加入量,加入量由小至大依次加入,待上次黏着系数恢复至初始状态即完全恢复后再进行下一次加入。试验过程中,蠕滑率、转速以及垂向载荷保持不变。钢轨试样转速保持在500r/min,蠕滑率保持在2%,同时垂向力选择4.6kN以模拟1.1GPa触应力下的轮轨接触。试验分别在水、丙三醇溶液和FM环境下进行,具体试验参数如表1所示。

  • 表1 试验参数

  • Table1 Details for the adhesion recovery test

  • 2 结果与讨论

  • 2.1 水、丙三醇工况下轮轨黏着恢复曲线

  • 水和醇类是水基FM的基本组成物质,首先研究水和醇类工况下不同加入量的黏着恢复情况。本文所研究醇类选择丙三醇。图3为水态不同加入量工况下轮轨黏着系数恢复曲线。加入量在100 µL时轮轨黏着系数首先达到初始最小值(图3中点A)。 50 µL加入量下的黏着系数首先减小,但未能到达初始最小值点A,随后增加至干态水平。200 µL、 500 µL、1000 µL加入量下的曲线快速下降至初始最小值点(点A),继而500 µL、1 000 µL加入量黏着曲线缓慢下降至最小值点(图3中B点),然后回升至干态水平。200 µL加入量不能观察到A点之后黏着曲线的缓慢下降。水态下随加入量的增加,最小黏着系数呈现下降趋势并趋于稳定。这是因为水态下随加入量的增加,液体承担的压力增加,轮轨界面间的剪切应力减小。水的加入量超过500 µL时继续增加,轮轨间最小黏着系数趋于稳定。

  • 图3 不同水加入量下轮轨黏着恢复曲线

  • Fig.3 Recovery curves with different amounts of water

  • 图4 为丙三醇溶液不同加入量工况下轮轨黏着系数恢复曲线。此时总体趋势与水态下恢复相似,但轮轨黏着系数最小值点减小,此外,达到最小值的液体加入量减小。加入量大于或等于50 µL时,出现黏着系数二次下降现象,二次下降的最低点随着加入量的增加而后移直至稳定。

  • 图4 不同丙三醇水溶液加入量下轮轨黏着恢复曲线

  • Fig.4 Recovery curves with different amounts of glycerin solution

  • 2.2 FM工况下轮轨黏着恢复曲线

  • 图5 为FM工况下的轮轨黏着曲线,可以看出,加入量为50 µL时,黏着系数快速减小至最小值,然后缓慢增加至干态水平,最小值大于0.1。加入量大于或等于200 µL时,黏着系数降至0.1以下,可认为是过量加入。过量加入调节剂工况下,轮轨接触界面处于弹性流体润滑状态,法向载荷由FM液体膜承载。随FM的消耗,法向载荷变为液体膜和微凸体共同承担,由于金属微凸体间的摩擦因数远大于FM形成的液体膜的抗剪切系数,因此轮轨黏着系数随调节剂的消耗逐渐增大,法向载荷由液体膜承担逐渐转变为液体膜和微凸体共同承担。初始加入FM时,随加入量增加使得金属微凸体承载载荷的占比减小,黏着系数逐渐降低。

  • 加入过量FM工况下黏着曲线的恢复过程可分为三个阶段(图5)。阶段a为流体润滑阶段,此时最小黏着系数稳定,润滑状态为弹性流体润滑状态,该阶段持续时间最短,主要原因是轮轨接触是一个开放的接触空间,过量的FM在这一阶段被快速的消耗。阶段b为混合润滑—液体膜承担压力为主阶段,此时FM量保持稳定,润滑状态为混合润滑状态,此时出现了固体微凸体的接触,法向载荷由液体膜和微凸体共同承担,该阶段循环次数长于阶段a,说明该阶段FM的消耗相对阶段a缓慢。阶段c为混合润滑—压力由液体承担向微凸体承担转变阶段,此时FM量逐渐减小,液体膜承担法向载荷逐渐减小,微凸体承担法向载荷逐渐增大。

  • 图5 不同FM加入量下轮轨黏着恢复曲线

  • Fig.5 Recovery curves with different amounts of FM

  • 比较图5中分别加入200、500、1 000 µL时c阶段的恢复转数,发现c阶段恢复至黏着系数为0.5时的转数分别为3 252、4 117、4 138r,即加入量超过200 µL后,阶段c恢复转数随着加入量的增加略有增加。加入量超过500 µL后,恢复转数基本保持稳定。阶段a循环转数均较小,恢复转数随着加入量的增加而增加主要发生在阶段b和c。加入量由200 µL增加至500 µL时,b阶段循环转数变化较为明显,由500 µL增加至1 000 µL时,阶段b也变化不大。综上所述:随FM的增加,循环恢复转数逐渐增加,当加入量超过500 µL时,恢复转数趋于稳定。

  • 图6 为FM不同加入量时的最小黏着系数和恢复过程循环转数(从最小黏着系数点恢复至干摩擦状态)。对比发现,随加入量的增加最小黏着系数逐渐减小,在加入量为200 µL时,最小黏着系数接近最小值,加入量继续增加,最小黏着系数略微减小至基本保持稳定;同时随加入量的增加,恢复循环转数逐渐增加,加入量超过200 µL后,加入量继续增加,恢复循环转数略微增加至基本保持稳定。对比图5,当FM加入量为200 µL时,黏着系数降至0.1以下,且黏着系数达到最小值后快速上升至0.1以上,在本试验中可认为在蠕滑率为2%时,加入量200 µL为极限加入量。

  • 图6 FM不同加入量下恢复转数及最小黏着系数

  • Fig.6 Recovery cycles and minimum adhesion coefficients with different amounts of FM

  • FM的调控作用是使得黏着系数能够在一定范围内(0.1~0.3)维持时间更长,黏着系数过低易造成脱轨危险,黏着系数过高起不到调控的作用。通过对比FM与其中基本液体组成成分(水、丙三醇溶液)工况下黏着恢复过程,发现FM对轮轨黏着系数有很好的调控作用。

  • 比较图3~5中200 µL加入量下三种液体的黏着恢复曲线,相比干态,水、丙三醇溶液和FM介质工况下,轮轨初始黏着系数分别降低约52%、72%和86%,恢复至初始状态的循环次数由小到大分别为水,丙三醇溶液和FM,初始黏着系数由大到小分别为水,丙三醇溶液和FM。FM相对其他两种基础液体优势在于:与水相比,FM恢复时间更长,相对表面摩擦调控能在最佳黏着系数范围内(0.1~0.3)维持时间更长;与丙三醇溶液相比,FM由最低黏着系数快速上升至最佳黏着系数范围内,继而缓慢上升,并不会在最低黏着系数维持一段时间,并且最佳黏着系数范围内维持时间更长。

  • 2.3 FM润滑状态分析

  • FM是一种假塑性非牛顿流体,其黏度随剪切应力或剪切速率的增大而减小。随作用时间的增加,水分蒸发消耗,FM流变指数逐渐减小。由于表面粗糙度的存在,混合润滑状态下压力由FM和微凸体共同承担。随恢复时间的增加,水分蒸发导致流变指数发生变化,FM承载率发生改变。本文FM的研究采用Ostwald模型[24],其本构方程可表示为:

  • τ=Kγ˙n
    (3)
  • 对于该非牛顿流体线接触问题分析,其润滑方程[24]为:

  • xρh2hηpx1/n=21+1/n(2n+1)n(ρu-h)x
    (4)
  • 对方程4进行量纲一化,处理后方程为:

  • ddXεdpdX=dρ*HdXε=kρ*H2Hη*1/ndPdX1/n-1k=n2n+1b22Ru-bpH2Rη01/n
    (5)
  • 方程(3)~(5)中,n 为流变指数,应用该润滑方程研究流变指数对FM承载的影响,当n=1时,为牛顿流体;当 n< 1时,为假塑性非牛顿流体。膜厚方程,黏压方程,密压方程及基本参数量纲— 形式参见文献[24],粗糙微凸体承担压力与膜厚相关,其关系[25-27]为:

  • pa=4.4086×10-5EKcPH(4-Λ)6.804 Λ<40 Λ4
    (6)
  • 方程(6)中,Λ 为膜厚比,其值为 H/σσ 为表面粗糙度。对膜厚方程,黏压方程和密压方程量纲—化,并对量纲一化后的方程进行离散处理,离散后采用多重网格法对方程求解[28]

  • 为了定性说明流变指数对液体压力、微凸体压力和膜厚的影响,本文在 n 为0.75~1.0取值范围内对液体压力、微凸体压力和膜厚进行数值计算(n 取值与FM液体及水分蒸发后不是精确对应)。计算结果如图7所示,Pl为FM承担压力,Pa为微凸体承担压力,H 为FM膜厚。可以看出:随着流变指数的减小,液体压力分布中二次压力峰(图7a中点 A)逐渐减小,微凸体承担压力逐渐增加,液体膜承担压力逐渐减小。主要原因是流变指数减小,FM剪切变稀非牛顿特性越明显,FM黏度减小,膜厚逐渐减小。

  • 图7 不同流变指数时液体压力、微凸体压力和膜厚分布

  • Fig.7 Loads carried by liquid and asperity and film thickness under different rheological index conditions

  • 图8 为不同流变指数条件下黏着系数、微凸体承担压力比值和膜厚比值。由计算结果可以看出:随着流变指数的增加,黏着系数逐渐减小,微凸体承担压力逐渐减小,膜厚比逐渐增加。出现这种现象的原因是,随流变指数的增加,液体非牛顿特性减弱,液体黏度增加。当流变指数增加为1时,液体为牛顿流体。

  • 图8 不同流变指数下黏着系数、微凸体承担压力比值和膜厚比

  • Fig.8 Coefficient of adhesion (CoA), load carried by asperity and film thickness ratio under different rheological index conditions

  • FM黏着恢复过程中,水分蒸发使得FM流变指数减小。由图8可知,FM所承担载荷随流变指数的减小而减小,黏着系数和微凸体承担载荷随流变指数减小逐渐增加。

  • 钢轨表面涂覆足量FM后,随着调节剂的消耗,黏着恢复过程出现3种润滑状态,如图9,分别是弹性流体润滑(图9a)、混合润滑(图9b)、边界润滑(图9c),最终恢复至初始状态的干摩擦 (图9d)。初始加入足量FM后,FM的消耗主要是甩溅、挤出和蒸发,其中甩溅、挤出为主。混合润滑状态下FM的消耗主要是蒸发,磨屑混合和少量的甩溅,其中以蒸发和磨屑混合固化为主。边界润滑的消耗主要是磨损消除,这一阶段FM在表面固化为一层薄膜,薄膜进一步蒸发固化,继而磨损消耗。当表面薄膜消耗完后,润滑状态恢复至干摩擦状态。

  • 对比图3~5中黏着恢复曲线知,曲线中阶段a为弹性流体润滑阶段,阶段b和c为混合润滑为主阶段,阶段c最后为边界润滑。其中a阶段的液体消耗对应图9a,阶段b和c液体消耗对应图9b和图9c。图5中,随循环转数的增加,阶段a到阶段b出现了黏着系数快速上升变化,主要原因是FM在图9a阶段中的挤出和甩溅,使得试样表面FM量减少至不能维持弹性流体润滑状态。阶段b和c中随循环转数的增加,黏着系数逐渐增大。主要原因是,该阶段FM中水的蒸发使得FM流变指数减小,同时表面FM乏油现象更加严重,使得FM承担压力减小,微凸体承担压力增加。图7和图8对这一现象做出很好地解释。阶段c最后阶段FM中水分几乎完全蒸发,致使FM在试样表面形成一层弹性薄膜,此时润滑状态为边界润滑状态。FM的调节作用主要发生在混合润滑和边界润滑,故FM的配置需要延长混合润滑和边界润滑阶段。

  • 图9 不同润滑状态下液体消耗示意图

  • Fig.9 Schematic diagram of the consumption of liquid under different lubrication states

  • 3 结论

  • (1) 初始黏着系数与加入量、黏度、流体特性相关,随着加入量的增加,黏着系数逐渐减小,减小至一定值后加入量继续增加,初始黏着系数不再变化。

  • (2) 恢复时间随FM加入量的增加逐渐增加直至趋于为稳定,初始黏着系数逐渐较小直至趋于稳定。当加入量为200 µL时,黏着系数出现降至0.1以下现象,FM极限加入量为200 µL。

  • (3) 牛顿流体恢复过程中液体与磨屑的混合使得黏度增加,黏着系数出现二次下降。非牛顿流体与磨屑混合后没有出现黏度增加,反而流变指数减小,黏着系数不会出现二次下降。

  • (4) 加入足量FM后,恢复过程润滑状态先后经历弹性流体润滑、混合润滑、边界润滑,直至最后干摩擦。随循环转数的增加,FM的流变指数逐渐减小,FM承担压力逐渐减小,固体微凸体承担压力逐渐增加。

  • 参考文献

    • [1] XIN T,WANG S,GAO L.Field measurement of rail corrugation influence on environmental noise and vibration:A case study in China[J].Measurement,2020,164:108084.

    • [2] HAN J,XIAO X,WU Y,et al.Effect of rail corrugation on metro interior noise and its control[J].Applied Acoustics,2018,130:63-70.

    • [3] POMBO J C,AMBRSIO J A C.Application of a wheel-rail contact model to railway dynamics in small radius curved tracks[J].Multibody System Dynamics,2008,19:91-114.

    • [4] JIN X S,WEN Z F,XIAO X B,et al.A numerical methodfor prediction of curved rail wear[J].Multibody System Dynamics,2007,18(4):531-557.

    • [5] LI X,YANG T,ZHANG J,et al.Rail wear on the curve of a heavy haul line-numerical simulations and comparison with field measurements[J].Wear,2016:131-138.

    • [6] KURZECK B.Combined friction induced oscillations of wheelset and track during the curving of metros and their influence on corrugation[J].Wear,2011,271(1):299-310.

    • [7] DING J,LEWIS R,BEAGLES A,et al.Application of grinding to reduce rail side wear in straight track[J].Wear-Lausanne,2018,402(1):71-79.

    • [8] 徐凯,李芾,吴文逸,等.高速铁路小半径曲线钢轨侧磨研究[J].铁道学报,2021,43(2):45-51.(in Chinese)XU Kai,LI Fu,WU Wenyi,et al.Research on side wear of rails on small radius curves on high-speed railway[J].Journal of the China Railway Society,2021,43(2):45-51.

    • [9] KALOUSEK J,JOHNSON K.An investigation of short pitch wheel and rail corrugations on the Vancouver mass transit system[J].Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail and Rapid Transit,1992,206(2):127-135.

    • [10] EGANA J I,VINOLAS J,GIL-NEGRETE N.Effect of liquid high positive friction(HPF)modifier on wheel-rail contact and rail corrugation[J].Tribology International,2005,38(8):769-774.

    • [11] 陆鑫,凯尔文·欧德劳.通过轮轨界面的摩擦管理控制滚动接触疲劳破坏[J].中国铁路,2014,(12):82-86.LU Xin,AUDLOW K.The rolling contact fatigue failure is controlled by friction management at the wheel-rail interface[J].Chinese Railways,2014,(12):82-86.(in Chinese)

    • [12] GALAS R,MILAN O,MILAN K,et al.Case study:The influence of oil-based friction modifier quantity on tram braking distance and noise[J].Tribology in Industry,2017,39(2):198-206.

    • [13] EADIE D T,SANTORO M,KALOUSEK J.Railway noise and the effect of top of rail liquid friction modifiers:Changes in sound and vibration spectral distributions in curves[J].Wear,2005,258(7-8):1148-1155.

    • [14] EADIE D T,SANTORO M.Top-of-rail friction control for curve noise mitigation and corrugation rate reduction[J].Journal of Sound and Vibration,2006,293:747-757.

    • [15] 李跻添,杜敏涛.城市轨道交通轨顶摩擦调节剂降噪技术应用[J].现代城市轨道交通,2019(7):72-76.(in Chinese)LI Jitian,DU Mintao.Application of noise control technology of rail-top friction regulator in urban rail transit[J].Modern Urban Transit,2019(7):72-76.

    • [16] GALAS R,KVARDA D,OMASTA M,et al.The role of constituents contained in water-based friction modifiers for top-of-rail application[J].Tribology International,2018,117:87-97.

    • [17] EADIE D T,ELVIDGE D,OLDKNOW K,et al.The effects of top of rail friction modifier on wear and rolling contact fatigue:Full-scale rail-wheel test rig evaluation,analysis and modelling[J].Wear,2008,265(9-10):1222-1230.

    • [18] SUDA Y,IWASA T,KOMINE H,et al.Development of onboard friction control[J].Wear,2005,258(7-8):1109-1114.

    • [19] 肖祥龙,陈光雄,莫继良,等.摩擦调节剂抑制钢轨波磨的机理研究[J].振动与冲击,2013,32(8):166-170.XIAO Xianglong,CHEN Guangxiong,MO Jiliang,et al.Study on the mechanism for friction modifier suppressing wear-type rail corrugation[J].Journal of Vibration and Shock.2013,32(8):166-170.(in Chinese)

    • [20] LUNDBERG J,RANTATALO M,WANHAINEN C,et al.Measurements of friction coefficients between rails lubricated with a friction modifier and the wheels of an IORE locomotive during real working conditions[J].Wear,2015,324-325:109-117.

    • [21] 曹熙,王文健,刘启跃,等.激光离散淬火对轮轨材料磨损与损伤性能的影响[J].中国表面工程,2016,29(5):72-79.CAO Xi,WANG Wenjian,LIU Qiyue,et al.Effects of laser dispersed quenching on wear and damage performances of wheel/rail materials.[J].China Surface Engineering,2016,29(5):72-79.(in Chinese)

    • [22] HU Y,GUO L C,MAIORINO M,et al.Comparison of wear and rolling contact fatigue behaviours of bainitic and pearlitic rails under various rolling-sliding conditions[J].Wear,2020,460-461:203455.

    • [23] 刘腾飞,王文健,郭火明,等.介质作用下轮轨增粘特性[J].中国表面工程,2013,26(1):79-85.LIU Tengfei,WANG Wenjian,GUO Huoming,et al.Improving adhesion characteristics of wheel/rail under the medium conditions[J].China Surface Engineering,2013,26(1):79-85.(in Chinese)

    • [24] YANG Q,HUANG P,FANG Y.A novel Reynolds equation of non-Newtonian fluid for lubrication simulation[J].Tribology International,2016,94:458-463.

    • [25] WU B,WEN Z,WANG H,et al.Numerical analysis on wheel/rail adhesion under mixed contamination of oil and water with surface roughness[J].Wear,2014,314(1-2):140-147.

    • [26] PATIR N,CHENG H S.Effects of surface roughness orientation on the central film thickness in E.H.D contacts[J].Proceedings of the 5th Leeds-Lyon Symposium on Tribology,1978:15-21.

    • [27] KNIG F,SOUS C,JACOBS G.Numerical prediction of the frictional losses in sliding bearings during start-stop operation[J].Friction,2021,9(3):583-597.

    • [28] SHI X,WANG L,QIN F.Relative fatigue life prediction of high-speed and heavy-load ball bearing based on surface texture[J].Tribology International,2016,101:364-374.

  • 参考文献

    • [1] XIN T,WANG S,GAO L.Field measurement of rail corrugation influence on environmental noise and vibration:A case study in China[J].Measurement,2020,164:108084.

    • [2] HAN J,XIAO X,WU Y,et al.Effect of rail corrugation on metro interior noise and its control[J].Applied Acoustics,2018,130:63-70.

    • [3] POMBO J C,AMBRSIO J A C.Application of a wheel-rail contact model to railway dynamics in small radius curved tracks[J].Multibody System Dynamics,2008,19:91-114.

    • [4] JIN X S,WEN Z F,XIAO X B,et al.A numerical methodfor prediction of curved rail wear[J].Multibody System Dynamics,2007,18(4):531-557.

    • [5] LI X,YANG T,ZHANG J,et al.Rail wear on the curve of a heavy haul line-numerical simulations and comparison with field measurements[J].Wear,2016:131-138.

    • [6] KURZECK B.Combined friction induced oscillations of wheelset and track during the curving of metros and their influence on corrugation[J].Wear,2011,271(1):299-310.

    • [7] DING J,LEWIS R,BEAGLES A,et al.Application of grinding to reduce rail side wear in straight track[J].Wear-Lausanne,2018,402(1):71-79.

    • [8] 徐凯,李芾,吴文逸,等.高速铁路小半径曲线钢轨侧磨研究[J].铁道学报,2021,43(2):45-51.(in Chinese)XU Kai,LI Fu,WU Wenyi,et al.Research on side wear of rails on small radius curves on high-speed railway[J].Journal of the China Railway Society,2021,43(2):45-51.

    • [9] KALOUSEK J,JOHNSON K.An investigation of short pitch wheel and rail corrugations on the Vancouver mass transit system[J].Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail and Rapid Transit,1992,206(2):127-135.

    • [10] EGANA J I,VINOLAS J,GIL-NEGRETE N.Effect of liquid high positive friction(HPF)modifier on wheel-rail contact and rail corrugation[J].Tribology International,2005,38(8):769-774.

    • [11] 陆鑫,凯尔文·欧德劳.通过轮轨界面的摩擦管理控制滚动接触疲劳破坏[J].中国铁路,2014,(12):82-86.LU Xin,AUDLOW K.The rolling contact fatigue failure is controlled by friction management at the wheel-rail interface[J].Chinese Railways,2014,(12):82-86.(in Chinese)

    • [12] GALAS R,MILAN O,MILAN K,et al.Case study:The influence of oil-based friction modifier quantity on tram braking distance and noise[J].Tribology in Industry,2017,39(2):198-206.

    • [13] EADIE D T,SANTORO M,KALOUSEK J.Railway noise and the effect of top of rail liquid friction modifiers:Changes in sound and vibration spectral distributions in curves[J].Wear,2005,258(7-8):1148-1155.

    • [14] EADIE D T,SANTORO M.Top-of-rail friction control for curve noise mitigation and corrugation rate reduction[J].Journal of Sound and Vibration,2006,293:747-757.

    • [15] 李跻添,杜敏涛.城市轨道交通轨顶摩擦调节剂降噪技术应用[J].现代城市轨道交通,2019(7):72-76.(in Chinese)LI Jitian,DU Mintao.Application of noise control technology of rail-top friction regulator in urban rail transit[J].Modern Urban Transit,2019(7):72-76.

    • [16] GALAS R,KVARDA D,OMASTA M,et al.The role of constituents contained in water-based friction modifiers for top-of-rail application[J].Tribology International,2018,117:87-97.

    • [17] EADIE D T,ELVIDGE D,OLDKNOW K,et al.The effects of top of rail friction modifier on wear and rolling contact fatigue:Full-scale rail-wheel test rig evaluation,analysis and modelling[J].Wear,2008,265(9-10):1222-1230.

    • [18] SUDA Y,IWASA T,KOMINE H,et al.Development of onboard friction control[J].Wear,2005,258(7-8):1109-1114.

    • [19] 肖祥龙,陈光雄,莫继良,等.摩擦调节剂抑制钢轨波磨的机理研究[J].振动与冲击,2013,32(8):166-170.XIAO Xianglong,CHEN Guangxiong,MO Jiliang,et al.Study on the mechanism for friction modifier suppressing wear-type rail corrugation[J].Journal of Vibration and Shock.2013,32(8):166-170.(in Chinese)

    • [20] LUNDBERG J,RANTATALO M,WANHAINEN C,et al.Measurements of friction coefficients between rails lubricated with a friction modifier and the wheels of an IORE locomotive during real working conditions[J].Wear,2015,324-325:109-117.

    • [21] 曹熙,王文健,刘启跃,等.激光离散淬火对轮轨材料磨损与损伤性能的影响[J].中国表面工程,2016,29(5):72-79.CAO Xi,WANG Wenjian,LIU Qiyue,et al.Effects of laser dispersed quenching on wear and damage performances of wheel/rail materials.[J].China Surface Engineering,2016,29(5):72-79.(in Chinese)

    • [22] HU Y,GUO L C,MAIORINO M,et al.Comparison of wear and rolling contact fatigue behaviours of bainitic and pearlitic rails under various rolling-sliding conditions[J].Wear,2020,460-461:203455.

    • [23] 刘腾飞,王文健,郭火明,等.介质作用下轮轨增粘特性[J].中国表面工程,2013,26(1):79-85.LIU Tengfei,WANG Wenjian,GUO Huoming,et al.Improving adhesion characteristics of wheel/rail under the medium conditions[J].China Surface Engineering,2013,26(1):79-85.(in Chinese)

    • [24] YANG Q,HUANG P,FANG Y.A novel Reynolds equation of non-Newtonian fluid for lubrication simulation[J].Tribology International,2016,94:458-463.

    • [25] WU B,WEN Z,WANG H,et al.Numerical analysis on wheel/rail adhesion under mixed contamination of oil and water with surface roughness[J].Wear,2014,314(1-2):140-147.

    • [26] PATIR N,CHENG H S.Effects of surface roughness orientation on the central film thickness in E.H.D contacts[J].Proceedings of the 5th Leeds-Lyon Symposium on Tribology,1978:15-21.

    • [27] KNIG F,SOUS C,JACOBS G.Numerical prediction of the frictional losses in sliding bearings during start-stop operation[J].Friction,2021,9(3):583-597.

    • [28] SHI X,WANG L,QIN F.Relative fatigue life prediction of high-speed and heavy-load ball bearing based on surface texture[J].Tribology International,2016,101:364-374.

  • 手机扫一扫看