en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

马飞(通信作者),男,1979年出生,博士,教授,博士研究生导师。主要研究方向为薄膜材料与表/界面工程。E-mail:mafei@mail.xjtu.edu.cn

中图分类号:TD355

DOI:10.11933/j.issn.1007−9289.20210205002

参考文献 1
任怀伟.液压支架关键零部件材料性能分析及工艺研究[J].煤矿开采,2015,20(4):1-4.REN Huaiwei.Material performance analysis and process research of key components of hydraulic support[J].Coal Mining Technology,2015,20(4):1-4.(in Chinese)
参考文献 2
王本海.ZY7600/24/50 型掩护式液压支架损坏情况分析[J].煤矿机械,2010,31(8):208-209.WANG Benghai.Damage analysis of ZY7600/24/50 shield hydraulic support[J].Coal Mining Machinery,2010,31(8):208-209.(in Chinese)
参考文献 3
张伟.煤矿用液压支架常见失效形式及其对策分析[J].煤矿开采,2017,22(6):22-25.ZHANG Wei.Analysis of common failure forms and Countermeasures of hydraulic support used in coal mine[J].Coal Mining Technology,2017,22(6):22-25.(in Chinese)
参考文献 4
张晓菲.煤矿液压支架常见故障及防范措施[J].能源与节能,2019(3):111-112.ZHANG Xiaofei.Common faults and preventive measures of coal mine hydraulic support[J].Energy and Energy Conservation,2019(3):111-112.(in Chinese)
参考文献 5
李俊珑.复杂箱形结构件多轴疲劳寿命预测方法研究 [D].太原:太原理工大学,2013.LI Junlong.Research on multiaxial fatigue life prediction method of complex box structure[D].Journal of Taiyuan University of Technology,2013.(in Chinese)
参考文献 6
赵永美.煤矿液压支架立柱、千斤顶失效分析及解决方案[J].山东煤炭科技,2020(5):145-146.ZHAO Yongmei.Failure analysis and solution of hydraulic support column and Jack in coal mine[J].Shandong Coal Science and Technology,2020(5):145-146.(in Chinese)
参考文献 7
孔淑敏,张孝廉,张青雨.液压支架支撑座损坏的分析与处理[J].水力采煤与管道运输,2002(1):37-39.KONG Shumin,ZHANG Xiaolian,ZHANG Qingyu.Analysis and treatment of the damage of the support seat of the hydraulic support[J].Hydraulic Coal Mining & Pipeline Transportation,2002(1):37-39.(in Chinese)
参考文献 8
段孟杰.液压支架立柱腐蚀失效分析及防范措施[J].河北煤炭,2002(5):28-29.DUAN Mengjie.Corrosion failure analysis and preventive measures of hydraulic support column[J].Hebei Coal,2002(5):28-29.(in Chinese)
参考文献 9
赵文轸,师文章.液压支架活柱腐蚀失效分析[J].煤矿机械,1989(3):1-5.ZHAO Wenzhen,SHI Wenzhang.Corrosion failure analysis of movable column of hydraulic support[J].Coal Mining Machinery,1989(3):1-5.(in Chinese)
参考文献 10
程相榜,孟贺超,张自强.液压支架油缸内表面的腐蚀原因[J].腐蚀与防护,2017,38(5):407-409.CHENG Xiangbang,MENG Hechao,ZHANG Ziqiang.Corrosion causes of inner surface of hydraulic support cylinder[J].Corrosion & Protection,2017,38(5):407-409.(in Chinese)
参考文献 11
李臣阳,兰志宇,程相榜,等.液压支架立柱千斤顶失效分析及预防措施[J].煤矿机械,2020,41(2):146-148.LI Chenyang,LAN Zhiyu,CHENG Xiangbang,et al.Failure analysis and preventive measures of hydraulic support column jack[J].Coal Mining Machinery,2020,41(2):146-148.(in Chinese)
参考文献 12
张小卫,马军涛,黄鑫,等.矿用柱窝裂纹的原因分析及改进措施[J].煤矿机械,2015,36(7):235-236.ZHANG Xiaowei,MA Juntao,HUANG Xin,et al.Cause analysis and improvement measures of cracks in mining pillar socket[J].Coal Mining Machinery,2015,36(7):235-236.(in Chinese)
参考文献 13
李俊珑,刘混举,潘雪荣.液压支架销轴断裂失效分析 [J].煤矿机械,2013,34(6):99-101.LI Junlong,LIU Hunju,PAN Xuerong.Fracture failure analysis of hydraulic support pin[J].Coal Mining Machinery,2013,34(6):99-101.(in Chinese)
参考文献 14
骞杉.ZY4000 型液压支架设计及有限元分析[D].西安:西安理工大学,2017.QIAN Shan.Design and finite element analysis of ZY4000 hydraulic support[D].Journal of Xi'an University of Technology,2017.(in Chinese)
参考文献 15
夏秋仲.液压支架关键部件力学性能有限元分析[D].阜新:辽宁工程技术大学,2007.XIA Zhongqiu.Finite element analysis on mechanical properties of key components of hydraulic support[D].Fuxin:Liaoning University of Engineering and Technology,2007.(in Chinese)
参考文献 16
LIU H,FAN X.Computer simulation and model test research on strength test of hydraulic support[C]//Precision Mechanical Measurements pt.2,2006:62803W-1-62803W-6.
参考文献 17
LIU H Y.Three dimensions construction model and finite element analysis of hydraulic support and relevant model[J].Advanced Materials Research,2011,189-193:4451-4454.
参考文献 18
陈静.液压支架强度可靠性优化设计方法研究[D].徐州:中国矿业大学,2014.CHEN Jing.Research on strength reliability optimization design method of hydraulic support[D].Xuzhou:University of Mining and Technology,2014.(in Chinese)
参考文献 19
中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 25974.2—2010,煤矿用液压支架第2部分:立柱和千斤顶技术条件[S].北京:中国标准出版社.2011.General Administration of Quality Supervision,Inspectionand Quarantine of the People’ s Republic of China,Standardization Adiministration of the People’s Republic of China.GB/T 25974.2—2010,Powered support for coal mine-Part 2:Specification for power set legs and rams[S].Beijing:China Standard Press,2011.(in Chinese)
参考文献 20
HE W,CHEN Z,DU J,et al.Finite element analysis of combination condition of ZF6400/19/32 hydraulic support[C]//IOP Conf.Series:Materials Science and Engineering,2019.
参考文献 21
ZHAO X,LI F,LIU Y,et al.Fatigue behavior of a box-type welded structure of hydraulic support used in coal mine[J].Materials,2015,8(10):6609-6622.
参考文献 22
HU D G,FAN X.Analysis of the strength and reliability of hydraulic support with finite element method[J].Advanced Materials Research,2012,619:225-230.
参考文献 23
WU P D,KONG J Y,GAO Y J,et al.Finite element analysis for hydraulic support[J].Advanced Materials Research,2012,510:4-8.
参考文献 24
LIU H W,PU G B,DU Y H,et al.Finite element analysis of static strength and fatigue strength of hydraulic shield support[J].Advanced Materials Research,2011,332-334:2161-2165.
参考文献 25
CHEN M F,XU G M,ZHANG L Y,et al.Virtual design and structural optimization of hydraulic support based on Pro/E software[J].Advanced Materials Research,2013,655-657:376-381.
参考文献 26
LI D M,TAN Y H,XU R Y,et al.Design and dynamic simulation for hydraulic support[J].Applied Mechanics and Materials,2013,456:230-233.
参考文献 27
ZHANG Y K,XIAO L J,YANG J R.Finite element simulation analysis of hydraulic support based on virtual prototype technology[J].Applied Mechanics and Materials,2012,217-219:1393-1396.
参考文献 28
翟庆波.8.2 米大采高液压支架有限元分析及轻量化研究[D].青岛:山东科技大学,2017.ZHAI Qingbo.Finite element analysis and lightweight research of hydraulic support with 8.2 m large mining height[D].Qingdao:Shandong University of Science and Technology,2017.(in Chinese)
参考文献 29
王晓乾.ZZ4800/14/30 型液压支架的强度分析[D].阜新:辽宁工程技术大学,2016.WANG Xiaoqian.Strength analysis of ZZ4800/14/30 hydraulic support[D].Fuxin:Liaoning Technical University,2016.(in Chinese)
参考文献 30
赵勇.液压支架顶梁中焊缝处理对强度计算的影响分析[J].机械管理开发,2020,35(5):110-112.ZHAO Yong.Influence of weld treatment on strength calculation of hydraulic support top beam[J].Mechanical Management Development,2020,35(5):110-112.(in Chinese)
参考文献 31
李臣阳,李福永,李争,等.液压支架结构件常见焊接缺陷分析[J].金属加工(热加工),2015(14):65-66.LI Chenyang,LI Fuyong,LI Zheng,et al.Analysis of common welding defects of hydraulic support structure[J].Machinist Metal Forming,2015(14):65-66.(in Chinese)
参考文献 32
张秀军.液压支架焊接质量影响因素分析与控制研究[D].西安:西安科技大学,2014.ZHANG Xiujun.Analysis and control of welding quality of hydraulic support[D].Xi’ an:Xi’ an University of Science and Technology,2014.(in Chinese)
参考文献 33
何龙龙.液压支架关键部位的有限元分析[D].西安:西安科技大学,2016.HE Longlong.Finite element analysis of key parts of hydraulic support[D].Xi`an:Xi`an University of Science and Technology,2016.(in Chinese)
参考文献 34
洪岸柳.液压支架的结构强度与疲劳寿命分析[D].沈阳:东北大学,2012.HONG Anliu.Analysis of structural strength and fatigue life of hydraulic support[D].Shenyang:Northeastern University,2012.(in Chinese)
参考文献 35
徐鹏博.两柱掩护式液压支架虚拟疲劳寿命分析研究[J].煤矿机械,2019,40(3):34-36.XU Pengbo.Virtual fatigue life analysis of two column shield hydraulic support[J].Coal Mining Machinery,2019,40(3):34-36.(in Chinese)
参考文献 36
吕凯波.液压支架主体结构件的疲劳分析及其寿命预测的研究[D].太原:太原理工大学,2008.LÜ Kaibo.Study on fatigue analysis and life prediction of main structure of hydraulic support[D].Taiyuan:Taiyuan University of Technology,2008.(in Chinese)
参考文献 37
王京涛,陆金桂,朱正权,等.液压支架疲劳寿命近似估算[J].工矿自动化,2017,43(3):39-42.WANG Jingtao,LU Jingui,ZHU Zhengquan,et al.Approximate estimation of fatigue life of hydraulic support[J].Industry and Mine Automation,2017,43(3):39-42.(in Chinese)
参考文献 38
杨银忠,姚克明.基于神经网络的液压支架底座疲劳寿命预测[J].仪表技术与传感器,2018(10):95-97.YANG Yinzhong,YAO Keming.Fatigue life prediction of hydraulic support base based on Neural Network[J].Instrument Technique and Sensor,2018(10):95-97.(in Chinese)
参考文献 39
李世科.基于 LM-BP 神经网络的液压支架顶梁疲劳寿命预测及应用[J].中国矿业,2019,28(5):92-96.LI Shike.Fatigue life prediction and application of hydraulic support top beam based on LM-BP neural network[J].China Mining Magazine,2019,28(5):92-96.(in Chinese)
参考文献 40
李翠勤.液压支架主体结构件疲劳寿命分析[D].太原:太原理工大学,2012.LI Cuiqin.Fatigue life analysis of main structure of hydraulic support[D].Taiyuan:Taiyuan University of Technology,2012.(in Chinese)
参考文献 41
郑晓雯,张衡,刘金龙,等.基于有限元法液压支架的疲劳寿命分析[J].矿山机械,2010,38(17):7-10.ZHENG Xiaowen,ZHANG Heng,LIU Jinlong,et al.Fatigue life analysis of hydraulic support based by finite element method[J].Coal Mining Machinery,2010,38(17):7-10.(in Chinese)
参考文献 42
宋宇宁,徐晓辰.基于SolidWorks和 ANSYS 的液压支架顶梁疲劳可靠性分析[J].煤炭工程,2019,51(1):91-95.SONG Yuning,XU Xiaochen.Fatigue reliability analysis of hydraulic support top beam by SolidWorks and ANSYS[J].Coal Engineering,2019,51(1):91-95.(in Chinese)
参考文献 43
廖文和,田威,曾超,等.激光熔覆再制造产品热损伤与寿命评估[M].北京:科学出版社,2017:141-143.LIAO Wenhe,TIAN Wei,ZENG Chao,et al.Thermal damage and the consequent fatigue life prediction for laser-cladding remanufactured products[M].Beijing:Science Press,2017:141-143.(in Chinese)
参考文献 44
王海斗,邢志国,董丽虹.再制造零件与产品的疲劳寿命评估技术[M].哈尔滨:哈尔滨工业大学出版社,2019.WANG Haidou,XING Zhiguo,DONG Lihong.Fatigue life assessment technique for remanufactured parts and product[M].Harbin:Harbin Institute of Technology Press,2019.(in Chinese)
参考文献 45
李强,马国庆,周海龙.综采液压支架再制造工艺:CN103264267A[P].2013-08-28.LI Qiqng,MA Guoqing,ZHOU Hailong.Remanufacturing technology of fully mechanized hydraulic support:CN103264267A[P].2013-08-28.(in Chinese)
参考文献 46
赵东波,陆金桂,姚灵灵,等.在役液压支架部件剩余寿命估算[J].工矿自动化,2017,43(10):89-93.ZHAO Dongbo,LU Jingui,YAO Lingling,et al.Residual life estimation of in service hydraulic support components[J].Industry and Mine Automation,2017,43(10):89-93.(in Chinese)
参考文献 47
刘东一.地铁车辆传动系统斜齿轮裂纹扩展分析及剩余寿命预估[D].北京:北京建筑大学,2020.LIU Dongyi.Crack propagation analysis and residual life prediction of helical gear in metro vehicle transmission system[D].Beijing:Beijing University of Civil Engineering and Architecture,2020.(in Chinese)
参考文献 48
廖小伟.低温环境下桥梁钢材与焊接细节的疲劳性能研究[D].北京:清华大学,2018.LIAO Xiaowei.Study on fatigue properties of bridge steel and welding details at low temperature[D].Beijing:Tsinghua University,2018.(in Chinese)
参考文献 49
宗亮.基于断裂力学的钢桥疲劳裂纹扩展与寿命评估方法研究[D].北京:清华大学,2015.ZONG Liang.Research on fatigue crack growth and life assessment method of steel bridge based on fracture mechanics[D].Beijing:Tsinghua University,2015.(in Chinese)
参考文献 50
HASUNUMA S,OKI S,MOTOMATSU K,et al.Fatigue life prediction of carbon steel with machined surface layer under low-cycle fatigue[J].International Journal of Fatigue,2019,123:255-267.
参考文献 51
高杨坤.基于断裂力学的地铁枕梁剩余寿命预测[D].沈阳:东北大学,2015.GAO Yangkun.Residual life prediction of subway sleeper beam by fracture mechanics[D].Shenyang:Northeastern University,2015.(in Chinese)
参考文献 52
凌骏,吴峰崎,周邵萍.基于有限元分析与有效应力强度因子幅的起重机寿命预估[J].华东理工大学学报(自然科学版),2015,41(03):424-428.LING Jun,WU Fengqi,ZHOU Shaoping.Life prediction of crane based on finite element analysis and effective stress intensity factor range[J].Journal of East China University of Science and Technology(Natural Science Edition),2015,41(3):424-428.(in Chinese)
目录contents

    摘要

    煤矿综采液压支架是控制采煤工作面矿山压力的大型核心装备,是现代采煤作业安全防护、作业空间扩大和采煤效率提高的关键,主要由液压件(立柱、千斤顶)、承载结构件(顶梁、掩护梁和底座等)、推移装置、控制系统和其他辅助装置组成,往往在极其恶劣复杂的矿井环境中服役,局部容易发生变形损伤、疲劳和腐蚀。对其关键部件进行失效分析及剩余寿命评估,是推动整机再制造和促进绿色循环经济发展的基本前提条件。对顶梁、底座、连杆、立柱等关键部件的失效形式及原因进行综述与分析,指出结构件的失效原因分析需要受到更多关注。总结支架寿命评估的研究现状,指出目前的研究集中在设计阶段的强度校核和寿命预估上,而关于服役了一段时间的支架的剩余寿命研究仍是空白。最后提出基于断裂力学利用有限元模拟进行剩余寿命评估的发展趋势。

    Abstract

    Fully mechanized hydraulic supports are the large-scale core equipment controlling the pressure of coal mining face. Hydraulic supports are crucial for protecting the safety of modern coal mining operation, expanding the working space and improving the efficiency of coal mining. Commonly, hydraulic supports are mainly composed of hydraulic parts (column and jack), bearing structures (top beam, shield beam, base support and so on), pushing equipment, controlling system and other auxiliary equipment. Hydraulic supports are often used in extremely harsh and complex mining environments, in such a case, local mechanical deformation and damage injury, fatigue and corrosion often take place. Failure analysis and residual life assessment on the key components in hydraulic supports are the prerequisite to promote the remanufacturing of the whole machine and the development of green circular economy. The failure behaviors of key components in hydraulic supports, such as, top beams, base supports, connecting rods and columns are summarized and analyzed, and it is pointed out that the failure cause analysis of structural components needs more attention. The research status on life assessment is also discussed. The current research focuses on the strength check and life prediction in the design stage, while the research on the remaining life of the support that has been in service for a period of time is still blank. Furthermore, the trend of residual life assessment by using finite element method is put forward.

  • 0 前言

  • 我国是一个贫油少气而煤炭资源较为丰富的国家。基于新能源开发的技术限制,我国的能源消费结构仍然以煤炭为主。“十二五规划”中提出“煤炭科学产能”理念,其判断指标主要有两个,一是综合机械化程度大于70%,二是安全度标准,也就是百万吨死亡率为0.01~0.1人,即煤炭行业应重点关注高产、高效、安全等方面的问题。因此,全面推广煤矿综采技术是煤炭行业的发展趋势与必然结果。液压支架是综采工作面的主要支撑防护设备,其结构件主要包括顶梁、底座、掩护梁和前后连杆,液压件包括立柱与油缸等。煤矿井下地质条件复杂,工况恶劣,支架结构件容易受到扭转、偏载而发生变形损伤,而液压件常常经受腐蚀。“十三五”期间,国家工程与材料科学部提出要着力发展“化石能源高效开发与灾害防控”。液压支架成本极高,难以经常更换,以服役年限为报废标准的处理方式必然造成剩余利用价值较高的旧件堆积,导致严重资源浪费。近年来,随着绿色制造理念的深入,激光熔覆等“再制造”技术蓬勃发展,而再制造的前提是对服役液压支架进行失效分析与寿命评估。本文就液压支架主要部件的失效形式和寿命评估方式进行论述,以期为液压支架的再制造提供参考依据。

  • 1 关键部件的失效形式

  • 矿井操作环境复杂多变,液压支架的主要部件容易经受腐蚀、疲劳和塑性变形,进而造成支架失效[1]。支架失效形式主要体现在以下几个方面[2-7]

  • 1.1 腐蚀

  • 由于腐蚀性工作环境,生产中经常发生立柱、油缸等液压元件的腐蚀失效。段孟杰[8]研究了液压支架的立柱,因井下采掘过程中常含有CH4、 SO2 等有害气体,环境潮湿,容易造成立柱表面局部腐蚀坑、大小不等的“鼓泡”甚至龟裂,甚至观察到约1mm厚镀铁层的脱落。镀铬层存在裂纹、针孔以及机械损伤,由此引起“鼓泡”(如图1[9]),进一步加重腐蚀。程相榜等[10]结合EDS、 SEM、金相分析、XRD等手段研究了油缸内表面的腐蚀情况。如图2和表1所示,缸筒在服役期间与液压介质配液(含Mg2+、SO4 2-)反应,造成缸筒表面点蚀。

  • 图1 鼓泡成因示意图[9]

  • Fig.1 Schematic diagram of the causes of bubbling

  • 图2 油缸表面失效分析[10]

  • Fig.2 Failure analysis of oil cylinder surface

  • 表1 腐蚀产物元素成分含量(质量分数)[10]

  • Table1 Element composition of corrosion products

  • 1.2 疲劳断裂

  • 李臣阳等[11]从化学成分和微观组织角度分析27SiMn调质钢立柱千斤顶的失效原因。如图3所示,裂缝起始于接头座拐角焊缝处,向缸筒两端扩展。如表2所示,调质钢的力学性能低于GB/T3077—2015调质处理状态标准,说明不恰当的热处理导致缸筒强度较低,千斤顶开裂。微观组织分析未观察到基体回火索氏体组织,进一步说明淬火过程或者回火操作不当。断口裂纹扩展区的SEM照片分析观察到贝壳形的典型疲劳断口特征和明显的疲劳辉纹,缸筒快速断裂区观察到明显的断裂韧窝,说明缸筒失效属于疲劳失效。张小卫等[12]针对柱窝处裂纹,采用红外碳硫分析和光谱分析 (表3),并对比GB/T3077—1999发现,柱窝所使用的ZG30SiMn钢中碳和锰含量高,后续淬火温度偏高,过热造成晶粒粗化以及冷却过程中热应力集中。

  • 图3 千斤顶罐筒开裂特征示意图[11]

  • Fig.3 Schematic diagram of cracking characteristics of jack cylinder

  • 表2 缸筒材料的力学性能[11]

  • Table2 Mechanical properties of cylinder materials

  • 表3 柱窝ZG30SiMn材料化学成分(质量分数)分析[12]

  • Table3 Chemical composition analysis of column socket materials

  • 1.3 塑性变形

  • 皖北煤电集团王本海[2]总结了ZY7600/24/50型液压支架的损坏形式。由于强度设计不足、落后的焊接技术以及质量较差的钢板,支架在承受压力时,顶梁柱帽往往发生开焊,掩护梁断裂。张伟[3]依据液压支架的使用情况和维修经验总结了其失效形式与原因。相对而言,国产液压支架可靠性较差,频繁发生结构件开裂,立柱、千斤顶漏液、变形、断裂等故障。由于我国大多数煤层为倾斜煤层,煤层厚度变化大且赋存条件较为恶劣。顶板不稳定常常导致支架与顶板不对称接触及支架失稳,掩护梁受扭损坏,焊缝裂纹扩展逐渐发展到焊缝开裂甚至铰接断裂。底座的失效多表现为焊缝开裂、主筋板断裂,原因主要在于焊接工艺不合格以及板材质量较差。由于设计局限和焊接工艺问题,顶梁容易出现应力集中及局部焊缝开裂。侧护板刚度较差,易发生过量弹性变形,造成支架间漏矸。此外,销轴弯曲、断裂,挡销座断裂等也是常见的损伤形式。李俊珑[5]归纳了顶梁的失效形式,由于焊缝区域热应力集中及柱帽板材的限制,顶梁的失效形式一般为侧护板开裂、柱帽压裂、顶梁变形或断裂。外载通过柱帽、立柱和柱窝进行传递,柱窝与柱帽承受大载荷易开裂。焊缝易在底板受力时开裂。

  • 李俊珑等[13]分析了ZY3600/11/25型支架的连杆与底座连接处销轴发生断裂的原因。从断口形貌来看,在主裂源附近发生了明显的塑性变形,断口侧壁有3条明显撕开裂纹,为剪切断裂。自外径向心部,组织变化过快,无过渡区,在淬透层与心部组织间易形成弱化区,导致强度降低。

  • 总体来说,液压元件的失效分析受到了国内学者的广泛关注,而结构件的失效分析仍属空白。研究人员仅简单总结了结构件的失效形式,系统研究和阐述支架各主要部件的失效原因仍很少见。这可能是因为支架结构件复杂、井下受力复杂多变、失效形式多样化等因素造成研究困难。

  • 2 关键部件的强度与寿命评估现状

  • 液压支架在井下受力情况复杂,支架结构件将承受循环随机载荷,易发生断裂失效。在再制造工程中,针对关键部件进行强度分析,可以一定程度上代替压架试验,节省成本,初步判断液压支架的危险部位,获取一定工况条件下的强度参数,为构件分析和寿命评估提供一定的强度指标。而剩余寿命分析,对预防疲劳断裂事故,指导支架主要承载结构再制造具有重要意义。

  • 2.1 成熟的有限元设计及强度分析技术

  • 目前,针对液压支架的研究主要集中在强度校核以及寿命评估。在产品开发阶段,研究人员大多借助ABAQUS、ANSYS等有限元(FEA)软件对设计的液压支架进行力学性能和强度分析,预判液压支架危险截面可能发生的位置及破坏形式[14],缩短设计周期,控制成本的同时保证支架质量。

  • 2.1.1 单工况下的强度分析

  • 夏仲秋[15]对ZY5200/8/18D千斤顶和立柱进行了有限元分析,并将有限元结果与解析法计算结果进行比较,发现在多种载荷工况下两者基本一致,验证了有限元计算的有效性。立柱在2倍正载的情况下,有限元分析得到立柱外缸底部出现最大应力,约为208MPa,而解析解为196MPa,其微小差别来源于外缸、中缸、活柱之间定义了接触单元,接触面之间产生了摩擦力。LIU等[16]以MT312—2000标准为参考,对ZT6500/19.5/34型液压支架原型及其1∶5简化模型在顶梁中间加载的工况下进行了等效应力和位移分布的有限元分析。结果表明,顶梁前部位移最大,向后部递减,且原型与1∶5模型的最大位移满足比例关系(如图4a~4b);顶梁与连杆的连接销应力最大,为217MPa(如图4c~4d),低于40Cr钢的屈服强度。将电阻应变法测量的应变数据与仿真结果进行比较,证实了有限元仿真的有效性[17]。强度可靠性优化的前提是强度分析。陈静[18]以GB 25974.1—2010为基础,对平顶山煤矿采用的ZY6400/21/45型液压支架整架在顶梁扭转和顶梁偏心两种单载荷工况下进行了整架有限元分析。值得注意的是,由于支架强度试验采用的是沿立柱内加载的方式,建模时省略立柱,而采用载荷进行代替,并单独分析立柱的强度[19]。整架有限元分析结果表明,偏心载荷工况下掩护梁上千斤顶耳板连接处存在安全隐患。

  • 图4 ZT6500/19.5/34型液压支架有限元分析结果[16]

  • Fig.4 Finite element analysis results of ZT6500/19.5/34hydraulic support

  • 2.1.2 复合工况下的强度分析

  • 实际上,单载荷工况模拟并不能完全反映井下的实际工况。HE等[20]研究了两种复合工况下ZF6400/19/32型液压支架顶梁和底座的应力分布,发现在顶梁弯曲加载和底座水平加载的复合工况下,底座的最大应力值出现在主筋板的圆弧形过渡处(图5),为614MPa,超过了Q460的屈服强度;在顶梁扭转加载和底座弯曲加载的复合工况下,顶梁孔周围存在应力集中(图6),应力值超过了Q460的屈服强度。底座的危险区域包括底座边缘的圆形孔,主筋板的圆弧过渡处等。ZHAO等[21]研究了顶梁扭转加载和底座两端加载复合工况下各主要构件的应力分布,结果如图7所示。整个支架的最大应力值出现在顶梁上,为867.15MPa;而底座的应力呈现对称分布,最大应力在底板和主筋板的交界处。掩护梁的高应力主要出现在连接千斤顶的销孔、盖板和主筋板之间以及主体焊接部位,应力值超过了Q690钢的屈服强度。通过观察三构件箱型结构的断裂位置,发现与仿真结果一致。

  • 图5 ZF6400/19/32液压支架顶梁弯曲和底座水平加载复合工况下应力分布规律[20]

  • Fig.5 Stress distribution of the canopy and base of ZF6400/19/32under the canopy bending& base horizontal loading

  • 图6 ZF6400/19/32液压支架顶梁扭转和底座弯曲加载复合工况下应力分布规律[20]

  • Fig.6 Stress distribution of the canopy and the base of ZF6400/19/32under the canopy hind torsion& base bending

  • 总的来说,顶梁的高应力区域主要在销孔、柱帽及箱型结构;底座的高应力区域集中在主筋板的圆弧过渡处和柱窝及其箱型结构处;掩护梁的高应力体现在连接千斤顶的销孔处。

  • 此外,各构件的焊缝在有限元分析中不可忽略[14, 17, 22-29]。焊缝的简化必然影响结果,且研究者大多聚焦于支架的应力计算、结构优化、强度评价等方面,支架结构形状和残余应力对焊缝质量的影响分析未引起足够重视[30]。液压支架主要为复杂的厚板箱型结构,焊缝结构复杂,服役过程中主要承受动载,焊缝缺陷很大程度上加速了断裂[31]。张秀军[32]对ZY12000/29/65型液压支架中焊缝的影响进行了有限元分析和电阻应变试验。支架上仅有约20%的焊缝应力接近于材料的屈服强度。何龙龙[33]对顶梁偏载和顶梁扭转两种恶劣工况下支架的强度进行分析发现,柱窝、柱帽以及构件间的销轴孔处受力较大。对比仿真结果与压架试验发现,倘若在有限元分析建模时省略掉焊缝,得到的结果应进行系数化处理或做局部焊缝连接细化处理。

  • 2.2 寿命评估现状

  • 无论是产品还是零件,疲劳是最常见的失效形式。近年来,将有限元、疲劳机理结合起来预测疲劳寿命成为预测液压支架使用周期的新趋势。不少学者在液压支架设计完成后利用有限元软件对液压支架进行寿命评估,避免压架试验耗时耗资,且压架实验无法获得单独构件的寿命。

  • 图7 液压支架顶梁扭转和底座两端加载复合工况下应力分布规律[21]

  • Fig.7 Stress distribution of the support under the canopy hind torsion& base loading

  • 由于液压支架应力集中部位处于塑性状态,应力应变不再是线性关系,疲劳寿命主要考虑塑性应变,因此,液压支架行业中最常使用的寿命评估方法是局部应力应变法。它是通过弹塑性有限元分析作局部应力应变谱,并根据危险部位的应力历程,结合疲劳累积损伤理论来估算疲劳寿命。

  • 2.2.1 整架的寿命评估

  • 洪岸柳[34]在有限元分析构件强度的基础上,利用ANSYS中的Fatigue工具预测了循环载荷作用下支架的寿命,发现顶梁体和筋板的交界处的寿命最短,约为43 692次。由于液压支架在井下所受载荷具有随机性,因此,通过雨流法模拟随机载荷作用下的支架寿命,其最短寿命仍出现在顶梁和筋板的交界处,约为20 779d。徐鹏博[35]以ZY8700/17/32两柱掩护式液压支架为研究对象,估算了顶梁两端集中载荷工况下的疲劳寿命,顶梁柱窝部位中焊接为一体的内加强板与主侧板和盖板连接处在循环载荷作用下疲劳损伤最大,因此,整支架的寿命评估为40 380次,基本与设计寿命相符合。

  • 2.2.2 底座的寿命评估

  • 吕凯波[36]以ZY6800/14/32型液压支架为研究对象,利用MSC.Fatigue软件在顶梁弯曲与底座前端加载的复合工况下采用范式等效应力(Von Mises)和最大绝对主应力分别预测了底座的裂纹萌生寿命。尽管最大绝对主应力大于Von Mises,但是估算的寿命比利用Von Mises估算的小,说明Q460的抗拉疲劳性低于抗压疲劳性。循环11万次后,裂纹在前耳座侧立板附近萌生。但此结果并未考虑焊缝区的影响,具有一定的保守性。

  • 在液压支架设计之初,若结构参数发生改变,就必须重新建模进行疲劳寿命分析与预测,时间成本极高。近年来,将BP神经网络方法应用于支架寿命评估[37-39]。杨银忠等[38]利用BP神经网络估算了底座的疲劳寿命,避免了繁琐的参数调整导致的重新建模,且误差低于2.3%。

  • 2.2.3 掩护梁的寿命评估

  • 在研究掩护梁应力分布的基础上,李翠勤[40]采用UG软件对掩护梁进行了疲劳寿命分析。在掩护梁与顶梁的铰接孔附近以及平衡千斤顶铰接孔附近寿命最短,约51 145次循环。掩护梁是大型箱式焊接结构件,把面与面接触距离设定为0.03,代替焊缝将增大仿真误差,但基本接近实际情况。

  • 2.2.4 顶梁的寿命评估

  • 顶梁是液压支架的主要受压结构件,但相关研究很少。郑晓雯等[41]以ZY6000/25/50型液压支架顶梁为研究对象,利用Fatigue研究了多种复合工况下顶梁的疲劳寿命,危险截面往往位于顶梁与掩护梁连接的耳座处,疲劳寿命为14 270次。宋宇宁等[42] 以Q460钢构成的顶梁为研究对象,在扭转加载的工况下确定了顶梁疲劳寿命最低点在柱帽附近的箱型结构处,与实际生产情况吻合。

  • 2.2.5 液压支架寿命评估的发展趋势

  • 由于应力集中等,当液压支架的危险部位进入局部塑性状态,利用局部应力应变法估算时,构件出现了裂纹,就到达疲劳寿命极限,即仅估算了裂纹萌生寿命[36],而一个产品的总寿命应该是裂纹萌生寿命与剩余寿命的总和。剩余寿命也就是裂纹扩展寿命,需要基于断裂力学进行计算[43]。而在液压支架寿命估算方面,很多学者忽略了此问题。服役液压支架失效通常以局部零件失效为主,随着绿色理念的推进,液压支架再制造工程蓬勃发展。而预测剩余寿命是明确零件或是产品是否具有再制造价值的重要环节,也是再制造领域的热点和难点问题[44-45]。赵东波等[46]基于累积损伤理论,通过引入表面系数、焊缝影响系数等参数修正材料疲劳曲线,得到部件的疲劳曲线,并结合状态系数折算支架的剩余寿命,误差约在3.5%,但此方法经验因素成分较大。

  • 总之,前人的研究主要集中在支架设计阶段的强度校核和寿命预估上,针对服役了一段时间的支架的剩余寿命研究仍是空白。结合船舶、航天、交通等领域中剩余寿命的估算方法[47-50],可以借助断裂力学的理论来分析裂纹扩展,并借助有限元软件来预测液压支架的剩余寿命,为再制造提供重要的理论依据。宗亮[49]利用名义应力法针对芦沟铁路桥的主桁端部受拉斜腹杆和纵梁下翼缘与腹板纵向角焊缝两个危险疲劳细节进行裂纹扩展分析。在承载27t重载列车的情况下,两种危险部位的疲劳寿命分别降低了21.8%和43.8%;30t重载列车的情况下,两部位的疲劳寿命分别下降46%和79%,很显然,承载对构件的剩余寿命影响显著。高杨坤[51]利用Hypermesh软件分析由7N01S-T5型高强度铝合金构成的地铁枕梁的强度,发现枕梁焊缝处更容易形成I型疲劳裂纹并扩展。当初始裂纹为10mm时,地铁日循环4 000次的条件下该枕梁剩余寿命为5.04年,为地铁的经济性检修提供一定的参考数据。凌骏等[52]基于ANSYS研究了Q345b钢构成的起重机的寿命,发现这种焊接结构的寿命主要取决于裂纹扩展阶段,基于Paris模型和有效应力强度因子幅模型估算起重机的剩余寿命分别为26.5年和19.9年,基于有效应力强度因子模型计算剩余寿命更安全。同为焊接结构的液压支架庞大复杂,服役过程中承受一定循环次数的随机载荷,往往导致裂纹萌生、扩展。危险截面主要为顶梁柱帽、底座柱窝、构件间的销孔、焊缝等部位,较为分散,带裂纹服役是无法避免的,因此,计算裂纹扩展寿命是十分有必要的。而由文献中的失效分析研究亦或是生产现场中构件大修经验来看,液压支架各部件中的焊缝是易开裂部位。因此,在构造支架模型时,需要重点关注构件的焊缝细节。此外,寿命评估的方法并不是相互矛盾而是相辅相成的,在分析支架寿命时需要结合局部应力应变法和断裂力学法分别计算裂纹萌生寿命和裂纹扩展寿命,以此分析得到支架的剩余寿命。由于井下液压支架工况具有多样性,根据GB 25974.1—2010中所提供的15种单一载荷工况以及现场分析经验,可以选择一种危险工况(如顶梁扭转加载和底座两端加载复合工况)进行寿命评估,载荷以垫块的形式施加。

  • 3 结论与展望

  • 在矿井复杂多变的环境下,液压支架各部件在服役期间容易失效。立柱容易经受腐蚀失效。其余部件的主要失效形式为过量塑性变形和疲劳断裂。由于焊接工艺的限制,支架部件焊缝处容易出现应力集中,造成局部开裂,在循环载荷作用下,裂纹扩展,造成部件失效。利用有限元分析部件的强度,结合局部应力应变法分析液压支架寿命的方法日益成熟。

  • 然而,研究人员在分析强度时大多默认焊接工艺成熟,简化焊缝,与实际工况下焊缝开裂引起失效的情况不符。此外,采用局部应力应变法仅计算了裂纹萌生寿命,而非全寿命。考虑到在役支架并非全部零件会失效,且再制造技术不断发展,基于断裂力学知识并利用有限元软件对面向再制造的液压支架进行剩余寿命估算值得研究。

  • 参考文献

    • [1] 任怀伟.液压支架关键零部件材料性能分析及工艺研究[J].煤矿开采,2015,20(4):1-4.REN Huaiwei.Material performance analysis and process research of key components of hydraulic support[J].Coal Mining Technology,2015,20(4):1-4.(in Chinese)

    • [2] 王本海.ZY7600/24/50 型掩护式液压支架损坏情况分析[J].煤矿机械,2010,31(8):208-209.WANG Benghai.Damage analysis of ZY7600/24/50 shield hydraulic support[J].Coal Mining Machinery,2010,31(8):208-209.(in Chinese)

    • [3] 张伟.煤矿用液压支架常见失效形式及其对策分析[J].煤矿开采,2017,22(6):22-25.ZHANG Wei.Analysis of common failure forms and Countermeasures of hydraulic support used in coal mine[J].Coal Mining Technology,2017,22(6):22-25.(in Chinese)

    • [4] 张晓菲.煤矿液压支架常见故障及防范措施[J].能源与节能,2019(3):111-112.ZHANG Xiaofei.Common faults and preventive measures of coal mine hydraulic support[J].Energy and Energy Conservation,2019(3):111-112.(in Chinese)

    • [5] 李俊珑.复杂箱形结构件多轴疲劳寿命预测方法研究 [D].太原:太原理工大学,2013.LI Junlong.Research on multiaxial fatigue life prediction method of complex box structure[D].Journal of Taiyuan University of Technology,2013.(in Chinese)

    • [6] 赵永美.煤矿液压支架立柱、千斤顶失效分析及解决方案[J].山东煤炭科技,2020(5):145-146.ZHAO Yongmei.Failure analysis and solution of hydraulic support column and Jack in coal mine[J].Shandong Coal Science and Technology,2020(5):145-146.(in Chinese)

    • [7] 孔淑敏,张孝廉,张青雨.液压支架支撑座损坏的分析与处理[J].水力采煤与管道运输,2002(1):37-39.KONG Shumin,ZHANG Xiaolian,ZHANG Qingyu.Analysis and treatment of the damage of the support seat of the hydraulic support[J].Hydraulic Coal Mining & Pipeline Transportation,2002(1):37-39.(in Chinese)

    • [8] 段孟杰.液压支架立柱腐蚀失效分析及防范措施[J].河北煤炭,2002(5):28-29.DUAN Mengjie.Corrosion failure analysis and preventive measures of hydraulic support column[J].Hebei Coal,2002(5):28-29.(in Chinese)

    • [9] 赵文轸,师文章.液压支架活柱腐蚀失效分析[J].煤矿机械,1989(3):1-5.ZHAO Wenzhen,SHI Wenzhang.Corrosion failure analysis of movable column of hydraulic support[J].Coal Mining Machinery,1989(3):1-5.(in Chinese)

    • [10] 程相榜,孟贺超,张自强.液压支架油缸内表面的腐蚀原因[J].腐蚀与防护,2017,38(5):407-409.CHENG Xiangbang,MENG Hechao,ZHANG Ziqiang.Corrosion causes of inner surface of hydraulic support cylinder[J].Corrosion & Protection,2017,38(5):407-409.(in Chinese)

    • [11] 李臣阳,兰志宇,程相榜,等.液压支架立柱千斤顶失效分析及预防措施[J].煤矿机械,2020,41(2):146-148.LI Chenyang,LAN Zhiyu,CHENG Xiangbang,et al.Failure analysis and preventive measures of hydraulic support column jack[J].Coal Mining Machinery,2020,41(2):146-148.(in Chinese)

    • [12] 张小卫,马军涛,黄鑫,等.矿用柱窝裂纹的原因分析及改进措施[J].煤矿机械,2015,36(7):235-236.ZHANG Xiaowei,MA Juntao,HUANG Xin,et al.Cause analysis and improvement measures of cracks in mining pillar socket[J].Coal Mining Machinery,2015,36(7):235-236.(in Chinese)

    • [13] 李俊珑,刘混举,潘雪荣.液压支架销轴断裂失效分析 [J].煤矿机械,2013,34(6):99-101.LI Junlong,LIU Hunju,PAN Xuerong.Fracture failure analysis of hydraulic support pin[J].Coal Mining Machinery,2013,34(6):99-101.(in Chinese)

    • [14] 骞杉.ZY4000 型液压支架设计及有限元分析[D].西安:西安理工大学,2017.QIAN Shan.Design and finite element analysis of ZY4000 hydraulic support[D].Journal of Xi'an University of Technology,2017.(in Chinese)

    • [15] 夏秋仲.液压支架关键部件力学性能有限元分析[D].阜新:辽宁工程技术大学,2007.XIA Zhongqiu.Finite element analysis on mechanical properties of key components of hydraulic support[D].Fuxin:Liaoning University of Engineering and Technology,2007.(in Chinese)

    • [16] LIU H,FAN X.Computer simulation and model test research on strength test of hydraulic support[C]//Precision Mechanical Measurements pt.2,2006:62803W-1-62803W-6.

    • [17] LIU H Y.Three dimensions construction model and finite element analysis of hydraulic support and relevant model[J].Advanced Materials Research,2011,189-193:4451-4454.

    • [18] 陈静.液压支架强度可靠性优化设计方法研究[D].徐州:中国矿业大学,2014.CHEN Jing.Research on strength reliability optimization design method of hydraulic support[D].Xuzhou:University of Mining and Technology,2014.(in Chinese)

    • [19] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 25974.2—2010,煤矿用液压支架第2部分:立柱和千斤顶技术条件[S].北京:中国标准出版社.2011.General Administration of Quality Supervision,Inspectionand Quarantine of the People’ s Republic of China,Standardization Adiministration of the People’s Republic of China.GB/T 25974.2—2010,Powered support for coal mine-Part 2:Specification for power set legs and rams[S].Beijing:China Standard Press,2011.(in Chinese)

    • [20] HE W,CHEN Z,DU J,et al.Finite element analysis of combination condition of ZF6400/19/32 hydraulic support[C]//IOP Conf.Series:Materials Science and Engineering,2019.

    • [21] ZHAO X,LI F,LIU Y,et al.Fatigue behavior of a box-type welded structure of hydraulic support used in coal mine[J].Materials,2015,8(10):6609-6622.

    • [22] HU D G,FAN X.Analysis of the strength and reliability of hydraulic support with finite element method[J].Advanced Materials Research,2012,619:225-230.

    • [23] WU P D,KONG J Y,GAO Y J,et al.Finite element analysis for hydraulic support[J].Advanced Materials Research,2012,510:4-8.

    • [24] LIU H W,PU G B,DU Y H,et al.Finite element analysis of static strength and fatigue strength of hydraulic shield support[J].Advanced Materials Research,2011,332-334:2161-2165.

    • [25] CHEN M F,XU G M,ZHANG L Y,et al.Virtual design and structural optimization of hydraulic support based on Pro/E software[J].Advanced Materials Research,2013,655-657:376-381.

    • [26] LI D M,TAN Y H,XU R Y,et al.Design and dynamic simulation for hydraulic support[J].Applied Mechanics and Materials,2013,456:230-233.

    • [27] ZHANG Y K,XIAO L J,YANG J R.Finite element simulation analysis of hydraulic support based on virtual prototype technology[J].Applied Mechanics and Materials,2012,217-219:1393-1396.

    • [28] 翟庆波.8.2 米大采高液压支架有限元分析及轻量化研究[D].青岛:山东科技大学,2017.ZHAI Qingbo.Finite element analysis and lightweight research of hydraulic support with 8.2 m large mining height[D].Qingdao:Shandong University of Science and Technology,2017.(in Chinese)

    • [29] 王晓乾.ZZ4800/14/30 型液压支架的强度分析[D].阜新:辽宁工程技术大学,2016.WANG Xiaoqian.Strength analysis of ZZ4800/14/30 hydraulic support[D].Fuxin:Liaoning Technical University,2016.(in Chinese)

    • [30] 赵勇.液压支架顶梁中焊缝处理对强度计算的影响分析[J].机械管理开发,2020,35(5):110-112.ZHAO Yong.Influence of weld treatment on strength calculation of hydraulic support top beam[J].Mechanical Management Development,2020,35(5):110-112.(in Chinese)

    • [31] 李臣阳,李福永,李争,等.液压支架结构件常见焊接缺陷分析[J].金属加工(热加工),2015(14):65-66.LI Chenyang,LI Fuyong,LI Zheng,et al.Analysis of common welding defects of hydraulic support structure[J].Machinist Metal Forming,2015(14):65-66.(in Chinese)

    • [32] 张秀军.液压支架焊接质量影响因素分析与控制研究[D].西安:西安科技大学,2014.ZHANG Xiujun.Analysis and control of welding quality of hydraulic support[D].Xi’ an:Xi’ an University of Science and Technology,2014.(in Chinese)

    • [33] 何龙龙.液压支架关键部位的有限元分析[D].西安:西安科技大学,2016.HE Longlong.Finite element analysis of key parts of hydraulic support[D].Xi`an:Xi`an University of Science and Technology,2016.(in Chinese)

    • [34] 洪岸柳.液压支架的结构强度与疲劳寿命分析[D].沈阳:东北大学,2012.HONG Anliu.Analysis of structural strength and fatigue life of hydraulic support[D].Shenyang:Northeastern University,2012.(in Chinese)

    • [35] 徐鹏博.两柱掩护式液压支架虚拟疲劳寿命分析研究[J].煤矿机械,2019,40(3):34-36.XU Pengbo.Virtual fatigue life analysis of two column shield hydraulic support[J].Coal Mining Machinery,2019,40(3):34-36.(in Chinese)

    • [36] 吕凯波.液压支架主体结构件的疲劳分析及其寿命预测的研究[D].太原:太原理工大学,2008.LÜ Kaibo.Study on fatigue analysis and life prediction of main structure of hydraulic support[D].Taiyuan:Taiyuan University of Technology,2008.(in Chinese)

    • [37] 王京涛,陆金桂,朱正权,等.液压支架疲劳寿命近似估算[J].工矿自动化,2017,43(3):39-42.WANG Jingtao,LU Jingui,ZHU Zhengquan,et al.Approximate estimation of fatigue life of hydraulic support[J].Industry and Mine Automation,2017,43(3):39-42.(in Chinese)

    • [38] 杨银忠,姚克明.基于神经网络的液压支架底座疲劳寿命预测[J].仪表技术与传感器,2018(10):95-97.YANG Yinzhong,YAO Keming.Fatigue life prediction of hydraulic support base based on Neural Network[J].Instrument Technique and Sensor,2018(10):95-97.(in Chinese)

    • [39] 李世科.基于 LM-BP 神经网络的液压支架顶梁疲劳寿命预测及应用[J].中国矿业,2019,28(5):92-96.LI Shike.Fatigue life prediction and application of hydraulic support top beam based on LM-BP neural network[J].China Mining Magazine,2019,28(5):92-96.(in Chinese)

    • [40] 李翠勤.液压支架主体结构件疲劳寿命分析[D].太原:太原理工大学,2012.LI Cuiqin.Fatigue life analysis of main structure of hydraulic support[D].Taiyuan:Taiyuan University of Technology,2012.(in Chinese)

    • [41] 郑晓雯,张衡,刘金龙,等.基于有限元法液压支架的疲劳寿命分析[J].矿山机械,2010,38(17):7-10.ZHENG Xiaowen,ZHANG Heng,LIU Jinlong,et al.Fatigue life analysis of hydraulic support based by finite element method[J].Coal Mining Machinery,2010,38(17):7-10.(in Chinese)

    • [42] 宋宇宁,徐晓辰.基于SolidWorks和 ANSYS 的液压支架顶梁疲劳可靠性分析[J].煤炭工程,2019,51(1):91-95.SONG Yuning,XU Xiaochen.Fatigue reliability analysis of hydraulic support top beam by SolidWorks and ANSYS[J].Coal Engineering,2019,51(1):91-95.(in Chinese)

    • [43] 廖文和,田威,曾超,等.激光熔覆再制造产品热损伤与寿命评估[M].北京:科学出版社,2017:141-143.LIAO Wenhe,TIAN Wei,ZENG Chao,et al.Thermal damage and the consequent fatigue life prediction for laser-cladding remanufactured products[M].Beijing:Science Press,2017:141-143.(in Chinese)

    • [44] 王海斗,邢志国,董丽虹.再制造零件与产品的疲劳寿命评估技术[M].哈尔滨:哈尔滨工业大学出版社,2019.WANG Haidou,XING Zhiguo,DONG Lihong.Fatigue life assessment technique for remanufactured parts and product[M].Harbin:Harbin Institute of Technology Press,2019.(in Chinese)

    • [45] 李强,马国庆,周海龙.综采液压支架再制造工艺:CN103264267A[P].2013-08-28.LI Qiqng,MA Guoqing,ZHOU Hailong.Remanufacturing technology of fully mechanized hydraulic support:CN103264267A[P].2013-08-28.(in Chinese)

    • [46] 赵东波,陆金桂,姚灵灵,等.在役液压支架部件剩余寿命估算[J].工矿自动化,2017,43(10):89-93.ZHAO Dongbo,LU Jingui,YAO Lingling,et al.Residual life estimation of in service hydraulic support components[J].Industry and Mine Automation,2017,43(10):89-93.(in Chinese)

    • [47] 刘东一.地铁车辆传动系统斜齿轮裂纹扩展分析及剩余寿命预估[D].北京:北京建筑大学,2020.LIU Dongyi.Crack propagation analysis and residual life prediction of helical gear in metro vehicle transmission system[D].Beijing:Beijing University of Civil Engineering and Architecture,2020.(in Chinese)

    • [48] 廖小伟.低温环境下桥梁钢材与焊接细节的疲劳性能研究[D].北京:清华大学,2018.LIAO Xiaowei.Study on fatigue properties of bridge steel and welding details at low temperature[D].Beijing:Tsinghua University,2018.(in Chinese)

    • [49] 宗亮.基于断裂力学的钢桥疲劳裂纹扩展与寿命评估方法研究[D].北京:清华大学,2015.ZONG Liang.Research on fatigue crack growth and life assessment method of steel bridge based on fracture mechanics[D].Beijing:Tsinghua University,2015.(in Chinese)

    • [50] HASUNUMA S,OKI S,MOTOMATSU K,et al.Fatigue life prediction of carbon steel with machined surface layer under low-cycle fatigue[J].International Journal of Fatigue,2019,123:255-267.

    • [51] 高杨坤.基于断裂力学的地铁枕梁剩余寿命预测[D].沈阳:东北大学,2015.GAO Yangkun.Residual life prediction of subway sleeper beam by fracture mechanics[D].Shenyang:Northeastern University,2015.(in Chinese)

    • [52] 凌骏,吴峰崎,周邵萍.基于有限元分析与有效应力强度因子幅的起重机寿命预估[J].华东理工大学学报(自然科学版),2015,41(03):424-428.LING Jun,WU Fengqi,ZHOU Shaoping.Life prediction of crane based on finite element analysis and effective stress intensity factor range[J].Journal of East China University of Science and Technology(Natural Science Edition),2015,41(3):424-428.(in Chinese)

  • 参考文献

    • [1] 任怀伟.液压支架关键零部件材料性能分析及工艺研究[J].煤矿开采,2015,20(4):1-4.REN Huaiwei.Material performance analysis and process research of key components of hydraulic support[J].Coal Mining Technology,2015,20(4):1-4.(in Chinese)

    • [2] 王本海.ZY7600/24/50 型掩护式液压支架损坏情况分析[J].煤矿机械,2010,31(8):208-209.WANG Benghai.Damage analysis of ZY7600/24/50 shield hydraulic support[J].Coal Mining Machinery,2010,31(8):208-209.(in Chinese)

    • [3] 张伟.煤矿用液压支架常见失效形式及其对策分析[J].煤矿开采,2017,22(6):22-25.ZHANG Wei.Analysis of common failure forms and Countermeasures of hydraulic support used in coal mine[J].Coal Mining Technology,2017,22(6):22-25.(in Chinese)

    • [4] 张晓菲.煤矿液压支架常见故障及防范措施[J].能源与节能,2019(3):111-112.ZHANG Xiaofei.Common faults and preventive measures of coal mine hydraulic support[J].Energy and Energy Conservation,2019(3):111-112.(in Chinese)

    • [5] 李俊珑.复杂箱形结构件多轴疲劳寿命预测方法研究 [D].太原:太原理工大学,2013.LI Junlong.Research on multiaxial fatigue life prediction method of complex box structure[D].Journal of Taiyuan University of Technology,2013.(in Chinese)

    • [6] 赵永美.煤矿液压支架立柱、千斤顶失效分析及解决方案[J].山东煤炭科技,2020(5):145-146.ZHAO Yongmei.Failure analysis and solution of hydraulic support column and Jack in coal mine[J].Shandong Coal Science and Technology,2020(5):145-146.(in Chinese)

    • [7] 孔淑敏,张孝廉,张青雨.液压支架支撑座损坏的分析与处理[J].水力采煤与管道运输,2002(1):37-39.KONG Shumin,ZHANG Xiaolian,ZHANG Qingyu.Analysis and treatment of the damage of the support seat of the hydraulic support[J].Hydraulic Coal Mining & Pipeline Transportation,2002(1):37-39.(in Chinese)

    • [8] 段孟杰.液压支架立柱腐蚀失效分析及防范措施[J].河北煤炭,2002(5):28-29.DUAN Mengjie.Corrosion failure analysis and preventive measures of hydraulic support column[J].Hebei Coal,2002(5):28-29.(in Chinese)

    • [9] 赵文轸,师文章.液压支架活柱腐蚀失效分析[J].煤矿机械,1989(3):1-5.ZHAO Wenzhen,SHI Wenzhang.Corrosion failure analysis of movable column of hydraulic support[J].Coal Mining Machinery,1989(3):1-5.(in Chinese)

    • [10] 程相榜,孟贺超,张自强.液压支架油缸内表面的腐蚀原因[J].腐蚀与防护,2017,38(5):407-409.CHENG Xiangbang,MENG Hechao,ZHANG Ziqiang.Corrosion causes of inner surface of hydraulic support cylinder[J].Corrosion & Protection,2017,38(5):407-409.(in Chinese)

    • [11] 李臣阳,兰志宇,程相榜,等.液压支架立柱千斤顶失效分析及预防措施[J].煤矿机械,2020,41(2):146-148.LI Chenyang,LAN Zhiyu,CHENG Xiangbang,et al.Failure analysis and preventive measures of hydraulic support column jack[J].Coal Mining Machinery,2020,41(2):146-148.(in Chinese)

    • [12] 张小卫,马军涛,黄鑫,等.矿用柱窝裂纹的原因分析及改进措施[J].煤矿机械,2015,36(7):235-236.ZHANG Xiaowei,MA Juntao,HUANG Xin,et al.Cause analysis and improvement measures of cracks in mining pillar socket[J].Coal Mining Machinery,2015,36(7):235-236.(in Chinese)

    • [13] 李俊珑,刘混举,潘雪荣.液压支架销轴断裂失效分析 [J].煤矿机械,2013,34(6):99-101.LI Junlong,LIU Hunju,PAN Xuerong.Fracture failure analysis of hydraulic support pin[J].Coal Mining Machinery,2013,34(6):99-101.(in Chinese)

    • [14] 骞杉.ZY4000 型液压支架设计及有限元分析[D].西安:西安理工大学,2017.QIAN Shan.Design and finite element analysis of ZY4000 hydraulic support[D].Journal of Xi'an University of Technology,2017.(in Chinese)

    • [15] 夏秋仲.液压支架关键部件力学性能有限元分析[D].阜新:辽宁工程技术大学,2007.XIA Zhongqiu.Finite element analysis on mechanical properties of key components of hydraulic support[D].Fuxin:Liaoning University of Engineering and Technology,2007.(in Chinese)

    • [16] LIU H,FAN X.Computer simulation and model test research on strength test of hydraulic support[C]//Precision Mechanical Measurements pt.2,2006:62803W-1-62803W-6.

    • [17] LIU H Y.Three dimensions construction model and finite element analysis of hydraulic support and relevant model[J].Advanced Materials Research,2011,189-193:4451-4454.

    • [18] 陈静.液压支架强度可靠性优化设计方法研究[D].徐州:中国矿业大学,2014.CHEN Jing.Research on strength reliability optimization design method of hydraulic support[D].Xuzhou:University of Mining and Technology,2014.(in Chinese)

    • [19] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 25974.2—2010,煤矿用液压支架第2部分:立柱和千斤顶技术条件[S].北京:中国标准出版社.2011.General Administration of Quality Supervision,Inspectionand Quarantine of the People’ s Republic of China,Standardization Adiministration of the People’s Republic of China.GB/T 25974.2—2010,Powered support for coal mine-Part 2:Specification for power set legs and rams[S].Beijing:China Standard Press,2011.(in Chinese)

    • [20] HE W,CHEN Z,DU J,et al.Finite element analysis of combination condition of ZF6400/19/32 hydraulic support[C]//IOP Conf.Series:Materials Science and Engineering,2019.

    • [21] ZHAO X,LI F,LIU Y,et al.Fatigue behavior of a box-type welded structure of hydraulic support used in coal mine[J].Materials,2015,8(10):6609-6622.

    • [22] HU D G,FAN X.Analysis of the strength and reliability of hydraulic support with finite element method[J].Advanced Materials Research,2012,619:225-230.

    • [23] WU P D,KONG J Y,GAO Y J,et al.Finite element analysis for hydraulic support[J].Advanced Materials Research,2012,510:4-8.

    • [24] LIU H W,PU G B,DU Y H,et al.Finite element analysis of static strength and fatigue strength of hydraulic shield support[J].Advanced Materials Research,2011,332-334:2161-2165.

    • [25] CHEN M F,XU G M,ZHANG L Y,et al.Virtual design and structural optimization of hydraulic support based on Pro/E software[J].Advanced Materials Research,2013,655-657:376-381.

    • [26] LI D M,TAN Y H,XU R Y,et al.Design and dynamic simulation for hydraulic support[J].Applied Mechanics and Materials,2013,456:230-233.

    • [27] ZHANG Y K,XIAO L J,YANG J R.Finite element simulation analysis of hydraulic support based on virtual prototype technology[J].Applied Mechanics and Materials,2012,217-219:1393-1396.

    • [28] 翟庆波.8.2 米大采高液压支架有限元分析及轻量化研究[D].青岛:山东科技大学,2017.ZHAI Qingbo.Finite element analysis and lightweight research of hydraulic support with 8.2 m large mining height[D].Qingdao:Shandong University of Science and Technology,2017.(in Chinese)

    • [29] 王晓乾.ZZ4800/14/30 型液压支架的强度分析[D].阜新:辽宁工程技术大学,2016.WANG Xiaoqian.Strength analysis of ZZ4800/14/30 hydraulic support[D].Fuxin:Liaoning Technical University,2016.(in Chinese)

    • [30] 赵勇.液压支架顶梁中焊缝处理对强度计算的影响分析[J].机械管理开发,2020,35(5):110-112.ZHAO Yong.Influence of weld treatment on strength calculation of hydraulic support top beam[J].Mechanical Management Development,2020,35(5):110-112.(in Chinese)

    • [31] 李臣阳,李福永,李争,等.液压支架结构件常见焊接缺陷分析[J].金属加工(热加工),2015(14):65-66.LI Chenyang,LI Fuyong,LI Zheng,et al.Analysis of common welding defects of hydraulic support structure[J].Machinist Metal Forming,2015(14):65-66.(in Chinese)

    • [32] 张秀军.液压支架焊接质量影响因素分析与控制研究[D].西安:西安科技大学,2014.ZHANG Xiujun.Analysis and control of welding quality of hydraulic support[D].Xi’ an:Xi’ an University of Science and Technology,2014.(in Chinese)

    • [33] 何龙龙.液压支架关键部位的有限元分析[D].西安:西安科技大学,2016.HE Longlong.Finite element analysis of key parts of hydraulic support[D].Xi`an:Xi`an University of Science and Technology,2016.(in Chinese)

    • [34] 洪岸柳.液压支架的结构强度与疲劳寿命分析[D].沈阳:东北大学,2012.HONG Anliu.Analysis of structural strength and fatigue life of hydraulic support[D].Shenyang:Northeastern University,2012.(in Chinese)

    • [35] 徐鹏博.两柱掩护式液压支架虚拟疲劳寿命分析研究[J].煤矿机械,2019,40(3):34-36.XU Pengbo.Virtual fatigue life analysis of two column shield hydraulic support[J].Coal Mining Machinery,2019,40(3):34-36.(in Chinese)

    • [36] 吕凯波.液压支架主体结构件的疲劳分析及其寿命预测的研究[D].太原:太原理工大学,2008.LÜ Kaibo.Study on fatigue analysis and life prediction of main structure of hydraulic support[D].Taiyuan:Taiyuan University of Technology,2008.(in Chinese)

    • [37] 王京涛,陆金桂,朱正权,等.液压支架疲劳寿命近似估算[J].工矿自动化,2017,43(3):39-42.WANG Jingtao,LU Jingui,ZHU Zhengquan,et al.Approximate estimation of fatigue life of hydraulic support[J].Industry and Mine Automation,2017,43(3):39-42.(in Chinese)

    • [38] 杨银忠,姚克明.基于神经网络的液压支架底座疲劳寿命预测[J].仪表技术与传感器,2018(10):95-97.YANG Yinzhong,YAO Keming.Fatigue life prediction of hydraulic support base based on Neural Network[J].Instrument Technique and Sensor,2018(10):95-97.(in Chinese)

    • [39] 李世科.基于 LM-BP 神经网络的液压支架顶梁疲劳寿命预测及应用[J].中国矿业,2019,28(5):92-96.LI Shike.Fatigue life prediction and application of hydraulic support top beam based on LM-BP neural network[J].China Mining Magazine,2019,28(5):92-96.(in Chinese)

    • [40] 李翠勤.液压支架主体结构件疲劳寿命分析[D].太原:太原理工大学,2012.LI Cuiqin.Fatigue life analysis of main structure of hydraulic support[D].Taiyuan:Taiyuan University of Technology,2012.(in Chinese)

    • [41] 郑晓雯,张衡,刘金龙,等.基于有限元法液压支架的疲劳寿命分析[J].矿山机械,2010,38(17):7-10.ZHENG Xiaowen,ZHANG Heng,LIU Jinlong,et al.Fatigue life analysis of hydraulic support based by finite element method[J].Coal Mining Machinery,2010,38(17):7-10.(in Chinese)

    • [42] 宋宇宁,徐晓辰.基于SolidWorks和 ANSYS 的液压支架顶梁疲劳可靠性分析[J].煤炭工程,2019,51(1):91-95.SONG Yuning,XU Xiaochen.Fatigue reliability analysis of hydraulic support top beam by SolidWorks and ANSYS[J].Coal Engineering,2019,51(1):91-95.(in Chinese)

    • [43] 廖文和,田威,曾超,等.激光熔覆再制造产品热损伤与寿命评估[M].北京:科学出版社,2017:141-143.LIAO Wenhe,TIAN Wei,ZENG Chao,et al.Thermal damage and the consequent fatigue life prediction for laser-cladding remanufactured products[M].Beijing:Science Press,2017:141-143.(in Chinese)

    • [44] 王海斗,邢志国,董丽虹.再制造零件与产品的疲劳寿命评估技术[M].哈尔滨:哈尔滨工业大学出版社,2019.WANG Haidou,XING Zhiguo,DONG Lihong.Fatigue life assessment technique for remanufactured parts and product[M].Harbin:Harbin Institute of Technology Press,2019.(in Chinese)

    • [45] 李强,马国庆,周海龙.综采液压支架再制造工艺:CN103264267A[P].2013-08-28.LI Qiqng,MA Guoqing,ZHOU Hailong.Remanufacturing technology of fully mechanized hydraulic support:CN103264267A[P].2013-08-28.(in Chinese)

    • [46] 赵东波,陆金桂,姚灵灵,等.在役液压支架部件剩余寿命估算[J].工矿自动化,2017,43(10):89-93.ZHAO Dongbo,LU Jingui,YAO Lingling,et al.Residual life estimation of in service hydraulic support components[J].Industry and Mine Automation,2017,43(10):89-93.(in Chinese)

    • [47] 刘东一.地铁车辆传动系统斜齿轮裂纹扩展分析及剩余寿命预估[D].北京:北京建筑大学,2020.LIU Dongyi.Crack propagation analysis and residual life prediction of helical gear in metro vehicle transmission system[D].Beijing:Beijing University of Civil Engineering and Architecture,2020.(in Chinese)

    • [48] 廖小伟.低温环境下桥梁钢材与焊接细节的疲劳性能研究[D].北京:清华大学,2018.LIAO Xiaowei.Study on fatigue properties of bridge steel and welding details at low temperature[D].Beijing:Tsinghua University,2018.(in Chinese)

    • [49] 宗亮.基于断裂力学的钢桥疲劳裂纹扩展与寿命评估方法研究[D].北京:清华大学,2015.ZONG Liang.Research on fatigue crack growth and life assessment method of steel bridge based on fracture mechanics[D].Beijing:Tsinghua University,2015.(in Chinese)

    • [50] HASUNUMA S,OKI S,MOTOMATSU K,et al.Fatigue life prediction of carbon steel with machined surface layer under low-cycle fatigue[J].International Journal of Fatigue,2019,123:255-267.

    • [51] 高杨坤.基于断裂力学的地铁枕梁剩余寿命预测[D].沈阳:东北大学,2015.GAO Yangkun.Residual life prediction of subway sleeper beam by fracture mechanics[D].Shenyang:Northeastern University,2015.(in Chinese)

    • [52] 凌骏,吴峰崎,周邵萍.基于有限元分析与有效应力强度因子幅的起重机寿命预估[J].华东理工大学学报(自然科学版),2015,41(03):424-428.LING Jun,WU Fengqi,ZHOU Shaoping.Life prediction of crane based on finite element analysis and effective stress intensity factor range[J].Journal of East China University of Science and Technology(Natural Science Edition),2015,41(3):424-428.(in Chinese)

  • 手机扫一扫看