en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

周志祥,男,1998年出生,硕士研究生。主要研究方向为金属表面防腐蚀技术。E-mail:1144134627@qq.com;

魏世丞(通信作者),男,教授,博士研究生导师。主要研究方向为隐身材料和腐蚀防护技术。E-mail:wsc33333@163.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20210811004

参考文献 1
YAO Y C,SUN H,ZHANG Y L,et al.Corrosion protection of epoxy coatings containing 2-hydroxy phosphonocarboxylic acid doped polyaniline nanofibers[J].Progress in Organic Coatings,2020,139:105470.
参考文献 2
HOU B L,LI X G,MA X M,et al.The cost of corrosion in China[J].NPJ Materials Degradation,2017,1(1):1-10.
参考文献 3
WU C H,WANG J X,SONG S S,et al.Antifouling and anticorrosion performance of the composite coating made of tetrabromobisphenol-A epoxy and polyaniline nanowires[J].Progress in Organic Coatings,2020,148:105888.
参考文献 4
LEI X D,WANG L N,ZHAO X H,et al.Oriented CuZnAl ternary layered double hydroxide films:In situ hydrothermal growth and anticorrosion properties[J].Industrial & Engineering Chemistry Research,2013,52(50):17934-17940.
参考文献 5
BU Y Y,CHEN,Z Y,AO J P,et al.Study of the photoelectrochemical cathodic protection mechanism for steel based on the SrTiO3-TiO2 composite[J].Journal of Alloys and Compounds,2018,731:1214-1224.
参考文献 6
KHOSRAVI F,NOURI KHORASANI S,REZVANI GHOMI E,et al.A bilayer GO/nanofibrous biocomposite coating to enhance 316L stainless steel corrosion performance[J].Materials Research Express,2019,6(8):86470.
参考文献 7
GAO F,LUO Y F,XU J H,et al.Preparation of graphene oxide-based polyaniline composites with synergistic anticorrosion effect for waterborne polyurethane anticorrosive coatings[J].Progress in Organic Coatings,2021,156:106233.
参考文献 8
LI A H,CHEN S F,MA Z D,et al.Corrosion protection properties of polyvinyl butyral/polyaniline-graphene oxide/poly(methylhydrosiloxane)composite coating for AA2024 aluminum alloy[J].Diamond and Related Materials,2021,116:108397.
参考文献 9
DEBERRY D W.Modification of the Electrochemical and corrosion behavior of stainless steels with an Electroactive coating[J].Journal of the Electrochemical Society,1985,132(5):1022.
参考文献 10
MOTLATLE A M,RAY S S,SCRIBA M.Polyaniline-clay composite-containing epoxy coating with enhanced corrosion protection and mechanical properties[J].Synthetic Metals,2018,245:102-110.
参考文献 11
HAO Y S,ABDULLAHI SANI L,GE T J,et al.Phyticacid doped polyaniline containing epoxy coatings for corrosion protection of Q235 carbon steel[J].Applied Surface Science,2017,419:826-837.
参考文献 12
HANY M,EL-LATEEF H M,KHALAF M M,et al.Novel dispersed Tl2O3-SiO2/polyaniline nanocomposites:In-situ polymerization,characterization and enforcement as a corrosion protective layer for carbon-steel in acidic chloride medium[J].Colloids and Surfaces A,2019,573:95-111.
参考文献 13
MACDIARMID A G,CHIANG J C,RICHTER A J,et al.Polyaniline:A new concept in conducting polymers[J].Synthetic Metals,1987,18(1-3):285-290.
参考文献 14
LIU S Y,LIU L,WEI X X,et al.Oxide film formed on Al alloy beneath sulfosalicylic acid doped polyaniline incorporated into epoxy organic coating[J].Applied Surface Science,2020,512:144840.
参考文献 15
SHETTY K,JAYADEV,RAJ K,et al.Synthesis,characterization and corrosion studies of polyanailine(PANI)/ceriem dioxide(CeO2)nano composite[J].Materials Today:Proceedings,2020,27(3):2158-2163.
参考文献 16
NAUTIYAL A,COOK J E,ZHANG X Y.Tunable electrochemical performance of polyaniline coating via facile ion exchanges[J].Progress in Organic Coatings,136:105309.
参考文献 17
SATHIYANARAYANAN S,KARPAKAM V,KAMARAJ K,et al.Sulphonate doped polyaniline containing coatings for corrosion protection of iron[J].Surface and Coatings Technology,2010,204(9):1426-1431.
参考文献 18
BILAL S,FAROOQ S,SHAH ALI A U H,et al.Improved solubility,conductivity,thermal stability and corrosion protection properties of poly(o-toluidine)synthesized via chemical polymerization[J].Synthetic Metals 2014,197:144-153.
参考文献 19
HUR E,BEREKET G,SAHIN Y.Anti-corrosive properties of polyaniline,poly(2-toluidine),and poly(aniline-co-2-toluidine)coatings on stainless steel[J].Current Applied Physics,2007,7(6):597-604.
参考文献 20
CHAUDHARI S,PATIL P P.Corrosion protective poly(o-ethoxyaniline)coatings on copper[J].Electrochimica Acta,2007,53(2):927-933.
参考文献 21
XING C J,ZHANG Z M,YU L M,et al.Electrochemical corrosion behavior of carbon steel coated by polyaniline copolymers micro/nanostructures[J].RSC Advances,2014,4(62):32718-32725.
参考文献 22
LI C,LI Y,WANG X,et al.Synthesis of hydrophobic fluoro-substituted polyaniline filler for the long-term anti-corrosion performance enhancement of epoxy coatings[J].Corrosion Science,2020,178:109094.
参考文献 23
BEREKET G,DURAN B.Anticorrosive properties of electrosynthesized poly(m-aminophenol)on copper from aqueous phenylphosphonic acid solution[J].Progress in Organic Coatings,2009,64(1):57-66.
参考文献 24
IQBAL Z,LAI E P C,AVIS T J.Antimicrobial effect of polydopamine coating on Escherichia coli[J].Journal of Materials Chemistry,2012,22(40):21608-21612.
参考文献 25
MA A H,HU T W,SHAN S Y,et al.Morphologies and antibacterial properties of poly(o-aminophenol)[J].Polymers for Advanced Technologies,2014,25(5):575-580.
参考文献 26
QUAN X D,WANG J X,ZHAO S,et al.Improved antibacterial,antifouling and corrosion protective performance of epoxy coatings with poly(m-aminophenol)[J].Progress in Organic Coatings,2018,115:9-17.
参考文献 27
MADHANKUMAR A,RAJENDRAN N.Poly(m-phenylendiamine-co-o-aminophenol)coatings on mild steel:Effect of comonomers feed ratio on surface and corrosion protection aspects[J].Progress in Organic Coatings,2013,76(10):1445-1453.
参考文献 28
ARMELIN E,PLA R,LIESA F,et al.Corrosion protection with polyaniline and polypyrrole as anticorrosive additives for epoxy paint[J].Corrosion Science,2008,50(3):721-8.
参考文献 29
MADHANKUMAR A,RAJENDRAN N.A promising copolymer of p-phenylendiamine and o-aminophenol:Chemical and electrochemical synthesis,characterization and its corrosion protection aspect on mild steel[J].Synthetic Metals,2012,162(1-2):176-185.
参考文献 30
QUAN X D,WANG J X,SOULEYMAN T,et al.Antibacterial and antifouling performance of bisphenol-A/Poly(ethylene glycol)binary epoxy coatings containing bromine-benzyl-disubstituted polyaniline[J].Progress in Organic Coatings,2018,124:61-70.
参考文献 31
ZEYBEK B,PEKMEZ N O,KILIC E.Electrochemical synthesis of bilayer coatings of poly(N-methylaniline)and polypyrrole on mild steel and their corrosion protection performances[J].Electrochimica Acta,2011,56(25):9277-9286.
参考文献 32
LIU S Y,LIU L,LI Y,et al.Effects of N-alkylation on anticorrosion performance of doped polyaniline/epoxy coating[J].Journal of Materials Science & Technology,2020,39:48-55.
参考文献 33
NAJJAR R,ADIB KATOURANI S,GHASEM HOSSEINI M,et al.Self-healing and corrosion protection performance of organic polysulfide@urea-formaldehyde resin core-shell nanoparticles in epoxy/PANI/ZnO nanocomposite coatings on anodized aluminum alloy[J].Progress in Organic Coatings,2018,124:110-121.
参考文献 34
LI Y F,LI J Y,GAO X H,et al.Synthesis of stabilized dispersion covalently-jointed SiO2@polyaniline with core-shell structure and anticorrosion performance of its hydrophobic coating for Mg-Li alloy[J].Applied Surface Science,2018,462:362-372.
参考文献 35
SHI S E,ZHANG Z M,YU L M.Hydrophobic polyaniline/modified SiO2 coatings for anticorrosion protection[J].Synthetic Metals,2017,233:94-100.
参考文献 36
PAGOTTO J F,RECIO F J,MOTHEO A J,et al.Multilayers of PAni/n-TiO2 and PAni on carbon steel and welded carbon steel for corrosion protection[J].Surface and Coatings Technology,2016,289:23-28.
参考文献 37
BANDEIRA R M,VAN DRUNEN J,GARCIA A C,et al.Influence of the thickness and roughness of polyaniline coatings on corrosion protection of AA7075 aluminum alloy[J].Electrochimica Acta,2017,240:215-224.
参考文献 38
LEI Y H,QIU Z C,TAN N,et al.Polyaniline/CeO2 nanocomposites as corrosion inhibitors for improving the corrosive performance of epoxy coating on carbon steel in 3.5% NaCl solution[J].Progress in Organic Coatings,2020,139:105430
参考文献 39
MOSTAFAEI A,NASIRPOURI F.Epoxy/polyaniline-ZnO nanorods hybrid nanocomposite coatings:Synthesis,characterization and corrosion protection performance of conducting paints[J].Progress in Organic Coatings,2014,77(1):146-159.
参考文献 40
SUMI V S,ARUNIMA S R,DEEPA M J,et al.PANI-Fe2O3 composite for enhancement of active life of alkyd resin coating for corrosion protection of steel[J].Materials Chemistry and Physics,2020,247:122881.
参考文献 41
PLESU N,ILIA G,PASCARIU A,et al.Preparation,degradation of polyaniline doped with organic phosphorus acids and corrosion essays of polyaniline-acrylic blends[J].Synthetic Metals,2006,156(2-4):230-238.
参考文献 42
SATHIYANARAYANAN S,MUTHUKRISHNAN S,VENKATACHARI G,et al.Corrosion protection of steel by polyaniline(PANI)pigmented paint coating[J].Progress in Organic Coatings,2005,53(4):297-301.
参考文献 43
TORRESI R M,SOUZA S D,SILVA J E P D,et al.Galvanic coupling between metal substrate and polyaniline acrylic blends:Corrosion protection mechanism[J].Electrochimica Acta,2005,50(11):2213-2218.
参考文献 44
KAMARAJ K,SATHIYANARAYANAN S,MUTHUKRISHNAN S,et al.Corrosion protection of iron by benzoate doped polyaniline containing coatings[J].Progress in Organic Coatings,2009,64(4):460-465.
参考文献 45
NASCIMENTO G M D,SILVA J E P D,TORRESI S I C D,et al.Comparison of secondary doping and thermal treatment in poly(diphenylamine)and polyaniline monitored by resonance raman spectroscopy[J].Macromolecules,2001,35(1):121-125.
参考文献 46
ZHANG Y J,SHAO Y W,ZHANG T,et al.The effect of epoxy coating containing emeraldine base and hydrofluoric acid doped polyaniline on the corrosion protection of AZ91D magnesium alloy[J].Corrosion Science,2011,53(11):3747-3755.
参考文献 47
GAO F J,MU J,BI Z X,et al.Recent advances of polyaniline composites in anticorrosive coatings:A review[J].Progress in Organic Coatings,2021,151:106071.
参考文献 48
胡传波,厉英,孔亚州,等.改性聚苯胺及其衍生物涂层的防腐性能[J].化学进展,2016,28(8):1238-1250.HU Chuanbo,LI Ying,KONG Yazhou,et al.Anticorrosion properties of modified polyanilines and its derivatives coatings[J].Progress in Chemistry,2016,28(8):1238-1250.(in Chinese)
参考文献 49
CHANG C H,HUANG T C,PENG C W,et al.Novel anticorrosion coatings prepared from polyaniline/graphene composites[J].Carbon,2012,50(14):5044-5051.
参考文献 50
JAFARI Y,GHOREISHI S M,SHABANI-NOOSHABADI M.Polyaniline/graphene nanocomposite coatings on copper:Electropolymerization,characterization,and evaluation of corrosion protection performance[J].Synthetic Metals,2016,217:220-230.
参考文献 51
TAHERI N N,RAMEZANZADEH B,MAHDAVIAN M,et al.In-situ synthesis of Zn doped polyaniline on graphene oxide for inhibition of mild steel corrosion in 3.5 wt.% chloride solution[J].Journal of Industrial and Engineering Chemistry,2018,63:322-339.
参考文献 52
王传洁,杨小刚,李斌,等.石墨烯/酒石酸掺杂态聚苯胺的制备及防腐性能[J].高分子材料科学与工程,2019,35(6):143-148.WANG Chuanjie,YANG Xiaogang,LI Bin,et al.Preparation and anticorrosion properties of graphene/tartaric acid doped polyaniline[J].Polymer Materials Science & Engineering,2019,35(6):143-148.(in Chinese)
参考文献 53
ZHOU C,HONG M,YANG Y,et al.Engineering sulfonated polyaniline molecules on reduced graphene oxide nanosheets for high-performance corrosionprotective coatings[J].Applied Surface Science,2019,484:663-675.
参考文献 54
QIU G D,ZHU A P,ZHANG C Q.Hierarchically structured carbon nanotube–polyaniline nanobrushes for corrosion protection over a wide pH range[J].RSC Advances,2017,7(56):35330-35339.
参考文献 55
KUMAR M A,GASEM Z M,et al.Effect of functionalization of carbon nanotubes on mechanical and electrochemical behavior of polyaniline nanocomposite coatings[J].Surface and Coatings Technology,2015,276:416-423.
目录contents

    摘要

    聚苯胺因其可逆的氧化还原特性在金属腐蚀与防护领域具有广阔的应用前景,目前有关改性聚苯胺对涂层附着力、阻隔性能以及钝化机理的研究比较零散,缺乏系统总结。通过对单一聚苯胺分散性差、疏水性弱等缺陷的分析,报道近年来改性聚苯胺在防腐涂料领域中的研究思路和研究进展,比较不同条件下改性策略的优劣,归纳聚苯胺结构与涂层耐腐蚀性之间存在的联系。进一步论证柔性、疏水基团取代聚苯胺有利于提升涂层抗渗性,改变掺杂剂以及与纳米氧化物、石墨烯等原位聚合制备复合填料也是提升涂层防腐性能的有效途径。展望该行业未来研究和发展的趋势,可为今后聚苯胺的改性工作提供理论指导。

    Abstract

    Polyaniline has promising prospects in the field of metal corrosion protection due to its reversible redox properties. Investigation on the adhesion, barrier properties and passivation mechanism of modified polyaniline composite coatings is relatively scattered, which needs to be summarized logically. Through the analysis of defects such as poor dispersion and weak hydrophobicity of ordinary polyaniline, this paper reports the research ideas and advances of anticorrosive coatings incorporated polyaniline and its derivative in recent years. The merits of modification strategies under different condition are compared and the relevance between the structure of polyaniline and the corrosion resistance is concluded, further demonstrating that flexible or hydrophobic substituents are conducive to the impermeability of organic coatings. There is also other polyaniline modification approach from the aspects of altering dopant and in-situ polymerization with nano-oxides or graphene for improving anticorrosion performance. The future development trends of the industry are prospected, providing theoretical guidance for the future study.

  • 0 前言

  • 金属材料因其优异的物理、化学以及力学性能而广泛应用于人们的日常生活。然而,金属腐蚀不仅会造成大量的资源浪费,还会引发严重的安全事故[1, 2]。有调查显示,2014年我国因腐蚀导致的经济损失达2.1万亿元,占国民生产总值的3.34%。长期以来,研究人员不断开发先进的耐腐蚀技术以满足不同条件下的金属保护,如涂层[3]、耐腐蚀合金保护[4]、阴极保护[5]等。涂层具有良好的热稳定性、易加工制备且防腐性能优越,被认为是最有前景的防腐技术。但在涂层固化这一过程中,随着溶剂的蒸发会在涂层内部形成大量的微孔,外部环境中的腐蚀性物质(如O2、H2O、 Cl 等)易穿过这些微孔接触金属表面,导致基底出现缺陷和裂痕,极大地损害了涂层的阻隔性能[6]

  • 作为一种新型的高分子材料,聚苯胺(PANI) 因其独特的氧化还原可逆性、易加工制备和无毒无害等特性[7-8],有望成为一种可替代重金属的电化学活性防腐剂。1985年,DEBERRY等[9]发现电沉积在不锈钢表面的聚苯胺薄膜能显著降低金属基底在硫酸溶液中的腐蚀速率,开辟了导电高分子在耐腐蚀涂层领域的应用。近年来,大量有关聚苯胺防腐涂层的改进工作被报道。MOTLATLE等[10]制备了聚苯胺/蒙脱土复合材料,改善了涂层表面形貌和力学性能。HAO等[11]采用植酸(PA)作为苯胺化学聚合反应的掺杂剂,植酸离子与铁离子的螯合作用促进了涂层的自我修复能力。HANY等[12] 研究了酸性环境下负载Tl2O3-SiO2 纳米颗粒的聚苯胺对碳钢的保护行为。然而,选择聚苯胺作为涂层填料要解决聚苯胺团聚严重的问题,同时提高涂层的长期耐蚀性和表面附着力。本文论述了聚苯胺的基本性质,从分子设计、与其他颜料(纳米氧化物、石墨烯、碳纳米管等)制备复合材料、改变掺杂剂等几个方面系统地论述了近年来聚苯胺在防腐涂料领域内的研究进展,旨在为今后聚苯胺的改性研究提供理论指导。

  • 1 聚苯胺的防腐机理

  • 聚苯胺是由苯胺阳离子自由基聚合而成的一类导电高分子。关于聚苯胺主链分子构型一直有很多不同的看法。1987年,MACDIARMID等[13] 提出大多数人接受的苯式 (还原单元)-醌式 (氧化单元) 骨架构型,如图1所示,即不同比例的苯/醌分别对应聚苯胺的三种氧化还原形态:当主链为全苯环结构时,聚苯胺被完全还原 (Leucoemeraldine base, LB),即x=1;当分子主链为半醌式结构(Pernigraniline base,x=0)时,聚苯胺被完全氧化,即x=0;当苯环和醌式两种单元数量比为3∶1时,即x=0.5,此时聚苯胺处于半还原半氧化的本征态(emeraldine base, EB)。值得注意的是,聚苯胺的氧化还原程度取决于氧化聚合的化学环境及处理方式,上述三种形式的聚苯胺可以通过可逆的氧化还原反应相互转化。

  • 图1 聚苯胺的氧化还原性和钝化机理

  • Fig.1 Reducibility and corrosion passivation mechanism of polyaniline

  • 聚苯胺的防腐机理尚未确定。LIU和SHETYY等[14-15]认为聚苯胺可以稳定金属的腐蚀电位,并在金属和涂层之间形成致密的钝化层,显著增强涂层对不锈钢的保护能力。具体过程如下:当腐蚀介质渗透到涂层/不锈钢界面时,Fe首先被氧化成Fe3+ 并释放电子,随后导电态PANI(ES)去掺杂成绝缘态PANI(EB)并释放酸根离子A,接着半氧化态PANI(EB)被氧化成LB态。然后,PANI(EB) 参与水的氧化反应又还原成EB,同时水反应后的产物OH 与Fe3+结合进而生成钝化物Fe2O3。由于PANI可逆的氧化还原性,该过程将持续循环发生,最终在金属表面生成钝化膜。

  • 质子酸掺杂是导电高分子最突出的特点之一,不同酸掺杂后的聚苯胺具有各种功能性(如导电性、溶解性、杀菌性),这种特性是聚苯胺应用到催化剂、能源储存、传感器以及微孔滤膜等领域的基础[16]。掺杂-脱掺杂过程是聚苯胺主链上质子化氨基与环境中的阴离子基团相互作用的结果,采用合理的酸掺杂可以达到化学修饰聚苯胺的目的。聚苯胺发挥氧化还原作用促钝化层形成的同时伴随着脱掺杂现象,脱掺杂的阴离子An 与金属离子Fe3+结合形成稳定不溶的配合物FenA3 会进一步强化涂层的阻隔作用[17]

  • 2 聚苯胺衍生物

  • 聚苯胺主链上的π-π共轭结构使得分子具有很强的刚性,因而不溶于常规的有机溶剂。理论上提高涂层中聚苯胺组分的含量有助于稳定金属的腐蚀电位,形成更加致密的氧化膜,但随着聚苯胺含量的增加,填料的自聚集现象加剧,与树脂的相容性发生改变,涂层内部出现缺陷,导致涂层的阻隔性能受损。通过引入取代基团、柔性烷基链等方式合理地设计聚苯胺分子构型,削弱聚苯胺的共轭程度的同时不同程度地提升涂层的力学性能。例如,在研究的早期人们认为在苯环上引入供电子基团,如-CH3 [18]、-C2H5 [19]、-OCH3 [20],能增强分子间空间位阻,同时优化聚合物在有机溶剂中的分散性。潮湿环境下疏水基团取代的聚苯胺会有更好的防腐效果,疏水表面妨碍了涂层对水介质的吸收,抑制了腐蚀性介质的渗透作用。为研究涂层润湿性与防护性能的关系,XING等[21]分别将苯胺单体与带有疏水基团的间氨基苯磺酸和间氨基苯甲酸、带有憎水基团的甲基苯胺和乙基苯胺共聚,研究了涂层润湿性与防护性能的关系。测得聚苯胺衍生物填料的水接触角(WCA)由低到高依次是PANI-SO3H (15°)< PANI-COOH (18°)< PANI (24°)< PANI-CH3 (36°)< PANI-C2H5 (125°),其对应涂层的防腐能力也依次增强。最终PANI-C2H5 涂覆的碳钢达到接近80%的防腐效率。电化学测试观察到环氧树脂/疏水性共聚物涂料未能提供阳极保护却能有效抑制阴极反应,同时阳极腐蚀过程的H+ 吸收过程受到了限制。

  • 2020年,LI等[22]在苯环上引入具有强吸电子能力的氟原子以降低聚苯胺的电子云密度,从而削弱聚合物刚性。研究发现,聚2-氟苯胺(PFAN) 能溶于乙醇和丙酮等常规溶剂,这对消除树脂内的聚集现象以改善填料分散性具有积极意义。不同温度下合成的PFAN形貌及接触角如图2所示,氟取代聚苯胺填料的水接触角超过140°以上,在0℃温度下合成的填料表现出接近二维的微纤维形态,随着反应温度升高,氟代苯胺参与反应的比例也增大,因此疏水性进一步增强。此外水吸收试验(图3)用来反映不同涂层的致密程度。 PFAN环氧涂层经过700h浸泡后,含2%、4%质量分数的PFAN2、PFAN4涂层的吸水率并未发生较大变化,且保持在较低水平,相反纯环氧涂层PFAN0的吸水率达到了PFAN涂层的大约两倍水平。Bode相位角图显示相比于未取代的PANI, PFAN涂层中的分层区域明显减弱,涂层阻隔能力更强。上述研究证明开发新型聚苯胺衍生物以制备具有低表面能的疏水界面,是降低涂层孔隙率并抑制水吸收的可行途径。

  • 图2 不同温度条件下合成PFAN填料的电镜和接触角图像

  • Fig.2 Morphology images and water contact angle of the PFAN fillers synthesized at different temperature

  • 图3 不同涂层在不同浸泡时间下的吸收率

  • Fig.3 Water absorption of different coatings at different immersion time

  • 涂料的品质与其附着强度有直接关系,涂层黏附力不足易引起金属/涂料接触面分层甚至脱落。聚苯胺主链上的氨基能够与金属基底形成配位键,使得聚苯胺涂层的附着力略优于环氧树脂。羟基与各种金属也能形成稳定的络合物[23],同时酚类物质具有很强的杀菌性能并已取得广泛应用[24-25]。基于以上考虑,QUAN等[26]在碱性条件下合成了羟基取代的聚氨基酚 (PmAP) 防腐防污涂料。附着力测试结果可知,相比于环氧树脂3MPa的拉脱强度, 3.0wt%的PmAP涂层拉脱强度超过了7MPa,附着强度极大地改善。除了聚苯胺原有的屏障和缓释效应[27-28],PmAP优异的金属保护能力还归结于分子链上引入羟基增强了聚合物的溶解性,另外PmAP还能有效地防止低碳钢阴极上氢的析出从而减弱低碳钢的阳极溶解[29]

  • 除了苯环上取代改性的聚苯胺,有关氨基取代聚苯胺涂层的防腐性能研究较少,但也有报道[30-31],主要以烷基取代为主。2019年,LIU等[32]针对磺基水杨酸掺杂聚苯胺PANI-SSA存在过度团聚引起阻隔缺陷的问题,设计不同链长的卤代烷烃C5H11Br和C12H25Br(分别用C5 和C12 表示)参与不同极性溶剂(IPA、DMF)中PANI-SSA的N-烷基化反应,通过红外光谱表征柔性烷烃链成功与刚性聚合物主链连接。沉降试验(图4)表明未改性的PANI-SSA团聚严重,与溶液相容性较差,仅在溶液中静止5d后就已出现分层。相反,DMF溶液条件下N-烷基化的PANI-SSA(分别用C5-DMF、C12-DMF表示) 即使浸泡12d仍浓度均一、高度分散,这说明改性后的PANI-SSA在环氧树脂/二甲苯溶液中有更好的相容性,填料组分与成膜物质之间均匀地结合降低了涂层缺陷,增强了阻隔能力。C12 相比于C5 在吸水性、附着力等方面略有改善,这是因为随着碳链长度的增加以致固化反应发生时环氧树脂与聚苯胺填料相容性进一步增强,因此C12 涂层耐蚀性优于C5 涂层。

  • 图4 PANI-SSA以及烷基化PANI-SSA填料在环氧树脂/二甲苯溶液中的沉降试验

  • Fig.4 Settlement performance of PANI-SSA and N-alkylated PANI-SSA dispersion in epoxy/xylene solution

  • 3 聚苯胺/纳米氧化物复合材料

  • 导电聚合物与纳米氧化物结合制备的复合材料具有独特的微观形貌,能显著提升涂层的机械强度、热稳定性、屏蔽性能和阻燃性。前面已经提到,均匀致密的涂层是金属有效保护的先决条件,聚苯胺/纳米颗粒复合材料被认为是降低涂层孔隙率的一种有效方法[33-34]。2017年,SHI等[35] 采用溶胶凝胶法制备单分散的疏水性SiO2 纳米粒子,再将硅烷修饰后的SiO2 均匀分散于四氢呋喃溶液,之后滴涂在覆有聚苯胺纤维的Q235低碳钢表面。通过扫描电子显微镜观察涂层的微观形貌,发现涂层内部紧密结合,SO2 纳米粒子均匀地嵌入聚苯胺微纤维孔隙内。一般来说,腐蚀电压E corr 越高而腐蚀电流I corr 越低,则说明电化学腐蚀速率越低。由表1不同涂层极化曲线所得参数可知, SiO2 修饰后复合涂层的E corr 明显升高,I corr 降低了两个数量级,在0.1M H2SO4 浸泡71d后防腐效率仍能保持在99.99%,表现出卓越的防腐性能。这可以归结于三个原因:① PANI自身的电化学活性;② PANI/SiO2 杂化涂层极强的憎水性和抗渗性有效遏制了H2O或H+ 接触金属基底,减缓了阴极腐蚀速率;③ SiO2 的填充了涂层内部空隙、降低了涂层孔隙率。

  • 表1 不同涂层的防腐性能参数

  • Table1 Corrosion resistance parameters of different coatings

  • 受到薄膜机械张力的影响,涂层并不是越厚越好,当厚度达到一定程度后孔隙率反而会增加。为消除厚膜带来的负面效应,2016年,PAGOTTO等[36]通过原位聚合法制备PANI/TiO2 纳米复合填料,并研究其组分含量对涂层微孔结构与形貌的影响。相较于原始的PANI涂层,改性后的PANI/TiO2 复合涂层孔隙率更低,因而阻隔性能更强。当PANI涂层厚度由2 µm增加到4.5 µm时,其腐蚀电位E corr 由原来的−0.045V下降到−0.502V,孔隙率由0.12%增大到5.6%,这和BANDEIRA等[37]的报道一致。然而采用TiO2 改性后可以得到意想不到的结果,厚度为4.5 µm的PANI/TiO2 涂层的腐蚀电位增大到0.080V,孔隙率仅有0.07%。作者认为,成核过程中聚合物分子包裹TiO2形成了特殊的微观结构,使得PANI/TiO2 涂料多层涂覆于不锈钢表面的也能消除应力作用。此外,TiO2 还能改善涂层的耐磨性和耐划伤性。

  • 无机纳米粒子不溶于溶剂,其作为添加物与环氧树脂的相容性对功能复合材料或涂层的性能有显著影响,这方面可以在复合材料或涂层制备的过程采用特殊的处理方式来改进。2019年,LEI等[38]将制备的PANI/CeO2 纳米颗粒首先超声分散于去离子水中,之后添加环氧树脂并机械搅拌,烘干水分后再加入固化剂,最后涂覆在碳钢表面。 SEM-EDS技术用来表征涂层表面形貌,证实了N、 Cl、Ce元素在环氧涂层中的均匀分布,特殊处理后PANI/CeO2 在涂层中具有良好的分散性。改性后的PANI/CeO2 涂层的阻抗模量相较与纯聚苯胺填料增大了两个数量级。为研究CeO2 纳米颗粒对金属保护的影响,研究人员分别将PANI以及PANI/CeO2 电化学沉积在碳钢表面。如图5所示, CV曲线发现PANI/CeO2 的电流密度明显大于PANI对应的电流密度,证实了CeO2 的存在增强了PANI的氧化还原能力,二者的协同作用降低了金属的腐蚀速率。

  • 图5 PANI和PANI/CeO2不同扫描周期的循环伏安曲线

  • Fig.5 Cyclic voltammetry curves of the PANI and PANI/CeO2 with the increase of the number of scanning cycles.

  • 纳米氧化物在金属腐蚀与防护中的研究还有很多,如片状结构的PANI-ZnO[39]纳米复合材料能显著降低涂层吸水率;PANI-Fe2O3 [40]纳米复合材料有助于优化涂层表面平滑度。

  • 4 改变掺杂剂

  • 酸掺杂赋予导电高分子多种功能性质,研究人员可以根据不同的需求选择合适的酸掺入聚合物。之前人们已经研究了磷酸[41]、盐酸[42]和磺酸[43]等掺杂剂对PANI防腐性能的影响,掺杂后的聚苯胺作为离子源在氧化还原反应过程中不断释放酸根离子,这些离子与金属的配位作用不仅增强了有机涂层与金属结合的紧密程度,甚至能形成金属/掺杂剂络合物钝化金属表面[44-45]。选择易与金属形成络合物的掺杂剂往往对提升涂层的防腐性能有利,2011年,ZHANG等[46] 研究了含聚苯胺(EB)和氢氟酸掺杂聚苯胺(ES)的环氧涂层对AZ91D镁合金腐蚀防护的影响。附着力测试表明,EP涂层、PANI涂层和PANI-HF涂层的黏附强度分别为9.09、11.54和13.29MPa,并且PANI-HF涂层浸泡300h后仍保持较高的黏附水平。为分析掺杂态聚苯胺的防腐机理,镁合金样品在浸泡在3.5%NaCl溶液一段时间后剥离表面涂层,通过XPS技术比较两种涂层下合金表面的产物成分。如图6所示,Mg的2p光谱除了观察到49.99eV处的Mg(OH)2 峰以及50.78eV处的MgO峰外,在51.47eV处还有一个额外MgF2 峰,证实掺杂态PANI-HF能促使络合物MgF2 的生成。由此可以总结HF掺杂聚苯胺耐蚀性来源于三个方面:① 相较于脱掺杂聚苯胺,掺杂态PANI优化了涂层形貌和微孔结构,电解质向金属基底扩散更加困难;② 聚苯胺的钝化作用;③ 电流相互作用使金属基底向更大的正电势过渡,EB-PANI还原为LEB-PANI,并释放缓蚀性阴离子F。F 与镁合金结合生成的络合物MgF2 致密且不溶于水,是氧化膜之外的第二道保护层。

  • 图6 涂层下AZ91D合金表面XPS分析

  • Fig.6 XPS analysis of Mg2p of AZ91D magnesium alloy beneath coatings

  • 无机酸掺杂存在两个缺陷,首先会引入腐蚀性酸根离子(如Cl、SO42)从而加快金属腐蚀;其次大部分无机酸络合能力差不足以形成稳定的金属-掺杂剂络合物,因而选择有机酸作为掺杂剂更具优势。2020年,YAO等[1]研究了含有2-羟基膦羧酸掺杂聚苯胺PANI-HPA的环氧涂料对Q235低碳钢的耐蚀性影响,结果如图7所示。Tafel极化曲线发现不同含量PANI-HPA涂层的腐蚀电压E corr相较于纯环氧涂料都出现明显正移,分别是−0.635V (0.5wt%), −0.534V (1.0wt%) 和 −0.351V (2.0wt%),腐蚀电流I corr有效降低,分别是2.33nA cm−2 (0.5wt%), 0.220nA cm−2 (1.0wt%) 和0.375n A cm−2 (2.0wt%)。最终1.0wt%含量的PANI-HPA涂层表现出最低的腐蚀速率,为2.576 µmm/a。XPS测试证实了FeOOH、Fe2O3、Fe3O4 以及Fe-HPA等混合物存在于涂层与金属表面之间,这表明涂层不仅具有阳极保护作用,掺杂剂与铁形成的络合物也提供了阻隔效应。使用ZsimpWin软件拟合的等效电路进一步分析PANI-HPA涂层的防腐机理,涂层电容 Cc 反映水和电解质的渗透程度,它的值也间接反映了涂层结合是否紧密,Cc 越大可知涂层孔隙率越大。纯环氧涂层 Cc 随浸泡时间从7.40nFcm2 增加到195nF cm2,呈逐渐上升趋势。相比之下,HPA-PANI/环氧涂层的 Cc 值要低得多,表明HPA-PAN提供了良好的物理屏障性能,这是因为2-羟基膦羧酸拥有大量-OH和-COOH基团,易与Fe基底发生配位作用增强涂层附着力。一方面,腐蚀前的阶段掺杂态PANI-HPA能通过配位键-O-Fe-COO-与碳钢稳定结合,增强了涂层附着力;另一方面,腐蚀发生后O2 和H2O的渗透促使PANI循环氧化还原反应,并脱掺杂释放HPA,HPA与Fe形成致密的络合层Fe-HPA作为第二道屏障修复缺陷位置。由此可见,掺杂剂改性是提升聚苯胺填料耐蚀性的一种有效途径。

  • 图7 不同PANI-HPA含量的复合涂层在氯化钠溶液浸泡30d后的防腐性能

  • Fig.7 Anticorrosion performance of composite coatings with different HPA-PANI contents after immersion in 3.5wt%NaCl solution for 30d.

  • 5 聚苯胺/石墨烯或聚苯胺/碳纳米管复合填料

  • 石墨烯是一种六角形层状材料,因其出色的力学、光学、热学和电学性能而成为研究热点,被研究者们广泛关注和报道[47]。完整的石墨烯具有高的比表面积和不可渗透性,与聚苯胺形成的核壳结构有助于延长O2 和H2O的扩散路径[48]。然而石墨烯突出的稳定性也造成了活性抑制功能的欠缺,腐蚀发生后没有修复能力,因此制备聚苯胺/石墨烯复合填料是增强涂层缓蚀能力的有效途径。

  • 2012年,CHANG等[49]首先采用Friedel-Crafts酰化反应获得接枝有4-氨基-邻苯甲酰基的石墨烯状薄片,之后苯胺单体通过氧化聚合的方式接枝在石墨烯表面,合成方法如图8所示。制备的聚苯胺/石墨烯复合填料表现出良好的缓蚀作用和屏蔽效应,相较于单一填料的聚苯胺或石墨烯涂层,复合涂层的耐腐蚀性能明显改善。这表明二者存在协同作用,一方面高纵横比的石墨烯发挥迷宫效应防止了腐蚀性介质与金属的接触,另一方面金属遭到腐蚀后促使聚苯胺发生氧化还原作用并生成钝化膜,避免缺陷进一步加深。此外,酰化处理后聚合物可以生长于石墨烯表面,有助于提高石墨烯填料在环氧树脂中的分散性。2016年,JAFARI等[50]采用循环伏安法将聚苯胺/石墨烯薄膜电沉积于铜金属表面,极化曲线测试表明腐蚀电位向阳极转移,其耐腐蚀效率达到98%。

  • 图8 聚苯胺/石墨烯复合填料的制备方法

  • Fig.8 Preparation of PANI/graphene composites

  • 高品质石墨烯(G)制备条件苛刻,成本高,不易得,近几年,不少研究人员开发了氧化石墨烯 (GO)和还原氧化石墨烯(rGO)在金属保护领域中的应用。例如;TAHERI等[51]利用PANI与Zn2+ 的协同作用制备出GO-PAni-Zn复合材料,锌离子提供显著的阴极保护作用促使其活性抑制功能极大增强;王传洁等[52]研究不同配比的rGO/PANI复合材料对涂层保护性能的影响,结果表明,还原氧化石墨烯与苯胺质量比为1∶15时产物形貌及防腐效果最佳。2019年,ZHOU等[53]研究磺化聚苯胺 (SPANI)锚定还原氧化石墨烯复合涂层对于Q235不锈钢的保护性能,聚苯胺本身具有一定的疏水性,聚合物主链引入一定比率亲水性间氨基苯磺酸后破坏了腐蚀性电解质的扩散路径,经过SPANI修饰的rGO纳米片尺度均一、分散良好。

  • 由于质量轻、导电性好、出色的机械强度和韧性,近年来碳纳米管(CNT)备受关注。聚苯胺依靠 π-π 堆积相互作用和氢键可以吸附在碳纳米管表面,并形成电荷转移的桥梁。QIU等[54]由此制备了聚苯胺/多壁碳纳米管复合材料c-PANI,并研究了Wr(苯胺单体与碳纳米管质量比)与电化学活性的关系。改性后聚苯胺排列更加有序,在碱性和中性条件下,c-PANI对应循环伏安曲线仍然观察到明显的氧化还原峰;相反,PANI的氧化还原峰已完全消失。基于c-PANI的环氧涂层不仅成本低、耐渗透能力强,而且适应不同条件下的pH环境,该研究为金属腐蚀的防治提供了新的思路。CNT在复合材料中的有效利用还取决于其在基体材料中独立和均匀分散的能力,CNT的功能化处理可以显著提升聚合物基体的相互作用,从而改善分散性。KUMAR等[55] 首次研究了羧基、氨基功能化改性PANI/f-CNT复合涂层的力学性能和防腐性能,SEM分析发现PANI/f-CNT复合材料呈现均匀、纤维状的纳米结构形态,f-CNT较好地嵌入PANI基质并形成稳定的界面结合。金属保护是石墨烯和碳纳米管材料的重要应用途径之一,将二者与聚苯胺结合有望为研究金属的腐蚀与防护提供崭新的平台。

  • 6 总结与展望

  • 介绍了近几年高性能耐腐蚀涂层中聚苯胺的主要改性方法以及相应的研究进展,通过选取合适的取代基团、改变掺杂剂以及与其他颜料(金属氧化物、石墨烯、碳纳米管)原位聚合等方式促使涂层致密性、附着力、疏水性、缓蚀性等方面获得不同程度的提升,为聚苯胺在防腐涂料领域的研究提供指导。目前主流的试验手段集中于电化学沉积和共溶涂覆两个途径,前者制备的聚苯胺薄膜存在成本高、力学性能不足、防腐易失效等缺陷,因此在实际应用中并不具备优势,仅为深入研究防腐机制并开发先进防腐材料创造条件;相比之下改性聚苯胺作为颜料与环氧树脂的共混涂覆具有更广阔的应用前景。

  • 未来聚苯胺在金属腐蚀与防护领域的研究趋势可以总结为以下四个方面:

  • (1) 进一步深化和完善聚苯胺防腐机制,构筑不同环境下的理论体系。

  • (2) 寻找新的改性方法优化涂层中聚苯胺填料在树脂中的相容性和分散性,改进涂层与金属基底的附着强度,总结聚苯胺结构与其防腐性能存在的内在联系和规律。

  • (3) 研发水溶性聚苯胺应用于水性防腐涂料。

  • (4) 耐蚀性能否保持长期稳定是制约其产业化的重要因素之一,据已有报道,目前聚苯胺涂层对金属的保护作用基本维持在半年左右,尚不能满足工业化应用的要求,发展长期耐蚀性聚苯胺防腐涂层将成为未来研究趋势。

  • 可以预见,随着研究的不断深入,不久的将来定会实现从聚苯胺/环氧树脂涂层从试验阶段到产业化的飞跃。

  • 参考文献

    • [1] YAO Y C,SUN H,ZHANG Y L,et al.Corrosion protection of epoxy coatings containing 2-hydroxy phosphonocarboxylic acid doped polyaniline nanofibers[J].Progress in Organic Coatings,2020,139:105470.

    • [2] HOU B L,LI X G,MA X M,et al.The cost of corrosion in China[J].NPJ Materials Degradation,2017,1(1):1-10.

    • [3] WU C H,WANG J X,SONG S S,et al.Antifouling and anticorrosion performance of the composite coating made of tetrabromobisphenol-A epoxy and polyaniline nanowires[J].Progress in Organic Coatings,2020,148:105888.

    • [4] LEI X D,WANG L N,ZHAO X H,et al.Oriented CuZnAl ternary layered double hydroxide films:In situ hydrothermal growth and anticorrosion properties[J].Industrial & Engineering Chemistry Research,2013,52(50):17934-17940.

    • [5] BU Y Y,CHEN,Z Y,AO J P,et al.Study of the photoelectrochemical cathodic protection mechanism for steel based on the SrTiO3-TiO2 composite[J].Journal of Alloys and Compounds,2018,731:1214-1224.

    • [6] KHOSRAVI F,NOURI KHORASANI S,REZVANI GHOMI E,et al.A bilayer GO/nanofibrous biocomposite coating to enhance 316L stainless steel corrosion performance[J].Materials Research Express,2019,6(8):86470.

    • [7] GAO F,LUO Y F,XU J H,et al.Preparation of graphene oxide-based polyaniline composites with synergistic anticorrosion effect for waterborne polyurethane anticorrosive coatings[J].Progress in Organic Coatings,2021,156:106233.

    • [8] LI A H,CHEN S F,MA Z D,et al.Corrosion protection properties of polyvinyl butyral/polyaniline-graphene oxide/poly(methylhydrosiloxane)composite coating for AA2024 aluminum alloy[J].Diamond and Related Materials,2021,116:108397.

    • [9] DEBERRY D W.Modification of the Electrochemical and corrosion behavior of stainless steels with an Electroactive coating[J].Journal of the Electrochemical Society,1985,132(5):1022.

    • [10] MOTLATLE A M,RAY S S,SCRIBA M.Polyaniline-clay composite-containing epoxy coating with enhanced corrosion protection and mechanical properties[J].Synthetic Metals,2018,245:102-110.

    • [11] HAO Y S,ABDULLAHI SANI L,GE T J,et al.Phyticacid doped polyaniline containing epoxy coatings for corrosion protection of Q235 carbon steel[J].Applied Surface Science,2017,419:826-837.

    • [12] HANY M,EL-LATEEF H M,KHALAF M M,et al.Novel dispersed Tl2O3-SiO2/polyaniline nanocomposites:In-situ polymerization,characterization and enforcement as a corrosion protective layer for carbon-steel in acidic chloride medium[J].Colloids and Surfaces A,2019,573:95-111.

    • [13] MACDIARMID A G,CHIANG J C,RICHTER A J,et al.Polyaniline:A new concept in conducting polymers[J].Synthetic Metals,1987,18(1-3):285-290.

    • [14] LIU S Y,LIU L,WEI X X,et al.Oxide film formed on Al alloy beneath sulfosalicylic acid doped polyaniline incorporated into epoxy organic coating[J].Applied Surface Science,2020,512:144840.

    • [15] SHETTY K,JAYADEV,RAJ K,et al.Synthesis,characterization and corrosion studies of polyanailine(PANI)/ceriem dioxide(CeO2)nano composite[J].Materials Today:Proceedings,2020,27(3):2158-2163.

    • [16] NAUTIYAL A,COOK J E,ZHANG X Y.Tunable electrochemical performance of polyaniline coating via facile ion exchanges[J].Progress in Organic Coatings,136:105309.

    • [17] SATHIYANARAYANAN S,KARPAKAM V,KAMARAJ K,et al.Sulphonate doped polyaniline containing coatings for corrosion protection of iron[J].Surface and Coatings Technology,2010,204(9):1426-1431.

    • [18] BILAL S,FAROOQ S,SHAH ALI A U H,et al.Improved solubility,conductivity,thermal stability and corrosion protection properties of poly(o-toluidine)synthesized via chemical polymerization[J].Synthetic Metals 2014,197:144-153.

    • [19] HUR E,BEREKET G,SAHIN Y.Anti-corrosive properties of polyaniline,poly(2-toluidine),and poly(aniline-co-2-toluidine)coatings on stainless steel[J].Current Applied Physics,2007,7(6):597-604.

    • [20] CHAUDHARI S,PATIL P P.Corrosion protective poly(o-ethoxyaniline)coatings on copper[J].Electrochimica Acta,2007,53(2):927-933.

    • [21] XING C J,ZHANG Z M,YU L M,et al.Electrochemical corrosion behavior of carbon steel coated by polyaniline copolymers micro/nanostructures[J].RSC Advances,2014,4(62):32718-32725.

    • [22] LI C,LI Y,WANG X,et al.Synthesis of hydrophobic fluoro-substituted polyaniline filler for the long-term anti-corrosion performance enhancement of epoxy coatings[J].Corrosion Science,2020,178:109094.

    • [23] BEREKET G,DURAN B.Anticorrosive properties of electrosynthesized poly(m-aminophenol)on copper from aqueous phenylphosphonic acid solution[J].Progress in Organic Coatings,2009,64(1):57-66.

    • [24] IQBAL Z,LAI E P C,AVIS T J.Antimicrobial effect of polydopamine coating on Escherichia coli[J].Journal of Materials Chemistry,2012,22(40):21608-21612.

    • [25] MA A H,HU T W,SHAN S Y,et al.Morphologies and antibacterial properties of poly(o-aminophenol)[J].Polymers for Advanced Technologies,2014,25(5):575-580.

    • [26] QUAN X D,WANG J X,ZHAO S,et al.Improved antibacterial,antifouling and corrosion protective performance of epoxy coatings with poly(m-aminophenol)[J].Progress in Organic Coatings,2018,115:9-17.

    • [27] MADHANKUMAR A,RAJENDRAN N.Poly(m-phenylendiamine-co-o-aminophenol)coatings on mild steel:Effect of comonomers feed ratio on surface and corrosion protection aspects[J].Progress in Organic Coatings,2013,76(10):1445-1453.

    • [28] ARMELIN E,PLA R,LIESA F,et al.Corrosion protection with polyaniline and polypyrrole as anticorrosive additives for epoxy paint[J].Corrosion Science,2008,50(3):721-8.

    • [29] MADHANKUMAR A,RAJENDRAN N.A promising copolymer of p-phenylendiamine and o-aminophenol:Chemical and electrochemical synthesis,characterization and its corrosion protection aspect on mild steel[J].Synthetic Metals,2012,162(1-2):176-185.

    • [30] QUAN X D,WANG J X,SOULEYMAN T,et al.Antibacterial and antifouling performance of bisphenol-A/Poly(ethylene glycol)binary epoxy coatings containing bromine-benzyl-disubstituted polyaniline[J].Progress in Organic Coatings,2018,124:61-70.

    • [31] ZEYBEK B,PEKMEZ N O,KILIC E.Electrochemical synthesis of bilayer coatings of poly(N-methylaniline)and polypyrrole on mild steel and their corrosion protection performances[J].Electrochimica Acta,2011,56(25):9277-9286.

    • [32] LIU S Y,LIU L,LI Y,et al.Effects of N-alkylation on anticorrosion performance of doped polyaniline/epoxy coating[J].Journal of Materials Science & Technology,2020,39:48-55.

    • [33] NAJJAR R,ADIB KATOURANI S,GHASEM HOSSEINI M,et al.Self-healing and corrosion protection performance of organic polysulfide@urea-formaldehyde resin core-shell nanoparticles in epoxy/PANI/ZnO nanocomposite coatings on anodized aluminum alloy[J].Progress in Organic Coatings,2018,124:110-121.

    • [34] LI Y F,LI J Y,GAO X H,et al.Synthesis of stabilized dispersion covalently-jointed SiO2@polyaniline with core-shell structure and anticorrosion performance of its hydrophobic coating for Mg-Li alloy[J].Applied Surface Science,2018,462:362-372.

    • [35] SHI S E,ZHANG Z M,YU L M.Hydrophobic polyaniline/modified SiO2 coatings for anticorrosion protection[J].Synthetic Metals,2017,233:94-100.

    • [36] PAGOTTO J F,RECIO F J,MOTHEO A J,et al.Multilayers of PAni/n-TiO2 and PAni on carbon steel and welded carbon steel for corrosion protection[J].Surface and Coatings Technology,2016,289:23-28.

    • [37] BANDEIRA R M,VAN DRUNEN J,GARCIA A C,et al.Influence of the thickness and roughness of polyaniline coatings on corrosion protection of AA7075 aluminum alloy[J].Electrochimica Acta,2017,240:215-224.

    • [38] LEI Y H,QIU Z C,TAN N,et al.Polyaniline/CeO2 nanocomposites as corrosion inhibitors for improving the corrosive performance of epoxy coating on carbon steel in 3.5% NaCl solution[J].Progress in Organic Coatings,2020,139:105430

    • [39] MOSTAFAEI A,NASIRPOURI F.Epoxy/polyaniline-ZnO nanorods hybrid nanocomposite coatings:Synthesis,characterization and corrosion protection performance of conducting paints[J].Progress in Organic Coatings,2014,77(1):146-159.

    • [40] SUMI V S,ARUNIMA S R,DEEPA M J,et al.PANI-Fe2O3 composite for enhancement of active life of alkyd resin coating for corrosion protection of steel[J].Materials Chemistry and Physics,2020,247:122881.

    • [41] PLESU N,ILIA G,PASCARIU A,et al.Preparation,degradation of polyaniline doped with organic phosphorus acids and corrosion essays of polyaniline-acrylic blends[J].Synthetic Metals,2006,156(2-4):230-238.

    • [42] SATHIYANARAYANAN S,MUTHUKRISHNAN S,VENKATACHARI G,et al.Corrosion protection of steel by polyaniline(PANI)pigmented paint coating[J].Progress in Organic Coatings,2005,53(4):297-301.

    • [43] TORRESI R M,SOUZA S D,SILVA J E P D,et al.Galvanic coupling between metal substrate and polyaniline acrylic blends:Corrosion protection mechanism[J].Electrochimica Acta,2005,50(11):2213-2218.

    • [44] KAMARAJ K,SATHIYANARAYANAN S,MUTHUKRISHNAN S,et al.Corrosion protection of iron by benzoate doped polyaniline containing coatings[J].Progress in Organic Coatings,2009,64(4):460-465.

    • [45] NASCIMENTO G M D,SILVA J E P D,TORRESI S I C D,et al.Comparison of secondary doping and thermal treatment in poly(diphenylamine)and polyaniline monitored by resonance raman spectroscopy[J].Macromolecules,2001,35(1):121-125.

    • [46] ZHANG Y J,SHAO Y W,ZHANG T,et al.The effect of epoxy coating containing emeraldine base and hydrofluoric acid doped polyaniline on the corrosion protection of AZ91D magnesium alloy[J].Corrosion Science,2011,53(11):3747-3755.

    • [47] GAO F J,MU J,BI Z X,et al.Recent advances of polyaniline composites in anticorrosive coatings:A review[J].Progress in Organic Coatings,2021,151:106071.

    • [48] 胡传波,厉英,孔亚州,等.改性聚苯胺及其衍生物涂层的防腐性能[J].化学进展,2016,28(8):1238-1250.HU Chuanbo,LI Ying,KONG Yazhou,et al.Anticorrosion properties of modified polyanilines and its derivatives coatings[J].Progress in Chemistry,2016,28(8):1238-1250.(in Chinese)

    • [49] CHANG C H,HUANG T C,PENG C W,et al.Novel anticorrosion coatings prepared from polyaniline/graphene composites[J].Carbon,2012,50(14):5044-5051.

    • [50] JAFARI Y,GHOREISHI S M,SHABANI-NOOSHABADI M.Polyaniline/graphene nanocomposite coatings on copper:Electropolymerization,characterization,and evaluation of corrosion protection performance[J].Synthetic Metals,2016,217:220-230.

    • [51] TAHERI N N,RAMEZANZADEH B,MAHDAVIAN M,et al.In-situ synthesis of Zn doped polyaniline on graphene oxide for inhibition of mild steel corrosion in 3.5 wt.% chloride solution[J].Journal of Industrial and Engineering Chemistry,2018,63:322-339.

    • [52] 王传洁,杨小刚,李斌,等.石墨烯/酒石酸掺杂态聚苯胺的制备及防腐性能[J].高分子材料科学与工程,2019,35(6):143-148.WANG Chuanjie,YANG Xiaogang,LI Bin,et al.Preparation and anticorrosion properties of graphene/tartaric acid doped polyaniline[J].Polymer Materials Science & Engineering,2019,35(6):143-148.(in Chinese)

    • [53] ZHOU C,HONG M,YANG Y,et al.Engineering sulfonated polyaniline molecules on reduced graphene oxide nanosheets for high-performance corrosionprotective coatings[J].Applied Surface Science,2019,484:663-675.

    • [54] QIU G D,ZHU A P,ZHANG C Q.Hierarchically structured carbon nanotube–polyaniline nanobrushes for corrosion protection over a wide pH range[J].RSC Advances,2017,7(56):35330-35339.

    • [55] KUMAR M A,GASEM Z M,et al.Effect of functionalization of carbon nanotubes on mechanical and electrochemical behavior of polyaniline nanocomposite coatings[J].Surface and Coatings Technology,2015,276:416-423.

  • 参考文献

    • [1] YAO Y C,SUN H,ZHANG Y L,et al.Corrosion protection of epoxy coatings containing 2-hydroxy phosphonocarboxylic acid doped polyaniline nanofibers[J].Progress in Organic Coatings,2020,139:105470.

    • [2] HOU B L,LI X G,MA X M,et al.The cost of corrosion in China[J].NPJ Materials Degradation,2017,1(1):1-10.

    • [3] WU C H,WANG J X,SONG S S,et al.Antifouling and anticorrosion performance of the composite coating made of tetrabromobisphenol-A epoxy and polyaniline nanowires[J].Progress in Organic Coatings,2020,148:105888.

    • [4] LEI X D,WANG L N,ZHAO X H,et al.Oriented CuZnAl ternary layered double hydroxide films:In situ hydrothermal growth and anticorrosion properties[J].Industrial & Engineering Chemistry Research,2013,52(50):17934-17940.

    • [5] BU Y Y,CHEN,Z Y,AO J P,et al.Study of the photoelectrochemical cathodic protection mechanism for steel based on the SrTiO3-TiO2 composite[J].Journal of Alloys and Compounds,2018,731:1214-1224.

    • [6] KHOSRAVI F,NOURI KHORASANI S,REZVANI GHOMI E,et al.A bilayer GO/nanofibrous biocomposite coating to enhance 316L stainless steel corrosion performance[J].Materials Research Express,2019,6(8):86470.

    • [7] GAO F,LUO Y F,XU J H,et al.Preparation of graphene oxide-based polyaniline composites with synergistic anticorrosion effect for waterborne polyurethane anticorrosive coatings[J].Progress in Organic Coatings,2021,156:106233.

    • [8] LI A H,CHEN S F,MA Z D,et al.Corrosion protection properties of polyvinyl butyral/polyaniline-graphene oxide/poly(methylhydrosiloxane)composite coating for AA2024 aluminum alloy[J].Diamond and Related Materials,2021,116:108397.

    • [9] DEBERRY D W.Modification of the Electrochemical and corrosion behavior of stainless steels with an Electroactive coating[J].Journal of the Electrochemical Society,1985,132(5):1022.

    • [10] MOTLATLE A M,RAY S S,SCRIBA M.Polyaniline-clay composite-containing epoxy coating with enhanced corrosion protection and mechanical properties[J].Synthetic Metals,2018,245:102-110.

    • [11] HAO Y S,ABDULLAHI SANI L,GE T J,et al.Phyticacid doped polyaniline containing epoxy coatings for corrosion protection of Q235 carbon steel[J].Applied Surface Science,2017,419:826-837.

    • [12] HANY M,EL-LATEEF H M,KHALAF M M,et al.Novel dispersed Tl2O3-SiO2/polyaniline nanocomposites:In-situ polymerization,characterization and enforcement as a corrosion protective layer for carbon-steel in acidic chloride medium[J].Colloids and Surfaces A,2019,573:95-111.

    • [13] MACDIARMID A G,CHIANG J C,RICHTER A J,et al.Polyaniline:A new concept in conducting polymers[J].Synthetic Metals,1987,18(1-3):285-290.

    • [14] LIU S Y,LIU L,WEI X X,et al.Oxide film formed on Al alloy beneath sulfosalicylic acid doped polyaniline incorporated into epoxy organic coating[J].Applied Surface Science,2020,512:144840.

    • [15] SHETTY K,JAYADEV,RAJ K,et al.Synthesis,characterization and corrosion studies of polyanailine(PANI)/ceriem dioxide(CeO2)nano composite[J].Materials Today:Proceedings,2020,27(3):2158-2163.

    • [16] NAUTIYAL A,COOK J E,ZHANG X Y.Tunable electrochemical performance of polyaniline coating via facile ion exchanges[J].Progress in Organic Coatings,136:105309.

    • [17] SATHIYANARAYANAN S,KARPAKAM V,KAMARAJ K,et al.Sulphonate doped polyaniline containing coatings for corrosion protection of iron[J].Surface and Coatings Technology,2010,204(9):1426-1431.

    • [18] BILAL S,FAROOQ S,SHAH ALI A U H,et al.Improved solubility,conductivity,thermal stability and corrosion protection properties of poly(o-toluidine)synthesized via chemical polymerization[J].Synthetic Metals 2014,197:144-153.

    • [19] HUR E,BEREKET G,SAHIN Y.Anti-corrosive properties of polyaniline,poly(2-toluidine),and poly(aniline-co-2-toluidine)coatings on stainless steel[J].Current Applied Physics,2007,7(6):597-604.

    • [20] CHAUDHARI S,PATIL P P.Corrosion protective poly(o-ethoxyaniline)coatings on copper[J].Electrochimica Acta,2007,53(2):927-933.

    • [21] XING C J,ZHANG Z M,YU L M,et al.Electrochemical corrosion behavior of carbon steel coated by polyaniline copolymers micro/nanostructures[J].RSC Advances,2014,4(62):32718-32725.

    • [22] LI C,LI Y,WANG X,et al.Synthesis of hydrophobic fluoro-substituted polyaniline filler for the long-term anti-corrosion performance enhancement of epoxy coatings[J].Corrosion Science,2020,178:109094.

    • [23] BEREKET G,DURAN B.Anticorrosive properties of electrosynthesized poly(m-aminophenol)on copper from aqueous phenylphosphonic acid solution[J].Progress in Organic Coatings,2009,64(1):57-66.

    • [24] IQBAL Z,LAI E P C,AVIS T J.Antimicrobial effect of polydopamine coating on Escherichia coli[J].Journal of Materials Chemistry,2012,22(40):21608-21612.

    • [25] MA A H,HU T W,SHAN S Y,et al.Morphologies and antibacterial properties of poly(o-aminophenol)[J].Polymers for Advanced Technologies,2014,25(5):575-580.

    • [26] QUAN X D,WANG J X,ZHAO S,et al.Improved antibacterial,antifouling and corrosion protective performance of epoxy coatings with poly(m-aminophenol)[J].Progress in Organic Coatings,2018,115:9-17.

    • [27] MADHANKUMAR A,RAJENDRAN N.Poly(m-phenylendiamine-co-o-aminophenol)coatings on mild steel:Effect of comonomers feed ratio on surface and corrosion protection aspects[J].Progress in Organic Coatings,2013,76(10):1445-1453.

    • [28] ARMELIN E,PLA R,LIESA F,et al.Corrosion protection with polyaniline and polypyrrole as anticorrosive additives for epoxy paint[J].Corrosion Science,2008,50(3):721-8.

    • [29] MADHANKUMAR A,RAJENDRAN N.A promising copolymer of p-phenylendiamine and o-aminophenol:Chemical and electrochemical synthesis,characterization and its corrosion protection aspect on mild steel[J].Synthetic Metals,2012,162(1-2):176-185.

    • [30] QUAN X D,WANG J X,SOULEYMAN T,et al.Antibacterial and antifouling performance of bisphenol-A/Poly(ethylene glycol)binary epoxy coatings containing bromine-benzyl-disubstituted polyaniline[J].Progress in Organic Coatings,2018,124:61-70.

    • [31] ZEYBEK B,PEKMEZ N O,KILIC E.Electrochemical synthesis of bilayer coatings of poly(N-methylaniline)and polypyrrole on mild steel and their corrosion protection performances[J].Electrochimica Acta,2011,56(25):9277-9286.

    • [32] LIU S Y,LIU L,LI Y,et al.Effects of N-alkylation on anticorrosion performance of doped polyaniline/epoxy coating[J].Journal of Materials Science & Technology,2020,39:48-55.

    • [33] NAJJAR R,ADIB KATOURANI S,GHASEM HOSSEINI M,et al.Self-healing and corrosion protection performance of organic polysulfide@urea-formaldehyde resin core-shell nanoparticles in epoxy/PANI/ZnO nanocomposite coatings on anodized aluminum alloy[J].Progress in Organic Coatings,2018,124:110-121.

    • [34] LI Y F,LI J Y,GAO X H,et al.Synthesis of stabilized dispersion covalently-jointed SiO2@polyaniline with core-shell structure and anticorrosion performance of its hydrophobic coating for Mg-Li alloy[J].Applied Surface Science,2018,462:362-372.

    • [35] SHI S E,ZHANG Z M,YU L M.Hydrophobic polyaniline/modified SiO2 coatings for anticorrosion protection[J].Synthetic Metals,2017,233:94-100.

    • [36] PAGOTTO J F,RECIO F J,MOTHEO A J,et al.Multilayers of PAni/n-TiO2 and PAni on carbon steel and welded carbon steel for corrosion protection[J].Surface and Coatings Technology,2016,289:23-28.

    • [37] BANDEIRA R M,VAN DRUNEN J,GARCIA A C,et al.Influence of the thickness and roughness of polyaniline coatings on corrosion protection of AA7075 aluminum alloy[J].Electrochimica Acta,2017,240:215-224.

    • [38] LEI Y H,QIU Z C,TAN N,et al.Polyaniline/CeO2 nanocomposites as corrosion inhibitors for improving the corrosive performance of epoxy coating on carbon steel in 3.5% NaCl solution[J].Progress in Organic Coatings,2020,139:105430

    • [39] MOSTAFAEI A,NASIRPOURI F.Epoxy/polyaniline-ZnO nanorods hybrid nanocomposite coatings:Synthesis,characterization and corrosion protection performance of conducting paints[J].Progress in Organic Coatings,2014,77(1):146-159.

    • [40] SUMI V S,ARUNIMA S R,DEEPA M J,et al.PANI-Fe2O3 composite for enhancement of active life of alkyd resin coating for corrosion protection of steel[J].Materials Chemistry and Physics,2020,247:122881.

    • [41] PLESU N,ILIA G,PASCARIU A,et al.Preparation,degradation of polyaniline doped with organic phosphorus acids and corrosion essays of polyaniline-acrylic blends[J].Synthetic Metals,2006,156(2-4):230-238.

    • [42] SATHIYANARAYANAN S,MUTHUKRISHNAN S,VENKATACHARI G,et al.Corrosion protection of steel by polyaniline(PANI)pigmented paint coating[J].Progress in Organic Coatings,2005,53(4):297-301.

    • [43] TORRESI R M,SOUZA S D,SILVA J E P D,et al.Galvanic coupling between metal substrate and polyaniline acrylic blends:Corrosion protection mechanism[J].Electrochimica Acta,2005,50(11):2213-2218.

    • [44] KAMARAJ K,SATHIYANARAYANAN S,MUTHUKRISHNAN S,et al.Corrosion protection of iron by benzoate doped polyaniline containing coatings[J].Progress in Organic Coatings,2009,64(4):460-465.

    • [45] NASCIMENTO G M D,SILVA J E P D,TORRESI S I C D,et al.Comparison of secondary doping and thermal treatment in poly(diphenylamine)and polyaniline monitored by resonance raman spectroscopy[J].Macromolecules,2001,35(1):121-125.

    • [46] ZHANG Y J,SHAO Y W,ZHANG T,et al.The effect of epoxy coating containing emeraldine base and hydrofluoric acid doped polyaniline on the corrosion protection of AZ91D magnesium alloy[J].Corrosion Science,2011,53(11):3747-3755.

    • [47] GAO F J,MU J,BI Z X,et al.Recent advances of polyaniline composites in anticorrosive coatings:A review[J].Progress in Organic Coatings,2021,151:106071.

    • [48] 胡传波,厉英,孔亚州,等.改性聚苯胺及其衍生物涂层的防腐性能[J].化学进展,2016,28(8):1238-1250.HU Chuanbo,LI Ying,KONG Yazhou,et al.Anticorrosion properties of modified polyanilines and its derivatives coatings[J].Progress in Chemistry,2016,28(8):1238-1250.(in Chinese)

    • [49] CHANG C H,HUANG T C,PENG C W,et al.Novel anticorrosion coatings prepared from polyaniline/graphene composites[J].Carbon,2012,50(14):5044-5051.

    • [50] JAFARI Y,GHOREISHI S M,SHABANI-NOOSHABADI M.Polyaniline/graphene nanocomposite coatings on copper:Electropolymerization,characterization,and evaluation of corrosion protection performance[J].Synthetic Metals,2016,217:220-230.

    • [51] TAHERI N N,RAMEZANZADEH B,MAHDAVIAN M,et al.In-situ synthesis of Zn doped polyaniline on graphene oxide for inhibition of mild steel corrosion in 3.5 wt.% chloride solution[J].Journal of Industrial and Engineering Chemistry,2018,63:322-339.

    • [52] 王传洁,杨小刚,李斌,等.石墨烯/酒石酸掺杂态聚苯胺的制备及防腐性能[J].高分子材料科学与工程,2019,35(6):143-148.WANG Chuanjie,YANG Xiaogang,LI Bin,et al.Preparation and anticorrosion properties of graphene/tartaric acid doped polyaniline[J].Polymer Materials Science & Engineering,2019,35(6):143-148.(in Chinese)

    • [53] ZHOU C,HONG M,YANG Y,et al.Engineering sulfonated polyaniline molecules on reduced graphene oxide nanosheets for high-performance corrosionprotective coatings[J].Applied Surface Science,2019,484:663-675.

    • [54] QIU G D,ZHU A P,ZHANG C Q.Hierarchically structured carbon nanotube–polyaniline nanobrushes for corrosion protection over a wide pH range[J].RSC Advances,2017,7(56):35330-35339.

    • [55] KUMAR M A,GASEM Z M,et al.Effect of functionalization of carbon nanotubes on mechanical and electrochemical behavior of polyaniline nanocomposite coatings[J].Surface and Coatings Technology,2015,276:416-423.

  • 手机扫一扫看