en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

何文博,男,1996年出生,硕士研究生。主要研究方向为仿生超疏水表面。E-mail:hewb492@163.com;

欧军飞(通信作者),男,1982年出生,教授,研究生学历。主要研究方向为仿生超疏水表面。E-mail:oujunfei_1982@163.com

中图分类号:TQ638

DOI:10.11933/j.issn.1007−9289.20210819001

参考文献 1
潘瑞平.天水博物馆文物与文化传播研究[J].丝绸之路,2019,36(3):171-172.PAN Ruiping.Research on cultural relics and cultural communication of Tianshui Museum[J].Silk Road,2019,36(3):171-172.(in Chinese)
参考文献 2
马云.纸质文物保护修复的传统及现代技术研究[J].文物鉴定与鉴赏,2019,4(15):86-87.MA Yun.Research on the traditional and modern technology of the conservation and restoration of paper cultural relics [J].Identification and Appreciation of Cultural Relics,2019,4(15):86-87.(in Chinese)
参考文献 3
Ll A,LU Z B,BZ A,et al.A comparative study of reinforcement materials for waterlogged wood relics in laboratory[J].Journal of Cultural Heritage,2019,36:94-102.
参考文献 4
ZHANG X,WEN W,YU H,et al.Preparation,characterization of nano-silica/fluoroacrylate material and the application in stone surface conservation[J].Journal of Polymer Research,2016,23(4):1-12.
参考文献 5
张晶.木质文物的受损原因及保护方法探讨[J].江西建材,2018,228(3):63-65.ZHANG Jing.Discussion on damage causes and protection methods of wooden cultural relics [J].Jiangxi Building Materials,2018,228(3):63-65.(in Chinese)
参考文献 6
周春香.浅谈文物保护的现状及对策初探[J].科研,2016(4):00296-00296.ZHOU Chunxiang.Discussion on the current situation of cultural relics protection and preliminary exploration of countermeasures[J].Scientific Research,2016(4):00296-00296.(in Chinese)
参考文献 7
国家古迹遗址理事会中国国家委员会.中国文物古迹保护准则[M].北京:文物出版社,2015:2-7.China National Commission of the National Council on Monuments and Sites.Guidelines for the protection of cultural relics and historic sites in china [M].Beijing:Cultural Relics Press,2015:2-7.(in Chinese)
参考文献 8
曹颐戬,王聪,王丽琴.仿生超疏水材料及其在文物保护中的应用综述[J].材料导报,2020,34(3):184-190.CAO Yijian,WANG C,WANGL Q.Review of bionic superhydrophobic materials and their applications in cultural heritage conservation.Materials Review,2020,34(3):184-190.(in Chinese)
参考文献 9
朱正柱.纳米改性石质文物封护材料的研究[D].南京:南京航空航天大学,2008:02-04.ZHU Zhengzhu.Research on nano-modified stone cultural relic saling material[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2008:2-4.
参考文献 10
谢贵堂,张均,姚明,等.调湿材料的研究与应用现状[J].材料导报,2021,35(S1):634-638.XIE Guitang,ZHANG Jun,YAO Ming,et al.Research and application status of hygroscopic materials [J].Materials Review,2021,35(S1):634-638.(in Chinese)
参考文献 11
苏伯民,张化冰,谈翔,等.高分子材料应用于莫高窟壁画保护的历史现状与研究[J].敦煌研究,2018,1:80-84.SU Bomin,ZHANG Huabing,TAN Xiang,et al.Historical status and research of polymer materials applied to mural protection in Mogao Grottoes [J].Dunhuang Research,2018,1:80-84.(in Chinese)
参考文献 12
郑军.浅议丙烯酸树脂在文物保护领域中的应用[J].文物世界,2018,149(6):01-03.ZHENG Jun.A brief discussion on the application of acrylic resin in the field of heritage protection [J].Heritage World,2018,149(6):1-3.(in Chinese)
参考文献 13
齐迎萍.化学材料在石质文物保护中的应用[J].文物保护与考古科学,2008,20(4):64-69.QI Yingping.Application of chemical materials in the protection of stone cultural relics [J].Science of Conservation and Archaeology,2008,20(4):64-69.(in Chinese)
参考文献 14
张雅文,王秀峰,伍媛婷,等.文物保护用无机胶凝材料的研究进展[J].材料导报,2012,26(3):51-56,68.ZHANG Yawen,WANG Xiufeng,WU Yuanting,et al.Research progress of inorganic cementitious materials for cultural heritage conservation[J].Materials Review,2012,26(3):51-56,68.(in Chinese)
参考文献 15
ZHU J,LI X,ZHANG Y,et al.Graphene quantum dots:Graphene-enhanced nanomaterials for wall painting protection(Adv.Funct.Mater.44/2018)[J].Advanced Functional Materials,2018,28(44):2-4.
参考文献 16
龚欣,韩向娜,陈坤龙.文物保护中使用非典型丙烯酸酯类材料的应用述评[J].文物保护与考古科学,2021,33(3):108-117.GONG Xin,HAN Xiangna,CHEN Konglong.A review of the application of atypical acrylates in cultural heritage conservation [J].Science of Conservation and Archaeology,2021,33(3):108-117.(in Chinese)
参考文献 17
王荣,田兴玲,贾政.铜质文物封护材料的研究及应用[J].全面腐蚀控制,2020,34(2):1-9.WANG Rong,TIAN Xingling,JIA Zhen.Research and application of copper cultural relic sealing materials[J].Total Corrosion Control,2020,34(2):1-9.(in Chinese)
参考文献 18
GON M,TANAKA K,CHUJO Y.Creative synthesis of organic-inorganic molecular hybrid materials[J].Bulletin of the Chemical Society of Japan,2017,90(5):463-474.
参考文献 19
马立治,沈大娲,王永生,等.氟碳涂料在铁质文物封护中的应用研究[J].文物保护与考古科学,2010,22(2):27-32.MA Lizhi,SHEN Dawei,WANG Yongsheng,et al.Research on application of fluorocarbon coating in sealing iron cultural Relics [J].Science of Conservation and Archaeology,2010,22(2):27-32.(in Chinese)
参考文献 20
董炎明.高分子分析手册[M].北京:中国石化出版社,2004.DONG Yanming.Handbook of polymer analysis [M].Beijing:China Petrochemical Press,2004.(in Chinese)
参考文献 21
李新华,肖文柯,张小娟,等.具有热可逆性的自修复石墨烯量子点/聚氨酯透明复合膜研究[J].化工新型材料,2021,49(3):68-71.LI Xinhua,XIAO Wenke,ZHANG Xiaojuan,et al.Research on self-healing graphene quantum dots/polyurethane transparent composite film with thermal revertibility [J].New Materials for Chemical Industry,2021,49(3):68-71.(in Chinese)
参考文献 22
YANG F,HE D,LIU Y,et al.Conservation of bone relics using hydroxyapatite as protective material[J].Applied Physics A,2016,122(4pt.2):479.
参考文献 23
田兴玲,贾政,赵旭辉.新型封护材料 ZS-922 对青铜文物保护效果的评价研究[J].材料保护,2020,53(9):32-38.TIAN Xingling,JIA Zheng,ZHAO Xuhui.Evaluation of the effect of new sealing material ZS-922 on the protection of bronze cultural relics [J].Materials Protection,2020,53(9):32-38.(in Chinese)
参考文献 24
ENA B,IK A.Superhydrophobic paraloid B72-sciencedirect[J].Progress in Organic Coatings,139:105224.
参考文献 25
王春燕.薄荷醇临时固型后遗迹加固剂介入土遗迹时机研究[D].西安:陕西师范大学,2019.WANG Chunyan.Study on the time of intervention of menthol cementing agent after temporary cementing[D].Xi’an:Shaanxi Normal University,2019.(in Chinese)
参考文献 26
沈浩,于庆同,邓志文,等.近代涂料在乐山大佛保护中的应用[J].中国涂料,2005,4(11):15-16.SHEN Hao,YU Qingtong,DENG Zhiwen,et al.Application of modern paint in protection of leshan giant buddha [J].China Paint,2005,4(11):15-16.(in Chinese)
参考文献 27
AZADI N,PARSIMEHR H,ERSHAD-LANGROUDI A.Cultural heritage protection via hybrid nanocomposite coating[J].Plastics,Rubber and Composites,2020,49(9):414-424.
参考文献 28
Ml A,MM B,MF C.Durability to simulated bird guano of nano-filled oleo/hydrophobic coatings for the protection of stone materials-ScienceDirect[J].Progress in Organic Coatings,148:105900.
参考文献 29
SHU H,SONG Y,LIU Q,et al.The study of rod-shaped TiO2 composite material in the protection of stone cultural relics[J].Green Processing and Synthesis,2020,9(1):359-365.
参考文献 30
LI H,YANG J,LI P,et al.A facile method for preparation superhydrophobic paper with enhanced physical strength and moisture proofing property[J].Carbohyd Polym,2017,160:9-17.
参考文献 31
王宇航,袁猛,明平剑,物性参数对液滴的聚并自弹跳的影响及其关联分析[J].物理学报,2021,70(12):10.WANG Yuhang,YUAN Meng,MING Pingjian.Effect of physical parameters on coalesce and self-bounce of droplet and correlation analysis [J].Physics Report,2021,70(12):10.(in Chinese)
参考文献 32
陈涛涛.外力作用下超疏水面上液滴聚结-跳跃行为研究[D].南京:南京理工大学,2020.CHEN Taotao.Study on the coalescence and jumping behavior of droplets on superhydrophobic surface under external force[D].Nanjing:Nanjing University of Science and Technology,2020.(in Chinese)
参考文献 33
赵东理.光固化自修复超疏水涂层的制备与应用[D].广州:华南理工大学,2020.ZHAO Dongli.Preparation and application of uv curing self-healing superhydrophobic coating[D].Guangzhou:South China University of Technology,2020.(in Chinese)
参考文献 34
SU B,YE T,LEI J.Bioinspired interfaces with superwettability:from materials to chemistry[J].Journal of the American Chemical Society,2016,138(6):1727.
参考文献 35
ZOU X S,TAO C Y,YANG K,et al.Rational design and fabrication of highly transparent,flexible,and thermally stable superhydrophobic coatings from raspberry-like hollow silica nanoparticles[J].Applied Surface Science,2018,440(May15):700-711.
参考文献 36
林书乐.含氟丙烯酸树脂的合成及其在高性能疏水MMA地坪涂料中的应用[D].广州:华南理工大学,2012.LIN Shule.Synthesis of fluorine-containing acrylic resin and its application in high performance hydrophobic MMA floor coatings[D].Guangzhou:South China University of Technology,2012.(in Chinese)
参考文献 37
WENZEL R N.Resistance of solid surfaces to wetting by water[J].Industrial & Engineering Chemistry,28(8):988-994.
参考文献 38
闫德峰,刘子艾,潘维浩,等.多功能超疏水表面的制造和应用研究现状[J].表面技术,2021,50(5):1-19.YAN Defeng,LIU Ziai,PAN Weihao,et al.Research status of manufacturing and application of multifunctional superhydrophobic surfaces [J].Surface Technology,2021,50(5):1-19.(in Chinese)
参考文献 39
CASSIE A B D,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:546-551.
参考文献 40
NIMITTRAKOOLCHAI O,SUWAN M,SUPOTHINA S.Transparent superhydrophobic coating application to the interlocking clay block for the microbial growth mitigation[J].IOP Conference Series:Materials Science and Engineering,2017,283:12-13.
参考文献 41
黄启舒,许里杰.超疏水自清洁涂料的研究与应用现状 [J].化工新型材料,2020,48(5):219-222.HUANG Qishu,XU Lijie.Research and application of superhydrophobic self-cleaning coatings [J].New Chemical Materials,2020,48(5):219-222.(in Chinese)
参考文献 42
王敏,屠恒贤.纺织文物保护与纳米材料[J].科学,2015,57(4):11-13.WANG Min,TU Hengxian.Textile cultural relics protection and nano materials [J].Science,2015,57(4):11-13.(in Chinese)
参考文献 43
曹春艳.基于硅气凝胶的超疏水织物的制备及其应用研究[D].苏州:苏州大学,2017.CAO Chunyan.Preparation and application of superhydrophobic fabric based on silica aerogel[D].Soochow:Soochow University,2017.(in Chinese)
参考文献 44
YE Z,LI S,ZHAO S,et al.Textile coatings configured by double-nanoparticles to optimally couple superhydrophobic and antibacterial properties[J].Chemical Engineering Journal,2020,420(2):6127680.
参考文献 45
ASLANIDOU D,KARAPANAGIOTIS I,PANAYIOTOU C.Superhydrophobic,superoleophobic coatings for the protection of silk textiles[J].Progress in Organic Coatings,2016,97:44-52.
参考文献 46
李耀华.纸质文物保护修复的传统及现代技术研究[J].文物鉴定与鉴赏,2021,4(4):88-90.LI Yaohua.Research on traditional and modern technologies for the protection and restoration of paper cultural relics [J].Identification and Appreciation of Cultural Relics,2021,4(4):88-90.(in Chinese)
参考文献 47
LI Q L,XI S C,ZHANG X W.Deacidification of paper relics by plasma technology[J].Journal of Cultural Heritage,2014,15(2):159-164.
参考文献 48
YAN X,LIU G S,YANG J,et al.In situ surface modification of paper-based relics with atmospheric pressure plasma treatment for preservation purposes.[J].Polymers,2019,11(5):2-9.
参考文献 49
XU J,JIANG Y,ZHANG T,et al.Synthesis of microcrystalline cellulose/TiO2/fluorine/styrene-acrylate coatings and the application for simulated paper cultural relic protection[J].Cellulose,2020,27(11):1-14.
参考文献 50
XU J,JIANG Y,ZHANG T,et al.Preparation of vinyl acetate/acrylate emulsion modified with carboxymethyl cellulose and fluorine for paper relic protection[J].Journal of Dispersion Science and Technology,2020:1-10.
参考文献 51
KOTSIDI M,GORGOLIS G,CARBONE M G P,et al.Preventing colour fading in artworks with graphene veils[J].Nature Nanotechnology,2021:1-7.
参考文献 52
PANDIT S K,TUDU B K,MISHRA I M,et al.Development of stain resistant,superhydrophobic and self-cleaning coating on wood surface[J].Progress in Organic Coatings,2019,139:105453.
参考文献 53
YANG Y,SHAN L,SHEN H,et al.Manufacturing of robust superhydrophobic wood surfaces based on PEG–Functionalized SiO2/PVA/PAA/Fluoropolymer hybrid transparent coating[J].Progress in Organic Coatings,2021,154:106186.
参考文献 54
GUO H,BACHTIAR E V,RIBERA J,et al.Non-biocidal preservation of wood against brown-rot fungi with a TiO2/Ce xerogel[J].Green Chemistry,2018,20(6):1375-1382.
参考文献 55
BASTIDAS D M.Corrosion and protection of metals[J].Metals-Open Access Metallurgy Journal,2020,10(4):458.
参考文献 56
FERRARI M,PICCARDO P,VERNET J,et al.High transmittance superhydrophobic coatings with durable self-cleaning properties[J].Coatings,2021,11(5):11-8.
参考文献 57
伍思敏,闫莹,白钟庆,等.模拟青铜文物粉状锈表面的超疏水制备及表征[J].表面技术,2017,46(2):40-45.WU Simin,YAN Ying,BAI Zhongqing,et al.Superhydrophobic preparation and characterization of powdery rust surface of simulated bronze cultural relics [J].Surface Technology,2017,46(2):40-45.(in Chinese)
参考文献 58
史笔函,闫莹,周浩,等.直接浸泡法构筑带锈青铜的超疏水表面[J].腐蚀科学与防护技术,2017,29(5):540-546.SHI Bihan,YAN Ying,ZHOU Hao,et al.Construction of superhydrophobic surface of rusted Bronze by direct immersion method[J].Corrosion Science and Protection Technology,2017,29(5):540-546.(in Chinese)
参考文献 59
FACIO D S,ORDONEZ J A,GIL M L,et al.New consolidant-hydrophobic treatment by combining SiO2 composite and fluorinated alkoxysilane:Application on decayed biocalcareous stone from an 18th century cathedral[J].Coatings,2018,8(5):170.
参考文献 60
SBARDELLA F,PRONTI L,SANTARELLI M L,et al.Waterborne acrylate-based hybrid coatings with enhanced resistance properties on stone surfaces[J].Coatings,2018,8(8):283.
参考文献 61
ASLANIDOU D,KARAPANAGIOTIS I,LAMPAKIS D.Waterborne superhydrophobic and superoleophobic coatings for the protection of marble and sandstone[J].Materials,2018,11(4):585.
参考文献 62
田维付.透明超疏水涂层的制备及应用研究[D].哈尔滨:哈尔滨工业大学,2020.TIAN Weifu.Preparation and application of transparent superhydrophobic coating[D].Harbin:Harbin University of Technology,2020.(in Chinese)
参考文献 63
FEI L,HE Z,LACOSTE JD,et al.A mini review on superhydrophobic and transparent surfaces [J].Chem.Rec.,2020,20:1257-1268.
参考文献 64
KATO S,SATO A.Micro/nanotextured polymer coatings fabricated by UV curing-induced phase separation:creation of superhydrophobic surfaces [J].J.Mater.Chem.,2012,22:8613-8621.
参考文献 65
张艳平,董兵海,王世敏,等.耐久性超疏水表面的构建及其研究进展[J].功能材料,2017,48(6):6057-6063.ZHANG Yanping,DONG Binghai,WANG Shimin,et al.Construction and research progress of durable superhydrophobic surface [J].Functional Materials,2017,48(6):6057-6063.(in Chinese)
参考文献 66
郭永刚,张鑫,耿铁,等.超疏水表面耐久性能的研究进展[J].中国表面工程,2018,31(5):63-72.GUO Yonggang,ZHANG Xin,GENG Tie,et al.Research progress on the durability of superhydrophobic surfaces[J].China Surface Engineering,2018,31(5):63-72.(in Chinese)
目录contents

    摘要

    文物是人类宝贵的历史文化遗产,具有非常丰富的文化内涵,但在水汽、微生物等因素作用下受损严重,对文物保护就显得极为重要。仿生超疏水材料具有优异的疏水性及自清洁性能,可以有效防止水汽、微生物等对于文物的侵害,开始应用于文物保护。综述超疏水材料在文物保护领域的研究进展。介绍我国文物保护的基本原则及面临的问题,并且对超疏水表面的润湿机理进行阐述,归纳总结当前超疏水材料在不同类型文物保护方面的应用实例及存在的问题。最后分析影响涂层透光性、耐久性的关键技术问题,提出超疏水封护材料的发展前景,填补了超疏水材料应用于文物保护领域的综述空白。

    Abstract

    Cultural relics are valuable historical and cultural heritages with rich cultural connotation of human beings. However, under the action of water vapor, microbes, etc, the cultural relics tend to be corroded. Therefore, the protection of cultural relics is extremely of importance. Bionic superhydrophobic materials with the excellent non-wetting and self-cleaning behaviors are being used to prevent the contamination and corrosion by moisture and microbes. Herein, the researching progress of superhydrophobic materials in the field of cultural relics protection is reviewed. Firstly, the basic principles and the major problems of cultural relics protection are discussed. Secondly, the wetting mechanism of superhydrophobic surface is discussed. Then, examples and problems of superhydrophobic materials to protect different types of cultural relics are summarized. Finally, the key technical problems affecting the light transmittivity and durability of the coating are analyzed, and the development prospect of superhydrophobic sealing materials is proposed, which can fill the review blank of the application of superhydrophobic materials in the field of cultural relics protection.

    关键词

    文物封护超疏水材料自清洁透明涂层

  • 0 前言

  • 文物是人类在历史发展过程中留下的遗迹和遗物。文物的种类从不同方面反映了当时人类的社会活动、社会关系、意识形态、自然利用、自然改造和生态环境状况,是人类宝贵的历史文化遗产。文物的保护管理和科学研究对于当代人类充分认识历史、揭示人类社会发展的客观规律、促进未来社会的发展都具有重要的意义[1]。因此,对文物进行保护是实现历史文化研究的必然途径,也是推动我国传统文化发展与继承的必要举措[2]。在各种文物中,纺织品、纸、木材、石质和金属文物都是不可再生的文化资源,对研究古代生活、文化和艺术具有重要价值[3-4]。众所周知,文物容易受到物理、化学和生物效应的破坏和降解。更准确地说,环境条件、昆虫和细菌都会影响文物的保存[5]。因此,对不同文物表面进行表面封护处理均能有效地减缓文物不同程度的损坏。

  • 近年来,仿生超疏水材料受到文物保护领域的广泛关注。由于具有优异的疏水性,将其作为文物表面封护的材料能够有效地阻止液态水的附着、渗透和水蒸气的凝结,进而避免了文物表面甚至内部一系列由水引起的病变。

  • 本文主要综述超疏水材料在文物保护领域的研究进展。以超疏水表面构建的基本原理为基础,归纳总结当前超疏水材料在纺织品文物、木质文物、石质文物、金属文物等保护方面的应用前景,为今后超疏水材料在文物保护方面的发展进行展望。

  • 1 文物保护现状

  • 1.1 文物保护的基本原则

  • 文物一词在我国源远流长,历史文物是人类社会活动中遗留下来的具有历史、艺术和科学的遗迹,是人类宝贵的文化财富[6]。文物是我国历史的重大体现,因其具有非常丰富的文化内涵而成为历史发展演变的见证,经过了千百年的沉淀后更有其独特的魅力[7]。因此,文物保护具有非常重要的历史与现实意义。文物保护是指对具有历史价值、文化价值、科学价值的历史遗留物采取一系列防止其受到损害的措施。我国文物保护的原则有:修旧如旧、保证本体不变、新材料修复隐而不露、严禁“做旧”等。

  • 近年来一些文物受损严重,特别是地处我国南方的文物,其主要原因是南方室外露天文物位于秦岭淮河一线以南,所处环境潮湿多雨。文物表面长期处于潮湿环境下,易被灰尘、微生物孢子等沉降和附着,使文物遭受微生物繁殖等多种病害[8]。并且,近年来随着旅游业的蓬勃发展,地处室外的文物也遭到了大量人为因素的破坏,如大量参观者在参观时对文物进行拍照,相机的闪光灯也会对纺织品等文物造成损伤。为了抵御外界不良因素的侵蚀,迫切需要对文物进行保护。因此,在不违背以上原则的前提下对各类文物进行表面封护是一种常用的处理方法。

  • 1.2 文物表面封护

  • 文物表面封护就是将具有特殊性能(如疏水透气、耐老化、耐摩擦等)的保护材料通过喷涂或者其他方式覆在文物表面,使文物能够防止水汽、紫外线等因素的侵害以达到长久有效的保护。以石质文物为例,将封护材料用在石质文物上时封护材料会渗透到石质文物内部填充孔隙,该材料能阻止水及污物进入的同时还保留一定的透气性,从而减缓了石质文物的进一步风化[9]。一般来说,天然和人工合成的高分子材料是最常用的封护材料[10],如无机材料、有机材料、有机无机杂化材料等,几种材料的性能差异如表1所示,其中丙烯酸树脂因其黏结性好、起作用快、对文物加固强度高等优点而受到广泛使用,近年来已逐渐成为文物封护的主要高分子材料[11-12]

  • 表1 文物封护材料之间的差异[13-21]

  • Table1 Differences between cultural relics sealing materials

  • 1.2.1 无机材料

  • 无机材料是传统的古代壁画保护材料,常用的无机材料有石灰水、氢氧化钡等。石灰水和氢氧化钡加固机理相似,即与空气中的二氧化碳反应[13],生成的碳酸钙或碳酸钡能够与壁画的白灰层融为一体起到加固保护的作用。但是由于氢氧化钙碳化慢、加固强度低、稳定性差等问题在壁画保护中不能起到良好的作用[14]。近年来,西北工业大学纳米能源材料研究中心学者李炫华等[15]发现了石墨烯量子点表面活性剂的限域效应能够有效调控氢氧化钙成核速率,使氢氧化钙纳米材料可控合成。研究团队通过采用液相法成功的合成了“氢氧化钙/石墨烯量子点”杂化纳米材料,其合成过程如图1所示。研究表明,该材料不仅粒径小、碳化快而且还具有良好抗紫外线能力和强黏附性。与普通强氧化钙材料相比,石墨烯增强的纳米杂化材料显示出更优异的保护效果,为保护文化遗产开辟了新的方向。

  • 图1 Ca(OH)2/GQD纳米杂化材料的合成图解[15]

  • Fig.1 Illustration of the synthesis of Ca(OH)2/GQD nanohybrids[15]

  • 1.2.2 有机材料

  • (1) 丙烯酸树脂

  • 丙烯酸酯类聚合物由于具有成膜性、疏水性好的优异性能,被广泛应用于文物表面封护、文物加固等方面[16]。应用于文物表面封护的丙烯酸酯类材料有很多,例如Paraloid B-72、Paraloid B-44、Primal AC-33等,其中B-72在文物保护领域应用最为广泛。B-72是甲基丙烯酸酯与乙基甲基丙烯酸酯的共聚物,溶于丁醇、二甲苯、乙酸乙酯和丙酮等是溶剂挥发成膜的典型代表。但该材料在使用中易受紫外线照射使其机械强度下降,从而导致涂层发黄。

  • (2) 聚乙烯醇缩丁醛

  • 聚乙烯醇缩丁醛是由聚乙烯醇与丁醛在酸催化下缩合的产物,可溶于甲醇、乙醇、酮类溶剂,具有优良的耐冲击、耐紫外辐照等能力且有较高的透明度[17],但黏结能力较差。溶于乙醇等有机溶剂后可直接涂覆于文物表面,常用浓度为3%。

  • (3) 氟碳涂料

  • 氟碳涂料是指以氟树脂为主要成膜物质的涂料。在各种涂料之中,氟树脂涂料耐候性较强,但是在成膜后可去除性较差。氟碳涂料由于其性能优异,近年来逐渐受到文物保护领域的关注。

  • 1.2.3 有机-无机杂化材料

  • 有机-无机杂化材料作为一种新型的复合材料,有着广阔的应用前景[18]。将纳米颗粒添加到涂层材料中得到有机-无机复合材料是目前研究比较广泛的一种方法,可提高常规力学性能如附着力、耐候性、耐老化性能等,但同时由于无机纳米粒子的引入而导致涂层透光性下降。马立治等[19]在氟碳涂层中添加了适量的无机纳米SiO2,有效地增强了涂层在室外长期的封护效果。同时,添加纳米SiO2 后氟碳涂层的玻璃化转变温度有所提高,可以保证涂层在使用条件下具有良好的性能[20]。由于该杂化材料具有良好的耐候性、耐腐蚀性,在我国文物保护中已经有所应用。李新华等[21]采用一步法制备了具有热可逆性的自修复石墨烯量子点/聚氨酯透明复合膜(NH2-GQDS/PU-DA)。并且还对该复合膜的透光率和拉伸性能进行了分析,如图2所示,NH2-GQDS/PU-DA的拉伸性能和透光率随着NH2-GQDS含量的增加皆有所提高,当含量为60 μL时拉伸强度达到最大,当其含量为40 μL时透光率达到最大。

  • 图2 自修复石墨烯量子点/聚氨酯透明复合膜透光率与拉伸强度分析图[21]

  • Fig.2 Analysis diagram of transmittance and tensile strengthof self-healing graphene quantum dot/polyurethane transparent composite film[21]

  • 2 超疏水表面封护材料

  • 2.1 超疏水材料简介

  • 超疏水涂层是受荷叶表面微观结构而发展起来的一类仿生材料,水滴在其表面呈近似球形(接触角大于150°)且极易滚落(滚动角小10°)。在潮湿环境下,超疏水涂层能够极大地抑制水分的侵蚀,使基材具有更好的力学强度。例如,LI等[30]在滤纸上交替沉积了TiO2 纳米粒子和海藻酸钠,然后利用棕榈蜡对其进行疏水处理,最终制备了超疏水纸张。在室温、相对湿度为95%的条件下保存24h后,未处理纸张吸水率达982%,抗拉强度下降为原来的45%左右;超疏水纸张的吸水率只有180%,抗拉强度维持在原始值的93%左右。研究还发现,对于在超疏水表面由水汽冷凝而成的水滴而言,细小水滴将会发生合并、自弹跳现象[31]。随着体积的增大,水滴将会在重力的作用下发生滚落,从而带走更多细小水滴。由此可见,超疏水表面能够抵抗水汽侵蚀,并能够尽快使由水汽凝聚或融霜而产生的水滴脱离表面。上述分析是在水平表面进行的,当表面倾斜或处于竖直状态时,冷凝水滴的脱离将更加迅速。由上述分析可知,超疏水涂层不仅能够抑制基材对水汽的吸附,还能在重力或外界扰动(如微风) 的作用下使其表面的水滴快速离开,保持表面干燥。陈涛涛[32]通过试验对重力作用下超疏水表面上液滴聚结-跳跃的效率进行了研究,研究表明接触角是冷凝液滴在重力作用下去除的一个重要指标,不仅可以降低液滴在表面的运动阻力,提高液滴的聚结-跳跃频率,同时聚结液滴的跳跃速度也得到了提升。近年来,超疏水表面由于其不易润湿、自清洁等一系列优点逐渐受到研究者的关注。自然界中许多植物和动物的表面都具有超疏水特性,如水珠在树叶和花朵上形成水滴状,灰尘等污垢在其表皮上难以黏附;水蝇在水面上可以行走自如、如履平地;蝴蝶可以在雨中自由飞翔;水珠不能在螳螂身上润湿等等,如图3所示,这些独特的超疏水性能给人们留下极大的想象空间[33-34]

  • 图3 自然界中具有超疏水表皮的生物及其微观形貌[33-34]

  • Fig.3 Organisms with superhydrophobic epidermis in nature and their microscopic morphology [33-34]

  • 为了进一步研究仿生超疏水表面的构建,对表面润湿现象的基础理论进行阐释必不可少。在润湿性的理论研究中,Young首先建立了Young模型(图4a),即在光滑材料表面上液滴的接触角是固定的,当水滴停留在光滑的固体表面上时,表面上的水滴形成的形状取决于液体、固体和气体入口界面处的界面张力[35],接触角 θ 可用Young氏方程[36]描述:

  • cosθY=γSG-γSL/γLG
    (1)
  • 式中,γSLγSG、和 γLG 分别代表固-液、固-气和液-气三个界面的界面张力,这三种表面张力在相互作用下处于平衡状态,θY表示材料的固有静态接触角,固体表面材料的化学组成直接决定了 θY 的大小。

  • 但是Young模型是一个理想化的模型,由于自然界实际的材料不存在绝对光滑的表面,所有材料都具有一定的表面粗糙度。因此,实际测定的接触角与Young模型相差甚大。为了进一步阐明表面粗糙度对表面润湿性的影响,Wenzel和Cassie等修改了Young模型。假定液体将固体表面的粗糙结构完全填满,所接触的固-液界面的整个表面将被覆盖 (图4b),从而使得表观几何上观察到的接触面积要小于实际的固液接触面积,所以Wenzel模型[37]下的材料表面粗糙结构和接触角之间的关系可由以下方程表示:

  • cosθW=r×cosθY
    (2)
  • 式中,θWθY 分别代表粗糙表面的宏观接触角和固有接触角,r 为固体表面的粗糙因子,即实际固、液间的接触面积与表观固、液间的接触面积之比,该公式主要利用 r 结合了理想固体表面和粗糙固体表面的润湿性。从公式可知,增加固体表面粗糙度因子 r 的值可以增加疏水效果。但Wenzel模型也存在相应的局限性,不适用于由不同类型化学物质组成的固体表面[38]。所以基于Wenzel模型,Cassie和Baxter提出当表面具有一定的表面粗糙度时,由于凹槽间有空气的存在使固体表面的凹槽就不能完全被液滴浸入,这导致液滴只能与固体表面的部分突起接触(图4c),这种润湿状态下的接触角和材料表面粗糙结构之间的关系如下:

  • cosθC-B=fscosθs+fvcosθv
    (3)
  • 式中 θC-B 表示Cassie模型[39]中的宏观接触角,fvfs分别代表固体和液体表面与空气的接触比例,θsθv 分别为液体与固体表面和空气的接触角。

  • 以上基本理论和模型为仿生超疏水表面的制备提供了依据,也为其规模生产和实际应用奠定了基础。

  • 图4 三种不同类型的润湿状态示意图:(a)理想固体表面Young氏润湿模型,(b)粗糙表面Wenzel润湿模型, (c)Cassie-Baxter润湿模型[36-39]

  • Fig.4 Schematic diagram of three different types of wettability: (a) Young’s wettability model for ideal solid surface, (b) Wenzel's wettability model for rough surface, and (c) Cassie-Baxter's wettability model[36-39]

  • 2.2 超疏水材料应用于文物封护

  • 2.2.1 超疏水材料应用于文物封护的优点

  • 超疏水表面是受荷叶表面微观结构而发展起来的一类仿生材料,特别是具有荷叶效应的超抗浸润、自清洁材料,在文物保护中有着独特的优势。

  • (1) 超抗浸润特性。在潮湿环境下,超疏水涂层能够极大地抑制水分的侵蚀,使基材具有更好的力学强度。例如,SUWAN等[40]将含有SiO2 纳米颗粒的聚甲基氢硅氧烷基涂层涂覆在黏土块后,其吸水率从11.5%降低到4.8%,孔隙率从22.5%显著降低到9.2%,而体积密度和表观密度没有变化,并且涂层还具有良好的透明度。

  • (2) 自清洁特性。自清洁作用主要表现在超疏水涂层特殊的润湿性赋予的其对灰尘、微生物等污渍的自清洁功能,且其自清洁功能往往需要借助雨水的冲刷及一定的倾斜角来实现。当类球形水滴与污染物接触时,通过吸附作用将污染物黏附于自身表面,进而裹挟污染物并滚动脱离表面达到清洁目的[41]。因此,具有该特殊功能的涂层材料可以有效地减轻文物所遭受的外界侵害。

  • 2.2.2 超疏水材料在文物封护中的应用

  • 2.2.2.1纺织品文物保护

  • 古代纺织品属于天然高分子材料,由于年代久远易产生脆裂损伤,在自然条件下长期存放的天然纤维纺织品也会受到空气中的液态水、细菌和虫蛀等外界因素的侵害而受到损坏。因此,迫切需要对纺织品进行表面封护处理[42]

  • 关于超疏水织物的制备,已有大量文献报道。针对纺织品文物而言,其制备方法需满足温和、不破坏原有织物表面特性等原则,如溶液浸渍、简单的喷涂等方法都是文物保护的备选方案。曹春燕等[43]采用溶液浸渍法将SiO2 气凝胶沉积到棉织物上,再使用聚二甲基硅氧烷(PDMS)对其进行修饰得到改性棉织物。与亲水棉织物相比,改性棉织物的水接触角达到160°,滚动角小于10°。并且,将制备的涂层应用在彩色棉织物上后,织物的色泽依然没有明显变化。

  • YE等[44]采用喷涂的方法制备了一种具有高效防止细菌黏附能力的耐用抗菌防污纺织品,试验中通过添加了氟化介孔SiO2 纳米粒子(F-MSNs)来提供抗黏连功能,使用季铵盐介孔SiO2 纳米粒子 (Q-MSNs)提供接触杀灭抗菌活性,以及聚二甲基硅氧烷(PDMS)作为黏合剂,其制备过程如图5所示。研究表明,所制备的纺织品不仅具有耐用、稳定和优异的抗菌活性,而且由于超疏水性而减少了蛋白质和细菌的黏附。由于此制备方法所制备的纺织品具有优异的抗菌性能,因此有望用于保护我国出土的纺织品文物。

  • 图5 以添加F-MSNs和Q-MSNs纳米粒子来提供抗黏连与抗菌功能,以PDMS作为黏合剂的超疏水改性纺织品的制备示意图[44]

  • Fig.5 Schematic diagram of preparation of superhydrophobic modified textile using PDMS as binder by adding F-MSNS and Q-MSNS nanoparticles to provide anti-adhesion and anti-bacterial properties[44]

  • 希腊学者ASLANIDOU等[45]在2016年提出一种通过使用喷涂的方法将含有SiO2 纳米粒子的水溶性硅氧烷乳液喷涂在丝绸表面上构建表面封护涂层,试验中通过控制SiO2纳米粒子加入的比例成功制备了超疏水/超疏油涂层,并且还具有良好的自清洁性能。对于文物保护而言,该涂层很好地保留了丝绸原有的色泽、细节特征等,对其美观特性没有丝毫影响。最重要的是该方法还具有可逆性,通过用压缩的CO2 与少量CH4O进行混合施加在该涂层上便可轻松去除。因此,该方法对于我国文物保护事业是一项非常有潜力的研究。

  • 2.2.2.2纸质文物保护

  • 纸质文物包括古代文献档案、古代书籍和古代字画等。纸质文物的保存与微生物、温度、气体都有关系。无论怎样保存,纸质文物也不能完全与空气隔离。空气中的气体会与水分子发生反应形成酸性物质,而纸质文物最容易受到酸性物质的侵蚀,使材质加速损耗[46]。不仅使纸张性能变得脆弱,还会造成颜色污染[47]。因此,对于纸质文物进行表面封护处理已是迫在眉睫。XU等[48]采用六甲基氧二硅烷(HMDSO)前驱体对模拟纸质文物进行大气压等离子体处理,该试验装置原理图如图6a示。处理前后的文物样品如图6b所示,在未处理区域中的水滴迅速渗透并且水接触角为0°,经过等离子体处理后水滴无法被样品吸收并且水接触角被大幅增加至143.6°,获得了良好的超疏水性能并且处理过后的样品具有良好的力学性能且没有任何颜色的改变。

  • 图6 对模拟纸质文物进行大气压等离子体处理[48]

  • Fig.6 Atmospheric pressure plasma treatment of simulated paper cultural relics [48]

  • 此外,XU等[49]以改性微晶纤维素(MCC)、改性纳米TiO2、甲基丙烯酸十二氟庚酯(DFMA)和几种丙烯酸酯单体为原料,采用半连续种子乳液法和预乳化聚合法合成了新型纸质文物保护涂料。同时,在模拟纸质文物上涂覆优选的保护涂层后,对涂层的热稳定性、耐老化性、力学性能和接触角进行了一系列试验均展现出优良的性能。同年,XU等[50] 又将羧甲基纤维素和疏水性DFMA引入到醋酸乙烯酯/丙烯酸酯共聚物复合材料中。该试验结果表明,当DFMA含量为25%时复合材料的热稳定性、抗拉强度、溶胀度、耐老化性等综合性能最好,同时由图7可知,老化处理后覆有涂层样品(图7b)中的纤维与原始样品(图7a)中的纤维非常相似并且它们的结构几乎是连贯和完整的。因此,制备的复合材料对纸纤维具有良好的保护作用,可用于纸质文物保护。对比以上XU等的两组试验,虽使用了相同的制备方法制备了具有优良性能的文物保护涂层,但是在第二组试验中对DFMA的含量进行了细致的研究,当DFMA含量为25%时,涂层的热稳定性、抗拉强度、以及渗透性相较第一组试验有了更好的提升。

  • 图7 老化处理后样品的SEM图像[50]

  • Fig.7 SEM images samples after aging treatment [50]

  • 近年来,石墨烯一直是材料学领域备受关注的材料。2021年7月希腊研究与技术基金会化工科学研究所Costas Galiotis课题组与意大利佛罗伦萨大学等机构的学者合作在 Nature Nanotechnology 杂志上发表的论文,又一次拓展了石墨烯的应用范围。他们通过化学气相沉积的方法将单层或多层石墨烯沉积在纸质艺术品上,制备工艺如图8所示。研究表明,石墨烯在纸质艺术品表面产生的屏障不仅可以有效地阻挡光线,而且还可以阻挡空气中的水汽、微生物等有害因素。最重要的是,该过程具有良好的可逆性,产生的保护层可以通过橡皮擦掉且不会对艺术品造成任何损害[51],该研究成果有望大规模应用于文物保护领域。

  • 2.2.2.3木质文物保护

  • 在潮湿环境中木制品易受损坏,这是因为木材具有特殊的多孔结构且含有大量羟基,在潮湿环境下易吸水,严重影响了木制品的尺寸稳定性和耐久性。人们提出对木材表面进行疏水化处理,通过限制木材表面与水的相互作用来提高木制品的防菌防腐性能,从而提高其耐久性。

  • 图8 石墨烯在艺术品上的沉积流程[51]

  • Fig.8 Deposition process of graphene on artwork[51]

  • PANDIT等[52]以超亲水黄檀木为原料,采用浸渍法将木材浸渍在全氟辛基三乙氧基硅烷(PFOTS) 和TiO2纳米粒子溶液中制备超疏水木材保护涂层,所制备的涂层能够阻挡水以及表面张力在47~72mN/m范围内的液体,涂层木材在有机和无机介质中浸泡不同时间仍然表现出良好的化学稳定性。此外,涂层木材还具有优异的自清洁能力。但是该方法制备的涂层易于仿生磨损和失效,YANG等[53] 通过多溶剂连续改性方法制备了具有仿生PEG功能化SiO2/PVA/PAA含氟聚合物杂化透明涂层的超疏水木材,所制备的超疏水木材不仅表现出了良好的超疏水性和透明度,而且在高低温下具有优异的稳定性和机械耐久性。如图9所示,所制备的涂层透光率约为71%,不影响颜色纹理的同时保留了木材固有的美学外观。此外,作者还对耐磨性做了测试,如图10所示。将200g的重物以10mm·s −1 的速度在样品上进行拖动,经过八次试验后接触角仍保持在140°以上。

  • 上述所制备的涂层并未提及具有杀菌作用,而真菌对于木材表面具有相当大的危害。GUO等[54] 提出一种保护模式是通过在木材表面和木材细胞内腔表面形成TiO2/Ce干凝胶涂层的非生物杀灭无机体系来保护木材免受真菌降解,并且所制备的干凝胶涂层具有优良的透明度,可有效保持改性样品的美观。由于该方法所制备的涂层性能优异且不会对环境或健康产生任何影响,因此在文物保护领域将有一定的发展前景。

  • 图9 玻璃和涂覆超疏水涂层玻璃的透光率及覆盖在木材表面的光学图像[53]

  • Fig.9 Transmittance of the bare glass and the glass with superhydrophobic coating as well as the optical images of bare glass and glass with superhydrophobic coating on wood[53]

  • 图10 木材超疏水表面润湿性随磨损长度的变化[53]

  • Fig.10 Variation of wettability of superhydrophobic wood against wear distance[53]

  • 2.2.2.4金属文物保护

  • 青铜器、铁质文物经过历史的沉淀,由于各种自然环境因素的改变对文物产生侵蚀,造成粉状锈、剥离、裂隙、瘤状物等缺陷[55],这样金属文物的修复以及保护就显得十分重要。金属表面制备超疏水材料的方法有很多,例如激光刻蚀、电化学腐蚀、喷涂、自组装、直接浸泡法等。但是对于文物保护而言,由于激光刻蚀和电化学腐蚀会对基材表面造成破坏,违反了我国文物保护的基本原则,因此该方法并不适用。近年来文献中所提到的方法有喷涂、自组装、直接浸泡法等,例如FERRARI等[56]通过喷涂法在室温下制备了能够调节覆盖面积和透明度的超疏水涂层,由于该技术对于基材材料没有限制,因此该方法有望用于铁质文物的保护。

  • 为提高青铜文物的耐腐蚀性,伍思敏等[57]通过自组装技术在带粉状锈青铜表面制备了具有较高接触角的超疏水表面,并且将制备的样品暴露在空气中两个月后,试样表面仍具有良好的疏水性与耐腐蚀性。史笔涵等[58]采用直接浸泡法将模拟的带粉状锈蚀的青铜表面浸泡在正十二硫醇-十四酸的混合溶液中构筑了超疏水保护涂层,处理前后SEM图像如图11所示。带有粉状锈的试片表面存在多层连在一起的絮状物质,处理后其表面几乎被成簇的片状物完全覆盖,这种结构表面起到截留空气的作用,从而增加了气液间的接触面积。结果表明,该涂层具有优良的超疏水性和耐腐蚀性。

  • 图11 带粉状锈蚀的青铜表面在正十二硫醇-十四酸的混合溶液中浸泡前后的表面形貌[58]

  • Fig.11 Surface morphology of bronze with powdery corrosion before and after immersion in a mixed solution of n-dodecanthiol-tetraganoic acid[58]

  • 两位学者虽在带粉状锈青铜表面制备了超疏水保护涂层,但史学者采用直接浸泡法所制备的涂层缓释效率高达99.51%。因此,该方法所制备的涂层具有更好的耐腐蚀性能。

  • 2.2.2.5石质文物保护

  • 暴露在野外的众多大型石质古迹包括壁画、洞窟、石碑等,由于自然风化作用和人为因素的破坏,许多文物的表面都已发生严重的劣化现象,其中液态水有着巨大的危害,如不采取有效措施,许多珍贵的实物记录将不复存在。因此,研制性能良好的石质文物保护涂层已成为文物保护领域的迫切任务之一。

  • 近年来,西班牙学者FACIO等[59]通过在石材建筑上喷涂含有SiO2 低聚物、SiO2 纳米颗粒和表面活性剂的溶胶,在其表面构筑了超疏水封护涂层。研究发现该涂层不仅不会改变石材表面的原始形貌和透气性,而且还具有较高的机械阻力和自清洁等性能。SBARDELLA等[60]通过分批细乳液聚合法合成了水性纳米结构SiO2/聚丙烯酸酯杂化涂料。研究表明,当SiO2 纳米颗粒含量为5wbm%时,表面具有最优的疏水性和机械抗性。ASLANIDOU等[61]采用喷涂法将分散在烷氧基硅烷和有机氟聚合物水乳液中的SiO2 喷涂到白色大理石和砂岩上制备了超双疏涂层,SEM图像如图12所示。两种涂层的表面结构相似,因此,实际上底层基材形态对涂层疏水性无明显影响。

  • 图12 采用喷涂法在不同基材表面所制备的超疏水涂层形貌[61]

  • Fig.12 Superhydrophobic coatings were prepared by spraying on different substrates[61]

  • 对于文物保护而言,涂层表面的透明度是研究的重要因素之一。相较于前两组试验,ASLANIDOU的试验结果表明防护涂层不仅具有良好的超疏水性能,而且整体色差(∆E)最小,其数值在0.10~3.11。同时,纳米颗粒沉积在丝绸、纸张、混凝土上的水滴与油滴如表2所示,水滴与油滴的状态均展示出该表面具有良好的疏水疏油性能。因此,该涂层不仅适用于石质文物保护而且也适用于纸张、丝绸类文物的保护。

  • 表2 不同基材下水滴与油滴的状态比较[61]

  • Table2 Comparison of state of water drop and oil drop under different substrates [61]

  • 3 结论与展望

  • 仿生超疏水材料是近年来受到文物保护领域较多关注的一类材料,表现出对水、微生物、灰尘以及光照等极好的性能,将为文物长久的保护起到至关重要的作用。本文综述了超疏水材料在文物保护领域的研究进展。归纳总结了当前超疏水材料在纺织品文物、木质文物、石质文物、金属文物等方面的保护方法与发展趋势,希望为今后超疏水材料在文物保护方面提供一些建议。同时,通过对超疏水材料在不同文物保护方面的应用来分析,发现在石质文物保护方面的应用更为广泛。

  • 近年来,超疏水涂层发展迅速,但也存在一些问题。相比与普通超疏水涂层而言,应用于文物表面的封护涂层既具有相对独特的科学问题,又面临着实际应用方面的难题。通过对国内外超疏水材料应用在文物封护方面的成果进行分析,认为还需从以下几个方面努力。

  • (1) 涂层的透光性问题

  • 对于文物表面封护而言,涂层透光性至关重要。然而,表面超疏水性和透光度是两个相悖的性质。因为要构筑超疏水表面,就必须有表面粗糙结构,但表面粗糙结构会增加光的散射,导致透光性降低。具体来说,光的散射行为可用瑞利(Rayleigh scattering)和米氏(Mie scattering)理论描述[62]。假设引起光散射的是不透明的球形颗粒(半径为 r),当颗粒半径足够小(小于0.1λλ 为入射光波长),散射光强度 I 与入射光强度 I0之比( I/I0)可用瑞利公式表示:

  • II0=1+cos2θ2S22πλ4n2-1n2+2r2
    (4)
  • 式中,θ 为散射角,S 表示颗粒与探测器之间的距离,n 为颗粒折射率。经计算,当2r 小于100nm时,如氧化硅(n=1.43,一种常见的用于提高丙烯酸树脂涂层粗糙度的纳米粒子)在可见光区(λ=532nm) 的瑞利散射(I/I0 小于0.05)。此时,散射可忽略不计。当引起散射的颗粒尺寸与光波长相当,或者大于光波长,主要发生米氏散射。总的散射横截面积可表示为:

  • σM=λ22πm=1 (2m+1)am2+bm2
    (5)
  • 式中,λ 为入射光波长;ambm 为米氏系数,分别代表磁学和电学 m 数量级,是颗粒直径(2r)和折射率 n 的函数。随着颗粒尺寸的增加,米氏散射以指数形式增加。应该指出的是,以上计算式基于空气中的球形颗粒得出的。在真实体系中,光散射由于表面的不规则性和材料折射率的梯度会更复杂[63]。试验结果进一步证实了粗糙尺寸对涂层透明度的影响。例如,聚(甲基丙烯酸甲酯与二甲基丙烯酸酯) 共聚物的多孔膜,当聚合物的球形尺寸从486nm降到80nm时,薄膜由不透明转向透明[64]。综上所述,如何做到这两者之间的平衡是后续研究的一个重点。

  • (2) 涂层的耐久性问题

  • 对于文物保护而言,超疏水涂层的耐久性是一项非常重要的指标。只有当封护材料表现出长久有效的封护性能时,才会尽可能地减少人为因素对于文物保护的干预,从而最大限度地遵循我国文物保护的基本原则。截至目前已经有很多报道关于制备耐久性超疏水涂层的方法,如通过在表面建立微纳结构提高超疏水表面的机械稳定性[65];利用涂层技术和添加黏合剂增强超疏水表面的耐久性能[66];建立具有自修复或人工修复的超疏水表面等。然而目前许多方法因操作过程不便、生产成本高等原因而不适用于多样化文物的封护与加固,同时不同类型文物的保存环境有所差别,对于不同保存环境的文物其耐久性测试与测试标准也应有相应的方案。因此,如何更好地优化文物保护涂层的耐久性及其测试标准也是未来研究的一个重点。

  • 参考文献

    • [1] 潘瑞平.天水博物馆文物与文化传播研究[J].丝绸之路,2019,36(3):171-172.PAN Ruiping.Research on cultural relics and cultural communication of Tianshui Museum[J].Silk Road,2019,36(3):171-172.(in Chinese)

    • [2] 马云.纸质文物保护修复的传统及现代技术研究[J].文物鉴定与鉴赏,2019,4(15):86-87.MA Yun.Research on the traditional and modern technology of the conservation and restoration of paper cultural relics [J].Identification and Appreciation of Cultural Relics,2019,4(15):86-87.(in Chinese)

    • [3] Ll A,LU Z B,BZ A,et al.A comparative study of reinforcement materials for waterlogged wood relics in laboratory[J].Journal of Cultural Heritage,2019,36:94-102.

    • [4] ZHANG X,WEN W,YU H,et al.Preparation,characterization of nano-silica/fluoroacrylate material and the application in stone surface conservation[J].Journal of Polymer Research,2016,23(4):1-12.

    • [5] 张晶.木质文物的受损原因及保护方法探讨[J].江西建材,2018,228(3):63-65.ZHANG Jing.Discussion on damage causes and protection methods of wooden cultural relics [J].Jiangxi Building Materials,2018,228(3):63-65.(in Chinese)

    • [6] 周春香.浅谈文物保护的现状及对策初探[J].科研,2016(4):00296-00296.ZHOU Chunxiang.Discussion on the current situation of cultural relics protection and preliminary exploration of countermeasures[J].Scientific Research,2016(4):00296-00296.(in Chinese)

    • [7] 国家古迹遗址理事会中国国家委员会.中国文物古迹保护准则[M].北京:文物出版社,2015:2-7.China National Commission of the National Council on Monuments and Sites.Guidelines for the protection of cultural relics and historic sites in china [M].Beijing:Cultural Relics Press,2015:2-7.(in Chinese)

    • [8] 曹颐戬,王聪,王丽琴.仿生超疏水材料及其在文物保护中的应用综述[J].材料导报,2020,34(3):184-190.CAO Yijian,WANG C,WANGL Q.Review of bionic superhydrophobic materials and their applications in cultural heritage conservation.Materials Review,2020,34(3):184-190.(in Chinese)

    • [9] 朱正柱.纳米改性石质文物封护材料的研究[D].南京:南京航空航天大学,2008:02-04.ZHU Zhengzhu.Research on nano-modified stone cultural relic saling material[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2008:2-4.

    • [10] 谢贵堂,张均,姚明,等.调湿材料的研究与应用现状[J].材料导报,2021,35(S1):634-638.XIE Guitang,ZHANG Jun,YAO Ming,et al.Research and application status of hygroscopic materials [J].Materials Review,2021,35(S1):634-638.(in Chinese)

    • [11] 苏伯民,张化冰,谈翔,等.高分子材料应用于莫高窟壁画保护的历史现状与研究[J].敦煌研究,2018,1:80-84.SU Bomin,ZHANG Huabing,TAN Xiang,et al.Historical status and research of polymer materials applied to mural protection in Mogao Grottoes [J].Dunhuang Research,2018,1:80-84.(in Chinese)

    • [12] 郑军.浅议丙烯酸树脂在文物保护领域中的应用[J].文物世界,2018,149(6):01-03.ZHENG Jun.A brief discussion on the application of acrylic resin in the field of heritage protection [J].Heritage World,2018,149(6):1-3.(in Chinese)

    • [13] 齐迎萍.化学材料在石质文物保护中的应用[J].文物保护与考古科学,2008,20(4):64-69.QI Yingping.Application of chemical materials in the protection of stone cultural relics [J].Science of Conservation and Archaeology,2008,20(4):64-69.(in Chinese)

    • [14] 张雅文,王秀峰,伍媛婷,等.文物保护用无机胶凝材料的研究进展[J].材料导报,2012,26(3):51-56,68.ZHANG Yawen,WANG Xiufeng,WU Yuanting,et al.Research progress of inorganic cementitious materials for cultural heritage conservation[J].Materials Review,2012,26(3):51-56,68.(in Chinese)

    • [15] ZHU J,LI X,ZHANG Y,et al.Graphene quantum dots:Graphene-enhanced nanomaterials for wall painting protection(Adv.Funct.Mater.44/2018)[J].Advanced Functional Materials,2018,28(44):2-4.

    • [16] 龚欣,韩向娜,陈坤龙.文物保护中使用非典型丙烯酸酯类材料的应用述评[J].文物保护与考古科学,2021,33(3):108-117.GONG Xin,HAN Xiangna,CHEN Konglong.A review of the application of atypical acrylates in cultural heritage conservation [J].Science of Conservation and Archaeology,2021,33(3):108-117.(in Chinese)

    • [17] 王荣,田兴玲,贾政.铜质文物封护材料的研究及应用[J].全面腐蚀控制,2020,34(2):1-9.WANG Rong,TIAN Xingling,JIA Zhen.Research and application of copper cultural relic sealing materials[J].Total Corrosion Control,2020,34(2):1-9.(in Chinese)

    • [18] GON M,TANAKA K,CHUJO Y.Creative synthesis of organic-inorganic molecular hybrid materials[J].Bulletin of the Chemical Society of Japan,2017,90(5):463-474.

    • [19] 马立治,沈大娲,王永生,等.氟碳涂料在铁质文物封护中的应用研究[J].文物保护与考古科学,2010,22(2):27-32.MA Lizhi,SHEN Dawei,WANG Yongsheng,et al.Research on application of fluorocarbon coating in sealing iron cultural Relics [J].Science of Conservation and Archaeology,2010,22(2):27-32.(in Chinese)

    • [20] 董炎明.高分子分析手册[M].北京:中国石化出版社,2004.DONG Yanming.Handbook of polymer analysis [M].Beijing:China Petrochemical Press,2004.(in Chinese)

    • [21] 李新华,肖文柯,张小娟,等.具有热可逆性的自修复石墨烯量子点/聚氨酯透明复合膜研究[J].化工新型材料,2021,49(3):68-71.LI Xinhua,XIAO Wenke,ZHANG Xiaojuan,et al.Research on self-healing graphene quantum dots/polyurethane transparent composite film with thermal revertibility [J].New Materials for Chemical Industry,2021,49(3):68-71.(in Chinese)

    • [22] YANG F,HE D,LIU Y,et al.Conservation of bone relics using hydroxyapatite as protective material[J].Applied Physics A,2016,122(4pt.2):479.

    • [23] 田兴玲,贾政,赵旭辉.新型封护材料 ZS-922 对青铜文物保护效果的评价研究[J].材料保护,2020,53(9):32-38.TIAN Xingling,JIA Zheng,ZHAO Xuhui.Evaluation of the effect of new sealing material ZS-922 on the protection of bronze cultural relics [J].Materials Protection,2020,53(9):32-38.(in Chinese)

    • [24] ENA B,IK A.Superhydrophobic paraloid B72-sciencedirect[J].Progress in Organic Coatings,139:105224.

    • [25] 王春燕.薄荷醇临时固型后遗迹加固剂介入土遗迹时机研究[D].西安:陕西师范大学,2019.WANG Chunyan.Study on the time of intervention of menthol cementing agent after temporary cementing[D].Xi’an:Shaanxi Normal University,2019.(in Chinese)

    • [26] 沈浩,于庆同,邓志文,等.近代涂料在乐山大佛保护中的应用[J].中国涂料,2005,4(11):15-16.SHEN Hao,YU Qingtong,DENG Zhiwen,et al.Application of modern paint in protection of leshan giant buddha [J].China Paint,2005,4(11):15-16.(in Chinese)

    • [27] AZADI N,PARSIMEHR H,ERSHAD-LANGROUDI A.Cultural heritage protection via hybrid nanocomposite coating[J].Plastics,Rubber and Composites,2020,49(9):414-424.

    • [28] Ml A,MM B,MF C.Durability to simulated bird guano of nano-filled oleo/hydrophobic coatings for the protection of stone materials-ScienceDirect[J].Progress in Organic Coatings,148:105900.

    • [29] SHU H,SONG Y,LIU Q,et al.The study of rod-shaped TiO2 composite material in the protection of stone cultural relics[J].Green Processing and Synthesis,2020,9(1):359-365.

    • [30] LI H,YANG J,LI P,et al.A facile method for preparation superhydrophobic paper with enhanced physical strength and moisture proofing property[J].Carbohyd Polym,2017,160:9-17.

    • [31] 王宇航,袁猛,明平剑,物性参数对液滴的聚并自弹跳的影响及其关联分析[J].物理学报,2021,70(12):10.WANG Yuhang,YUAN Meng,MING Pingjian.Effect of physical parameters on coalesce and self-bounce of droplet and correlation analysis [J].Physics Report,2021,70(12):10.(in Chinese)

    • [32] 陈涛涛.外力作用下超疏水面上液滴聚结-跳跃行为研究[D].南京:南京理工大学,2020.CHEN Taotao.Study on the coalescence and jumping behavior of droplets on superhydrophobic surface under external force[D].Nanjing:Nanjing University of Science and Technology,2020.(in Chinese)

    • [33] 赵东理.光固化自修复超疏水涂层的制备与应用[D].广州:华南理工大学,2020.ZHAO Dongli.Preparation and application of uv curing self-healing superhydrophobic coating[D].Guangzhou:South China University of Technology,2020.(in Chinese)

    • [34] SU B,YE T,LEI J.Bioinspired interfaces with superwettability:from materials to chemistry[J].Journal of the American Chemical Society,2016,138(6):1727.

    • [35] ZOU X S,TAO C Y,YANG K,et al.Rational design and fabrication of highly transparent,flexible,and thermally stable superhydrophobic coatings from raspberry-like hollow silica nanoparticles[J].Applied Surface Science,2018,440(May15):700-711.

    • [36] 林书乐.含氟丙烯酸树脂的合成及其在高性能疏水MMA地坪涂料中的应用[D].广州:华南理工大学,2012.LIN Shule.Synthesis of fluorine-containing acrylic resin and its application in high performance hydrophobic MMA floor coatings[D].Guangzhou:South China University of Technology,2012.(in Chinese)

    • [37] WENZEL R N.Resistance of solid surfaces to wetting by water[J].Industrial & Engineering Chemistry,28(8):988-994.

    • [38] 闫德峰,刘子艾,潘维浩,等.多功能超疏水表面的制造和应用研究现状[J].表面技术,2021,50(5):1-19.YAN Defeng,LIU Ziai,PAN Weihao,et al.Research status of manufacturing and application of multifunctional superhydrophobic surfaces [J].Surface Technology,2021,50(5):1-19.(in Chinese)

    • [39] CASSIE A B D,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:546-551.

    • [40] NIMITTRAKOOLCHAI O,SUWAN M,SUPOTHINA S.Transparent superhydrophobic coating application to the interlocking clay block for the microbial growth mitigation[J].IOP Conference Series:Materials Science and Engineering,2017,283:12-13.

    • [41] 黄启舒,许里杰.超疏水自清洁涂料的研究与应用现状 [J].化工新型材料,2020,48(5):219-222.HUANG Qishu,XU Lijie.Research and application of superhydrophobic self-cleaning coatings [J].New Chemical Materials,2020,48(5):219-222.(in Chinese)

    • [42] 王敏,屠恒贤.纺织文物保护与纳米材料[J].科学,2015,57(4):11-13.WANG Min,TU Hengxian.Textile cultural relics protection and nano materials [J].Science,2015,57(4):11-13.(in Chinese)

    • [43] 曹春艳.基于硅气凝胶的超疏水织物的制备及其应用研究[D].苏州:苏州大学,2017.CAO Chunyan.Preparation and application of superhydrophobic fabric based on silica aerogel[D].Soochow:Soochow University,2017.(in Chinese)

    • [44] YE Z,LI S,ZHAO S,et al.Textile coatings configured by double-nanoparticles to optimally couple superhydrophobic and antibacterial properties[J].Chemical Engineering Journal,2020,420(2):6127680.

    • [45] ASLANIDOU D,KARAPANAGIOTIS I,PANAYIOTOU C.Superhydrophobic,superoleophobic coatings for the protection of silk textiles[J].Progress in Organic Coatings,2016,97:44-52.

    • [46] 李耀华.纸质文物保护修复的传统及现代技术研究[J].文物鉴定与鉴赏,2021,4(4):88-90.LI Yaohua.Research on traditional and modern technologies for the protection and restoration of paper cultural relics [J].Identification and Appreciation of Cultural Relics,2021,4(4):88-90.(in Chinese)

    • [47] LI Q L,XI S C,ZHANG X W.Deacidification of paper relics by plasma technology[J].Journal of Cultural Heritage,2014,15(2):159-164.

    • [48] YAN X,LIU G S,YANG J,et al.In situ surface modification of paper-based relics with atmospheric pressure plasma treatment for preservation purposes.[J].Polymers,2019,11(5):2-9.

    • [49] XU J,JIANG Y,ZHANG T,et al.Synthesis of microcrystalline cellulose/TiO2/fluorine/styrene-acrylate coatings and the application for simulated paper cultural relic protection[J].Cellulose,2020,27(11):1-14.

    • [50] XU J,JIANG Y,ZHANG T,et al.Preparation of vinyl acetate/acrylate emulsion modified with carboxymethyl cellulose and fluorine for paper relic protection[J].Journal of Dispersion Science and Technology,2020:1-10.

    • [51] KOTSIDI M,GORGOLIS G,CARBONE M G P,et al.Preventing colour fading in artworks with graphene veils[J].Nature Nanotechnology,2021:1-7.

    • [52] PANDIT S K,TUDU B K,MISHRA I M,et al.Development of stain resistant,superhydrophobic and self-cleaning coating on wood surface[J].Progress in Organic Coatings,2019,139:105453.

    • [53] YANG Y,SHAN L,SHEN H,et al.Manufacturing of robust superhydrophobic wood surfaces based on PEG–Functionalized SiO2/PVA/PAA/Fluoropolymer hybrid transparent coating[J].Progress in Organic Coatings,2021,154:106186.

    • [54] GUO H,BACHTIAR E V,RIBERA J,et al.Non-biocidal preservation of wood against brown-rot fungi with a TiO2/Ce xerogel[J].Green Chemistry,2018,20(6):1375-1382.

    • [55] BASTIDAS D M.Corrosion and protection of metals[J].Metals-Open Access Metallurgy Journal,2020,10(4):458.

    • [56] FERRARI M,PICCARDO P,VERNET J,et al.High transmittance superhydrophobic coatings with durable self-cleaning properties[J].Coatings,2021,11(5):11-8.

    • [57] 伍思敏,闫莹,白钟庆,等.模拟青铜文物粉状锈表面的超疏水制备及表征[J].表面技术,2017,46(2):40-45.WU Simin,YAN Ying,BAI Zhongqing,et al.Superhydrophobic preparation and characterization of powdery rust surface of simulated bronze cultural relics [J].Surface Technology,2017,46(2):40-45.(in Chinese)

    • [58] 史笔函,闫莹,周浩,等.直接浸泡法构筑带锈青铜的超疏水表面[J].腐蚀科学与防护技术,2017,29(5):540-546.SHI Bihan,YAN Ying,ZHOU Hao,et al.Construction of superhydrophobic surface of rusted Bronze by direct immersion method[J].Corrosion Science and Protection Technology,2017,29(5):540-546.(in Chinese)

    • [59] FACIO D S,ORDONEZ J A,GIL M L,et al.New consolidant-hydrophobic treatment by combining SiO2 composite and fluorinated alkoxysilane:Application on decayed biocalcareous stone from an 18th century cathedral[J].Coatings,2018,8(5):170.

    • [60] SBARDELLA F,PRONTI L,SANTARELLI M L,et al.Waterborne acrylate-based hybrid coatings with enhanced resistance properties on stone surfaces[J].Coatings,2018,8(8):283.

    • [61] ASLANIDOU D,KARAPANAGIOTIS I,LAMPAKIS D.Waterborne superhydrophobic and superoleophobic coatings for the protection of marble and sandstone[J].Materials,2018,11(4):585.

    • [62] 田维付.透明超疏水涂层的制备及应用研究[D].哈尔滨:哈尔滨工业大学,2020.TIAN Weifu.Preparation and application of transparent superhydrophobic coating[D].Harbin:Harbin University of Technology,2020.(in Chinese)

    • [63] FEI L,HE Z,LACOSTE JD,et al.A mini review on superhydrophobic and transparent surfaces [J].Chem.Rec.,2020,20:1257-1268.

    • [64] KATO S,SATO A.Micro/nanotextured polymer coatings fabricated by UV curing-induced phase separation:creation of superhydrophobic surfaces [J].J.Mater.Chem.,2012,22:8613-8621.

    • [65] 张艳平,董兵海,王世敏,等.耐久性超疏水表面的构建及其研究进展[J].功能材料,2017,48(6):6057-6063.ZHANG Yanping,DONG Binghai,WANG Shimin,et al.Construction and research progress of durable superhydrophobic surface [J].Functional Materials,2017,48(6):6057-6063.(in Chinese)

    • [66] 郭永刚,张鑫,耿铁,等.超疏水表面耐久性能的研究进展[J].中国表面工程,2018,31(5):63-72.GUO Yonggang,ZHANG Xin,GENG Tie,et al.Research progress on the durability of superhydrophobic surfaces[J].China Surface Engineering,2018,31(5):63-72.(in Chinese)

  • 参考文献

    • [1] 潘瑞平.天水博物馆文物与文化传播研究[J].丝绸之路,2019,36(3):171-172.PAN Ruiping.Research on cultural relics and cultural communication of Tianshui Museum[J].Silk Road,2019,36(3):171-172.(in Chinese)

    • [2] 马云.纸质文物保护修复的传统及现代技术研究[J].文物鉴定与鉴赏,2019,4(15):86-87.MA Yun.Research on the traditional and modern technology of the conservation and restoration of paper cultural relics [J].Identification and Appreciation of Cultural Relics,2019,4(15):86-87.(in Chinese)

    • [3] Ll A,LU Z B,BZ A,et al.A comparative study of reinforcement materials for waterlogged wood relics in laboratory[J].Journal of Cultural Heritage,2019,36:94-102.

    • [4] ZHANG X,WEN W,YU H,et al.Preparation,characterization of nano-silica/fluoroacrylate material and the application in stone surface conservation[J].Journal of Polymer Research,2016,23(4):1-12.

    • [5] 张晶.木质文物的受损原因及保护方法探讨[J].江西建材,2018,228(3):63-65.ZHANG Jing.Discussion on damage causes and protection methods of wooden cultural relics [J].Jiangxi Building Materials,2018,228(3):63-65.(in Chinese)

    • [6] 周春香.浅谈文物保护的现状及对策初探[J].科研,2016(4):00296-00296.ZHOU Chunxiang.Discussion on the current situation of cultural relics protection and preliminary exploration of countermeasures[J].Scientific Research,2016(4):00296-00296.(in Chinese)

    • [7] 国家古迹遗址理事会中国国家委员会.中国文物古迹保护准则[M].北京:文物出版社,2015:2-7.China National Commission of the National Council on Monuments and Sites.Guidelines for the protection of cultural relics and historic sites in china [M].Beijing:Cultural Relics Press,2015:2-7.(in Chinese)

    • [8] 曹颐戬,王聪,王丽琴.仿生超疏水材料及其在文物保护中的应用综述[J].材料导报,2020,34(3):184-190.CAO Yijian,WANG C,WANGL Q.Review of bionic superhydrophobic materials and their applications in cultural heritage conservation.Materials Review,2020,34(3):184-190.(in Chinese)

    • [9] 朱正柱.纳米改性石质文物封护材料的研究[D].南京:南京航空航天大学,2008:02-04.ZHU Zhengzhu.Research on nano-modified stone cultural relic saling material[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2008:2-4.

    • [10] 谢贵堂,张均,姚明,等.调湿材料的研究与应用现状[J].材料导报,2021,35(S1):634-638.XIE Guitang,ZHANG Jun,YAO Ming,et al.Research and application status of hygroscopic materials [J].Materials Review,2021,35(S1):634-638.(in Chinese)

    • [11] 苏伯民,张化冰,谈翔,等.高分子材料应用于莫高窟壁画保护的历史现状与研究[J].敦煌研究,2018,1:80-84.SU Bomin,ZHANG Huabing,TAN Xiang,et al.Historical status and research of polymer materials applied to mural protection in Mogao Grottoes [J].Dunhuang Research,2018,1:80-84.(in Chinese)

    • [12] 郑军.浅议丙烯酸树脂在文物保护领域中的应用[J].文物世界,2018,149(6):01-03.ZHENG Jun.A brief discussion on the application of acrylic resin in the field of heritage protection [J].Heritage World,2018,149(6):1-3.(in Chinese)

    • [13] 齐迎萍.化学材料在石质文物保护中的应用[J].文物保护与考古科学,2008,20(4):64-69.QI Yingping.Application of chemical materials in the protection of stone cultural relics [J].Science of Conservation and Archaeology,2008,20(4):64-69.(in Chinese)

    • [14] 张雅文,王秀峰,伍媛婷,等.文物保护用无机胶凝材料的研究进展[J].材料导报,2012,26(3):51-56,68.ZHANG Yawen,WANG Xiufeng,WU Yuanting,et al.Research progress of inorganic cementitious materials for cultural heritage conservation[J].Materials Review,2012,26(3):51-56,68.(in Chinese)

    • [15] ZHU J,LI X,ZHANG Y,et al.Graphene quantum dots:Graphene-enhanced nanomaterials for wall painting protection(Adv.Funct.Mater.44/2018)[J].Advanced Functional Materials,2018,28(44):2-4.

    • [16] 龚欣,韩向娜,陈坤龙.文物保护中使用非典型丙烯酸酯类材料的应用述评[J].文物保护与考古科学,2021,33(3):108-117.GONG Xin,HAN Xiangna,CHEN Konglong.A review of the application of atypical acrylates in cultural heritage conservation [J].Science of Conservation and Archaeology,2021,33(3):108-117.(in Chinese)

    • [17] 王荣,田兴玲,贾政.铜质文物封护材料的研究及应用[J].全面腐蚀控制,2020,34(2):1-9.WANG Rong,TIAN Xingling,JIA Zhen.Research and application of copper cultural relic sealing materials[J].Total Corrosion Control,2020,34(2):1-9.(in Chinese)

    • [18] GON M,TANAKA K,CHUJO Y.Creative synthesis of organic-inorganic molecular hybrid materials[J].Bulletin of the Chemical Society of Japan,2017,90(5):463-474.

    • [19] 马立治,沈大娲,王永生,等.氟碳涂料在铁质文物封护中的应用研究[J].文物保护与考古科学,2010,22(2):27-32.MA Lizhi,SHEN Dawei,WANG Yongsheng,et al.Research on application of fluorocarbon coating in sealing iron cultural Relics [J].Science of Conservation and Archaeology,2010,22(2):27-32.(in Chinese)

    • [20] 董炎明.高分子分析手册[M].北京:中国石化出版社,2004.DONG Yanming.Handbook of polymer analysis [M].Beijing:China Petrochemical Press,2004.(in Chinese)

    • [21] 李新华,肖文柯,张小娟,等.具有热可逆性的自修复石墨烯量子点/聚氨酯透明复合膜研究[J].化工新型材料,2021,49(3):68-71.LI Xinhua,XIAO Wenke,ZHANG Xiaojuan,et al.Research on self-healing graphene quantum dots/polyurethane transparent composite film with thermal revertibility [J].New Materials for Chemical Industry,2021,49(3):68-71.(in Chinese)

    • [22] YANG F,HE D,LIU Y,et al.Conservation of bone relics using hydroxyapatite as protective material[J].Applied Physics A,2016,122(4pt.2):479.

    • [23] 田兴玲,贾政,赵旭辉.新型封护材料 ZS-922 对青铜文物保护效果的评价研究[J].材料保护,2020,53(9):32-38.TIAN Xingling,JIA Zheng,ZHAO Xuhui.Evaluation of the effect of new sealing material ZS-922 on the protection of bronze cultural relics [J].Materials Protection,2020,53(9):32-38.(in Chinese)

    • [24] ENA B,IK A.Superhydrophobic paraloid B72-sciencedirect[J].Progress in Organic Coatings,139:105224.

    • [25] 王春燕.薄荷醇临时固型后遗迹加固剂介入土遗迹时机研究[D].西安:陕西师范大学,2019.WANG Chunyan.Study on the time of intervention of menthol cementing agent after temporary cementing[D].Xi’an:Shaanxi Normal University,2019.(in Chinese)

    • [26] 沈浩,于庆同,邓志文,等.近代涂料在乐山大佛保护中的应用[J].中国涂料,2005,4(11):15-16.SHEN Hao,YU Qingtong,DENG Zhiwen,et al.Application of modern paint in protection of leshan giant buddha [J].China Paint,2005,4(11):15-16.(in Chinese)

    • [27] AZADI N,PARSIMEHR H,ERSHAD-LANGROUDI A.Cultural heritage protection via hybrid nanocomposite coating[J].Plastics,Rubber and Composites,2020,49(9):414-424.

    • [28] Ml A,MM B,MF C.Durability to simulated bird guano of nano-filled oleo/hydrophobic coatings for the protection of stone materials-ScienceDirect[J].Progress in Organic Coatings,148:105900.

    • [29] SHU H,SONG Y,LIU Q,et al.The study of rod-shaped TiO2 composite material in the protection of stone cultural relics[J].Green Processing and Synthesis,2020,9(1):359-365.

    • [30] LI H,YANG J,LI P,et al.A facile method for preparation superhydrophobic paper with enhanced physical strength and moisture proofing property[J].Carbohyd Polym,2017,160:9-17.

    • [31] 王宇航,袁猛,明平剑,物性参数对液滴的聚并自弹跳的影响及其关联分析[J].物理学报,2021,70(12):10.WANG Yuhang,YUAN Meng,MING Pingjian.Effect of physical parameters on coalesce and self-bounce of droplet and correlation analysis [J].Physics Report,2021,70(12):10.(in Chinese)

    • [32] 陈涛涛.外力作用下超疏水面上液滴聚结-跳跃行为研究[D].南京:南京理工大学,2020.CHEN Taotao.Study on the coalescence and jumping behavior of droplets on superhydrophobic surface under external force[D].Nanjing:Nanjing University of Science and Technology,2020.(in Chinese)

    • [33] 赵东理.光固化自修复超疏水涂层的制备与应用[D].广州:华南理工大学,2020.ZHAO Dongli.Preparation and application of uv curing self-healing superhydrophobic coating[D].Guangzhou:South China University of Technology,2020.(in Chinese)

    • [34] SU B,YE T,LEI J.Bioinspired interfaces with superwettability:from materials to chemistry[J].Journal of the American Chemical Society,2016,138(6):1727.

    • [35] ZOU X S,TAO C Y,YANG K,et al.Rational design and fabrication of highly transparent,flexible,and thermally stable superhydrophobic coatings from raspberry-like hollow silica nanoparticles[J].Applied Surface Science,2018,440(May15):700-711.

    • [36] 林书乐.含氟丙烯酸树脂的合成及其在高性能疏水MMA地坪涂料中的应用[D].广州:华南理工大学,2012.LIN Shule.Synthesis of fluorine-containing acrylic resin and its application in high performance hydrophobic MMA floor coatings[D].Guangzhou:South China University of Technology,2012.(in Chinese)

    • [37] WENZEL R N.Resistance of solid surfaces to wetting by water[J].Industrial & Engineering Chemistry,28(8):988-994.

    • [38] 闫德峰,刘子艾,潘维浩,等.多功能超疏水表面的制造和应用研究现状[J].表面技术,2021,50(5):1-19.YAN Defeng,LIU Ziai,PAN Weihao,et al.Research status of manufacturing and application of multifunctional superhydrophobic surfaces [J].Surface Technology,2021,50(5):1-19.(in Chinese)

    • [39] CASSIE A B D,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:546-551.

    • [40] NIMITTRAKOOLCHAI O,SUWAN M,SUPOTHINA S.Transparent superhydrophobic coating application to the interlocking clay block for the microbial growth mitigation[J].IOP Conference Series:Materials Science and Engineering,2017,283:12-13.

    • [41] 黄启舒,许里杰.超疏水自清洁涂料的研究与应用现状 [J].化工新型材料,2020,48(5):219-222.HUANG Qishu,XU Lijie.Research and application of superhydrophobic self-cleaning coatings [J].New Chemical Materials,2020,48(5):219-222.(in Chinese)

    • [42] 王敏,屠恒贤.纺织文物保护与纳米材料[J].科学,2015,57(4):11-13.WANG Min,TU Hengxian.Textile cultural relics protection and nano materials [J].Science,2015,57(4):11-13.(in Chinese)

    • [43] 曹春艳.基于硅气凝胶的超疏水织物的制备及其应用研究[D].苏州:苏州大学,2017.CAO Chunyan.Preparation and application of superhydrophobic fabric based on silica aerogel[D].Soochow:Soochow University,2017.(in Chinese)

    • [44] YE Z,LI S,ZHAO S,et al.Textile coatings configured by double-nanoparticles to optimally couple superhydrophobic and antibacterial properties[J].Chemical Engineering Journal,2020,420(2):6127680.

    • [45] ASLANIDOU D,KARAPANAGIOTIS I,PANAYIOTOU C.Superhydrophobic,superoleophobic coatings for the protection of silk textiles[J].Progress in Organic Coatings,2016,97:44-52.

    • [46] 李耀华.纸质文物保护修复的传统及现代技术研究[J].文物鉴定与鉴赏,2021,4(4):88-90.LI Yaohua.Research on traditional and modern technologies for the protection and restoration of paper cultural relics [J].Identification and Appreciation of Cultural Relics,2021,4(4):88-90.(in Chinese)

    • [47] LI Q L,XI S C,ZHANG X W.Deacidification of paper relics by plasma technology[J].Journal of Cultural Heritage,2014,15(2):159-164.

    • [48] YAN X,LIU G S,YANG J,et al.In situ surface modification of paper-based relics with atmospheric pressure plasma treatment for preservation purposes.[J].Polymers,2019,11(5):2-9.

    • [49] XU J,JIANG Y,ZHANG T,et al.Synthesis of microcrystalline cellulose/TiO2/fluorine/styrene-acrylate coatings and the application for simulated paper cultural relic protection[J].Cellulose,2020,27(11):1-14.

    • [50] XU J,JIANG Y,ZHANG T,et al.Preparation of vinyl acetate/acrylate emulsion modified with carboxymethyl cellulose and fluorine for paper relic protection[J].Journal of Dispersion Science and Technology,2020:1-10.

    • [51] KOTSIDI M,GORGOLIS G,CARBONE M G P,et al.Preventing colour fading in artworks with graphene veils[J].Nature Nanotechnology,2021:1-7.

    • [52] PANDIT S K,TUDU B K,MISHRA I M,et al.Development of stain resistant,superhydrophobic and self-cleaning coating on wood surface[J].Progress in Organic Coatings,2019,139:105453.

    • [53] YANG Y,SHAN L,SHEN H,et al.Manufacturing of robust superhydrophobic wood surfaces based on PEG–Functionalized SiO2/PVA/PAA/Fluoropolymer hybrid transparent coating[J].Progress in Organic Coatings,2021,154:106186.

    • [54] GUO H,BACHTIAR E V,RIBERA J,et al.Non-biocidal preservation of wood against brown-rot fungi with a TiO2/Ce xerogel[J].Green Chemistry,2018,20(6):1375-1382.

    • [55] BASTIDAS D M.Corrosion and protection of metals[J].Metals-Open Access Metallurgy Journal,2020,10(4):458.

    • [56] FERRARI M,PICCARDO P,VERNET J,et al.High transmittance superhydrophobic coatings with durable self-cleaning properties[J].Coatings,2021,11(5):11-8.

    • [57] 伍思敏,闫莹,白钟庆,等.模拟青铜文物粉状锈表面的超疏水制备及表征[J].表面技术,2017,46(2):40-45.WU Simin,YAN Ying,BAI Zhongqing,et al.Superhydrophobic preparation and characterization of powdery rust surface of simulated bronze cultural relics [J].Surface Technology,2017,46(2):40-45.(in Chinese)

    • [58] 史笔函,闫莹,周浩,等.直接浸泡法构筑带锈青铜的超疏水表面[J].腐蚀科学与防护技术,2017,29(5):540-546.SHI Bihan,YAN Ying,ZHOU Hao,et al.Construction of superhydrophobic surface of rusted Bronze by direct immersion method[J].Corrosion Science and Protection Technology,2017,29(5):540-546.(in Chinese)

    • [59] FACIO D S,ORDONEZ J A,GIL M L,et al.New consolidant-hydrophobic treatment by combining SiO2 composite and fluorinated alkoxysilane:Application on decayed biocalcareous stone from an 18th century cathedral[J].Coatings,2018,8(5):170.

    • [60] SBARDELLA F,PRONTI L,SANTARELLI M L,et al.Waterborne acrylate-based hybrid coatings with enhanced resistance properties on stone surfaces[J].Coatings,2018,8(8):283.

    • [61] ASLANIDOU D,KARAPANAGIOTIS I,LAMPAKIS D.Waterborne superhydrophobic and superoleophobic coatings for the protection of marble and sandstone[J].Materials,2018,11(4):585.

    • [62] 田维付.透明超疏水涂层的制备及应用研究[D].哈尔滨:哈尔滨工业大学,2020.TIAN Weifu.Preparation and application of transparent superhydrophobic coating[D].Harbin:Harbin University of Technology,2020.(in Chinese)

    • [63] FEI L,HE Z,LACOSTE JD,et al.A mini review on superhydrophobic and transparent surfaces [J].Chem.Rec.,2020,20:1257-1268.

    • [64] KATO S,SATO A.Micro/nanotextured polymer coatings fabricated by UV curing-induced phase separation:creation of superhydrophobic surfaces [J].J.Mater.Chem.,2012,22:8613-8621.

    • [65] 张艳平,董兵海,王世敏,等.耐久性超疏水表面的构建及其研究进展[J].功能材料,2017,48(6):6057-6063.ZHANG Yanping,DONG Binghai,WANG Shimin,et al.Construction and research progress of durable superhydrophobic surface [J].Functional Materials,2017,48(6):6057-6063.(in Chinese)

    • [66] 郭永刚,张鑫,耿铁,等.超疏水表面耐久性能的研究进展[J].中国表面工程,2018,31(5):63-72.GUO Yonggang,ZHANG Xin,GENG Tie,et al.Research progress on the durability of superhydrophobic surfaces[J].China Surface Engineering,2018,31(5):63-72.(in Chinese)

  • 手机扫一扫看