en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

孙晓雨,女,1997年出生,硕士。主要研究方向为激光精密微纳加工。E-mail:1191832269@qq.com;

孙树峰(通信作者),男,1968年出生,博士,教授,博士研究生导师。主要研究方向为激光精密微纳加工。E-mail:shufeng2001@163.com

中图分类号:TN249

DOI:10.11933/j.issn.1007−9289.20210801001

参考文献 1
MILLES S,SOLDERA M,KUNTZE T,et al.Characterization of self-cleaning properties on superhydrophobic aluminum surfaces fabricated by direct laser writing and direct laser interference patterning[J].Applied Surface Science,2020,525:146518.
参考文献 2
TA V D,DUNN A,WASLEY T J,et al.Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition[J].Applied Surface Science,2016,365(1):153-159.
参考文献 3
CHEN L,PING H,YANG T.et al.Icing performance of superhydrophobic silicone rubber surfaces by laser texturing[J].Materials Research Express,2019,6(12):1250e2.
参考文献 4
WANG H X,ZHUANG J,YU J T,et al.Fabrication of anti-reflective surface with superhydrophobicity/high oleophobicity and enhanced mechanical durability via nanosecond laser surface texturing[J].Materials,2020,13(24):5691.
参考文献 5
ZHANG J C,LIU J Y,WANG G S,et al.Controllable wettability of laser treated aluminum mesh for on-demand oil/water separation[J].Journal of Dispersion Science and Technology,2019,40(11):1627-1636.
参考文献 6
ZHANG M,CHENG W F,ZHENG Z,et al.Meridian whispering gallery modes sensing in a sessile microdroplet on micro/nanostructured superhydrophobic chip surfaces[J].Microfluidics and Nanofluidics,2019,23(9):106.
参考文献 7
DONG S L,WANG Z L,AN L B,et al.Facile fabrication of a superhydrophobic surface with robust micro-/nanoscale hierarchical structures on titanium substrate[J].Nanomaterials,2020,10(8):1509.
参考文献 8
JIN S Y,WANG Y X,MOTLAG M,et al.Large-area direct laser-shock imprinting of a 3D biomimic hierarchical metal surface for triboelectric nanogenerators[J].Advanced Materials,2018,30(11):1705840.
参考文献 9
CHO H,CHUNG J,SHIN G,et al.Toward sustainable output generation of liquid-solid contact triboelectric nanogenerators:The role of hierarchical structures[J].Nano Energy,2019,56:56-64.
参考文献 10
DONG B,ECHEVERRIA E,OYELADE A,et al.Chemical and electronic structure of composite films deposited by plasma-enhanced chemical vapor deposition from orthocarborane and pyridine source compounds[J].Journal of Electron Spectroscopy and Related Phenomena,2017,223:21-28.
参考文献 11
WU C Y,HSIEH H P,CHEN S T,et al.Fabrication of functional polymer structures through bottom-up selective vapor deposition from bottom-up conductive templates[J].Langmuir,2018,34(15):4651-4657.
参考文献 12
DONG S L,WANG Z L,WANG Y K,et al.Roll-to-roll manufacturing of robust superhydrophobic coating on metallic engineering materials[J].ACS Applied Materials & Interfaces,2018,10(2):2174.
参考文献 13
CHENG J,LI F,ZHU S Y,et al.Electrochemical corrosion and tribological evaluation of TiAl alloy for marine application[J].Tribology International,2017,115(1):483-492.
参考文献 14
ZHANG X,SHI F,NIU J,et al.Superhydrophobic surfaces:from structural control to functional application[J].Journal of Materials Chemistry,2008,18(6):621-633.
参考文献 15
TADANAGA K,MORINAGA J,MINAMI T.Formation of superhydrophobic-superhydrophilic pattern on flowerlike alumina thin film by the Sol-Gel Method[J].Journal of Sol-Gel Science and Technology,2000,19(1-3):211-214.
参考文献 16
WANG N,XIONG D S,DENG Y L,et al.Mechanically robust superhydrophobic steel surface with Anti-Icing,UV-Durability,and corrosion resistance properties[J].ACS Applied Materials & Interfaces,2015,7(11):6260-6272.
参考文献 17
SEIFZADEH D,GOLMOGHANI-EBRAHIMI E.Formation of novel and crack free nanocomposites based on sol gel process for corrosion protection of copper[J].Surface and Coatings Technology,2012,210:103-112.
参考文献 18
ZHU J,ZHANG L,DAI X,et al.One-step fabrication of a superhydrophobic copper surface by nano-silver deposition[J].AIP Advances,2020,10(7):075111.
参考文献 19
吴勃,周明,李保家,等.飞秒激光结合水热法制备不锈钢高粘附超疏水表面[J].功能材料,2013(24):3658-3662.WU Bo,ZHOU Ming,LI Baojia,et al.Fabrication of stainless steel surface with high adhesive superhydrophobicity by femtosecond laser combined hydrothermal method[J].Journal of Functional Materials,2013(24):3658-3662.(in Chinese)
参考文献 20
SONG J,PAN W,WANG K,et al.Fabrication of micro-reentrant structures by liquid/gas interface shape-regulated electrochemical deposition[J].International Journal of Machine Tools and Manufacture,2020,159:103637.
参考文献 21
TRDAN U,HOCEVAR M,GREGORCIC P.Transition from superhydrophilic to superhydrophobic state of laser textured stainless steel surface and its effect on corrosion resistance[J].Corrosion Science,2017,123:21-26.
参考文献 22
HUANG C J,BELL R,TSUBAKI A,et al.Condensation and subsequent freezing delays as a result of using femtosecond laser functionalized surfaces[J].Journal of Laser Applications,2018,30(1):11501.1.
参考文献 23
CHEN L,HUANG Y,YANG T,et al.Laser-structured superhydrophobic/superoleophilic aluminum surfaces for efficient oil/water separation[J].Environmental Science and Pollution Research,2020,27(34):43138-43149.
参考文献 24
钱志强,吴志坚,王世栋,等.镁合金超疏水表面的制备技术与应用研究进展[J].材料导报,2018,1:102-109.QIAN Ziqiang,WU Zhijian,WANG Shidong,et al.Research progress in preparation of superhydrophobic coatings on magnesium alloys and its application[J].Materials Review,2018,1:102-109.(in Chinese)
参考文献 25
WENZEL,ROBERT N.Resistance of solid surfaces to wetting by water[J].Transactions of the Faraday Society,1936,28(8):988-994.
参考文献 26
CASSIE A,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:546-551.
参考文献 27
HUANG S,SONG J L,LU Y,et al.Underwater spontaneous pumpless transportation of nonpolar organic liquids on extreme wettability patterns[J].ACS Applied Materials & Interfaces,2016,8(5):2942-2949.
参考文献 28
YUAN S S,ZHU J Y,LI Y,et al.Structure architecture of micro/nanoscale ZIF-L on a 3D printed membrane for a superhydrophobic and underwater superoleophobic surface[J].Journal of Materials Chemistry A,2019,7(6):2723-2729.
参考文献 29
YOUNG T.An essay on the cohesion of fluids[J].Philosophical Transactions of the Royal Society of London,1805,95:65-87.
参考文献 30
WANG S T,JIANG L.Definition of superhydrophobic states[J].Advanced Materials,2007,19(21):3423-3424.
参考文献 31
LIU G M,FU L,RODE A V,et al.Water droplet motion control on superhydrophobic surfaces:exploiting the Wenzel-to-Cassie transition[J].Langmuir,2011,27(6):2595-2600.
参考文献 32
李坤泉.超疏水表面的构造和有机/无机杂化超疏水涂层的制备与性能研究[D].广州:华南理工大学,2015.LI Kunquan.Fabrication and properties of superhydrophobic surface and organic/inorganic hybridsuperhydrophobic coating[D].Guangzhou:South China University of Technology,2015.(in Chinese)
参考文献 33
吴思萱.激光熔化铜纳米颗粒成形的疏水表面结构制备研究[D].哈尔滨:哈尔滨工业大学,2020.WU Sixuan.Preparation of hydrophobic surface structure for laser melting copper nanoparticles[D].Harbin:Harbin Institute of Technology,2020.(in Chinese)
参考文献 34
KUZMIN P G,SHAFEEV G A,BUKIN V V,et al.Silicon nanoparticles produced by femtosecond laser ablation in ethanol:size control,structural characterization,and optical properties[J].Journal of Physical Chemistry C,2010,114(36):15266-15273.
参考文献 35
AMORUSO S,AUSANIO G,BRUZZESE R,et al.Characterization of laser ablation of solid targets with near-infrared laser pulses of 100 fs and 1 ps duration[J].Applied Surface Science,2006,252(13):4863-4870.
参考文献 36
LEITZ K H,REDLINGSHFER B,REG Y,et al.Metal ablation with short and ultrashort laser pulses[J].Physics Procedia,2011,12(1):230-238.
参考文献 37
ZHU H,ZHANG Z Y,XU J L,et al.An experimental study of micro-machining of hydroxyapatite using an ultrashort picosecond laser[J].Precision Engineering,2018,54:154-162.
参考文献 38
HASHIDA M,FUJITA M,TSUKAMOTO M,et al.Femtosecond laser ablation of metals:precise measurement and analytical model for crater profiles[C]//3rd International Symposium on Laser Precision Microfabrication,OSAKA,JAPAN,2002.
参考文献 39
MIYAJI G,MIYAZAKI K.Ultrafast dynamics of periodic nanostructure formation on diamondlike carbon films irradiated with femtosecond laser pulses[J].Applied Physics Letters,2006,89(19):191902(1-3).
参考文献 40
BOROWIEC A,HAUGE H K.Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses[J].Applied Physics Letters,2003,82(25):4462–4464.
参考文献 41
SUGIOKA K,CHENG Y.Ultrafast lasers-reliable tools for advanced materials processing[J].Light-science & Applications,2014,3(1):149.
参考文献 42
WANG C,HUO H,JOHNSON M,et al.The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations[J].Nanotechnology,2010,21(7):75304.
参考文献 43
MIYAJI G,MIYAZAKI K.Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses[J].Optics Express,2009,16(20):16265-16271.
参考文献 44
BHARDWAJ V R,SIMOVA E,RAJEEV P P,et al.Optically produced arrays of planar nanostructures inside fused silica[J].Physical Review Letters,2006,96(5):057404.
参考文献 45
ZHU Z J,GUO S Z,HIEDLER T,et al.3D printed functional and biological materials on moving freeform surfaces[J].Advanced Materials,2018,30(23):e1707495.
参考文献 46
刘勇,任香会,常云龙,等.金属增材制造技术的研究现状[J].热加工工艺,2018,47(19):15-19,24.LIU Yong,REN Xianghui,CHANG Yunlong,et al.Research status of metal additive manufacturing technology[J].Hot Working Technology,2018,47(19):15-19,24.(in Chinese)
参考文献 47
SING S L,WIRIA F E,YEONG W.Selective laser melting of lattice structures:A statistical approach to manufacturability and mechanical behavior[J].Robotics and Computer-Integrated Manufacturing,2018,49(1):170-180.
参考文献 48
YIN Q,GUO Q,WANG Z L,et al.3D-printed bioinspired cassie-baxter wettability for controllable microdroplet manipulation[J].ACS Applied Materials & Interfaces,2020,13(1):1979-1987.
参考文献 49
MIN H,LEE B,JEONG S,et al.Laser-direct process of Cu nano-ink to coat highly conductive and adhesive metallization patterns on plastic substrate[J].Optics and Lasers in Engineering,2016,80:12-16.
参考文献 50
YADROITSEV I,BERTRAND P,SMUROV I.Parametric analysis of the selective laser melting process[J].Applied Surface Science,2008,253(19):8064-8069.
参考文献 51
陈光霞,曾晓雁.选择性激光熔化激光快速成型铺粉装置设计[J].制造技术与机床,2010(3):57-59.CHEN Guangxia,ZENG Xiaoyan.Design on SLM powder coating device[J].Manufacturing Technology & Machine Tool,2010(3):57-59.(in Chinese)
参考文献 52
LOTT P,SCHLEIFENBAUM H,MEINERS W,et al.Design of an optical system for the in situ process monitoring of selective laser melting(SLM)[J].Physics Procedia,2011,12:683-690.
参考文献 53
WANG X J,LIU J Y,HE Y,et al.Selective laser melting of ink-printed(SLM-IP)copper(Cu)nanoparticles(NPs)for facile controllable fabrication of super-hydrophobic surface[J].Surface & Coatings Technology,2018,347:84-91.
参考文献 54
HUANG C,YE X,YANG X H,et al.Preparation of asuperhydrophobic aluminium alloy surface by UV laser[J].Surface Engineering,2020,36(6):558-564.
参考文献 55
WANG Q H,SAMANTA A,HAILU A,et al.Fabrication of mechanically enhanced superhydrophobic surface using nanosecond laser-based high-throughput surface nanostructuring(nHSN)[J].Procedia CIRP,2020,87:257-262.
参考文献 56
XIN G Q,WU C Y,CAO H Y,et al.Superhydrophobic TC4 alloy surface fabricated by laser micro-scanning to reduce adhesion and drag resistance[J].Surface & Coatings Technology,2020,391:125707.
参考文献 57
KIETZIG A M,HATZIKIRIAKOS S G,ENGLEZOS P.Patterned superhydrophobic metallic surfaces[J].Langmuir,2009,25(8):4821-4827.
参考文献 58
LONG J Y,ZHONG M L,FAN P X,et al.Wettability conversion of ultrafast laser structured copper surface[J].Journal of Laser Applications,2015,27(2):S29107.
参考文献 59
EXIR H,WECK A.Mechanism of superhydrophilic to superhydrophobic transition of femtosecond laser-induced periodic surface structures on titanium[J].Surface & Coatings Technology,2019,378:124931.
参考文献 60
ZHANG Z Y,GU Q M,JIANG W,et al.Achieving of bionic super-hydrophobicity by electrodepositing nano-Ni-pyramids on the picosecond laser-ablated micro-Cu-cone surface[J].Surface & Coatings Technology,2019,363:170-178.
参考文献 61
潘瑞,张红军,钟敏霖.三级微纳超疏水表面的超快激光复合制备及防除冰性能研究[J].中国激光,2021,48(2):121-132.PAN Rui,ZHANG Hongjun,ZHONG Minlin.Ultrafast laser hybrid fabrication and ice-resistance performance of a triple-scale micro/nano superhydrophobic surface[J].Chinese Journal of Lasers,2021,48(2):121-132.(in Chinese)
参考文献 62
GREGORCIC P,CONRADI M,HRIBAR L,et al.Long-term influence of laser-processing parameters on(super)hydrophobicity development and stability of stainless-steel surfaces[J].Materials(Basel,Switzerland),2018,11(11):2240.
参考文献 63
ZHANG M J,GUO C F,HU J.One-step fabrication of flexible superhydrophobic surfaces to enhance water repellency[J].Surface & Coatings Technology,2020,400:126155.
参考文献 64
SHI Y,JIANG Z L,CAO J,et al.Texturing of metallic surfaces for superhydrophobicity by water jet guided laser micro-machining[J].Applied Surface Science,2020,500(0):144286.
参考文献 65
MILLES S,VOISIAT B,NITSCHKE M,et al.Influence of roughness achieved by periodic structures on the wettability of aluminum using direct laser writing and direct laser interference patterning technology[J].Journal of Materials Processing Technology,2019,270:142-151.
参考文献 66
WANG Y H,ZHANG Z B,XU J K,et al.One-step method using laser for large-scale preparation of bionic superhydrophobic & drag-reducing fish-scale surface [J].Surface and Coatings Technology,2021,409:126801.
参考文献 67
MILLES S,SOLDERA M,VOISIAT B,et al.Fabrication of superhydrophobic and ice-repellent surfaces on pure aluminium using single and multiscaled periodic textures[J].Scientific Reports,2019,9(1):13944.
参考文献 68
余佳,何书通,宋寰宇,等.飞秒激光前向转移诱导产生金属纳米结构薄膜[J].中国激光,2017,44(1):97-102.YU Jia,HE Shutong,SONG Huanyu,et al.Metal nanostructured film generated by femtosecond laser induced forward transfer[J].Chinese Journal of Lasers,2017,44(1):97-102.(in Chinese)
参考文献 69
张成云,刘海英,满文庆,等.飞秒激光正交线扫描诱导表面微纳结构 [J].光学精密工程,2017(12):3063-3069.ZHANG Chengyun,LIU Haiying,MAN Wenqing,et al.Femtosecond laser induced surface micro-and nano-structures by orthogonal scanning processing[J].Optics and Precision Engineering,2017(12):3063-3069.(in Chinese)
参考文献 70
HAUSCHWITZ P,JOCHCOVA D,JAGDHEESH R,et al.Towards rapid large-scale LIPSS fabrication by 4-beam ps DLIP[J].Optics & Laser Technology,2021,133:106532.
参考文献 71
POU P,DEL V J,RIVEIRO A,et al.Laser texturing of stainless steel under different processing atmospheres:from superhydrophilic to superhydrophobic surfaces[J].Applied Surface Science,2019,475:896-905.
参考文献 72
OUYANG P X,LI P J,LEKSINA E G,et al.Effect of liquid properties on laser ablation of aluminum and titanium alloys[J].Applied Surface Science,2016,360(Part B):880-888.
参考文献 73
TANGWARODOMNUKUN V.Cavity formation and surface modeling of laser milling process under a thin-flowing water layer[J].Applied Surface Science,2016,386:51-64.
参考文献 74
RAZI S,MADANIPOUR K,MOLLABASHI M.Lasersurface texturing of 316L stainless steel in air and water:A method for increasing hydrophilicity via direct creation of microstructures[J].Optics & Laser Technology,2016,80:237-246.
参考文献 75
KOCH J,TASCHNER S,SUTTMANN O,et al.Surface functionalization under water using picosecond and femtosecond laser pulses—first observations and novel effects[J].Procedia CIRP,2018,74:381-385.
参考文献 76
ABDULHADI K,SALIM E T,FAYADH S M,et al.Effect of multipath laser shock processing on microhardness,surface roughness,and wear resistance of 2024-T3 Al alloy[J].Scientific World Journal,2014,2014:490951.
参考文献 77
LI G Q,LI J W,ZHANG C C,et al.Large-area one-step assembly of three-dimensional porous metal micro/nanocages by ethanol-assisted femtosecond laser irradiation for enhanced antireflection and hydrophobicity.[J].Acs Applied Materials & Interfaces,2015,7(1):383-390.
参考文献 78
LI G Q,ZHEN Z,WU P C,et al.One-step facile fabrication of controllable microcone and micromolar silicon arrays with tunable wettability by liquid-assisted femtosecond laser irradiation[J].RSC Advances,2016,6(44):37463-37471.
参考文献 79
KIM D,OH B.Effect of liquid film on near-threshold laser ablation of a solid surface[J].Applied Surface Science,2003,222(1):138-147.
参考文献 80
WANG Y T,ZHAO X Y,KE C J,et al.Nanosecond laser fabrication of superhydrophobic Ti6Al4V surfaces assisted with different liquids[J].Colloids and Interface Science Communications,2020,35(4):100256.
参考文献 81
SIERRA D R,EDWARDSON S P,DEARDEN G.Laser surface texturing of titanium with thermal post-processing for improved wettability properties[J].Procedia CIRP,2018,74:362-366.
参考文献 82
JAGDHEESH R,KOPECEK J,BRAJER J,et al.Superhydrophobic microspiked surface structures by ultrashort laser patterning[J].Surface Engineering,2021.DOI:10.1080/02670844.2021.1874651.
参考文献 83
CHUN D M,NGO C V,LEE K M.Fast fabrication of superhydrophobic metallic surface using nanosecond laser texturing and low-temperature annealing[J].CIRP Annals,2016,65(1):519-522.
参考文献 84
NGO C V,CHUN D M.Control of laser-ablated aluminum surface wettability to superhydrophobic or superhydrophilic through simple heat treatment or water boiling post-processing[J].Applied Surface Science,2018,435(4):974-982.
参考文献 85
吴春亚,黄俊杰,李曦光,等.金属基超疏水表面的制备技术研究新进展[J].哈尔滨工业大学学报,2021,53(7):1-19.WU Chunya,HUANG Junjie,LI Xiguang,et al.New progress of fabrication techniques for metal-based superhydrophobic surfaces[J].Journal of Harbin Institute of Technology,2021,53(7):1-19.(in Chinese)
参考文献 86
GROTEN J,RUHE J.Surfaces with combined microscale and nanoscale structures:A route to mechanically stable superhydrophobic surfaces?[J].Langmuir,2013,29(11):3765-3772.
参考文献 87
WANG D,SUN Q,HOKKANEN M J,et al.Design of robust superhydrophobic surfaces[J].Nature,2020,582(7810):55-59.
参考文献 88
WONG T S,KANG S H,TANG S,et al.Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J].Nature,2011,477(7365):443-447.
参考文献 89
WANG X Q,GU C D,WANG L Y,et al.Ionic liquids-infused slippery surfaces for condensation and hot water repellency[J].Chemical Engineering Journal,2018,343:561-571.
参考文献 90
ZHANG Y F,GE D T,YANG S.Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness[J].Journal of Colloid & Interface Science,2014,423:101-107.
参考文献 91
PENG C Y,CHEN Z Y,TIWARI M K.All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J].Nature Materials,2018,17(4):355-360.
参考文献 92
LU Y,SATHASIVAM S,SONG J L,et al.Robust self-cleaning surfaces that function when exposed to either air or oil[J].Science,2015,347(6226):1132-1135.
参考文献 93
ZHANG W B,XIANG T H,LIU F,et al.Facile design and fabrication of superwetting surfaces with excellent wear-resistance[J].Acs Applied Materials & Interfaces,2017,9(18):15776-15784.
目录contents

    摘要

    超疏水表面作为最具代表性的功能性表面得到广泛的应用,激光加工技术凭借超高加工精度和高度可控等特性,成为制备超疏水表面微纳尺度结构的有利工具。已有大量相关试验研究,但鲜有对加工机理和方法等进行归纳总结。从润湿理论出发,分析超疏水表面激光加工技术研究现状。按照微纳结构成型方式,归纳总结增材和减材激光加工制备超疏水表面的成型机理。基于成型机理系统梳理超疏水表面制备的研究进展。分析制备过程中影响材料表面超疏水性的因素。针对超疏水表面机械稳定性问题,梳理改善和提高表面机械稳定性的方法。简述超疏水表面研究中存在的问题及其发展趋势,指出试验研究结果的规律性总结的局限。与仅论述激光减材制备超疏水表面的综述类文章不同,从增材和减材两个方面论述激光加工制备超疏水表面的机理,详细分析激光减材制备超疏水表面的制备方法和表面疏水性影响因素,对未来激光加工制备超疏水表面更深层次的研究具有指导意义。

    Abstract

    As the most representative functional surface, superhydrophobic surface has been widely used. With the characteristics of ultra-high machining accuracy and high controllability, laser processing technology has become a favorable tool for preparing micro and nano scale structures of superhydrophobic surface. Researchers have done a lot of experimental research, but few have summarized the processing mechanism and methods. Based on the wetting theory, the research status of laser processing technology for superhydrophobic surface is analyzed. According to the forming mode of micro nano structure, the forming mechanism of superhydrophobic surface fabricated by additive and subtraction laser processing is summarized. Based on the forming mechanism, the research progress of preparation of superhydrophobic surface is systematically reviewed. The factors affecting the surface superhydrophobicity of the material in the preparation process are analyzed. Aiming at the problem of mechanical stability of superhydrophobic surface, the methods to improve and enhance the mechanical stability of surface are summarized, The existing problems and development trend of superhydrophobic surface are briefly described in the research, and the limitations of regular summary of experimental results are pointed out. Different from the review articles that only discuss the preparation of superhydrophobic surface by laser material reduction, this paper discusses the mechanism of laser processing of superhydrophobic surface from two aspects of material addition and material reduction, and analyzes the preparation methods and influencing factors of surface hydrophobicity, which has guiding significance for the further research of laser processing of superhydrophobic surface in the future.

  • 0 前言

  • 经过数亿年的生物进化,荷叶能够出淤泥而不染,水黾能在水面上以约644km/h的速度优雅滑行和跳跃,鱼类能在污水中自由游动而保持表面清洁,追根溯源,是因为它们的表面附有一层使其呈现超疏水性的低表面能物质和微纳尺度结构。人们受生物启发,广泛研究了超疏水表面的制备,并将其应用在自清洁[1]、防腐蚀[2]、防覆冰[3]、减反射[4] 和油水分离[5]等多种场合,近几年,已拓展至芯片实验室[6-7]和摩擦发电[8-9]等前沿领域。目前,超疏水表面制备方法主要包括气相沉积法[10]、模板刻蚀法[11]、电火花加工[12]、电化学腐蚀[13]、纳米自组装[14]和溶胶-凝胶法[15]等,这些方法均有自身局限性,如对材料性能依赖性大、涉及危险化学品和成本高等缺点[16-18]

  • 脉冲激光则凭借其无接触、可集成化程度高、高度可控和可加工任何材料等优势成为制备超疏水表面的重要工具,其中纳秒脉冲激光凭借着成本低和效率高等优势得到了广泛的应用。近几年超快激光的快速发展,为超疏水表面微纳尺度结构的成型提供了新的强大工具。激光束通过与材料发生非线性、非平衡和多尺度相互作用在材料表面可实现微纳粗糙结构的分级制造,且在扫描振镜作用下激光束可根据设计的图案进行路径扫描完成特定几何形状的成型,调节表面粗糙度达到超疏水性能。进一步地,科学工作者还将激光技术与其他加工技术相结合共同构建微纳粗糙结构。2013年,吴勃等[19] 利用飞秒激光加工和水热法相结合的方式在316L不锈钢表面制备具有双尺度微纳复合结构的超疏水表面,水在该表面的接触角高达160.2°。2020年,SONG等[20]利用纳秒激光烧蚀和电化学沉积相结合的方法在铜表面制备具有挑战性的顶部宽底部窄的微凹结构,水和花生油在该表面的接触角均达到了150°以上,实现了超疏水铜表面的制备。由于生产生活中对材料性能要求越来越高,激光加工技术制备超疏水表面的性能也越来越受重视。2017年, TRDAN等[21]利用纳秒脉冲激光获得不锈钢表面的超疏水性,通过线性极化电阻(LPR)和循环极化 (CP)电化学试验,结果表明该表面的腐蚀活性降低了26倍。2018年,HUANG等[22]通过对比超亲水表面、未处理表面和超疏水表面上的液滴结冰时间,研究表面润湿性对航空常用合金7075铝合金防冰性能的影响,验证了超疏水性可延迟水滴在铝合金表面的结冰时间。2020年,CHEN等[23]利用激光打孔、激光扫描及加热处理制得超疏水/超亲油铝膜,该膜无外力作用便可轻松实现油水分离。

  • 综上所述,采用激光加工技术在材料表面制备微纳尺度结构实现超疏水性切实可行且发展前景广阔。本文从润湿理论出发,按照微纳结构成型方式,归纳总结增材和减材激光加工制备超疏水表面的成型机理。基于成型机理阐述制备超疏水表面的研究进展。分析影响材料表面超疏水性的因素,如工艺参数、加工方式和加工环境等。针对超疏水表面机械稳定性问题梳理改善和提高表面机械稳定性的方法。最后对全文进行总结,并基于激光加工制备超疏水表面过程中存在的问题展望未来发展趋势,对进一步地的研究具有指导意义。

  • 1 超疏水仿生表面理论基础

  • 润湿性是描述固体表面性能的一个重要特征,它描述的是一种流体取代另一种流体的界面现象,一般指液体从固体表面流过从而取代气体的过程,是液体在固体表面的一种铺展能力[24]。液滴和材料表面的接触状态是表面润湿性能的直接反映,其中产生于20世纪40年代前后的Wenzel[25]和Cassie[26] 两种经典模型被广泛认可,两种模型在一定条件下可相互转换。随着超疏水表面研究的不断深入,液滴润湿固体表面过程环境的不同,接触模型可能介于Wenzel模型和Cassie模型之间,单一的模型可能与实际液滴与固体表面的接触形式不符,为准确描述不同润湿性下液滴与固体表面的接触状态,应结合试验过程与结果不断完善理论模型。

  • 1.1 固体表面润湿理论

  • 固体表面润湿性主要受表面自由能和表面粗糙度的影响[27-28],表面自由能是指液体或固体表面分子因内部分子相互作用而受力不均产生的向内收缩的力,大小等于在恒定体积和温度下单位面积所做的功。从表面自由能的角度讲,润湿性能的优劣与表面张力大小相关,若固体表面张力小于液体表面张力,液体则不能润湿固体表面,反之,固体表面的张力越大越容易被液体润湿,如金属和木材表面等。由于温度等因素会影响表面张力,所以液体在固体表面润湿性的优劣还与润湿过程中所处的环境有关。粗糙度是固体表面实际面积与表观面积的比值,在固体表面润湿过程中,较大的粗糙度能使表面张力较大的表面更容易被润湿、表面张力较小的表面呈现超疏水态,所以在表面张力一定的情况下,可通过调控粗糙度大小有效控制固体表面的润湿性。

  • 接触角、滚动角常作为衡量固体表面亲水性和疏水性优劣的标准。接触角主要由气、液、固三相界面的表面张力差引起,如图1a所示,当液滴在固体表面达到平衡时,过气、液、固三相的交点分别作气液界面和固液界面的切线,两切线之间的夹角称为静态接触角 θe,当 θe<90°时,固体表面呈亲水态,若接触角 θe<10°,则呈超亲水态;当 θe>90° 时,固体表面呈疏水态,若接触角 θe>150°,则呈超疏水态。如图1b所示,滚动角是当固体表面缓慢倾斜时,液滴在重力作用下开始发生滚动时的临界倾斜角,用来表征液滴脱离固体表面的难易程度。大部分的固体表面并非绝对光滑平整,此时的润湿体系可能处于亚稳态,液滴在固体表面具有多个接触角,其中最大的接触角称为前进接触角 θa,最小的接触角称为后退接触角 θr,前进与后退接触角的差值称为接触角滞后Δθ,接触角滞后越大液滴越难滑落。Furmidge推导的滚动角与接触角滞后的关系方程可更好地描述滚动角:

  • F=mgsinα=wγg1cosθr-cosθa
    (1)
  • 式中,m 为液滴质量,w 为液滴直径,γgl 为气液界面张力。滚动角的范围为:0°<α≤90°,由关系式可知,接触角滞后越小,滚动角越小,液滴在固体表面上越容易滚落。因此可通过静态接触角、接触角滞后和滚动角掌握液滴在固体表面的润湿行为。

  • 图1 接触角和滚动角示意图

  • Fig.1 Schematic diagram of contact angle and rolling angle

  • 1.2 润湿理论模型

  • 1.2.1 Wenzel模型

  • Wenzel模型描述的是液滴与中度粗糙固体表面接触时的一种润湿状态,该模型下液滴填满了粗糙表面上的凹槽。杨氏方程的适用前提是固体表面绝对光滑且组成单一[29],但实际中绝对光滑的固体表面基本不存在,表面粗糙度的存在使得液体与固体表面的实际接触面积大于表观接触面积,Wenzel模型以杨氏方程为基础而建立,简化后的Wenzel方程为:

  • cosθw=rγsg-γs1γg1=rcosθe
    (2)
  • 式中,θw是润湿接触下的表观接触角,r 是表面粗糙度因子,γsg 为固气界面张力,γsl 是固液界面张力。该方程式在固体表面的几何形状不影响表面积大小、表面粗糙度相较于液滴大小可忽略不计的前提下成立。由方程式可知,对于中度粗糙表面,增大表面粗糙度可以使亲水(疏水)材料更亲水(疏水),若表面粗糙因子 r 远远大于1,该方程不成立。如图2a所示,Wenzel模型中,液滴镶嵌在固体表面的凹槽中,若想发生移动则需要很大的滚动角。对于低表面能的疏水固体表面来说,Wenzel模型认为导致接触角增大的原因是表面粗糙度的增加提高了固液接触面积以及固液界面对体系能量的贡献。

  • 图2 不同状态下的润湿模型

  • Fig.2 Wetting models in different states

  • 1.2.2 Cassie模型

  • Wenzel方程虽可表明表观接触角与本征接触角、表面粗糙度之间的关系,但该模型不适用于化学异质和高粗糙度的固体表面。Cassie在Wenzel模型的基础上提出液滴与固体表面的复合接触模型,该模型成立的前提是液滴的尺寸远远大于粗糙表面间隙的尺寸。如图2b所示,粗糙表面的凹槽处存有截留空气,气液接触和固液接触共同代替了液滴与固体表面的直接接触。当液滴与固体表面达到接触平衡时,从能量的角度出发,得出Cassie方程如下:

  • cosθc=fscosθe+1-1
    (3)
  • 式中,θc是复合接触下的表观接触角,fs 是固液接触所占的面积分数,fs<1。由公式可知,减小液滴与粗糙固体表面接触时的固液接触面积分数,可有效增大表观接触角,表明增大表面粗糙度从而增大气液接触面积分数是制备超疏水表面的有效方法。

  • 1.2.3 其他修正模型

  • 固体表面的润湿性除了由表面自由能和表面粗糙度决定外,还会受液体性质的影响,所以两种经典模型有时不适用于实际液滴在固体表面的润湿状态。例如,水的表面张力会随着水温的增加而减小,可以描述为:

  • γt=75.714-0.1414t-0.25399×10-3t2
    (4)
  • 式中,γt是液滴水温为 t(°C)时的表面张力。根据杨氏方程:

  • cosθe=γsg-γs1γg1
    (5)
  • 所以,固体表面的疏水性会随着水滴温度的升高而减弱。

  • 许多研究者基于两种经典模型又提出了修正润湿模型,WANG等[30]归纳了超疏水表面可以有的五种模型:Wenzel模型、Cassie模型、Wenzel和Cassie之间的过渡模型、“莲花”模型和“壁虎”模型。 LIU等[31]验证了通过加热基底可以将液滴从Wenzel态转化为Cassie态,在粗糙的疏水基底上实现液滴的选择性运动。2015年,李坤泉[32]研究了不同温度液滴在超疏水表面的润湿行为和理论模型,对液滴在超疏水表面上的润湿模型作了修正,验证了当水滴温度过高时,水滴在粗糙中度疏水表面处于Wenzel模型和Cassie模型的中间态,可通过改变水滴的温度实现Cassie态向Wenzel态的转变。

  • 2 超疏水表面的成型机理

  • 超疏水表面的成型机理是超疏水表面制备和特性研究的基础和前提,准确掌握脉冲激光与材料的相互作用关系,才能更好地把控表面微结构的成型。根据超疏水表面成型工艺的不同,成型机理主要分为超疏水表面增材制造机理和减材制造机理。

  • 2.1 激光增材制造机理

  • 激光增材制造技术是将计算机设计、材料成型等多种手段相结合实现复杂微结构成型的技术,超疏水表面微结构成型的方法有激光选区烧结(SLS) 和选择性激光熔化(SLM)[33]。如图3所示,SLM技术的机理是将金属纳米颗粒分散在液体中,液体中含有防止纳米颗粒团聚的分散剂和还原金属氧化物的物质,再将该液体均匀的铺涂在基体表面,在激光辐照下,表面液体吸收激光能量温度上升,液体各成分之间发生氧化还原反应保证金属单质持续受热熔化在基体表面,其他物质和液体在高温下分解和蒸发,在热作用下金属纳米颗粒发生相变随之与基体融合为一体,随着激光的继续扫描运动,在基体上产生“凸起”并烧结在基体表面,最终在基体表面生成两尺度分级的二维微凸起阵列粗糙结构。

  • 图3 超疏水表面增材制造原理图

  • Fig.3 Schematic diagram of superhydrophobic surface by additive manufacturing

  • 2.2 激光减材制造机理

  • 减材制造是以激光烧蚀材料去除和重新沉积的方式获得表面微纳结构,主要是带有纳米凸起的微凹坑阵列结构,不同的激光束-材料作用机制(如材料烧蚀和粒子耗散和再沉积等)在微纳结构的成型中发挥不同的作用[34-35]。LEITZ等[36]具体研究了短脉冲和超短脉冲激光作用在材料表面时材料的消融模型,对于短脉冲激光,热传导、熔化、蒸发和等离子体的形成等机制占主导,材料通过蒸发和溶体排出的形式形成微凹槽或凹坑等微结构(如图4a所示);对于超短脉冲激光,相爆炸机制占主导,以高压混合物脱离材料表面的形式形成微结构(如图4b所示),具有高初始动能的粒子快速消散,部分粒子失去初始动能在重力和大气压力的作用下重新沉积在材料表面,形成增强疏水性的纳米结构。ZHU等[37]在利用皮秒激光加工羟基磷灰石的试验中研究了皮秒激光加工材料去除机理,认为在皮秒激光加工中,材料去除机制取决于激光强度,可能由蒸发、溶体排出和相爆炸共同引起。

  • 图4 激光束与材料的相互作用模型[36]

  • Fig.4 Interaction model between laser beam and material[36]

  • 当超快脉冲激光以接近材料烧蚀阈值的能量辐照材料时,纳米周期性波纹结构可以在金属[38]、陶瓷[39]和半导体[40]等各种材料表面形成。 SUGIOKA等[41]认为周期性波纹结构是在入射光和反射(散射)光的相互干涉下形成的,关于周期性表面结构的形成机理有多种说法[42-44],直到现在仍没有达成共识。

  • 3 超疏水表面的制备

  • 材料表面的润湿性由表面自由能和表面几何结构两个因素共同决定。基于基础科学和表面润湿性的研究成果,材料表面获得超疏水性可从两方面着手。一是在粗糙表面修饰低表面能物质;二是在疏水表面构建粗糙结构。一般固体表面的可润湿性与表面自由能成正相关,具有共价键、离子键和金属键等高键能的固体表面自由能高,所以金属表面易呈现亲水性;以范德华力或者氢键等低键能化学键结合的固体表面自由能低,所以有机固体表面易呈现疏水性。粗糙结构由表面微纳米结构构成,微纳米结构的制备方法有多种,本文主要围绕激光增材和减材制备工艺展开论述。

  • 3.1 超疏水表面增材制造工艺

  • 近几年,受增材制造成型工艺的启发,涌现了一种利用激光选区熔化(SLM)微/纳米颗粒技术制备超疏水表面的思潮,该技术借助增材制造原理实现微纳尺度粗糙结构的制备,通过材料的叠加成型实现复杂微结构的制造,具有原理简单、成本低和灵活度高等优点,是先进制造领域重要的一支[45-47]

  • YIN等[48]利用基于PμSL的3D打印技术制备了仿生蘑菇状微结构,设计的微结构如图5所示,并且该表面润湿性可随微结构的高度和直径等几何参数的改变而动态可调,实现亲水性到疏水性的转变,与表面材料无关,接触角最高可达145°。证实了增材制造技术可成功制备疏水表面材料。2016年,MIN等[49]利用纳秒脉冲紫外激光器在聚酰亚胺柔性基体上选择性地烧结了旋涂纳米氧化铜溶液,制备了最小线宽~20 μm的导电铜,在循环弯曲试验中,铜线能与基体保持良好粘结。传统的金属增材制造技术主流金属颗粒尺寸为30~200 μm[50],且需要在真空或保护气体环境下进行防止金属颗粒氧化,设备比较复杂[51-52]。所以减小颗粒尺寸、优化加工环境(无需气体保护)和提高材料与基体的粘结强度是超疏水表面增材制造技术亟待解决的问题。

  • 图5 蘑菇状微结构的形态[48]

  • Fig.5 Morphologies of mushroom-like microstructures[48]

  • 2018年,WANG等[53]利用激光烧结等离子体纳米粒子的方式在304不锈钢表面获得微纳尺度网格状层次结构,实现了激光增材制造超疏水表面的制备,表面接触角高达160°。具体试验过程如下:首先将铜纳米分散溶液(分散剂为聚乙烯吡咯烷酮,还原剂为醇类)涂铺在基底上,激光束在扫描振镜的控制下按照设定好的路线对溶液进行反复扫描,最后使用超声清洗机去除表面未反应油墨,在功率为400W的超声波浴中冲洗20min后,不同网格尺寸的光学显微照如图6所示。划线网格试验和显微硬度结果表明,该表面的表面粘附力为5B级别,硬度约为1.9GPa,弹性模量约为161.1GPa,具有高力学性能。虽然超疏水表面增材制造工艺原理简单、成型方式灵活,但易产生缺陷,如出现球化、凸起被氧化和未烧结区域等现象,未烧结区域的出现是因为激光功率过大,金属颗粒发生了沸腾和飞溅,因此要准确把控激光参数保证金属纳米颗粒高质量烧结在基体表面。

  • 图6 304不锈钢表面不同网格尺寸微纳结构的光学显微照片[53]

  • Fig.6 Optical micrographs of micro nano structures with different mesh grid sizes on the surface of 304stainless steel[53]

  • 3.2 超疏水表面减材制造工艺

  • 相对于激光增材制造超疏水表面,减材制备无须考虑微结构与基体的粘合问题,是一种更常用的制备工艺。由于材料的本征润湿性不同,减材制备方法也不同,像硅橡胶等本征疏水材料只需一步增加表面粗糙度;金属等本征亲水材料既需增加表面粗糙度,又需修饰低表面能物质,一般需要两步甚至多步完成,先利用激光处理构建微纳尺度结构提高表面粗糙度,再通过热处理工艺、制备化学涂层等方式降低表面自由能。随着研究的逐渐深入,已经在本征亲水材料上实现了超疏水表面的一步制备,主要通过使用更加精密的仪器(如飞秒激光器)加工出更精细的微纳米级复杂结构,或是在环境中自发吸附更多的低表面能物质 (如C元素)。另外,也有一些研究者将激光加工技术与其他技术相结合,共同构建材料表面微纳复合结构。

  • 3.2.1 激光加工加表面修饰

  • 激光加工加表面修饰是一种传统的激光减材制备超疏水表面的方法。本征亲水材料表面经激光处理生成微纳复合结构后,即使微纳复合结构精度足够高,往往也不能达到超疏水效果,这主要由表面自由能决定。表面自由能高的材料经激光处理增大表面粗糙度后亲水性反而增强,再经低表面能物质修饰后表面可从亲水态转为疏水态或超疏水态。低表面能修饰是借助物理或化学反应将低表面能物质吸附在材料表面的过程,对于金属,一般是金属氧化物和水生成的羟基与修饰剂中的羟基发生缩合反应,产生的非极性基团包裹在金属表面,表面自由能降低。

  • 2017年,HUANG等[54]在6061铝合金表面利用紫外纳秒激光器刻蚀了微沟槽结构,后又将铝合金样品放入(H3C(CH2)15Si(OCH3)3)乙醇溶液中浸泡。仅在乙醇溶液中浸泡表面接触角可从88.1°转变为103.42 °,分析了(H3C(CH2)15Si(OCH3)3)在表面生成非极性端基-CH3 分子膜的化学反应过程,通过EDS对比分析了化学改性后表面化学成分的变化, C含量的增加主要来自新的官能团-CH3,证实了化学改性在降低表面自由能方面的重要性。还研究了微结构间距对接触角的影响,如图7所示为扫描间距为30 μm时微沟槽的扫描电镜图像及放大图,此时水的接触角达到了156.27°,证实了表面形态和表面自由能是材料表面疏水的两个主要因素。

  • 图7 扫描间距为30 μm的微沟槽图案结构及更高放大率下的样品[54]

  • Fig.7 Micro groove pattern structure with scanning spacing of 30 μm and samples at higher magnification[54]

  • 2020年,WANG等[55]探究纳秒激光纹理化和化学侵没处理两个连续步骤在AA6061铝合金和AISI 4130钢表面获得超疏水性的过程。通过XPS光谱分析,结果表明氯硅烷试剂[CF3(CF2)5(CH2)2 SiCl3]成功附着在表面上,C元素主要来源于氯硅烷试剂上的官能团,最大接触角达到150°以上,并且该表面具有超强的机械耐蚀性。同年,XIN等[56]利用纳秒激光刻蚀加表面修饰的方法赋予钛合金 (TC4)材料表面超疏水性,如图8所示为扫描间距为40 μm,扫描速度分别为20mm/s和50mm/s时的扫描电镜图,可见扫描速度越大微纳结构越复杂。通过接触角测量,原始抛光表面接触角为68°,仅激光刻蚀后表面接触角接近0°,未经激光处理的化学改性表面接触角为113°,激光刻蚀加化学改性后的表面接触角达到了164°,该结果再次证实了化学改性在超疏水表面制备中的重要性。

  • 图8 扫描间隔为40 μm, 扫描速度为20mm/s(a)~(c) 和50mm/s(d)~(f)的纳秒紫外激光烧蚀TC4合金表面的扫描电镜图像[56]

  • Fig.8 SEM images of the nanosecond UV laser-ablated TC4alloy surface with scanning interval of 40 μm at speed of 20mm/s (a)~(c) and 50mm/s (d)~(f)[56]

  • 3.2.2 激光加工一步制备

  • 激光加工一步制备超疏水表面是指在整个工艺流程中不结合其他工艺,仅通过调控和优化激光工艺参数在材料表面获得超疏水性,缺点是耗时长。因为经过激光处理后的本征亲水表面并不能第一时间获得(超)疏水性,需要经历超亲水到(超)疏水的润湿性转变过程,关于润湿性转变机制不同人有不同的看法。2009年,KIETZIG等[57]利用飞秒激光一步处理AISI 304L不锈钢、AISI 4140低合金钢和钛合金等多种材料表面,处理后的材料表面在大气环境中从超亲水态转变为(超)疏水态,证实了没有低表面能物质修饰的情况下,也可在表面一步激光加工获得疏水性。基于接触角测量和XPS分析结果,表面液滴接触角与C含量呈正相关,因此他认为该表面的润湿性转变机制是在激光辐照下产生的活性磁铁矿催化二氧化碳解离吸附在表面形成了零价碳。

  • 2015年,LONG等[58]将皮秒激光处理过的铜分别存储在富含CO2、O2和有机物等的气氛中,探究引起润湿性转变的成分,结果如图9所示,CO2 和O2 气氛对表面润湿性转变起抑制作用,真空和富含有机物的气氛会加快表面润湿性转变速度。通过表面化学成分分析,碳/铜原子比和碳-碳/碳-氢相对数量与不同气氛下表面接触角变化趋势一致,所以认为空气中有机物的吸附是该表面的润湿性转变机制。2018年,EXIR等[59]利用飞秒激光在纯钛表面诱导周期性表面波纹结构后,该表面在一年时间内实现了超亲水到超疏水的润湿性转换(如图10)。通过XPS详细分析了一年时间内表面化学成分的变化,并使用高分辨率XPS测量了表面CC(H)的浓度,一年时间内表面CC(H)的浓度仅略有变化,排除了有机吸附物在表面积累的润湿性转变机制,认为Ti2O3 和TiO2 的独特电子结构分别导致的亲水和疏水的水合结构(如图11),是润湿性转变的主要原因。

  • 图9 铜样品在不同气氛中存放8d的接触角[58]

  • Fig.9 Contact angles of the copper sample storied in different atmosphere for 8days[58]

  • 图10 激光辐照后一年内钛表面的接触角值和液滴在表面上的代表性图片[59]

  • Fig.10 Value of contact angle of titanium surface after laser irradiation within one year and representative pictures of droplets on the surface[59]

  • 图11 靠近亲水表面和疏水表面的水分子方向示意图[59]

  • Fig.11 Schematic of the orientation of water molecules next to the hydrophilic surface and hydrophobic surface[59]

  • 3.2.3 激光复合加工

  • 单独的激光加工是通过控制激光工艺参数来控制表面形貌和微纳结构的几何特征。除超快激光外,其他脉冲激光因受参数控制有限而不能满足微结构精度要求,但这些脉冲激光凭借成本低、加工效率高等优势得到了科研人员的青睐,因此有人将激光加工与其他技术相结合,共同构建微纳尺度结构以提高表面微结构加工精度。

  • 2018年,ZHANG等[60]通过对比单独激光加工、激光加工和电抛光复合、激光加工与电抛光和电沉积复合三种加工方式下铜板的表面形貌、常温和低温下的表面润湿性,验证了激光加工与电抛光和电沉积复合加工制备超疏水表面的优势。如图12所示,是该复合加工的装置示意图和加工原理示意图。图13对比了三种加工方式下表面形貌,可看出电沉积后的表面比前两种加工方式下的表面致密的多,同时包含微米、亚微米和纳米三种结构。图14对比了激光加工和复合加工表面在常温和5℃环境下的接触角,可看出复合加工制备的表面在低温下仍保持良好的超疏水性。

  • 图12 复合加工装置及加工原理示意图[60]

  • Fig.12 Schematic diagram of compound processing device and processing principle [60]

  • 2021年,潘瑞等[61]将超快激光加工和化学氧化两种方法结合,在T2铜和6061铝合金表面制备了三级微纳复合结构,如图15所示,该结构由激光加工生成的微米锥阵列结构,化学氧化生成的分布在微米锥结构上的纳米草和弥散在微米锥之间的微米或亚微米花组成。先利用飞秒激光将样品进行图案化烧蚀,接着将样品放在氧化温度90℃、 0.05mol/L过硫酸铵与1.5mol/L氢氧化钠混合水溶液中处理,最后进行氟化处理。研究了超疏水表面接触角、滚动角与氧化时间之间的关系,结果表明,接触角和滚动角分别与氧化时间呈正相关和负相关,氧化时间为50min时,达到最大接触角为161.4°,滚动角为0.5°。

  • 图13 不同加工方式(逐行依次为激光加工、激光和电抛光复合加工、激光和电抛光和电沉积复合加工) 下的SEM图像及高倍率图像[60]

  • Fig.13 SEM images and high magnification images under different processing methods (Line by line are laser processing, laser processing and electropolishing, laser processing and electropolishing and electrodeposition composite)[60]

  • 图14 25℃、5℃时激光加工和复合加工表面的水滴、接触角和滚动角的扫描电镜照片[60]

  • Fig.14 Photographs of water droplets, CAs and SAs of laser machining and composite machining surface at 25℃ and 5℃[60]

  • 图15 超快激光复合法制备的三级微纳超疏水表面结构的SEM图像及表面接触角[61]

  • Fig.15 SEM image of three-stage micro nano superhydrophobic surface structure prepared by ultrafast laser composite method and surface contact angle[61]

  • 4 激光加工材料表面超疏水性影响因素分析

  • 材料表面的疏水效果及力学性能受制备过程中多种因素的影响,如激光加工参数、微结构几何特征参数、加工方式和加工环境等。由于实验室和工业中对激光减材制备超疏水表面微纳尺度结构的研究居多,接下来主要围绕减材制造过程中材料表面疏水性能的影响因素进行分析。

  • 4.1 激光加工参数

  • 激光加工参数是最常研究的一个因素,在任何试验中均会通过调节激光参数确定最佳加工参数。常见的激光参数有光斑直径、激光能量密度[62]、脉冲宽度、扫描速度[63]、重复频率和扫描次数等,这些参数主要影响表面形貌继而影响表面润湿性。

  • 2020年,SHI等[64]研究了激光耦合功率对沟槽深度和表面润湿性的影响。如图16所示是不同激光功率下通道的横截面轮廓图,激光功率越高,通道越深。如图17所示是不同激光加工功率与材料表面接触角的关系,功率为5W时,接触角最大达到150° 以上,同时表明了并不是沟槽越深表面疏水性越好。

  • 图16 不同耦合激光功率下测量的通道横截面轮廓[64]

  • Fig.16 Measured cross-section profiles of channels at different coupled laser powers[64]

  • 图17 不同激光耦合功率下304不锈钢表面6d、17d和25d的接触角[64]

  • Fig.17 Contact angle of 304stainless steel surface at 6d, 17d and 25d under different laser coupling power[64]

  • 4.2 微结构几何特征参数

  • 微结构的几何特征参数包括几何形状和特征尺寸,对激光处理后的表面形貌具有重要影响。常研究的几何形状主要有微米网格结构、微米方柱结构、微米沟槽结构和纳米周期性波纹结构(LIPSS)等,在构建微米结构的同时会附加产生一些纳米颗粒,提高材料表面的粗糙度。特征尺寸参数主要指几何图形的外形尺寸、间距和深度等,在该参数对表面疏水性影响的试验研究中,试验结果会受间距和液滴直径相对大小关系的影响,考虑到实际生活中液滴直径非固定值且并非均匀,在以后的研究中,应该考虑液滴大小的不确定性进行试验研究探索最佳特征尺寸参数。2020年,SHI等[64]研究了304不锈钢表面网格间距对表面润湿性的影响。如表1所示,是不同网格间距下样品表面的扫描电镜图和三维形貌图,如图18所示是表面不同网格间距与接触角的对应关系,从图中可看出,间距为50 μm时表面可获得最佳超疏水性。

  • 图18 不同网格间距的304不锈钢表面的接触角[64]

  • Fig.18 Contact angle of 304stainless steel surfaces with different grid spacings[64]

  • 2019年,MILLES等[65]利用纳秒激光器和皮秒激光器分别在材料表面制备了三角形和柱形微结构。三角形微结构的扫描电子图像和三维形貌图如图19所示,当扫描间距大于50um时,表面形貌由三组平行直线交叉(彼此相差60°)组成,烧蚀线明显分开,仅在产生六角网格点处出现交叉(图19a、19c);当扫描间距小于光斑直径时,沟槽开始合并,整个表面被激光处理熔化,没有未处理的区域,形成了由以六边形对称分布的沟槽和位于这些沟槽之间的不规则形状的柱子组成的结构(图19b、19d),其中柱子形状的凸起是熔融物质在烧蚀沟槽边缘顶部排出时产生。测量结果表明,扫描间距为50 μm时结构深度最大,对制备超疏水表面最有益。2021年,WANG等[66]基于美国红鱼设计了仿生鱼鳞表面,如图20所示稀疏区域的曲线构成斜槽的高位,集中区的曲线构成了斜槽的下部。激光装置根据曲线路径对铝合金表面进行处理,得到斜槽结构,暴露在空气环境中一周后,表面接触角高达154.9°,呈现优异的超疏水性。

  • 表1 不同网格间距纹理表面的粗糙度、扫描电镜图像和三维测量

  • Table1 SEM images and 3D measurements with roughness of textured surfaces with different grid spacings

  • 图19 使用DLW在99.5%铝上制作的三角形结构的扫描电子显微镜图像和三维形貌:(a) (c) 扫描间距为200 μm; (b) (d) 扫描间距为50 μm[65]

  • Fig.19 Scanning electron microscope images and three dimensional topography of triangular-like structures fabricated using DLW on 99.5%Al: (a) (c) Scanning distance is 200 μm; (b) (d) Scanning distance is 50 μm[65]

  • 图20 仿生鱼鳞激光加工扫描路径[66]

  • Fig.20 Scanning path of bionic fish scale by laser processing[66]

  • 4.3 微加工方式

  • 微加工方式是指控制激光束以什么样的方式或路径将激光能量赋予材料表面,常见的激光加工方式有直接激光写入[67]、激光干涉图案化、激光诱导前后向转移[68]、多光束干涉和正交扫描等。2017年,张成云等[69]利用飞秒脉冲激光(脉冲宽度为90fs)正交扫描的方式在硅和不锈钢表面制备了微纳复合结构,结果显示第一次扫描构建的微沟槽上的纳米结构降低了材料的烧蚀阈值,第二次扫描诱导结构占主导。

  • 2019年,MILLES等[65]对比了在纯铝表面直接激光写入(DLW)和直接激光干涉图案化(DLIP) 两种不同激光处理策略下对表面润湿性的影响。利用纳秒激光直接写入策略构建了三角形微结构,皮秒激光直接干涉图案化策略构建了柱形结构,研究结果表明,DLW和DLIP方法处理的表面分别在47d、35d后表面接触角达到150°饱和值。2021年, HAUSCHWITZ等[70]利用四光束直接激光干涉图案化的方法在AISI 316L不锈钢表面诱导出成千上万个点结构,四光束激光干涉图案化装置如图21所示,在高真空环境中处理之后,接触角高达164°,与单光束相比生产效率显著提高。

  • 图21 四光束DLIP装置[70]

  • Fig.21 Four beam DLIP setup[70]

  • 图22 不同加工气氛下不锈钢表面的润湿性比较[71]

  • Fig.22 Comparison of wettability of stainless steel surface under different processing atmosphere[71]

  • 4.4 加工环境

  • 加工环境指对材料进行激光加工时基体所处的液体或气体环境,借助液体的流动性可带走多余热量和残渣减弱基体热损伤,气体环境下可促进表面化学反应或低表面能物质的吸收。2018年,POU等[71]通过向加工区域喷射气体的方式研究了加工气氛(空气、O2、CO2、N2和Ar)在纳秒激光织构商用AISI304不锈钢调控其表面润湿性中的作用。初始接触角接近90°的样品经不同气体辅助激光处理后,润湿性发生不同的变化(如图22所示),证实了加工气氛是产生不同润湿性的主要因素。基于表面形貌观测和粗糙度测量排除了表面粗糙度对润湿性不同的影响,通过XPS分析表明,对加工气氛具有依赖性的极性金属氧化物和氮化物的生成是造成表面呈亲水态的主要原因。惰性气体(Ar)辅助激光处理基体仅增加了表面粗糙度并无极性物质产生,所以该表面呈疏水性。

  • 在液体环境中激光毛化材料表面调节表面润湿性已有了一定的研究进展[72-74]。实现基材在液体环境中激光加工的方法有多种,如借助一定的装置在基材表面施加流动液体[75],把基材完全浸泡在液体中[76-78],或是在基材表面上冷凝饱和水蒸气[79]。 2020年,WANG等[80]通过使用微型注射器将液体注入材料表面形成液体膜的方式,研究了不同液体环境(去离子水、乙醇和碳酸氢钠饱和溶液)对激光毛化钛合金(Ti6AI4V)调节表面润湿性的影响,液体环境布置过程如图23所示。结果显示,在空气、去离子水和乙醇中激光毛化表面的接触角均在150° 以上,而在碳酸氢钠饱和溶液中的接触角小于140°。基于表面形貌观测(如图24)和粗糙度测量结果,样品表面粗糙度的差异是引起润湿性不同的主要原因,这主要归因于碳酸氢钠饱和溶液对该波长的激光透射率较低。

  • 图23 液体环境布置过程示意图[80]

  • Fig.23 Schematic diagram of the process of arranging the liquid environment[80]

  • 图24 不同环境下钛合金表面烧蚀的形态学比较: (a)空气;(b)去离子水;(c)乙醇;(d)碳酸氢钠饱和溶液[80]

  • Fig.24 Morphological comparison of titanium alloy surface ablation in different environments:(a) Air; (b) Deionized water; (c) Ethanol; (d) Sodium bicarbonate saturated solution[80]

  • 2020年,SHI等[64]通过同轴水射流制导激光加工的方式在304不锈钢表面织构了网格结构,样品暴露在空气中20d左右便达到稳定的超疏水性,接触角达到150°以上。激光束作为波导通过水射流传输,不再受光学器件聚焦长度的限制,可加工更深的轮廓特征是水射流制导激光加工的最大优势。如图25所示,是相同试验参数下,304不锈钢基体进行水射流制导激光加工和常规激光烧蚀的结果比较,从光学图像和横截面轮廓可看出前者的热影响区较小、沟槽深度较大,表明了水射流制导激光加工是一种可替代飞秒激光加工制备超疏水表面的高效的、低成本的加工方式。

  • 图25 水射流制导激光加工和纯激光烧蚀在光学图像和截面轮廓方面的比较[64]

  • Fig.25 Comparison between water jet guided laser processing and pure laser ablation in terms of optical images and cross-section profiles[64]

  • 4.5 后处理

  • 后处理主要影响激光处理表面的润湿性转变速度,常用的后处理方法有热处理和低温退火[81-82]等。 2016年,CHUN等[83]引入低温退火后处理工艺研究了激光处理铜表面的润湿性转变问题。纳秒激光处理的铜表面在大气环境中放置27d后接触角仅达到了143°左右,因为大气环境只实现了亲水CuO到疏水Cu2O的部分还原。样品在不含乙醇的环境下经低温退火后不到13h便达到了超疏水性,在含有乙醇的环境下不到5h便达到了超疏水性且十分稳定,润湿性转变速度明显加快,因为乙醇很容易将CuO还原为Cu2O和Cu,润湿性转变机理如图26所示。

  • 图26 激光束加工和后处理的超亲水和超疏水表面机理示意图[83]

  • Fig.26 Schematic image of mechanism for superhydrophilic and superhydrophobic surfaces with laser beam machining and post process[83]

  • 2018年,NGO等[84]研究了铝基表面激光烧蚀后热处理工艺对表面疏水性能的影响。热处理温度为200℃,样品表面接触角与热处理时间呈正相关,热处理时间为360min时,接触角达到176°,滚动角为1°且对时间无依赖性。分析了热处理前后的表面形貌,结果表明,热处理前后微毛刺并无明显差异,润湿性快速转变的原因是热处理工艺促进了微毛刺的有机吸附过程,使表面C含量增加,且微毛刺上出现了较强的疏水基团(-CH3、-CH2-)。

  • 5 超疏水表面的机械稳定性分析

  • 机械稳定性是Cassie状态下被困在表面的空气的稳定性,也是材料表面抵抗过渡到Wenzel润湿状态(空气从粗糙结构中逸出)的能力。在实际应用中,超疏水表面暴露在外部复杂环境(比如高温高压环境)中,不可避免的会遭受一些机械损耗(如物理摩擦、弯曲变形和流体的冲击等),一是会对微米、纳米结构造成损伤,二是会使长链脂肪酸、氟硅烷等低表面能物质流失,导致超疏水材料失效[85]。大量试验结果表明,可从五个方面保证超疏水表面的机械稳定性,一是提高微纳结构的构建强度;二是构建自愈合表面或光滑的充液多孔表面,减少热力学稳定性和机械稳定性的限制;三是随机引入离散微结构来承受磨损力;四是通过牺牲自相似结构的上层来允许磨损;五是引入粘结层加固表面微结构。

  • 2013年,GROTEN等[86]在硅橡胶表面对比了微米结构、纳米结构和微纳复合结构的机械稳定性以及磨损试验后的润湿性变化。经法向应力和剪应力测试表明,纳米结构在法向应力下能保持良好的机械稳定性,但很小的剪切力便能使纳米结构遭到破坏,微米结构的疏水性能不强,微纳米复合结构在高达20N的剪切力作用下仍能保持超疏水性能,机械稳定性最强。证实了微纳复合结构的机械稳定性远远高于单一的微米或纳米结构。2020年, WANG等[87]为提高超疏水表面的机械稳定性,设计了几何稳定性良好的倒金字塔状微米结构,微米结构是一个个空腔相互连接组成的框架,作为“盔甲” 对框架里面的纳米结构起到保护作用,防止大于框架尺寸的磨损物磨损纳米结构,试验结果表明,具有该微纳复合结构的超疏水表面机械稳定性有很大提高。

  • 光滑的充液多孔表面是通过向粗糙的微纳结构中注入润滑液制得,与传统的通过锁住亚稳态气体形成气膜的超疏水表面不同,它是在基材和接触液体之间形成稳定的液固屏障阻止接触液体润湿表面。2011年,WONG等[88]首次在Nature上提出并验证了光滑充液多孔表面在提高机械稳定性方面的有效性。2018年,WANG等[89]受猪笼草启发以0.1mm厚的镍板为基材,通过将疏水性离子液体浸渍到带有纳米锥形阵列结构的超疏水表面制备了光滑充液多孔表面,对光滑充液多孔表面和传统超疏水表面进行了对比研究,划痕试验和水滴动态冲击试验结果表明,水滴更容易从有划痕的光滑充液多孔的倾斜表面上滑落,撞击液滴的动量不能飞溅或去除离子液体层,热水滴在很小倾斜角的光滑充液多孔表面上能快速流下来,但会钉扎在传统超疏水表面上。因此,在表面微纳结构中注入离子液体是提高超疏水表面机械稳定性的有效措施。

  • 随机引入离散微结构承受磨损力是通过保护初始粗糙结构的方式提高超疏水表面机械稳定性。 2014年,ZHANG等[90]在超疏水铝合金表面喷涂由疏水二氧化硅纳米粒子和有机硅酸盐前驱体组成的纳米复合溶液来承受磨损力。机械耐久性试验结果表明,经处理的超疏水铝合金表面具有良好的耐水循环(25kPa,10min)、沙粒冲击、砂粒剪切磨损和手指摩擦等性能。2018年,PENG等[91]研究了一种坚固耐用的全有机纳米复合涂料,基体在受到机械磨损时通过逐层去除材料的方式来保持超疏水性,这种方式可以缓冲液滴和射流撞击期间的压力峰值,有助于实现抗液体穿透性。粘合层不仅可以将微纳结构牢固的粘贴在基材表面,还可以在表面遭受外力冲击时发挥缓冲作用,降低微纳结构损伤程度[92]。2017年,ZHANG等[93]使用环氧树脂作为粘结剂将涂层粘结到玻璃上,试验结果表明,使用该方法制备的超疏水表面机械稳定性更强。

  • 综上所述,表面获得超疏水性的主要方式是构建微纳粗糙结构,且微纳粗糙结构精细程度越高超疏水性越好。但微纳结构精细程度越高越容易遭受外力冲击的破坏,机械稳定性越差,目前的方法只能对表面机械稳定性有所改善和提高,因此制备疏水性和机械稳定性兼备的超疏水表面仍是我们未来亟需攻克的难题。

  • 6 结论与展望

  • 本文从超疏水表面润湿理论出发,在揭示表面超疏水性重要性的基础上,归纳总结了激光加工超疏水表面微纳尺度结构的制备机理、制备方法和(超) 疏水性影响因素,针对机械稳定性问题总结了几种提高表面稳定性的方法,对未来激光加工制备超疏水表面进一步地研究具有指导意义,具体结论如下:

  • (1) 超疏水性是表面润湿性的一种特殊润湿状态,具有超疏水性的表面接触角大于150°,滚动角小于10°,液滴与表面以Cassie模型的接触方式接触。与其他制备技术相比,激光加工制备超疏水表面具有可集成化程度高、高度可控和可加工多种材料等优势。

  • (2) 激光增材制备超疏水表面是通过激光辐照充满金属纳米颗粒的溶液使其反生蒸发和氧化还原等物理和化学反应,发生相变的金属纳米颗粒烧结在基体表面形成微纳结构;激光减材制备超疏水表面是通过激光烧蚀材料去除和重新沉积的方式获得表面微纳结构,对于短脉冲激光,材料通过蒸发和溶体排出的形式形成微凹槽或凹坑等微结构,对于超短脉冲激光,以高压混合物脱离材料表面的形式形成微结构。

  • (3) 激光减材制备超疏水表面的研究居多,主要通过制备微纳粗糙结构增加表面粗糙度或在表面修饰低表面能物质两方面着手。激光加工加表面修饰、激光加工一步制备和激光复合加工是根据不同材料特性最常使用的三种激光加工工艺。

  • (4) 激光处理后的表面疏水性受加工过程中激光加工参数、微加工方式和加工环境等多种因素的影响。对多种影响因素进行合理设计和调控是制备理想超疏水表面的前提。

  • (5) 表面机械稳定性问题一直是制约超疏水表面长远发展的关键,文中总结了提高微纳结构的构建强度、构建光滑的充液多孔表面和随机引入离散微结构等五种改善和提高表面机械稳定性的方法,对科研工作者在提高表面机械稳定性方面的研究具有指导意义。

  • 最后基于激光加工制备超疏水表面存在的问题,对未来发展趋势展望如下:

  • (1) 超疏水表面微纳尺度结构的成型机理不够明确和完善,需要形成一套具体明确的激光加工微纳结构成型机理,以应对成型过程中错综复杂的材料特性、激光器种类和加工环境等多个变量的影响。

  • (2) 激光处理表面后在大气及其他加工环境中的润湿性转变机理不够清晰。通过EDS检测只能了解引起润湿性转变的元素,仅是结果数据,缺乏过程数据,只能对润湿性转变过程中的化学反应进行猜测,无法掌握具体反应过程实现润湿性的高度可控,以后需结合其他技术对润湿性转变过程进行动态监测。

  • (3) 机械稳定性一直是制约超疏水表面发展的关键问题,许多人已经研究了一些方法改善和提高超疏水表面的机械稳定性,但未从根本上解决此问题,因此提高超疏水表面的机械稳定性仍是一个重要的研究方向。

  • (4) 激光加工参数与材料烧蚀阈值的相对关系可控制表面加工形貌,表面形貌在调节材料表面润湿性方面起重要作用,因此需建立烧蚀阈值所对应的激光加工参数范围预估体系和理论计算模型,以提高加工效率。

  • (5) 随着制造业的快速发展,单一的功能性表面已经不能满足工业需求,因此激光加工结合其他技术实现多响应超疏水表面、多功能性表面的制备是未来的重要研究方向。

  • (6) 部分激光加工制备超疏水表面的试验研究仍只在实验室进行,为促进新的重大突破的产生,应将试验研究与实际情况相结合走出实验室,在工业中得到应用及考验。

  • 参考文献

    • [1] MILLES S,SOLDERA M,KUNTZE T,et al.Characterization of self-cleaning properties on superhydrophobic aluminum surfaces fabricated by direct laser writing and direct laser interference patterning[J].Applied Surface Science,2020,525:146518.

    • [2] TA V D,DUNN A,WASLEY T J,et al.Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition[J].Applied Surface Science,2016,365(1):153-159.

    • [3] CHEN L,PING H,YANG T.et al.Icing performance of superhydrophobic silicone rubber surfaces by laser texturing[J].Materials Research Express,2019,6(12):1250e2.

    • [4] WANG H X,ZHUANG J,YU J T,et al.Fabrication of anti-reflective surface with superhydrophobicity/high oleophobicity and enhanced mechanical durability via nanosecond laser surface texturing[J].Materials,2020,13(24):5691.

    • [5] ZHANG J C,LIU J Y,WANG G S,et al.Controllable wettability of laser treated aluminum mesh for on-demand oil/water separation[J].Journal of Dispersion Science and Technology,2019,40(11):1627-1636.

    • [6] ZHANG M,CHENG W F,ZHENG Z,et al.Meridian whispering gallery modes sensing in a sessile microdroplet on micro/nanostructured superhydrophobic chip surfaces[J].Microfluidics and Nanofluidics,2019,23(9):106.

    • [7] DONG S L,WANG Z L,AN L B,et al.Facile fabrication of a superhydrophobic surface with robust micro-/nanoscale hierarchical structures on titanium substrate[J].Nanomaterials,2020,10(8):1509.

    • [8] JIN S Y,WANG Y X,MOTLAG M,et al.Large-area direct laser-shock imprinting of a 3D biomimic hierarchical metal surface for triboelectric nanogenerators[J].Advanced Materials,2018,30(11):1705840.

    • [9] CHO H,CHUNG J,SHIN G,et al.Toward sustainable output generation of liquid-solid contact triboelectric nanogenerators:The role of hierarchical structures[J].Nano Energy,2019,56:56-64.

    • [10] DONG B,ECHEVERRIA E,OYELADE A,et al.Chemical and electronic structure of composite films deposited by plasma-enhanced chemical vapor deposition from orthocarborane and pyridine source compounds[J].Journal of Electron Spectroscopy and Related Phenomena,2017,223:21-28.

    • [11] WU C Y,HSIEH H P,CHEN S T,et al.Fabrication of functional polymer structures through bottom-up selective vapor deposition from bottom-up conductive templates[J].Langmuir,2018,34(15):4651-4657.

    • [12] DONG S L,WANG Z L,WANG Y K,et al.Roll-to-roll manufacturing of robust superhydrophobic coating on metallic engineering materials[J].ACS Applied Materials & Interfaces,2018,10(2):2174.

    • [13] CHENG J,LI F,ZHU S Y,et al.Electrochemical corrosion and tribological evaluation of TiAl alloy for marine application[J].Tribology International,2017,115(1):483-492.

    • [14] ZHANG X,SHI F,NIU J,et al.Superhydrophobic surfaces:from structural control to functional application[J].Journal of Materials Chemistry,2008,18(6):621-633.

    • [15] TADANAGA K,MORINAGA J,MINAMI T.Formation of superhydrophobic-superhydrophilic pattern on flowerlike alumina thin film by the Sol-Gel Method[J].Journal of Sol-Gel Science and Technology,2000,19(1-3):211-214.

    • [16] WANG N,XIONG D S,DENG Y L,et al.Mechanically robust superhydrophobic steel surface with Anti-Icing,UV-Durability,and corrosion resistance properties[J].ACS Applied Materials & Interfaces,2015,7(11):6260-6272.

    • [17] SEIFZADEH D,GOLMOGHANI-EBRAHIMI E.Formation of novel and crack free nanocomposites based on sol gel process for corrosion protection of copper[J].Surface and Coatings Technology,2012,210:103-112.

    • [18] ZHU J,ZHANG L,DAI X,et al.One-step fabrication of a superhydrophobic copper surface by nano-silver deposition[J].AIP Advances,2020,10(7):075111.

    • [19] 吴勃,周明,李保家,等.飞秒激光结合水热法制备不锈钢高粘附超疏水表面[J].功能材料,2013(24):3658-3662.WU Bo,ZHOU Ming,LI Baojia,et al.Fabrication of stainless steel surface with high adhesive superhydrophobicity by femtosecond laser combined hydrothermal method[J].Journal of Functional Materials,2013(24):3658-3662.(in Chinese)

    • [20] SONG J,PAN W,WANG K,et al.Fabrication of micro-reentrant structures by liquid/gas interface shape-regulated electrochemical deposition[J].International Journal of Machine Tools and Manufacture,2020,159:103637.

    • [21] TRDAN U,HOCEVAR M,GREGORCIC P.Transition from superhydrophilic to superhydrophobic state of laser textured stainless steel surface and its effect on corrosion resistance[J].Corrosion Science,2017,123:21-26.

    • [22] HUANG C J,BELL R,TSUBAKI A,et al.Condensation and subsequent freezing delays as a result of using femtosecond laser functionalized surfaces[J].Journal of Laser Applications,2018,30(1):11501.1.

    • [23] CHEN L,HUANG Y,YANG T,et al.Laser-structured superhydrophobic/superoleophilic aluminum surfaces for efficient oil/water separation[J].Environmental Science and Pollution Research,2020,27(34):43138-43149.

    • [24] 钱志强,吴志坚,王世栋,等.镁合金超疏水表面的制备技术与应用研究进展[J].材料导报,2018,1:102-109.QIAN Ziqiang,WU Zhijian,WANG Shidong,et al.Research progress in preparation of superhydrophobic coatings on magnesium alloys and its application[J].Materials Review,2018,1:102-109.(in Chinese)

    • [25] WENZEL,ROBERT N.Resistance of solid surfaces to wetting by water[J].Transactions of the Faraday Society,1936,28(8):988-994.

    • [26] CASSIE A,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:546-551.

    • [27] HUANG S,SONG J L,LU Y,et al.Underwater spontaneous pumpless transportation of nonpolar organic liquids on extreme wettability patterns[J].ACS Applied Materials & Interfaces,2016,8(5):2942-2949.

    • [28] YUAN S S,ZHU J Y,LI Y,et al.Structure architecture of micro/nanoscale ZIF-L on a 3D printed membrane for a superhydrophobic and underwater superoleophobic surface[J].Journal of Materials Chemistry A,2019,7(6):2723-2729.

    • [29] YOUNG T.An essay on the cohesion of fluids[J].Philosophical Transactions of the Royal Society of London,1805,95:65-87.

    • [30] WANG S T,JIANG L.Definition of superhydrophobic states[J].Advanced Materials,2007,19(21):3423-3424.

    • [31] LIU G M,FU L,RODE A V,et al.Water droplet motion control on superhydrophobic surfaces:exploiting the Wenzel-to-Cassie transition[J].Langmuir,2011,27(6):2595-2600.

    • [32] 李坤泉.超疏水表面的构造和有机/无机杂化超疏水涂层的制备与性能研究[D].广州:华南理工大学,2015.LI Kunquan.Fabrication and properties of superhydrophobic surface and organic/inorganic hybridsuperhydrophobic coating[D].Guangzhou:South China University of Technology,2015.(in Chinese)

    • [33] 吴思萱.激光熔化铜纳米颗粒成形的疏水表面结构制备研究[D].哈尔滨:哈尔滨工业大学,2020.WU Sixuan.Preparation of hydrophobic surface structure for laser melting copper nanoparticles[D].Harbin:Harbin Institute of Technology,2020.(in Chinese)

    • [34] KUZMIN P G,SHAFEEV G A,BUKIN V V,et al.Silicon nanoparticles produced by femtosecond laser ablation in ethanol:size control,structural characterization,and optical properties[J].Journal of Physical Chemistry C,2010,114(36):15266-15273.

    • [35] AMORUSO S,AUSANIO G,BRUZZESE R,et al.Characterization of laser ablation of solid targets with near-infrared laser pulses of 100 fs and 1 ps duration[J].Applied Surface Science,2006,252(13):4863-4870.

    • [36] LEITZ K H,REDLINGSHFER B,REG Y,et al.Metal ablation with short and ultrashort laser pulses[J].Physics Procedia,2011,12(1):230-238.

    • [37] ZHU H,ZHANG Z Y,XU J L,et al.An experimental study of micro-machining of hydroxyapatite using an ultrashort picosecond laser[J].Precision Engineering,2018,54:154-162.

    • [38] HASHIDA M,FUJITA M,TSUKAMOTO M,et al.Femtosecond laser ablation of metals:precise measurement and analytical model for crater profiles[C]//3rd International Symposium on Laser Precision Microfabrication,OSAKA,JAPAN,2002.

    • [39] MIYAJI G,MIYAZAKI K.Ultrafast dynamics of periodic nanostructure formation on diamondlike carbon films irradiated with femtosecond laser pulses[J].Applied Physics Letters,2006,89(19):191902(1-3).

    • [40] BOROWIEC A,HAUGE H K.Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses[J].Applied Physics Letters,2003,82(25):4462–4464.

    • [41] SUGIOKA K,CHENG Y.Ultrafast lasers-reliable tools for advanced materials processing[J].Light-science & Applications,2014,3(1):149.

    • [42] WANG C,HUO H,JOHNSON M,et al.The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations[J].Nanotechnology,2010,21(7):75304.

    • [43] MIYAJI G,MIYAZAKI K.Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses[J].Optics Express,2009,16(20):16265-16271.

    • [44] BHARDWAJ V R,SIMOVA E,RAJEEV P P,et al.Optically produced arrays of planar nanostructures inside fused silica[J].Physical Review Letters,2006,96(5):057404.

    • [45] ZHU Z J,GUO S Z,HIEDLER T,et al.3D printed functional and biological materials on moving freeform surfaces[J].Advanced Materials,2018,30(23):e1707495.

    • [46] 刘勇,任香会,常云龙,等.金属增材制造技术的研究现状[J].热加工工艺,2018,47(19):15-19,24.LIU Yong,REN Xianghui,CHANG Yunlong,et al.Research status of metal additive manufacturing technology[J].Hot Working Technology,2018,47(19):15-19,24.(in Chinese)

    • [47] SING S L,WIRIA F E,YEONG W.Selective laser melting of lattice structures:A statistical approach to manufacturability and mechanical behavior[J].Robotics and Computer-Integrated Manufacturing,2018,49(1):170-180.

    • [48] YIN Q,GUO Q,WANG Z L,et al.3D-printed bioinspired cassie-baxter wettability for controllable microdroplet manipulation[J].ACS Applied Materials & Interfaces,2020,13(1):1979-1987.

    • [49] MIN H,LEE B,JEONG S,et al.Laser-direct process of Cu nano-ink to coat highly conductive and adhesive metallization patterns on plastic substrate[J].Optics and Lasers in Engineering,2016,80:12-16.

    • [50] YADROITSEV I,BERTRAND P,SMUROV I.Parametric analysis of the selective laser melting process[J].Applied Surface Science,2008,253(19):8064-8069.

    • [51] 陈光霞,曾晓雁.选择性激光熔化激光快速成型铺粉装置设计[J].制造技术与机床,2010(3):57-59.CHEN Guangxia,ZENG Xiaoyan.Design on SLM powder coating device[J].Manufacturing Technology & Machine Tool,2010(3):57-59.(in Chinese)

    • [52] LOTT P,SCHLEIFENBAUM H,MEINERS W,et al.Design of an optical system for the in situ process monitoring of selective laser melting(SLM)[J].Physics Procedia,2011,12:683-690.

    • [53] WANG X J,LIU J Y,HE Y,et al.Selective laser melting of ink-printed(SLM-IP)copper(Cu)nanoparticles(NPs)for facile controllable fabrication of super-hydrophobic surface[J].Surface & Coatings Technology,2018,347:84-91.

    • [54] HUANG C,YE X,YANG X H,et al.Preparation of asuperhydrophobic aluminium alloy surface by UV laser[J].Surface Engineering,2020,36(6):558-564.

    • [55] WANG Q H,SAMANTA A,HAILU A,et al.Fabrication of mechanically enhanced superhydrophobic surface using nanosecond laser-based high-throughput surface nanostructuring(nHSN)[J].Procedia CIRP,2020,87:257-262.

    • [56] XIN G Q,WU C Y,CAO H Y,et al.Superhydrophobic TC4 alloy surface fabricated by laser micro-scanning to reduce adhesion and drag resistance[J].Surface & Coatings Technology,2020,391:125707.

    • [57] KIETZIG A M,HATZIKIRIAKOS S G,ENGLEZOS P.Patterned superhydrophobic metallic surfaces[J].Langmuir,2009,25(8):4821-4827.

    • [58] LONG J Y,ZHONG M L,FAN P X,et al.Wettability conversion of ultrafast laser structured copper surface[J].Journal of Laser Applications,2015,27(2):S29107.

    • [59] EXIR H,WECK A.Mechanism of superhydrophilic to superhydrophobic transition of femtosecond laser-induced periodic surface structures on titanium[J].Surface & Coatings Technology,2019,378:124931.

    • [60] ZHANG Z Y,GU Q M,JIANG W,et al.Achieving of bionic super-hydrophobicity by electrodepositing nano-Ni-pyramids on the picosecond laser-ablated micro-Cu-cone surface[J].Surface & Coatings Technology,2019,363:170-178.

    • [61] 潘瑞,张红军,钟敏霖.三级微纳超疏水表面的超快激光复合制备及防除冰性能研究[J].中国激光,2021,48(2):121-132.PAN Rui,ZHANG Hongjun,ZHONG Minlin.Ultrafast laser hybrid fabrication and ice-resistance performance of a triple-scale micro/nano superhydrophobic surface[J].Chinese Journal of Lasers,2021,48(2):121-132.(in Chinese)

    • [62] GREGORCIC P,CONRADI M,HRIBAR L,et al.Long-term influence of laser-processing parameters on(super)hydrophobicity development and stability of stainless-steel surfaces[J].Materials(Basel,Switzerland),2018,11(11):2240.

    • [63] ZHANG M J,GUO C F,HU J.One-step fabrication of flexible superhydrophobic surfaces to enhance water repellency[J].Surface & Coatings Technology,2020,400:126155.

    • [64] SHI Y,JIANG Z L,CAO J,et al.Texturing of metallic surfaces for superhydrophobicity by water jet guided laser micro-machining[J].Applied Surface Science,2020,500(0):144286.

    • [65] MILLES S,VOISIAT B,NITSCHKE M,et al.Influence of roughness achieved by periodic structures on the wettability of aluminum using direct laser writing and direct laser interference patterning technology[J].Journal of Materials Processing Technology,2019,270:142-151.

    • [66] WANG Y H,ZHANG Z B,XU J K,et al.One-step method using laser for large-scale preparation of bionic superhydrophobic & drag-reducing fish-scale surface [J].Surface and Coatings Technology,2021,409:126801.

    • [67] MILLES S,SOLDERA M,VOISIAT B,et al.Fabrication of superhydrophobic and ice-repellent surfaces on pure aluminium using single and multiscaled periodic textures[J].Scientific Reports,2019,9(1):13944.

    • [68] 余佳,何书通,宋寰宇,等.飞秒激光前向转移诱导产生金属纳米结构薄膜[J].中国激光,2017,44(1):97-102.YU Jia,HE Shutong,SONG Huanyu,et al.Metal nanostructured film generated by femtosecond laser induced forward transfer[J].Chinese Journal of Lasers,2017,44(1):97-102.(in Chinese)

    • [69] 张成云,刘海英,满文庆,等.飞秒激光正交线扫描诱导表面微纳结构 [J].光学精密工程,2017(12):3063-3069.ZHANG Chengyun,LIU Haiying,MAN Wenqing,et al.Femtosecond laser induced surface micro-and nano-structures by orthogonal scanning processing[J].Optics and Precision Engineering,2017(12):3063-3069.(in Chinese)

    • [70] HAUSCHWITZ P,JOCHCOVA D,JAGDHEESH R,et al.Towards rapid large-scale LIPSS fabrication by 4-beam ps DLIP[J].Optics & Laser Technology,2021,133:106532.

    • [71] POU P,DEL V J,RIVEIRO A,et al.Laser texturing of stainless steel under different processing atmospheres:from superhydrophilic to superhydrophobic surfaces[J].Applied Surface Science,2019,475:896-905.

    • [72] OUYANG P X,LI P J,LEKSINA E G,et al.Effect of liquid properties on laser ablation of aluminum and titanium alloys[J].Applied Surface Science,2016,360(Part B):880-888.

    • [73] TANGWARODOMNUKUN V.Cavity formation and surface modeling of laser milling process under a thin-flowing water layer[J].Applied Surface Science,2016,386:51-64.

    • [74] RAZI S,MADANIPOUR K,MOLLABASHI M.Lasersurface texturing of 316L stainless steel in air and water:A method for increasing hydrophilicity via direct creation of microstructures[J].Optics & Laser Technology,2016,80:237-246.

    • [75] KOCH J,TASCHNER S,SUTTMANN O,et al.Surface functionalization under water using picosecond and femtosecond laser pulses—first observations and novel effects[J].Procedia CIRP,2018,74:381-385.

    • [76] ABDULHADI K,SALIM E T,FAYADH S M,et al.Effect of multipath laser shock processing on microhardness,surface roughness,and wear resistance of 2024-T3 Al alloy[J].Scientific World Journal,2014,2014:490951.

    • [77] LI G Q,LI J W,ZHANG C C,et al.Large-area one-step assembly of three-dimensional porous metal micro/nanocages by ethanol-assisted femtosecond laser irradiation for enhanced antireflection and hydrophobicity.[J].Acs Applied Materials & Interfaces,2015,7(1):383-390.

    • [78] LI G Q,ZHEN Z,WU P C,et al.One-step facile fabrication of controllable microcone and micromolar silicon arrays with tunable wettability by liquid-assisted femtosecond laser irradiation[J].RSC Advances,2016,6(44):37463-37471.

    • [79] KIM D,OH B.Effect of liquid film on near-threshold laser ablation of a solid surface[J].Applied Surface Science,2003,222(1):138-147.

    • [80] WANG Y T,ZHAO X Y,KE C J,et al.Nanosecond laser fabrication of superhydrophobic Ti6Al4V surfaces assisted with different liquids[J].Colloids and Interface Science Communications,2020,35(4):100256.

    • [81] SIERRA D R,EDWARDSON S P,DEARDEN G.Laser surface texturing of titanium with thermal post-processing for improved wettability properties[J].Procedia CIRP,2018,74:362-366.

    • [82] JAGDHEESH R,KOPECEK J,BRAJER J,et al.Superhydrophobic microspiked surface structures by ultrashort laser patterning[J].Surface Engineering,2021.DOI:10.1080/02670844.2021.1874651.

    • [83] CHUN D M,NGO C V,LEE K M.Fast fabrication of superhydrophobic metallic surface using nanosecond laser texturing and low-temperature annealing[J].CIRP Annals,2016,65(1):519-522.

    • [84] NGO C V,CHUN D M.Control of laser-ablated aluminum surface wettability to superhydrophobic or superhydrophilic through simple heat treatment or water boiling post-processing[J].Applied Surface Science,2018,435(4):974-982.

    • [85] 吴春亚,黄俊杰,李曦光,等.金属基超疏水表面的制备技术研究新进展[J].哈尔滨工业大学学报,2021,53(7):1-19.WU Chunya,HUANG Junjie,LI Xiguang,et al.New progress of fabrication techniques for metal-based superhydrophobic surfaces[J].Journal of Harbin Institute of Technology,2021,53(7):1-19.(in Chinese)

    • [86] GROTEN J,RUHE J.Surfaces with combined microscale and nanoscale structures:A route to mechanically stable superhydrophobic surfaces?[J].Langmuir,2013,29(11):3765-3772.

    • [87] WANG D,SUN Q,HOKKANEN M J,et al.Design of robust superhydrophobic surfaces[J].Nature,2020,582(7810):55-59.

    • [88] WONG T S,KANG S H,TANG S,et al.Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J].Nature,2011,477(7365):443-447.

    • [89] WANG X Q,GU C D,WANG L Y,et al.Ionic liquids-infused slippery surfaces for condensation and hot water repellency[J].Chemical Engineering Journal,2018,343:561-571.

    • [90] ZHANG Y F,GE D T,YANG S.Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness[J].Journal of Colloid & Interface Science,2014,423:101-107.

    • [91] PENG C Y,CHEN Z Y,TIWARI M K.All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J].Nature Materials,2018,17(4):355-360.

    • [92] LU Y,SATHASIVAM S,SONG J L,et al.Robust self-cleaning surfaces that function when exposed to either air or oil[J].Science,2015,347(6226):1132-1135.

    • [93] ZHANG W B,XIANG T H,LIU F,et al.Facile design and fabrication of superwetting surfaces with excellent wear-resistance[J].Acs Applied Materials & Interfaces,2017,9(18):15776-15784.

  • 参考文献

    • [1] MILLES S,SOLDERA M,KUNTZE T,et al.Characterization of self-cleaning properties on superhydrophobic aluminum surfaces fabricated by direct laser writing and direct laser interference patterning[J].Applied Surface Science,2020,525:146518.

    • [2] TA V D,DUNN A,WASLEY T J,et al.Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition[J].Applied Surface Science,2016,365(1):153-159.

    • [3] CHEN L,PING H,YANG T.et al.Icing performance of superhydrophobic silicone rubber surfaces by laser texturing[J].Materials Research Express,2019,6(12):1250e2.

    • [4] WANG H X,ZHUANG J,YU J T,et al.Fabrication of anti-reflective surface with superhydrophobicity/high oleophobicity and enhanced mechanical durability via nanosecond laser surface texturing[J].Materials,2020,13(24):5691.

    • [5] ZHANG J C,LIU J Y,WANG G S,et al.Controllable wettability of laser treated aluminum mesh for on-demand oil/water separation[J].Journal of Dispersion Science and Technology,2019,40(11):1627-1636.

    • [6] ZHANG M,CHENG W F,ZHENG Z,et al.Meridian whispering gallery modes sensing in a sessile microdroplet on micro/nanostructured superhydrophobic chip surfaces[J].Microfluidics and Nanofluidics,2019,23(9):106.

    • [7] DONG S L,WANG Z L,AN L B,et al.Facile fabrication of a superhydrophobic surface with robust micro-/nanoscale hierarchical structures on titanium substrate[J].Nanomaterials,2020,10(8):1509.

    • [8] JIN S Y,WANG Y X,MOTLAG M,et al.Large-area direct laser-shock imprinting of a 3D biomimic hierarchical metal surface for triboelectric nanogenerators[J].Advanced Materials,2018,30(11):1705840.

    • [9] CHO H,CHUNG J,SHIN G,et al.Toward sustainable output generation of liquid-solid contact triboelectric nanogenerators:The role of hierarchical structures[J].Nano Energy,2019,56:56-64.

    • [10] DONG B,ECHEVERRIA E,OYELADE A,et al.Chemical and electronic structure of composite films deposited by plasma-enhanced chemical vapor deposition from orthocarborane and pyridine source compounds[J].Journal of Electron Spectroscopy and Related Phenomena,2017,223:21-28.

    • [11] WU C Y,HSIEH H P,CHEN S T,et al.Fabrication of functional polymer structures through bottom-up selective vapor deposition from bottom-up conductive templates[J].Langmuir,2018,34(15):4651-4657.

    • [12] DONG S L,WANG Z L,WANG Y K,et al.Roll-to-roll manufacturing of robust superhydrophobic coating on metallic engineering materials[J].ACS Applied Materials & Interfaces,2018,10(2):2174.

    • [13] CHENG J,LI F,ZHU S Y,et al.Electrochemical corrosion and tribological evaluation of TiAl alloy for marine application[J].Tribology International,2017,115(1):483-492.

    • [14] ZHANG X,SHI F,NIU J,et al.Superhydrophobic surfaces:from structural control to functional application[J].Journal of Materials Chemistry,2008,18(6):621-633.

    • [15] TADANAGA K,MORINAGA J,MINAMI T.Formation of superhydrophobic-superhydrophilic pattern on flowerlike alumina thin film by the Sol-Gel Method[J].Journal of Sol-Gel Science and Technology,2000,19(1-3):211-214.

    • [16] WANG N,XIONG D S,DENG Y L,et al.Mechanically robust superhydrophobic steel surface with Anti-Icing,UV-Durability,and corrosion resistance properties[J].ACS Applied Materials & Interfaces,2015,7(11):6260-6272.

    • [17] SEIFZADEH D,GOLMOGHANI-EBRAHIMI E.Formation of novel and crack free nanocomposites based on sol gel process for corrosion protection of copper[J].Surface and Coatings Technology,2012,210:103-112.

    • [18] ZHU J,ZHANG L,DAI X,et al.One-step fabrication of a superhydrophobic copper surface by nano-silver deposition[J].AIP Advances,2020,10(7):075111.

    • [19] 吴勃,周明,李保家,等.飞秒激光结合水热法制备不锈钢高粘附超疏水表面[J].功能材料,2013(24):3658-3662.WU Bo,ZHOU Ming,LI Baojia,et al.Fabrication of stainless steel surface with high adhesive superhydrophobicity by femtosecond laser combined hydrothermal method[J].Journal of Functional Materials,2013(24):3658-3662.(in Chinese)

    • [20] SONG J,PAN W,WANG K,et al.Fabrication of micro-reentrant structures by liquid/gas interface shape-regulated electrochemical deposition[J].International Journal of Machine Tools and Manufacture,2020,159:103637.

    • [21] TRDAN U,HOCEVAR M,GREGORCIC P.Transition from superhydrophilic to superhydrophobic state of laser textured stainless steel surface and its effect on corrosion resistance[J].Corrosion Science,2017,123:21-26.

    • [22] HUANG C J,BELL R,TSUBAKI A,et al.Condensation and subsequent freezing delays as a result of using femtosecond laser functionalized surfaces[J].Journal of Laser Applications,2018,30(1):11501.1.

    • [23] CHEN L,HUANG Y,YANG T,et al.Laser-structured superhydrophobic/superoleophilic aluminum surfaces for efficient oil/water separation[J].Environmental Science and Pollution Research,2020,27(34):43138-43149.

    • [24] 钱志强,吴志坚,王世栋,等.镁合金超疏水表面的制备技术与应用研究进展[J].材料导报,2018,1:102-109.QIAN Ziqiang,WU Zhijian,WANG Shidong,et al.Research progress in preparation of superhydrophobic coatings on magnesium alloys and its application[J].Materials Review,2018,1:102-109.(in Chinese)

    • [25] WENZEL,ROBERT N.Resistance of solid surfaces to wetting by water[J].Transactions of the Faraday Society,1936,28(8):988-994.

    • [26] CASSIE A,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:546-551.

    • [27] HUANG S,SONG J L,LU Y,et al.Underwater spontaneous pumpless transportation of nonpolar organic liquids on extreme wettability patterns[J].ACS Applied Materials & Interfaces,2016,8(5):2942-2949.

    • [28] YUAN S S,ZHU J Y,LI Y,et al.Structure architecture of micro/nanoscale ZIF-L on a 3D printed membrane for a superhydrophobic and underwater superoleophobic surface[J].Journal of Materials Chemistry A,2019,7(6):2723-2729.

    • [29] YOUNG T.An essay on the cohesion of fluids[J].Philosophical Transactions of the Royal Society of London,1805,95:65-87.

    • [30] WANG S T,JIANG L.Definition of superhydrophobic states[J].Advanced Materials,2007,19(21):3423-3424.

    • [31] LIU G M,FU L,RODE A V,et al.Water droplet motion control on superhydrophobic surfaces:exploiting the Wenzel-to-Cassie transition[J].Langmuir,2011,27(6):2595-2600.

    • [32] 李坤泉.超疏水表面的构造和有机/无机杂化超疏水涂层的制备与性能研究[D].广州:华南理工大学,2015.LI Kunquan.Fabrication and properties of superhydrophobic surface and organic/inorganic hybridsuperhydrophobic coating[D].Guangzhou:South China University of Technology,2015.(in Chinese)

    • [33] 吴思萱.激光熔化铜纳米颗粒成形的疏水表面结构制备研究[D].哈尔滨:哈尔滨工业大学,2020.WU Sixuan.Preparation of hydrophobic surface structure for laser melting copper nanoparticles[D].Harbin:Harbin Institute of Technology,2020.(in Chinese)

    • [34] KUZMIN P G,SHAFEEV G A,BUKIN V V,et al.Silicon nanoparticles produced by femtosecond laser ablation in ethanol:size control,structural characterization,and optical properties[J].Journal of Physical Chemistry C,2010,114(36):15266-15273.

    • [35] AMORUSO S,AUSANIO G,BRUZZESE R,et al.Characterization of laser ablation of solid targets with near-infrared laser pulses of 100 fs and 1 ps duration[J].Applied Surface Science,2006,252(13):4863-4870.

    • [36] LEITZ K H,REDLINGSHFER B,REG Y,et al.Metal ablation with short and ultrashort laser pulses[J].Physics Procedia,2011,12(1):230-238.

    • [37] ZHU H,ZHANG Z Y,XU J L,et al.An experimental study of micro-machining of hydroxyapatite using an ultrashort picosecond laser[J].Precision Engineering,2018,54:154-162.

    • [38] HASHIDA M,FUJITA M,TSUKAMOTO M,et al.Femtosecond laser ablation of metals:precise measurement and analytical model for crater profiles[C]//3rd International Symposium on Laser Precision Microfabrication,OSAKA,JAPAN,2002.

    • [39] MIYAJI G,MIYAZAKI K.Ultrafast dynamics of periodic nanostructure formation on diamondlike carbon films irradiated with femtosecond laser pulses[J].Applied Physics Letters,2006,89(19):191902(1-3).

    • [40] BOROWIEC A,HAUGE H K.Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses[J].Applied Physics Letters,2003,82(25):4462–4464.

    • [41] SUGIOKA K,CHENG Y.Ultrafast lasers-reliable tools for advanced materials processing[J].Light-science & Applications,2014,3(1):149.

    • [42] WANG C,HUO H,JOHNSON M,et al.The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations[J].Nanotechnology,2010,21(7):75304.

    • [43] MIYAJI G,MIYAZAKI K.Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses[J].Optics Express,2009,16(20):16265-16271.

    • [44] BHARDWAJ V R,SIMOVA E,RAJEEV P P,et al.Optically produced arrays of planar nanostructures inside fused silica[J].Physical Review Letters,2006,96(5):057404.

    • [45] ZHU Z J,GUO S Z,HIEDLER T,et al.3D printed functional and biological materials on moving freeform surfaces[J].Advanced Materials,2018,30(23):e1707495.

    • [46] 刘勇,任香会,常云龙,等.金属增材制造技术的研究现状[J].热加工工艺,2018,47(19):15-19,24.LIU Yong,REN Xianghui,CHANG Yunlong,et al.Research status of metal additive manufacturing technology[J].Hot Working Technology,2018,47(19):15-19,24.(in Chinese)

    • [47] SING S L,WIRIA F E,YEONG W.Selective laser melting of lattice structures:A statistical approach to manufacturability and mechanical behavior[J].Robotics and Computer-Integrated Manufacturing,2018,49(1):170-180.

    • [48] YIN Q,GUO Q,WANG Z L,et al.3D-printed bioinspired cassie-baxter wettability for controllable microdroplet manipulation[J].ACS Applied Materials & Interfaces,2020,13(1):1979-1987.

    • [49] MIN H,LEE B,JEONG S,et al.Laser-direct process of Cu nano-ink to coat highly conductive and adhesive metallization patterns on plastic substrate[J].Optics and Lasers in Engineering,2016,80:12-16.

    • [50] YADROITSEV I,BERTRAND P,SMUROV I.Parametric analysis of the selective laser melting process[J].Applied Surface Science,2008,253(19):8064-8069.

    • [51] 陈光霞,曾晓雁.选择性激光熔化激光快速成型铺粉装置设计[J].制造技术与机床,2010(3):57-59.CHEN Guangxia,ZENG Xiaoyan.Design on SLM powder coating device[J].Manufacturing Technology & Machine Tool,2010(3):57-59.(in Chinese)

    • [52] LOTT P,SCHLEIFENBAUM H,MEINERS W,et al.Design of an optical system for the in situ process monitoring of selective laser melting(SLM)[J].Physics Procedia,2011,12:683-690.

    • [53] WANG X J,LIU J Y,HE Y,et al.Selective laser melting of ink-printed(SLM-IP)copper(Cu)nanoparticles(NPs)for facile controllable fabrication of super-hydrophobic surface[J].Surface & Coatings Technology,2018,347:84-91.

    • [54] HUANG C,YE X,YANG X H,et al.Preparation of asuperhydrophobic aluminium alloy surface by UV laser[J].Surface Engineering,2020,36(6):558-564.

    • [55] WANG Q H,SAMANTA A,HAILU A,et al.Fabrication of mechanically enhanced superhydrophobic surface using nanosecond laser-based high-throughput surface nanostructuring(nHSN)[J].Procedia CIRP,2020,87:257-262.

    • [56] XIN G Q,WU C Y,CAO H Y,et al.Superhydrophobic TC4 alloy surface fabricated by laser micro-scanning to reduce adhesion and drag resistance[J].Surface & Coatings Technology,2020,391:125707.

    • [57] KIETZIG A M,HATZIKIRIAKOS S G,ENGLEZOS P.Patterned superhydrophobic metallic surfaces[J].Langmuir,2009,25(8):4821-4827.

    • [58] LONG J Y,ZHONG M L,FAN P X,et al.Wettability conversion of ultrafast laser structured copper surface[J].Journal of Laser Applications,2015,27(2):S29107.

    • [59] EXIR H,WECK A.Mechanism of superhydrophilic to superhydrophobic transition of femtosecond laser-induced periodic surface structures on titanium[J].Surface & Coatings Technology,2019,378:124931.

    • [60] ZHANG Z Y,GU Q M,JIANG W,et al.Achieving of bionic super-hydrophobicity by electrodepositing nano-Ni-pyramids on the picosecond laser-ablated micro-Cu-cone surface[J].Surface & Coatings Technology,2019,363:170-178.

    • [61] 潘瑞,张红军,钟敏霖.三级微纳超疏水表面的超快激光复合制备及防除冰性能研究[J].中国激光,2021,48(2):121-132.PAN Rui,ZHANG Hongjun,ZHONG Minlin.Ultrafast laser hybrid fabrication and ice-resistance performance of a triple-scale micro/nano superhydrophobic surface[J].Chinese Journal of Lasers,2021,48(2):121-132.(in Chinese)

    • [62] GREGORCIC P,CONRADI M,HRIBAR L,et al.Long-term influence of laser-processing parameters on(super)hydrophobicity development and stability of stainless-steel surfaces[J].Materials(Basel,Switzerland),2018,11(11):2240.

    • [63] ZHANG M J,GUO C F,HU J.One-step fabrication of flexible superhydrophobic surfaces to enhance water repellency[J].Surface & Coatings Technology,2020,400:126155.

    • [64] SHI Y,JIANG Z L,CAO J,et al.Texturing of metallic surfaces for superhydrophobicity by water jet guided laser micro-machining[J].Applied Surface Science,2020,500(0):144286.

    • [65] MILLES S,VOISIAT B,NITSCHKE M,et al.Influence of roughness achieved by periodic structures on the wettability of aluminum using direct laser writing and direct laser interference patterning technology[J].Journal of Materials Processing Technology,2019,270:142-151.

    • [66] WANG Y H,ZHANG Z B,XU J K,et al.One-step method using laser for large-scale preparation of bionic superhydrophobic & drag-reducing fish-scale surface [J].Surface and Coatings Technology,2021,409:126801.

    • [67] MILLES S,SOLDERA M,VOISIAT B,et al.Fabrication of superhydrophobic and ice-repellent surfaces on pure aluminium using single and multiscaled periodic textures[J].Scientific Reports,2019,9(1):13944.

    • [68] 余佳,何书通,宋寰宇,等.飞秒激光前向转移诱导产生金属纳米结构薄膜[J].中国激光,2017,44(1):97-102.YU Jia,HE Shutong,SONG Huanyu,et al.Metal nanostructured film generated by femtosecond laser induced forward transfer[J].Chinese Journal of Lasers,2017,44(1):97-102.(in Chinese)

    • [69] 张成云,刘海英,满文庆,等.飞秒激光正交线扫描诱导表面微纳结构 [J].光学精密工程,2017(12):3063-3069.ZHANG Chengyun,LIU Haiying,MAN Wenqing,et al.Femtosecond laser induced surface micro-and nano-structures by orthogonal scanning processing[J].Optics and Precision Engineering,2017(12):3063-3069.(in Chinese)

    • [70] HAUSCHWITZ P,JOCHCOVA D,JAGDHEESH R,et al.Towards rapid large-scale LIPSS fabrication by 4-beam ps DLIP[J].Optics & Laser Technology,2021,133:106532.

    • [71] POU P,DEL V J,RIVEIRO A,et al.Laser texturing of stainless steel under different processing atmospheres:from superhydrophilic to superhydrophobic surfaces[J].Applied Surface Science,2019,475:896-905.

    • [72] OUYANG P X,LI P J,LEKSINA E G,et al.Effect of liquid properties on laser ablation of aluminum and titanium alloys[J].Applied Surface Science,2016,360(Part B):880-888.

    • [73] TANGWARODOMNUKUN V.Cavity formation and surface modeling of laser milling process under a thin-flowing water layer[J].Applied Surface Science,2016,386:51-64.

    • [74] RAZI S,MADANIPOUR K,MOLLABASHI M.Lasersurface texturing of 316L stainless steel in air and water:A method for increasing hydrophilicity via direct creation of microstructures[J].Optics & Laser Technology,2016,80:237-246.

    • [75] KOCH J,TASCHNER S,SUTTMANN O,et al.Surface functionalization under water using picosecond and femtosecond laser pulses—first observations and novel effects[J].Procedia CIRP,2018,74:381-385.

    • [76] ABDULHADI K,SALIM E T,FAYADH S M,et al.Effect of multipath laser shock processing on microhardness,surface roughness,and wear resistance of 2024-T3 Al alloy[J].Scientific World Journal,2014,2014:490951.

    • [77] LI G Q,LI J W,ZHANG C C,et al.Large-area one-step assembly of three-dimensional porous metal micro/nanocages by ethanol-assisted femtosecond laser irradiation for enhanced antireflection and hydrophobicity.[J].Acs Applied Materials & Interfaces,2015,7(1):383-390.

    • [78] LI G Q,ZHEN Z,WU P C,et al.One-step facile fabrication of controllable microcone and micromolar silicon arrays with tunable wettability by liquid-assisted femtosecond laser irradiation[J].RSC Advances,2016,6(44):37463-37471.

    • [79] KIM D,OH B.Effect of liquid film on near-threshold laser ablation of a solid surface[J].Applied Surface Science,2003,222(1):138-147.

    • [80] WANG Y T,ZHAO X Y,KE C J,et al.Nanosecond laser fabrication of superhydrophobic Ti6Al4V surfaces assisted with different liquids[J].Colloids and Interface Science Communications,2020,35(4):100256.

    • [81] SIERRA D R,EDWARDSON S P,DEARDEN G.Laser surface texturing of titanium with thermal post-processing for improved wettability properties[J].Procedia CIRP,2018,74:362-366.

    • [82] JAGDHEESH R,KOPECEK J,BRAJER J,et al.Superhydrophobic microspiked surface structures by ultrashort laser patterning[J].Surface Engineering,2021.DOI:10.1080/02670844.2021.1874651.

    • [83] CHUN D M,NGO C V,LEE K M.Fast fabrication of superhydrophobic metallic surface using nanosecond laser texturing and low-temperature annealing[J].CIRP Annals,2016,65(1):519-522.

    • [84] NGO C V,CHUN D M.Control of laser-ablated aluminum surface wettability to superhydrophobic or superhydrophilic through simple heat treatment or water boiling post-processing[J].Applied Surface Science,2018,435(4):974-982.

    • [85] 吴春亚,黄俊杰,李曦光,等.金属基超疏水表面的制备技术研究新进展[J].哈尔滨工业大学学报,2021,53(7):1-19.WU Chunya,HUANG Junjie,LI Xiguang,et al.New progress of fabrication techniques for metal-based superhydrophobic surfaces[J].Journal of Harbin Institute of Technology,2021,53(7):1-19.(in Chinese)

    • [86] GROTEN J,RUHE J.Surfaces with combined microscale and nanoscale structures:A route to mechanically stable superhydrophobic surfaces?[J].Langmuir,2013,29(11):3765-3772.

    • [87] WANG D,SUN Q,HOKKANEN M J,et al.Design of robust superhydrophobic surfaces[J].Nature,2020,582(7810):55-59.

    • [88] WONG T S,KANG S H,TANG S,et al.Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J].Nature,2011,477(7365):443-447.

    • [89] WANG X Q,GU C D,WANG L Y,et al.Ionic liquids-infused slippery surfaces for condensation and hot water repellency[J].Chemical Engineering Journal,2018,343:561-571.

    • [90] ZHANG Y F,GE D T,YANG S.Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness[J].Journal of Colloid & Interface Science,2014,423:101-107.

    • [91] PENG C Y,CHEN Z Y,TIWARI M K.All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J].Nature Materials,2018,17(4):355-360.

    • [92] LU Y,SATHASIVAM S,SONG J L,et al.Robust self-cleaning surfaces that function when exposed to either air or oil[J].Science,2015,347(6226):1132-1135.

    • [93] ZHANG W B,XIANG T H,LIU F,et al.Facile design and fabrication of superwetting surfaces with excellent wear-resistance[J].Acs Applied Materials & Interfaces,2017,9(18):15776-15784.

  • 手机扫一扫看