en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

黄璐,女,1997年出生,博士研究生。主要研究方向为热防护涂层。E-mail:huanglu666@stu.xjtu.edu.cn;

刘梅军(通信作者),男,1987年出生,博士,副教授,博士研究生导师。主要研究方向为热防护涂层、功能薄膜。E-mail:liumjun@xjtu.edu.cn

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20210518004

参考文献 1
LIU Q M,HUANG S Z,HE A J.Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines[J].Journal of Materials Science & Technology,2019,35(12):2814-2823.
参考文献 2
DAROLIA.Thermal barrier coatings technology:critical review,progress update,remaining challenges and prospects [J].International Materials Reviews,2013,58(6):315-348.
参考文献 3
LIU B,LIU Y C,ZHU C H,et al.Advances on strategies for searching for next generation thermal barrier coating materials[J].Journal of Materials Science & Technology,2019,35(5):833-851.
参考文献 4
MEHBOOB G,LIU M Jun,XU T,et al.A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime[J].Ceramics International,2020,46(7):8497-8521.
参考文献 5
FAN W,BAI Y.Review of suspension and solution precursor plasma sprayed thermal barrier coatings[J].Ceramics International,2016,42(13):14299-14312.
参考文献 6
向阳,王义,朱程鑫,等.氧化物/氧化物陶瓷基复合材料研究进展[J].现代技术陶瓷,2020,41(6):394-404.XIANG Yang,WANG Yi,ZHU Chengxin,et al.Research progress of oxide/oxide ceramic matrix composites[J].Advanced Ceramics,2020,41(6):394-404.(in Chinese)
参考文献 7
DHOMNE Shailesh,MAHALLE A M.Thermal barrier coating materials for SI engine[J].Journal of Materials Research and Technology,2019,8(1):1532-1537.
参考文献 8
SZWABA R,KACZYNSKI P,TELEGA J,et al.Influence of internal channel geometry of gas turbine blade on flow structure and heat transfer[J].Journal of Thermal Science,2017,26(6):514-522.
参考文献 9
REZANKA S,MACK D E,MAUER G,et al.Investigation of the resistance of open-column-structured PS-PVD TBCs to erosive and high-temperature corrosive attack[J].Surface & Coatings Technology,2017,324:222-235.
参考文献 10
刘飞,刘敏,毛杰,等.H2 对等离子喷涂-物理气相沉积热障涂层的结构和抗冲刷性能的影响[J].材料研究学报,2018,32(9):641-646.LIU Fei,LIU Min,MAO Jie,et al.Influence of H2 flow rate on structure and erosion resistance of thermal barrier coatings prepared by plasma spray-physical vapor deposition[J].Chinese Journal of Materials Research,2018,32(9):641-646.(in Chinese)
参考文献 11
SCHMITT M P,HARDER B J,WOLFE D E.Process-structure-property relations for the erosion durability of plasma spray-physical vapor deposition(PS-PVD)thermal barrier coatings[J].Surface & Coatings Technology,2016,297:11-18.
参考文献 12
李建超,何箐,吕玉芬,等.热障涂层无损检测技术研究进展[J].中国表面工程,2019,32(2):16-26.LI Jianchao,HE Qing,LÜ Yufen,et al.Research progress on non-destructive testing method of thermal barrier coatings[J].China Surface Engineering,2019,32(2):16-26.(in Chinese)
参考文献 13
刘丹丹,樊自拴.超高温陶瓷涂层的研究进展[J].材料保护,2020,53(5):105-110.LIU Dandan,FAN Zishuan.Research progress of ultrahigh temperature ceramic coating[J].Materials Protection,2020,53(5):105-110.(in Chinese)
参考文献 14
赵娟利,杨岚,张成冠,等.热障涂层材料研究进展[J].现代技术陶瓷,2020,41(3):148-170.ZHAO Juanli,YANG Lan,ZHANG Chengguan,et al.Recent progress in thermal barrier coatings[J].Advanced Ceramics,2020,41(3):148-170.(in Chinese)
参考文献 15
LI F,ZHOU L,LIU J X,et al.High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials[J].Journal of Advanced Ceramics,2019,8(4):576-582.
参考文献 16
LI G R,YANG G J,LI C X,et al.Strain-induced multiscale structural changes in lamellar thermal barrier coatings[J].Ceramics International,2017,43(2):2252-2266.
参考文献 17
LI G R,XIE H,YANG G J,et al.A comprehensive sintering mechanism for TBCs— Part I:An overall evolution with two-stage kinetics[J].Journal of the American Ceramic Society,2017,100(5):2176-2189.
参考文献 18
唐春华,李广荣,刘梅军,等.等离子喷涂 La2Zr2O7 热障涂层高温烧结的硬化行为[J].中国表面工程,2020,33(2):119-126.TANG Chunhua,LI Guangrong,LIU Meijun,et al.Sintering-stiffening behavior of plasma sprayed La2Zr2O7 thermal barrier coatings during high temperature exposure[J].China Surface Engineering,2020,33(2):119-126.(in Chinese)
参考文献 19
ZHAO Z F,CHEN H,XIANG H M,et al.High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications[J].Journal of Advanced Ceramics,2020,9(3):303-311.
参考文献 20
陈琳,冯晶.稀土钽酸盐 RE3TaO7 和 RETa3O9 陶瓷热-力学性质研究进展[J].现代技术陶瓷,2019,40(6):367-397.CHEN Lin,FENG Jing.Research progress of thermo-mechanical properties of rare earth tantalates RE3TaO7 and RETa3O9 Ceramics[J].Advanced Ceramics,2019,40(6):367-397.(in Chinese)
参考文献 21
PADTURE N P.Advanced structural ceramics in aerospace propulsion[J].Nature Materials,2016,15(8):804-809.
参考文献 22
MYOUNG S W,LEE S S,KIM H S,et al.Effect of post heat treatment on thermal durability of thermal barrier coatings in thermal fatigue tests[J].Surface & Coatings Technology,2013,215:46-51.
参考文献 23
HE W T,MAUER G,SCHWEDT A,et al.Advanced crystallographic study of the columnar growth of YZS coatings produced by PS-PVD[J].Journal of the European Ceramic Society,2018,38(5):2449-2453.
参考文献 24
QIU S Y,LIU Y C,GUO H B,et al.Effect of splat-interface discontinuity on effective thermal conductivity of plasma sprayed thermal barrier coating[J].Ceramics International,2020,46(4):4824-4831.
参考文献 25
LIMA R S,GUERREIRO B,AGHASIBEIG M.Microstructural characterization and room-temperature erosion behavior of as-deposited SPS,EB-PVD and APS YSZ-based TBCs[J].Journal of Thermal Spray Technology,2019,28(1-2):223-232.
参考文献 26
郭磊,辛会.V2O5+Na2SO4 熔盐作用下(Gd(0.9)Sc(0.1))2 Zr2O7/YSZ 热障涂层的热腐蚀行为研究[J].材料保护,2021,54(2):1-8.GUO Lei,XIN Hui.Hot corrosion behavior of(Gd09Sc0.1)2 Zr2O7/YSZ thermal barrier coatings exposed to V2O5+ Na2SO4 molten salt[J].Materials Protection,2021,54(2):1-8.(in Chinese)
参考文献 27
李勇,高禄平,刘福广,等.基于真实组织的模拟技术在热障涂层热导率预测中的应用探索[J].材料保护,2021,54(3):9-14,22.LI Yong,GAO Luping,LIU Fuguang,et al.Application exploration on the thermal conductivity prediction of thermal barrier coating by the modeling technique based on real coating structure[J].Materials Protection,2021,54(3):9-14,22.(in Chinese)
参考文献 28
高丽华,于月光,贾芳,等.等离子物理气相沉积热障涂层研究进展[J].热喷涂技术,2017,9(2):1-8.GAO Lihua,YU Yueguang,JIA Fang,et al.Progress in plasma spray-physical vapor deposition thermal barrier coatings[J].Thermal Spray Technology,2017,9(2):1-8.(in Chinese)
参考文献 29
GAO L H,GUO H B,WEI L L,et al.Microstructure,thermal conductivity and thermal cycling behavior of thermal barrier coatings prepared by plasma spray physical vapor deposition[J].Surface & Coatings Technology,2015,276:424-430.
参考文献 30
付朗,张小锋,刘敏,等.等离子喷涂-物理气相沉积涡轮叶片7YSZ热障涂层[J].材料研究与应用,2020,14(2):95-101.FU Lang,ZHANG Xiaofeng,LIU Min,et al.Preparation of 7YSZ thermal barrier coatings for turbine blades by plasma spraying-physical vapor deposition[J].Materials Research and Application,2020,14(02):95-101.(in Chinese)
参考文献 31
石佳,魏亮亮,张宝鹏,等.等离子物理气相沉积热障涂层研究进展[J].航空材料学报,2018,38(2):1-9.SHI Jia,WEI Liangliang,ZHANG Baopeng,et al.Research process in plasma spray physical vapor deposited thermal barrier coatings[J].Journal of Aeronautical Materials,2018,38(2):1-9.(in Chinese)
参考文献 32
CHEN Q Y,LI C X,ZHAO J Z,et al.Microstructure of YSZ coatings deposited by PS-PVD using 45 kW shrouded plasma torch [J].Materials and Manufacturing Processes,2016,31(9):1183-1191.
参考文献 33
HE W T,MAUER G,SOHN Y J,et al.Investigation on growth mechanisms of columnar structured YSZ coatings in plasma spray-physical vapor deposition(PS-PVD)[J].Journal of the European Ceramic Society,2019,39(10):3129-3138.
参考文献 34
MAUER G,HOSPACH A,ZOTOV N,et al.Process conditions and microstructures of ceramic coatings by gas phase deposition based on plasma spraying[J].Journal of Thermal Spray Technology,2013,22(2-3):83-89.
参考文献 35
HOSPACH A,MAUER G,VAßEN R,et al.Characteristics of ceramic coatings made by thin film low pressureplasma spraying(LPPS-TF)[J].Journal of Thermal Spray Technology,2012,21(3-4):435-440.
参考文献 36
LI G R,XIE H,YANG G J,et al.A comprehensive sintering mechanism for TBCs—Part Ⅱ:Multiscale multipoint interconnection-enhanced initial kinetics[J].Journal of the American Ceramic Society,2017,100(9):4240-4251.
参考文献 37
LI G R,YANAG G J,LI C X.A comprehensive sintering mechanism for thermal barrier coatings — Part Ⅲ:Substrate constraint effect on healing of 2D pores[J].Journal of the American Ceramic Society,2018,101(8):3636-3648.
参考文献 38
ZHANG Y,MALZBENDER J,MACK D E,et al.Mechanical properties of zirconia composite ceramics[J].Ceramics International,2013,39(7):7595-7603.
参考文献 39
REZANKA S,MACK D Emil,MAUER G,et al.Investigation of the resistance of open-column-structured PS-PVD TBCs to erosive and high-temperature corrosive attack[J].Surface & Coatings Technology,2017,324:222-235.
参考文献 40
MA Z,ZHANG Q,LIU L,et al.Preparation and heat insulating capacity of Sm2Zr2O7–SiC composites based on photon thermal transport[J].Journal of Advanced Ceramics,2020,9(4):454-461.
参考文献 41
GAO L H,GUO H B,WEI L L,et al.Microstructure,thermal conductivity and thermal cycling behavior of thermal barrier coatings prepared by plasma spray physical vapor deposition[J].Surface & Coatings Technology,2015,276:424-430.
参考文献 42
陈文龙,刘敏,肖晓玲,等.PS-PVD 热障涂层抗沙尘冲刷行为研究[J].热喷涂技术,2019,11(3):22-29,43.CHEN Wenlong,LIU Min,XIAO Xiaoling,et al.Erosion behavior of PS-PVD thermal barrier coatings against sand dust[J].Thermal Spray Technology,2019,11(3):22-29,43.(in Chinese)
参考文献 43
KAMBARA M,SHINOZAWA A,AOSHIKA K,et al.Development of porous YSZ coatings with modified thermal and optical properties by plasma spray physical vapor deposition[J].Journal of Solid Mechanics & Materials Engineering,2010,4(2):94-106
参考文献 44
ZHAO C,HE W T,SHI J,et al.Deposition mechanisms of columnar structured La2Ce2O7 coatings via plasma spray-PVD[J].Ceramics International,2020,46(9):13424-13432.
参考文献 45
刘梅军,李广荣,杨冠军,等.等离子-物理气相沉积(PS-PVD)热障涂层的结构调控与高隔热机理[J].湘潭大学学报(自然科学版),2019,41(6):88-103.LIU Meijun,LI Guangrong,YANG Guanjun,et al.Structural regulation and high thermal insulation mechanism of thermal barrier coatings prepared by plasma spray-physical vapor deposition(PS-PVD)[J].Journal of Xiangtan University(Natural Science Edition),2019,41(6):88-103.(in Chinese)
参考文献 46
曾威,毛杰,马景涛,等.表面粗糙度对 PS-PVD 热障涂层陶瓷层沉积的影响[J].材料工程,2019,47(8):161-168.ZENG Wei,MAO Jie,MA Jingtao,et al.Effect of surface roughness on deposition of PS-PVD thermal barrier coating ceramic coating[J].Journal of Materials Engineering,2019,47(8):161-168.(in Chinese).
参考文献 47
HARDER B J,ZHU D,SCHMITT M P,et al.Microstructural effects and properties of non-line-of-sight coating processing via plasma spray-physical vapor deposition[J].J.Therm.Spray Tech.,2017,26:1052–1061.
参考文献 48
ZHANG B P,WEI L L,GAO L H,et al.Microstructural characterization of PS-PVD ceramic thermal barrier coatings with quasi-columnar structures[J].Surf.Coatings Tech.,2017,311:199-205.
参考文献 49
张啸,刘敏,张小锋,等.等离子喷涂-物理气相沉积高温防护涂层研究进展[J].中国表面工程,2018,31(5):39-53.ZHANG Xiao,LIU Min,ZHANG Xiaofeng,et al.Research progress of high temperature protective coatings by plasma spray-physical vapor deposition[J].China Surface Engineering,2018,31(5):39-53.(in Chinese)
参考文献 50
袁佟,邓畅光,毛杰,等.等离子喷涂-物理气相沉积制备7YSZ热障涂层及其热导率研究[J].材料工程,2017,45(7):1-6.YUAN Tong,DENG Changguang,MAO Jie,et al.Preparation and thermal conductivity of 7YSZ thermal barrier coatings prepared by plasma spray-physical vapor deposition[J].Journal of Materials Engineering,2017,45(7):1-6.(in Chinese)
参考文献 51
ZHANG B P,WEI L L,GUO H B,et al.Microstructures and deposition mechanisms of quasi-columnar structured yttria-stabilized zirconia coatings by plasma spray physical vapor deposition[J].Ceramics International,2017,43(15):12920-12929.
参考文献 52
GAO L H,WEI L L,GUO H B,et al.Deposition mechanisms of yttria-stabilized zirconia coatings during plasma spray physical vapor deposition[J].Ceramics International,2016,42(4):5530-5536.
参考文献 53
高丽华,冀晓鹃,侯伟骜,等.等离子物理气相沉积准柱状结构YSZ涂层的制备及抗热震性能[J].材料导报,2019,33(12):1963-1968.GAO Lihua,JI Xiaojuan,HOU Weiao,et al.Thermal shock-resistance property of quasi-columnar YSZ thermalbarrier coatings prepared by plasma spray-physical vapor deposition[J].Materials Reports,2019,33(12):1963-1968.(in Chinese)
参考文献 54
范佳锋,张小锋,周克崧,等.镀铝改性对 PS-PVD 7YSZ 热障涂层抗CMAS腐蚀影响机制[J].无机材料学报,2019,34(9):938-946.FAN Jiafeng,ZHANG Xiaofeng,ZHOU Kesong,et al.Influence of Al-modification on CMAS corrosion resistance of PS-PVD 7YSZ thermal barrier coatings[J].Journal of Inorganic Materials,2019,34(9):938-946.(in Chinese)
参考文献 55
KONSTANTIN V N,MALKO G,REFKE A.Vapor phase deposition using plasma spray-PVD™[J].Journal of Thermal Spray Technology,2010,19(1-2):502-509.
参考文献 56
HE W,MAUER G,GINDRAT M,et al.Investigations on the nature of ceramic deposits in plasma spray-physical vapor deposition[J].Journal of Thermal Spray Technology,2017,26(1-2):83-92.
参考文献 57
SHAO F,ZHAO H Y,LIU C G,et al.Dense yttria-stabilized zirconia coatings fabricated by plasma spray-physical vapor deposition[J].Ceramics International,2017,43(2):2305-2313.
参考文献 58
CHEN Q Y,PENG X Z,YANG G J,et al.Characterization of plasma jet in plasma spray-physical vapor deposition of ysz using a <80 kW shrouded torch based on optical emission spectroscopy[J].Journal of Thermal Spray Technology,2015,24(6):1038-1045.
参考文献 59
HOSPACH A,MAUER G,VAßEN R,et al.Columnar-structured thermal barrier coatings(TBCs)by thin film low pressure plasma spraying(LPPS-TF)[J].Therm.Spray Technol.,2011,116(1-2):116-120.
参考文献 60
NIESSEN K V,GINDRAT M.Vapor phase deposition using a plasma spray process [J].Journal of Engineering for Gas Turbines and Power,2011,133(6):1-7.
参考文献 61
LIU M J,ZHANG M,ZHANG Q,et al.Gaseous material capacity of open plasma jet in plasma spray-physical vapor deposition process[J].Applied Surface Science,2018,428:877-884.
参考文献 62
MAUER Ge.Plasma characteristics and plasma-feedstock interaction under PS-PVD process conditions[J].Plasma Chemistry and Plasma Processing,2014,34(5):1171-1186.
参考文献 63
LIU M J,YANG G J.Condensation behavior of gaseous phase during transported in the near-substrate boundary layer of plasma spray-physical vapor deposition[J].Journal of Materials Science & Technology,2021,67(8):127-134.
参考文献 64
LIU M J,ZHANG M,ZHANG Q,et al.Evaporation of droplets in plasma spray–physical vapor deposition based on energy compensation between self-cooling and plasma heat transfer[J].Journal of Thermal Spray Technology,2017,26(7):1641-1650.
参考文献 65
VAUTHERIN B,PLANCHE M P,BOLOT R,et al.Vapors and droplets mixture deposition of metallic coatings by very low pressure plasma spraying[J].Journal of Thermal Spray Technology,2014,23(4):596-608.
参考文献 66
张岩,邓畅光,毛杰,等.PS-PVD 等离子射流特性和YSZ粉末蒸发行为的光谱诊断[J].材料研究与应用,2019,13(4):287-294.ZHANG Yan,DENG Changguang,MAO Jie,et al.Spectral diagnosis of PS-PVD plasma jet characteristics and evaporation behavior of YSZ powder[J].Materials Research and Application,2019,13(4):287-294.(in Chinese)
参考文献 67
ZHANG X F,ZHOU K S,DENG C M,et al.Gas-deposition mechanisms of 7YSZ coating based on plasma spray-physical vapor deposition[J].Journal of the European Ceramic Society,2016,36(3):697-703.
参考文献 68
刘梅军,李广荣,杨冠军,等.等离子-物理气相沉积(PS-PVD)及其射流非接触检测方法[J].表面技术,2020,49(1):1-16.LIU Meijun,LI Guangrong,YANG Guangjun,et al.Plasma spray-physical vapor deposition(PS-PVD)and non-contact detection method of plasma jet[J].Surface Technology,2020,49(1):1-16.(in Chinese)
参考文献 69
张岩,邓畅光,毛杰,等.PS-PVD 等离子射流特性的光谱诊断研究进展[J].中国表面工程,2019,32(5):55-68.ZHANG Yan,DENG Changguang,MAO Jie,et al.Research progress in spectroscopic diagnosis of plasma jet characteristics under PS-PVD[J].China Surface Engineering,2019,32(5):55-68.(in Chinese)
参考文献 70
ZHANG N,SUN F,ZHU L,et al.Measurement of specific enthalpy under very low pressure plasma spray condition[J].Journal of Thermal Spray Technology,2012,21(3-4):489-495.
参考文献 71
FURUTA N,NOJIRI Y,FUWA K.Spatial profile measurement of electron number densities and analyte line intensities in an inductively coupled plasma[J].Spectrochimica Acta Part B:Atomic Spectroscopy,1985,40(3):423-434.
参考文献 72
KORNBLUM G R,DE G L.Spatial distribution of the temperature and the number densities of electrons and atomic and ionic species in an inductively coupled RF argon plasma[J].Spectrochimica Acta Part B:Atomic Spectroscopy,1977,32(2):71-96.
参考文献 73
ALDER J F,MERMET J M.A spectroscopic study of some radio frequency mixed gas plasmas[J].Spectrochimica Acta Part B:Atomic Spectroscopy,1973,28(11):421-433.
参考文献 74
LIU M J,ZHANG M,ZHANG X F,et al.Transport and deposition behaviors of vapor coating materials in plasma spray-physical vapor deposition[J].Applied Surface Science,2019,486:80-92.
参考文献 75
KONSTANTIN V N,MALKO G.Plasma spray-PVD:A new thermal spray process to deposit out of the vapor phase[J].Journal of Thermal Spray Technology,2011,20(4):736-743.
参考文献 76
LI S,HE W T,SHI J,et al.PS-PVD gadolinium zirconate thermal barrier coatings with columnar microstructure sprayed from sintered powder feedstocks[J].Surface and Coatings Technology,2020,383(C):125243.
参考文献 77
LIU M J,ZHANG K J,ZHANG Q,et al.Thermodynamic conditions for cluster formation in supersaturated boundary layer during plasma spray-physical vapor deposition[J].Applied Surface Science,2018,471:950-959.
参考文献 78
DENG Z Q,LIU M,MAO J,et al.Stage growth of columnar 7YSZ coating prepared by plasma spray-physical vapor deposition[J].Vacuum,2017,145:39-46.
参考文献 79
REICHELT K.Nucleation and growth of thin films[J].Vacuum,1988,38:1083–1099.
参考文献 80
LIN J C,LEE C.Nucleation and growth of Cu thin films on silicon wafers deposited by radio frequency sputtering[J].Thin Solid Films,1997,307(1):96-99.
参考文献 81
HWANG N M,LEE D K.Charged nanoparticles in thin film and nanostructure growth by chemical vapour deposition[J].Journal of Physics D:Applied Physics,2010,43(48):483001-483038.
参考文献 82
MELINON P,JENSEN P,HU J X,et al.Comparison of molecular and cluster deposition:Evidence of different percolation processes[J].Physical review.B,Condensed Matter,1991,44(22):12562-12564.
参考文献 83
邓子谦,刘敏,毛杰,等.等离子喷涂-物理气相沉积的气相沉积机理[J].无机材料学报,2017,32(12):1285-1291.DENG Ziqian,LIU Min,MAO Jie,et al.Deposition mechanism based on plasma spray-physical vapor deposition[J].Journal of Inorganic Materials,2017,32(12):1285-1291.(in Chinese)
参考文献 84
李荣久,邓畅光,胡永俊,等.尖端结构对 PS-PVD YSZ 涂层沉积的影响[J].材料研究与应用,2021,15(1):1-8.LI Rongjiu,DENG Changguang,HU Yongjun,et al.Effect of the tip structure with external centre on columnar-like PS-PVD coatings[J].Materials Research and Application,2021,15(1):1-8.(in Chinese)
参考文献 85
陈清宇,李成新,杨冠军,等.PS-PVD 工艺中的气相及气/液混合沉积行为[J].热喷涂技术,2016,8(1):44-50.CHEN Qingyu,LI Chengxin,YANG Guanjun,et al.Vapor and vapor/droplet hybrid deposition behavior in PS-PVD processes[J].Thermal Spray Technology,2016,8(1):44-50.(in Chinese)
参考文献 86
ZHANG B P,WEO L L,GAO L H,et al.Microstructural characterization of PS-PVD ceramic thermal barrier coatings with quasi-columnar structures[J].Surface & Coatings Technology,2017,311:199-205.
参考文献 87
YANG J S,CHENG Z F,ZHONG X H,et al.Deposition behavior of PS-PVD yttria partially stabilized zirconia coatings[J].Journal of Thermal Spray Technology,2021,30:1136-1147.
参考文献 88
MAUER G,HOSPACH A,VAßEN R.Process development and coating characteristics of plasma spray-PVD[J].Surface & Coatings Technology,2013,220:219-224.
目录contents

    摘要

    等离子-物理气相沉积(PS-PVD)具有制备层柱等多结构可控涂层的优异特性,但针对 PS-PVD 涂层结构调控的研究多局限于试错性试验,缺乏对涂层沉积与调控理论的研究,因此亟需对现有研究结果进行归纳、总结,以对 PS-PVD 沉积原理与涂层结构调控的进一步研究提供理论参考。针对 PS-PVD 所特有的涂层材料长距离输运、气液固多相态沉积过程,从涂层结构特征出发,综述 PS-PVD 沉积单元在经历喷枪内瞬时蒸发和喷枪外持续蒸发行为后,所进行的长距离输运行为与沉积行为的完整过程。此外,结合输运行为与沉积行为分析参数调控对沉积单元及涂层结构的影响规律,并对 PS-PVD 柱状结构涂层沉积机理的研究以及涂层制备技术的发展进行展望。

    Abstract

    Plasma spray-physical vapor deposition (PS-PVD) coatings are featured by adjustable structures like lamellas and columns, while a theoretical system about deposition mechanism and structure-regulation measurements is lacked. Summary of previous findings is urgently needed to provide a theoretical reference for the further research. The complete process of PS-PVD is summarized based on the structure characteristics from two aspects: the long-distance transportation behavior and the deposition mechanism with multiphase units. The deposition units are evaporated during two main stages: the instantaneous process in the nozzle and the persistent process out of the nozzle. In addition, the influence of different parameters on deposition units and coating structures is illustrated based on transportation and deposition behavior. The research on the deposition mechanism of PS-PVD columnar structure coatings and the development of coating preparation technology is prospected.

  • 0 前言

  • 随着航空发动机推重比的不断提高,其服役温度已显著超过1 300℃ [1-3]。若高温燃气与热端部件表面直接接触,其中裹挟的腐蚀性介质将严重损坏叶片,造成重大安全事故[4-6]。虽然镍基合金材料的使用以及高效气膜冷却技术的发展可在一定程度上提高部件的耐高温性[7-8],但涡轮叶片表面温度依旧高于材料极限温度。因此,长时间的高温服役条件以及腐蚀、冲蚀等损伤依旧是高性能航空发动机研制的阻碍[9-12]。热障涂层(TBCs)作为航空发动机三大核心技术之一,可实现对发动机热端部件的有效防护[13-15]。涂层覆盖于航空发动机热端金属部件表面,从而将金属表面与高温环境有效隔离,显著降低金属表面温度,同时减少金属部件与腐蚀介质的直接接触,实现热腐蚀与热冲蚀防护[16-18]。热障涂层顶层是实现隔热与防腐性能的重要结构,通常选用具有低导热系数的陶瓷材料[19-20],如目前广泛应用的氧化钇部分稳定氧化锆(YSZ)材料[21]。热障涂层厚度通常为100~2mm,与冷却气膜等技术一起使用,可使表面温度降低300℃以上[22]

  • 目前常用的热障涂层陶瓷层制备方法主要分为大气等离子喷涂(APS)与电子束物理气相沉积 (EB-PVD)两大类[23]。APS制备涂层为层状结构,层间与层内孔隙的存在可大大减小热传导,从而使涂层具有优异的隔热性能;但另一方面,层状结构也限制了涂层的热应变容限,使其在冷热循环服役环境中的寿命大大降低[24-26]。与APS-TBCs不同, EB-PVD所制备涂层为柱状结构,大量柱间孔隙的存在使得涂层具有较高的应变容限,在热循环条件下有着较长的服役寿命;但由于缺少横向空隙,其热导率将大大增加[27-29]。APS和EB-PVD涂层的隔热-抗热震不一致性成为了阻碍进一步提高热障涂层服役性能的关键问题。

  • 等离子-物理气相沉积(PS-PVD)技术为制备高隔热柱状结构热障涂层提供了可能。作为一种新型等离子喷涂技术,PS-PVD兼具APS与EB-PVD的特点,通过高能等离子束熔化、蒸发粉末原材料,并射出喷枪形成等离子射流,在极低的腔室压力下输运,最终到达基体进行沉积[30-32]。通过调节喷涂参数与粉末材料参数以改变其沉积行为,可对制备的柱状热障涂层结构进行调节,根据使用需求制备同时具有良好隔热性能与较大应变容限的涂层。 PS-PVD的另一大优势是可实现“宏观非视线性沉积”,以对复杂形状部件或遮蔽部位进行均匀沉积[33-35]。因此,PS-PVD在发动机复杂零部件的高隔热柱状涂层制备中拥有广阔的应用前景。

  • 当前,关于PS-PVD制备高隔热柱状结构热障涂层的沉积机理研究主要集中在:通过研究不同喷涂距离、送粉速率、基体温度、气体组成、涂层材料粉末,以及腔室压力等参数条件下的涂层沉积行为与涂层结构,并测定不同结构涂层的抗热冲击、抗冲蚀与抗腐蚀性能,以获得更优的PS-PVD热障涂层制备工艺方法,完善PS-PVD热障涂层制备理论与实践体系[36-38]。这其中,PS-PVD沉积原理研究起到了关键作用。本文将从不同沉积单元角度出发,从沉积单元的产生、输运以及沉积过程等方面综述PS-PVD制备柱状涂层的沉积原理,并结合沉积原理分析涂层制备过程的参数调控影响,从而为PS-PVD制备热障涂层的工艺优化提供理论参考。

  • 1 PS-PVD涂层的柱状结构特征

  • 结构可调控性是PS-PVD涂层的一项显著特性。在涂层制备过程中,通常可通过改变喷涂参数如等离子功率、等离子气体、送粉率等获得图1所示的四种经典涂层结构:致密层状结构、层-柱复合结构、准柱状结构以及EB-PVD柱状结构[31, 39-41]。其中,PS-PVD制备的柱状结构涂层往往具有更优异的隔热-抗热震性能。

  • 图1 不同喷涂参数下的典型涂层结构[31]

  • Fig.1 Typical coating structures generated by different spraying parameters

  • PS-PVD高隔热柱状涂层主要由大尺寸柱状结构与小尺寸分支结构组成,如图2a所示,纵向孔隙与小尺寸分支形成的横向孔隙分布其中,其孔隙率可达20%以上,甚至可高达60%[42-43]。这一微观结构特性导致了如图2b中所示表面形貌:小分支构成的小突起附着于大柱状构成的大岛之上,形成了经典的“菜花头”结构。得益于其微观结构特性, PS-PVD柱状结构涂层有着优异的高温服役性能。

  • 高隔热性是PS-PVD柱状结构涂层的一大显著特性,PS-PVD TBCs具有小于EB-PVD柱状涂层、与层状APS涂层相近的热传导率。究其原因,一方面是较高的孔隙率以及特殊的孔隙形貌提高了声子散射、阻碍了声子传播,由此减小的声子平均自由程有效降低了热传导[45-47];另一方面,常用YSZ PS-PVD高隔热柱状结构陶瓷层中所含有的立方相与四方相ZrO2 也具有较低的热导率,从而导致了整体结构的高隔热性能[48-50]

  • 图2 高隔热柱状结构涂层形貌[44]

  • Fig.2 Morphology of columnar structure coatings with high thermal insulation

  • 除此以外,PS-PVD柱状涂层还具有高的热应变缓和能力。涂层中大量纵向柱间孔隙的存在保证了涂层结构的较大热应变容限。试验证实,在1 200℃热冲击条件下,PS-PVD柱状结构涂层服役寿命可达1 500~2 000次[28,49]

  • 基于独特微观结构所带来的低热导率与高抗热冲击性能,PS-PVD柱状结构涂层在航空发动机热端部件热障涂层领域有着广阔的发展前景,而其独特微观结构的形成机理也成为研究的热点。

  • 2 PS-PVD沉积单元的状态

  • PS-PVD涂层结构调控的根本问题在于沉积单元相态及其含量的控制。沉积材料在经过熔化与蒸发过程后通常以液相、气液混合、气固混合,以及气相等多种不同形式存在[51-53],其中气相单元是形成柱状结构的基本单元。

  • 当涂层材料蒸发率较低时,沉积单元以液相为主。沉积将形成如图1a所示的层状结构,其沉积机理与传统大气等离子喷涂所制备涂层相似:液相沉积单元到达基体后,实现扁平化并层层堆叠,形成层状结构。虽然少部分团簇的夹杂以及扁平化粒子的不完全重叠会导致孔隙的生成,但扁平粒子夯实作用以及少量气相单元的填充作用使得涂层整体具有较小的孔隙率。

  • 当涂层材料蒸发率有所提升时,气相与液相沉积单元共存,形成图1b中的层-柱复合结构。液相单元在基体上形成层状结构,夹杂的气相单元到达扁平化粒子表面,并发生形核与生长,形成柱状晶乃至长大成柱状涂层结构。而随后到来的液相沉积单元又会打断柱状结构的生长,再次形成层状结构。层-柱复合的涂层结构在液-气混合单元的交替作用下逐渐沉积形成。

  • 除了气、液态沉积单元,PS-PVD涂层的沉积还可能有固态单元的参与。若沉积单元中存在较多未熔化、半熔化或是气相单元冷凝形成的固态颗粒,则可制备图1c中的准柱状涂层:固态颗粒附着于柱状涂层表面,甚至夹杂在柱状涂层中部;有些颗粒尺寸可达到微米级。

  • 当粉末材料有着极高的蒸发率时,气相单元为主的沉积将形成图1d中的完全柱状结构。

  • 基于上述沉积机制,通过调节涂层材料到达基体前的复杂蒸发行为,改变沉积单元相态组成,即可从根源上调控PS-PVD涂层结构,实现涂层在不同环境下的长寿命服役。但目前对于沉积单元相态组成的精准调控方法研究仍未取得突破性进展,距沉积单元相态转变成熟理论的建立仍有一定距离。

  • 3 材料的射流内加热蒸发行为

  • PS-PVD喷涂过程中,涂层材料从送粉器出发,依次经过喷枪内部与喷枪外射流阶段,最后到达基体实现沉积。研究发现,1 μm以下的涂层材料在喷枪内可以实现蒸发;而本文基于国内首台自研PS-PVD设备,对射流内的材料蒸发行为进行了研究,发现在喷枪外具有同样重要且复杂的沉积材料蒸发行为。

  • 3.1 喷枪内的瞬时蒸发过程

  • PS-PVD与APS具有相似的加热方式,PS-PVD普遍使用适用于真空系统且具有高功率的O3CP喷枪[54-56]。涂层材料粉末在氩气的输送下到达喷枪后,在喷枪内高温高压等离子气体的作用下被迅速加热并加速,最后随着等离子射流一起射出喷嘴。通常情况下,用于PS-PVD喷涂的喷枪设备可以实现较高的气体流量和功率水平,以保证等离子气体具有较高的能量,从而提高粉末蒸发率。

  • 由于喷枪内的材料瞬时加热与输运行为难以监测,通常使用模拟计算的方法来研究材料在喷枪内的蒸发行为。HE等[56]对此过程进行了模拟仿真计算,喷枪模型如图3所示,对喷涂过程中喷枪内的温度分布、涂层材料粒子尺寸变化与运动轨迹进行了模拟,结果如图4所示。不同粒径的颗粒分布表明,进入喷枪后,涂层材料粉末首先被分解成了尺寸可达亚微米级的非常小的颗粒,而其他许多研究也证实了涂层材料粉末破碎现象的存在,这使得涂层材料变得更易熔化并蒸发。在随等离子气体射出喷嘴前,颗粒尺寸的进一步减小表明在喷枪内存在较为明显的蒸发现象。据HE等[56]计算,在等离子体气体为35SLPM Ar和60SLPM He、电流为2.6kA以及送粉速率为20g/min的情况下,ZrO2 涂层材料蒸发率可达约57%。通过一系列研究不难发现,粉末材料在喷枪内已完成了一定程度的蒸发。

  • 图3 喷枪内部结构示意图[56]

  • Fig.3 Schematic diagram of structure inside spray gun

  • 图4 喷枪内粒子温度分布与运行轨迹[56]

  • Fig.4 Temperature distribution and path of particles in spray gun

  • 然而,即使喷枪内可以实现涂层材料的高效蒸发,但仍然较难实现粉末的完全蒸发[57-58],因此提高涂层材料在喷枪内的蒸发率也是改善柱状涂层结构性能的一项关键问题。目前主要采用两种方法提高涂层材料蒸发率:改善喷枪性能和减小涂层材料尺寸。从喷枪性能入手,一方面可使用超高功率喷枪,通过提高等离子气体能量,实现粉末在喷枪内的高效蒸发[59-60];另一方面,可以改进喷嘴结构以实现粉末的高蒸发率[57]。从涂层材料入手,则可以减小涂层材料粉末尺寸,从而增加颗粒的比表面积,促进粉末蒸发[56, 61-62]。MAUER[62]计算发现,直径低至0.92 μm的YSZ粉末涂层材料,在热流密度大于108 W·m−2 的Ar/He等离子气体作用下,可在喷枪内完全蒸发。然而,目前针对提升喷枪内粉末材料蒸发率的研究仍停留在理论阶段,而普适性的参数调控方案尚在研究中。

  • 3.2 喷枪外的持续蒸发过程

  • 涂层材料颗粒在喷枪内并不能实现完全气化,它在喷枪外随等离子射流长距离输运过程中的蒸发行为对沉积单元的相态组成也有着重要影响。图5中的射流内温度分布示意图表明,喷枪外等离子气体温度显著低于图4所示的喷枪内温度[63],因而等离子气体无法在短时间内加热、蒸发涂层材料;但喷枪外的沉积材料飞行距离可长达数百乃至数千毫米,远远大于喷枪内涂层材料的输运距离。因此,相较于喷枪内,涂层材料在喷枪外的蒸发行为是一种持续的过程。本课题组创新性地以YSZ为涂层材料,就等离子射流长距离输运过程中的热质耦合作用建立了能量双重补偿模型[64]。在开放式等离子射流中,熔融的ZrO2 被等离子射流加热蒸发,而蒸发行为带走部分热量,导致剩余熔融粒子温度下降。依据此机制,建立如下等式:

  • m×Cp×dT=dQconv -dm×Q0
    (1)
  • 式中,m 为剩余粒子质量,C p为熔融材料的比热, dT 为熔融粒子在蒸发过程中的温度变化,dQ conv 为等离子射流传导的热量,dm 为熔融粒子蒸发质量, Q 0 为蒸发潜热。等号左侧为能量自补偿机制,而等号右侧则为能量外补偿机制。

  • 图5 喷枪外等离子射流温度分布[63]

  • Fig.5 Temperature distribution of plasma jet out of spray gun

  • 据计算,能量外补偿机制下,熔融粒子蒸发率与射流热流密度密切相关,而自补偿机制下,初始温度对蒸发行为有着重要影响。图6为双重补偿机制作用下,不同初始尺寸与初始温度ZrO2 粒子的蒸发行为模拟结果。仅在能量外补偿机制下,尺寸在a曲线以上的熔融颗粒不能在450mm射流距离内完全蒸发;而在双重补偿机制下,尺寸在a曲线以上、b曲线以下的熔融颗粒仍然可以在450mm射流距离内完全蒸发。因此,喷枪外长距离输运过程中的能量双重补偿机制是提高熔融颗粒蒸发率的重要保障。

  • 图6 不同直径熔融ZrO2颗粒完全蒸发所需初始温度[64]

  • Fig.6 Initial temperature required for the complete evaporation of molten ZrO2 with different diameters, (a) without considering the effect of self-cooling, just the effect of heat transfer, (b) considering the effect of self-cooling and heat transfer

  • 喷枪外沉积材料能量双重补偿机制模型研究了粉末材料在射流中的热量传输行为,为提升材料蒸发率、改善PS-PVD柱状涂层结构奠定了理论基础; 而如何调控涂层材料粉末尺寸、射流初始温度以及沉积距离等参数以进行涂层材料蒸发率的精准控制,将是下一阶段研究的重点。

  • 4 涂层材料的宏观非视线性输运行为

  • 不同于传统大气等离子喷涂与真空等离子喷涂, PS-PVD具有小于200Pa的极低腔室压力,这使得等离子射流长度可达2m[31],因而射流中气相材料粒子与等离子气体的碰撞行为不可忽略。这一特性决定了沉积材料在射流内的宏观非视线性输运特点,使得PS-PVD具有优异的绕镀性,可应用于形状复杂、遮挡效应强的零部件表面热障涂层的制备。

  • 4.1 涂层材料输运状态的检测方法

  • PS-PVD的等离子射流有着与APS截然不同的特性。等离子气体携带熔化或蒸发后的喷涂材料以超音速射出喷嘴[34, 54, 65],在极低的腔室压力作用下,形成长度可达2m、直径0.2~0.4m的等离子射流[28,66-67]。根据其极低的雷诺数[34]可以判断,高度扩张的射流处于层流状态,因此射流与环境的交互作用较小、射流的速度与温度衰减程度很低,从而保障了涂层材料的充分蒸发[35,56]

  • 由于上述等离子特性,射流中涂层材料输运状态的检测手段受到了一定限制。20世纪60年代开始发展的热焓探针技术可用于低压等离子喷涂中射流的焓值、温度及热流量等特性检测,但由于探针前部激波的产生以及高温高速射流对探头稳定性和寿命的影响,热焓探针法在PS-PVD射流中的使用受到了精度、成本等因素的限制[68-70]。随着检测技术的发展,等离子体发射光谱检测手段在近年来得到了广泛关注:连续辐射光谱可用于检测电子温度,线性光谱中的Stark效应可用于检测电子数密度,线性谱的强度分布可用于诊断激发温度,而光学发射光谱法(OES)则更适合PS-PVD射流特性的诊断[71-73]。如图7所示,为本课题组的光谱仪与OES检测系统,射流内的光经收光镜收集后,通过光纤到达光谱仪系统,在分光与信号转换处理后经计算机输出结果[57,68-69]。使用OES系统,可实现等离子射流温度、速度等特征的实时检测,奠定了PS-PVD涂层材料在射流中长距离输运机制的研究基础。

  • 图7 光谱仪与OES检测系统[68]

  • Fig.7 Spectrometer and OES detection system

  • 4.2 宏观非视线性输运机理

  • 在使用等离子喷涂制备航空发动机叶片热障涂层过程中,一些被阻挡的阴影部位难以沉积到,而PS-PVD独特的“非视线性沉积”效应可以有效解决这一问题[33-35]。PS-PVD的“非视线性沉积”特性得益于其宏观非视线性输运过程。在基体前放置障碍物,并建立如图8所示的计算模型[74]。当输运过程未受障碍物阻挡时,气相材料颗粒与其他气相材料颗粒或等离子气体粒子之间发生碰撞,气相颗粒的运动轨迹为非线性。由于碰撞现象的频繁发生,气相材料颗粒平均自由程急剧减小,远小于具有相似沉积过程的EB-PVD。而在障碍物附近时,碰撞行为则更加频繁,气相材料颗粒与其他气相材料颗粒、等离子气体以及障碍物三者之间的碰撞,使得其运动速度与方向不断发生变化、运动轨迹更加曲折杂乱[75]。得益于这一频繁碰撞作用,部分沉积材料得以绕过障碍物到达被遮蔽的基体,从而实现非视线性沉积。针对这一特性,研究被遮挡基体表面附近的沉积单元运动状态,并结合实际喷涂来分析沉积效率与涂层质量,以进一步完善非视线性沉积原理与沉积工艺,将是下一阶段的研究重点。

  • 图8 等离子射流中气相材料运动轨迹[74]

  • Fig.8 Transport path of vapor coating material in PS-PVD plasma jet

  • 当等离子射流靠近相对较冷的基体时,由于温度、速度等条件发生剧烈变化,将在基体前形成一层边界层。如图9所示,边界层内由于蒸气的过饱和状态,部分气相单元发生形核与长大,冷凝形成团簇结构。一方面,团簇结构的尺寸由蒸气分子分压与饱和蒸气压共同决定,同时也受到冷却速度的影响。另一方面,当喷涂距离增大,边界层宽度也将相应增大,团簇的形成率将因此有所提高。实际上,相较于气相沉积单元,具有明显更小的迁移率的团簇更易在基体表面形核。因此,边界层内形成的团簇在沉积形成柱状结构的过程中起着重要作用[56,76-77],而边界层内团簇尺寸与含量分布规律则需要进一步研究。

  • 图9 边界层与团簇形成示意图

  • Fig.9 Formation of boundary layer and cluster

  • 5 柱状结构的微观视线性沉积机理

  • 尽管沉积材料在宏观尺度的输运具有非视线性特征,但在微观尺度内,气相沉积单元的沉积过程是视线性的,这也是PS-PVD可制备孔隙率较高柱状结构涂层的根本原因。

  • 5.1 沉积表面的微观视线性沉积模型

  • PS-PVD柱状结构涂层沉积过程中,已沉积固化的材料会对后续靠近基体的气相沉积单元产生遮挡作用,使其无法继续按照原轨迹到达基体,这一遮挡作用即为阴影效应。在阴影效应影响下,涂层将更为疏松,这也是导致PS-PVD涂层较高孔隙率的重要原因之一。

  • 为研究微观尺度内气相沉积单元沉积行为,本课题组建立了图10所示的气相单元的微观视线性沉积模型[45,68,74]。在等离子射流中经历多次碰撞后,气相沉积单元以不同入射角到达基体表面。如图10a所示,一部分沉积单元吸附在表面发生沉积,而另一部分则会发生反弹。同理,发生一次反弹的气相单元中,一部分将在碰撞行为影响下重新吸附于基体表面逐渐生长,而另一部分则会被等离子气体带离。阴影效应将作用于沉积过程,当气相单元以某些角度到达基体,如图10b中的单元b、c,沉积单元无法到达被遮蔽部位b1、c1,而是吸附于遮蔽体单元附近的位置b2、c2,实现气相沉积原子在微观角度的视线性沉积。该模型目前正被应用于PS-PVD气相单元微观沉积机理的相关研究中。

  • 图10 微观视线性沉积模型[74]

  • Fig.10 Microscopic line of sight model of PS-PVD vapor deposition

  • 5.2 柱状结构的遮挡沉积机制

  • 柱状结构的形成与遮挡现象的存在密不可分。当沉积单元到达基体附近时,无法碰撞反弹的部分将受到阻挡,难以继续前进。当大量沉积单元进行沉积时,宏观范围内的结构呈现出向上生长的趋势而非横向扩展,从而生长成为柱状结构。但仅在阴影效应作用下所获得的涂层将具有远高于实际PS-PVD涂层的孔隙率。这表明在气相单元的沉积过程中,还存在着另一项重要因素的影响,即扩散行为。部分气相单元从初始沉积位置短程跳跃至相邻位置,填补了由阴影效应造成的位置空缺,在一定程度上提高了涂层致密度。显著阴影效应与短程表面扩散的协同作用,共同构成了柱状结构的遮挡沉积机制。

  • 研究普遍认为,在遮挡沉积机制下,柱状涂层的生长过程可分为图11所示的不同阶段:细小等轴晶粒为主的等轴生长、小尺寸柱状晶粒为主的竞争生长以及大尺寸柱状晶粒为主的择优生长阶段[33,51-52,67,78]

  • 图11 柱状涂层阶段生长示意图[33]

  • Fig.11 Different stages of columnar structure growing

  • 第一阶段的生长主要为形核过程。在这一阶段,主要由排列良好的随机取向小晶粒构成致密薄膜结构[67]。根据REICHELT的理论,由于基体和沉积层的材料参数以及蒸气过饱和度的不同,薄膜生长主要分为三种模式:三维岛状生长、逐层生长以及外延层顶部的三维岛生长[67,79-80],而本阶段的生长主要为岛状模式。首先,形核过程如图12a、12b所示,随机取向的团簇吸附在基体并形核[81-82]。形核数量与尺寸受基体温度与沉积速率的影响:在较高的沉积速率下,形核效率较高,但将导致形核尺寸减小; 当基体温度较低时,形核尺寸较小,但由于原子扩散能力将随温度降低减小,形核效率也将相应减小[56,83]。除团簇外,气相单元也可在基体团聚、形核并生长[56]。形核完成后,如图12c所示,气相单元吸附在核上并逐渐生长为小岛,相邻的小岛由于沉积单元的不断吸附与扩散,逐渐合并形成大岛。图12d中,大岛在垂直温度梯度影响下垂直生长,且大岛间出现新岛,逐渐成为细柱状结构。图13展示了涂层生长初期的截面与表面形貌变化:水平方向上由小岛合并为大岛,竖直方向则是均匀、致密结构的生长。这一阶段主要为细小晶粒的等轴生长,且由于较高的原子迁移率,该阶段阴影效应的影响较小[78]

  • 图12 第一阶段生长示意图[78]

  • Fig.12 Mechanism of the first growing stage

  • 图13 第一阶段生长形貌图[78]

  • Fig.13 Morphology at the first growing stage

  • 第二阶段主要为细小柱状晶粒的垂直长大。如图14,在这一阶段垂直温度梯度的作用依旧明显,原子迁移率开始减小,而阴影效应出现并开始加强。部分柱状结构的生长受到抑制,而其他柱状结构则保持生长,即柱状结构间存在竞争生长[84],柱间距由于部分柱状结构停止生长而增加,沉积速率明显加快。从图15中可以看出,截面原先的均匀、致密结构逐渐发展为了参差不齐的结构,而表面岛状结构也逐渐呈现出“菜花头”特性。在这一阶段,扩散行为开始减弱,而阴影效应出现并开始加强[33,56,78]

  • 图14 第二阶段生长示意图[78]

  • Fig.14 Mechanism of the second growing stage

  • 图15 第二阶段生长形貌图[78]

  • Fig.15 Morphology at the second growing stage

  • 实际沉积过程中,第二、三阶段并没有明确分界:当第二阶段中的柱状晶粒尺寸增大到一定程度时,进入第三阶段[33,56,78]。这一阶段,温度梯度的影响发生变化:由于生长潜热导致的水平温度梯度更加明显,水平方向生长更加显著,而垂直方向生长速度则开始变缓。柱的数量逐渐减少,而柱的尺寸则逐渐增加。在这一阶段,除了一次柱状结构的生长,二次结构也开始出现:团簇结构与气相原子吸附在柱上,发生二次形核与生长,如图16所示。由于多级结构的生长,柱状结构的高度与宽度都逐渐增加,柱间隙逐渐减小;同时阴影效应作用愈发明显,扩散降低,一些柱停止生长。当生长达到一定程度时,逐渐实现动态平衡,顶层分支数量与平均宽度将趋于稳定,同时孔隙率与粗糙度等涂层特性也将趋于稳定。图17中所展示的生长形貌表明,柱状结构继续生长,其宽度增加且柱间孔隙尺寸减小;涂层表面的“菜花头”形貌表现得更为错落有致且拥挤。在这一阶段,晶体生长呈现出了明显的择优取向特性,其优选生长方向由温度、界面结合能与沉积速率等因素决定,但具体影响规律仍待研究。在这一阶段,阴影效应成为了主要作用因素。

  • 图16 第三阶段生长示意图[78]

  • Fig.16 Mechanism of the third growing stage

  • 图17 第三阶段生长形貌图[78]

  • Fig.17 Morphology at the third growing stage

  • 基于目前的研究不难发现,由于不同的沉积机理,不同阶段的结构特性也各异;但如何从沉积机理入手来调控不同阶段的结构厚度、致密度、方向取向等特征,以获得具有不同结构特性的柱状结构,还需深入研究。

  • 5.3 柱状结构的固/液相单元复合沉积机制

  • 当喷枪功率较小、等离子初始温度较低或喷涂距离过近时,涂层材料蒸发率下降,易形成固/液相单元复合沉积的柱状结构。不同相态单元在沉积中起到了不同作用,如图18所示。液滴和大尺寸固态颗粒落在柱状结构表面时,若柱宽 D 与颗粒或液滴尺寸 d 存在关系2dD,则生长被抑制,形成图18c中表面的“菜花头”突起;反之则成为沉积单元的新起点从而使柱状结构继续生长,如图18a和18b中的二次柱状结构。大尺寸液滴或固态颗粒的夹杂将降低涂层结合强度,对沉积质量产生较大影响。当图18d中的小颗粒团簇少量存在时对柱状结构沉积影响较小,但若数量较多,则会夹杂在柱状结构中形成孔隙,或在柱状结构顶端形成尖端并有机会随沉积过程的延续而生长成为新分枝[44,52,58,78]。固/液相沉积单元的存在影响着柱状结构中的不同尺寸横向孔隙的形成,因此通过调节沉积参数以调整固、液、气三相沉积单元组成,即可实现涂层结构与应力状态的调整,而如何精确调控相态组成则是实现这一特性的关键问题。

  • 图18 混合相单元沉积形貌[44]

  • Fig.18 Morphology of structure deposited by mixed units

  • 5.4 柱状结构的沉积参数调控

  • 在沉积过程中,可以通过调控喷涂距离[83,85-87]、送粉率[41,45,49,88]与等离子气体组成[41,76,88]等沉积参数来获得不同结构的柱状涂层。如图19所示,当喷涂距离增大时,射流温度与气体过饱和度随之减小,基体温度也随之减小,从而导致沉积单元形核尺寸增大、形核率减小。因此,表面“菜花头”尺寸逐渐增大,而数量逐渐减少。需要注意的是,图19所示涂层结构均在蒸发率较高的距离范围内喷涂而成。当喷涂距离过大或过小时,皆不能获得性能较好的柱状结构涂层。除了喷涂距离外,送粉率也是影响涂层结构的一大因素。如图20所示,在喷涂距离为1m、等离子气体组成为35SLPM Ar + 60SLPM He、功率为112kW条件下,以YSZ为涂层材料,当送粉率较低(小于2g/min)时,涂层材料蒸发率随着送粉率的增加而增大;而当送粉率较高时,随之增加的沉积速率将导致大量团簇的形成;当送粉率进一步增加到12g/min时,涂层材料粉末难以完全蒸发。较低的蒸发率将显著减小涂层的柱状结构特征。同时,过大的送粉率将导致喷枪寿命的缩短。因此,送粉率的选取不宜过小,也不宜过大。除此之外,等离子气体的组成也有着重要影响。以He与H2 为例,一方面,根据比焓计算可知Ar/He混合气体温度比Ar/H2 混合气体温度更高,从而更利于熔融粒子蒸发、沉积形成柱状结构涂层;而另一方面,H2的存在可能加剧由摩擦力与热扩散所导致的组分分离,使Ar浓度向轴线聚拢,从而影响粒子加热。因此,选择Ar/He混合气体比选择Ar/H2 混合气体更适合提高涂层材料蒸发率,从而改善涂层结构。除了上述参数之外,等离子气流量、涂层材料粉末尺寸、基体温度以及腔室压力等参数也将对涂层结构产生影响,但目前针对这些参数的影响规律研究较为少见,这也将是PS-PVD柱状结构涂层沉积工艺的进一步研究方向。建立在各参数对涂层结构影响规律的基础上,选取不同参数组合,可连续调控PS-PVD涂层的结构特性,这将赋予PS-PVD广泛的应用前景。

  • 图19 不同喷涂距离下的涂层结构[87]

  • Fig.19 Coating structures under different spraying distances

  • 图20 不同送粉率条件下涂层材料的蒸发量[88]

  • Fig.20 Evaporation of coating materials under different powder feeding rates

  • 6 结论与展望

  • PS-PVD作为新兴涂层制备技术,凭借其大面积高效沉积、涂层结构可调控、涂层性能优异以及多联体复杂结构件沉积等特性获得了国内外研究者的广泛关注,而其中针对柱状结构沉积的材料输运行为与沉积机理的研究已取得了一定的进展:

  • (1) 柱状结构以气相单元为主要沉积单元,其蒸发过程主要由喷枪内的瞬时蒸发和喷枪外的长距离持续蒸发构成。

  • (2) 气相沉积单元在输运过程中将发生多次粒子间碰撞,这使其形成了宏观非视线性与微观视线性相统一的特殊沉积机制。

  • (3) 传统形核-生长理论下,在遮挡沉积机制中,柱状结构涂层沉积可分为三个不同阶段,各阶段涂层致密度等结构特性各异。

  • 然而,作为一种新型热喷涂方法,PS-PVD离实现大规模的工程应用仍有许多工作需要进行。未来PS-PVD技术的重点研究方向主要有以下几点:

  • (1) 更准确的PS-PVD沉积机制:相比传统沉积方式,PS-PVD具有更高的沉积速率以及更复杂的相变过程,因此传统的形核-生长理论并不完全适用,需要结合PS-PVD的实际喷涂过程,进一步研究PS-PVD沉积原理。

  • (2) 更加完备的PS-PVD结构调控理论体系:包括PS-PVD沉积单元相态组成与尺寸的精确调控方法及其对涂层结构的具体影响规律、非视线性沉积单元的运动特性及遮挡部位的沉积效率等。

  • (3) 更广泛的PS-PVD技术应用范围:包括新型陶瓷材料在高隔热长寿命涂层中的应用,超高温高隔热、长寿命涂层的制备,环境障涂层与大面积功能性薄膜等新应用领域等。

  • 参考文献

    • [1] LIU Q M,HUANG S Z,HE A J.Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines[J].Journal of Materials Science & Technology,2019,35(12):2814-2823.

    • [2] DAROLIA.Thermal barrier coatings technology:critical review,progress update,remaining challenges and prospects [J].International Materials Reviews,2013,58(6):315-348.

    • [3] LIU B,LIU Y C,ZHU C H,et al.Advances on strategies for searching for next generation thermal barrier coating materials[J].Journal of Materials Science & Technology,2019,35(5):833-851.

    • [4] MEHBOOB G,LIU M Jun,XU T,et al.A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime[J].Ceramics International,2020,46(7):8497-8521.

    • [5] FAN W,BAI Y.Review of suspension and solution precursor plasma sprayed thermal barrier coatings[J].Ceramics International,2016,42(13):14299-14312.

    • [6] 向阳,王义,朱程鑫,等.氧化物/氧化物陶瓷基复合材料研究进展[J].现代技术陶瓷,2020,41(6):394-404.XIANG Yang,WANG Yi,ZHU Chengxin,et al.Research progress of oxide/oxide ceramic matrix composites[J].Advanced Ceramics,2020,41(6):394-404.(in Chinese)

    • [7] DHOMNE Shailesh,MAHALLE A M.Thermal barrier coating materials for SI engine[J].Journal of Materials Research and Technology,2019,8(1):1532-1537.

    • [8] SZWABA R,KACZYNSKI P,TELEGA J,et al.Influence of internal channel geometry of gas turbine blade on flow structure and heat transfer[J].Journal of Thermal Science,2017,26(6):514-522.

    • [9] REZANKA S,MACK D E,MAUER G,et al.Investigation of the resistance of open-column-structured PS-PVD TBCs to erosive and high-temperature corrosive attack[J].Surface & Coatings Technology,2017,324:222-235.

    • [10] 刘飞,刘敏,毛杰,等.H2 对等离子喷涂-物理气相沉积热障涂层的结构和抗冲刷性能的影响[J].材料研究学报,2018,32(9):641-646.LIU Fei,LIU Min,MAO Jie,et al.Influence of H2 flow rate on structure and erosion resistance of thermal barrier coatings prepared by plasma spray-physical vapor deposition[J].Chinese Journal of Materials Research,2018,32(9):641-646.(in Chinese)

    • [11] SCHMITT M P,HARDER B J,WOLFE D E.Process-structure-property relations for the erosion durability of plasma spray-physical vapor deposition(PS-PVD)thermal barrier coatings[J].Surface & Coatings Technology,2016,297:11-18.

    • [12] 李建超,何箐,吕玉芬,等.热障涂层无损检测技术研究进展[J].中国表面工程,2019,32(2):16-26.LI Jianchao,HE Qing,LÜ Yufen,et al.Research progress on non-destructive testing method of thermal barrier coatings[J].China Surface Engineering,2019,32(2):16-26.(in Chinese)

    • [13] 刘丹丹,樊自拴.超高温陶瓷涂层的研究进展[J].材料保护,2020,53(5):105-110.LIU Dandan,FAN Zishuan.Research progress of ultrahigh temperature ceramic coating[J].Materials Protection,2020,53(5):105-110.(in Chinese)

    • [14] 赵娟利,杨岚,张成冠,等.热障涂层材料研究进展[J].现代技术陶瓷,2020,41(3):148-170.ZHAO Juanli,YANG Lan,ZHANG Chengguan,et al.Recent progress in thermal barrier coatings[J].Advanced Ceramics,2020,41(3):148-170.(in Chinese)

    • [15] LI F,ZHOU L,LIU J X,et al.High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials[J].Journal of Advanced Ceramics,2019,8(4):576-582.

    • [16] LI G R,YANG G J,LI C X,et al.Strain-induced multiscale structural changes in lamellar thermal barrier coatings[J].Ceramics International,2017,43(2):2252-2266.

    • [17] LI G R,XIE H,YANG G J,et al.A comprehensive sintering mechanism for TBCs— Part I:An overall evolution with two-stage kinetics[J].Journal of the American Ceramic Society,2017,100(5):2176-2189.

    • [18] 唐春华,李广荣,刘梅军,等.等离子喷涂 La2Zr2O7 热障涂层高温烧结的硬化行为[J].中国表面工程,2020,33(2):119-126.TANG Chunhua,LI Guangrong,LIU Meijun,et al.Sintering-stiffening behavior of plasma sprayed La2Zr2O7 thermal barrier coatings during high temperature exposure[J].China Surface Engineering,2020,33(2):119-126.(in Chinese)

    • [19] ZHAO Z F,CHEN H,XIANG H M,et al.High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications[J].Journal of Advanced Ceramics,2020,9(3):303-311.

    • [20] 陈琳,冯晶.稀土钽酸盐 RE3TaO7 和 RETa3O9 陶瓷热-力学性质研究进展[J].现代技术陶瓷,2019,40(6):367-397.CHEN Lin,FENG Jing.Research progress of thermo-mechanical properties of rare earth tantalates RE3TaO7 and RETa3O9 Ceramics[J].Advanced Ceramics,2019,40(6):367-397.(in Chinese)

    • [21] PADTURE N P.Advanced structural ceramics in aerospace propulsion[J].Nature Materials,2016,15(8):804-809.

    • [22] MYOUNG S W,LEE S S,KIM H S,et al.Effect of post heat treatment on thermal durability of thermal barrier coatings in thermal fatigue tests[J].Surface & Coatings Technology,2013,215:46-51.

    • [23] HE W T,MAUER G,SCHWEDT A,et al.Advanced crystallographic study of the columnar growth of YZS coatings produced by PS-PVD[J].Journal of the European Ceramic Society,2018,38(5):2449-2453.

    • [24] QIU S Y,LIU Y C,GUO H B,et al.Effect of splat-interface discontinuity on effective thermal conductivity of plasma sprayed thermal barrier coating[J].Ceramics International,2020,46(4):4824-4831.

    • [25] LIMA R S,GUERREIRO B,AGHASIBEIG M.Microstructural characterization and room-temperature erosion behavior of as-deposited SPS,EB-PVD and APS YSZ-based TBCs[J].Journal of Thermal Spray Technology,2019,28(1-2):223-232.

    • [26] 郭磊,辛会.V2O5+Na2SO4 熔盐作用下(Gd(0.9)Sc(0.1))2 Zr2O7/YSZ 热障涂层的热腐蚀行为研究[J].材料保护,2021,54(2):1-8.GUO Lei,XIN Hui.Hot corrosion behavior of(Gd09Sc0.1)2 Zr2O7/YSZ thermal barrier coatings exposed to V2O5+ Na2SO4 molten salt[J].Materials Protection,2021,54(2):1-8.(in Chinese)

    • [27] 李勇,高禄平,刘福广,等.基于真实组织的模拟技术在热障涂层热导率预测中的应用探索[J].材料保护,2021,54(3):9-14,22.LI Yong,GAO Luping,LIU Fuguang,et al.Application exploration on the thermal conductivity prediction of thermal barrier coating by the modeling technique based on real coating structure[J].Materials Protection,2021,54(3):9-14,22.(in Chinese)

    • [28] 高丽华,于月光,贾芳,等.等离子物理气相沉积热障涂层研究进展[J].热喷涂技术,2017,9(2):1-8.GAO Lihua,YU Yueguang,JIA Fang,et al.Progress in plasma spray-physical vapor deposition thermal barrier coatings[J].Thermal Spray Technology,2017,9(2):1-8.(in Chinese)

    • [29] GAO L H,GUO H B,WEI L L,et al.Microstructure,thermal conductivity and thermal cycling behavior of thermal barrier coatings prepared by plasma spray physical vapor deposition[J].Surface & Coatings Technology,2015,276:424-430.

    • [30] 付朗,张小锋,刘敏,等.等离子喷涂-物理气相沉积涡轮叶片7YSZ热障涂层[J].材料研究与应用,2020,14(2):95-101.FU Lang,ZHANG Xiaofeng,LIU Min,et al.Preparation of 7YSZ thermal barrier coatings for turbine blades by plasma spraying-physical vapor deposition[J].Materials Research and Application,2020,14(02):95-101.(in Chinese)

    • [31] 石佳,魏亮亮,张宝鹏,等.等离子物理气相沉积热障涂层研究进展[J].航空材料学报,2018,38(2):1-9.SHI Jia,WEI Liangliang,ZHANG Baopeng,et al.Research process in plasma spray physical vapor deposited thermal barrier coatings[J].Journal of Aeronautical Materials,2018,38(2):1-9.(in Chinese)

    • [32] CHEN Q Y,LI C X,ZHAO J Z,et al.Microstructure of YSZ coatings deposited by PS-PVD using 45 kW shrouded plasma torch [J].Materials and Manufacturing Processes,2016,31(9):1183-1191.

    • [33] HE W T,MAUER G,SOHN Y J,et al.Investigation on growth mechanisms of columnar structured YSZ coatings in plasma spray-physical vapor deposition(PS-PVD)[J].Journal of the European Ceramic Society,2019,39(10):3129-3138.

    • [34] MAUER G,HOSPACH A,ZOTOV N,et al.Process conditions and microstructures of ceramic coatings by gas phase deposition based on plasma spraying[J].Journal of Thermal Spray Technology,2013,22(2-3):83-89.

    • [35] HOSPACH A,MAUER G,VAßEN R,et al.Characteristics of ceramic coatings made by thin film low pressureplasma spraying(LPPS-TF)[J].Journal of Thermal Spray Technology,2012,21(3-4):435-440.

    • [36] LI G R,XIE H,YANG G J,et al.A comprehensive sintering mechanism for TBCs—Part Ⅱ:Multiscale multipoint interconnection-enhanced initial kinetics[J].Journal of the American Ceramic Society,2017,100(9):4240-4251.

    • [37] LI G R,YANAG G J,LI C X.A comprehensive sintering mechanism for thermal barrier coatings — Part Ⅲ:Substrate constraint effect on healing of 2D pores[J].Journal of the American Ceramic Society,2018,101(8):3636-3648.

    • [38] ZHANG Y,MALZBENDER J,MACK D E,et al.Mechanical properties of zirconia composite ceramics[J].Ceramics International,2013,39(7):7595-7603.

    • [39] REZANKA S,MACK D Emil,MAUER G,et al.Investigation of the resistance of open-column-structured PS-PVD TBCs to erosive and high-temperature corrosive attack[J].Surface & Coatings Technology,2017,324:222-235.

    • [40] MA Z,ZHANG Q,LIU L,et al.Preparation and heat insulating capacity of Sm2Zr2O7–SiC composites based on photon thermal transport[J].Journal of Advanced Ceramics,2020,9(4):454-461.

    • [41] GAO L H,GUO H B,WEI L L,et al.Microstructure,thermal conductivity and thermal cycling behavior of thermal barrier coatings prepared by plasma spray physical vapor deposition[J].Surface & Coatings Technology,2015,276:424-430.

    • [42] 陈文龙,刘敏,肖晓玲,等.PS-PVD 热障涂层抗沙尘冲刷行为研究[J].热喷涂技术,2019,11(3):22-29,43.CHEN Wenlong,LIU Min,XIAO Xiaoling,et al.Erosion behavior of PS-PVD thermal barrier coatings against sand dust[J].Thermal Spray Technology,2019,11(3):22-29,43.(in Chinese)

    • [43] KAMBARA M,SHINOZAWA A,AOSHIKA K,et al.Development of porous YSZ coatings with modified thermal and optical properties by plasma spray physical vapor deposition[J].Journal of Solid Mechanics & Materials Engineering,2010,4(2):94-106

    • [44] ZHAO C,HE W T,SHI J,et al.Deposition mechanisms of columnar structured La2Ce2O7 coatings via plasma spray-PVD[J].Ceramics International,2020,46(9):13424-13432.

    • [45] 刘梅军,李广荣,杨冠军,等.等离子-物理气相沉积(PS-PVD)热障涂层的结构调控与高隔热机理[J].湘潭大学学报(自然科学版),2019,41(6):88-103.LIU Meijun,LI Guangrong,YANG Guanjun,et al.Structural regulation and high thermal insulation mechanism of thermal barrier coatings prepared by plasma spray-physical vapor deposition(PS-PVD)[J].Journal of Xiangtan University(Natural Science Edition),2019,41(6):88-103.(in Chinese)

    • [46] 曾威,毛杰,马景涛,等.表面粗糙度对 PS-PVD 热障涂层陶瓷层沉积的影响[J].材料工程,2019,47(8):161-168.ZENG Wei,MAO Jie,MA Jingtao,et al.Effect of surface roughness on deposition of PS-PVD thermal barrier coating ceramic coating[J].Journal of Materials Engineering,2019,47(8):161-168.(in Chinese).

    • [47] HARDER B J,ZHU D,SCHMITT M P,et al.Microstructural effects and properties of non-line-of-sight coating processing via plasma spray-physical vapor deposition[J].J.Therm.Spray Tech.,2017,26:1052–1061.

    • [48] ZHANG B P,WEI L L,GAO L H,et al.Microstructural characterization of PS-PVD ceramic thermal barrier coatings with quasi-columnar structures[J].Surf.Coatings Tech.,2017,311:199-205.

    • [49] 张啸,刘敏,张小锋,等.等离子喷涂-物理气相沉积高温防护涂层研究进展[J].中国表面工程,2018,31(5):39-53.ZHANG Xiao,LIU Min,ZHANG Xiaofeng,et al.Research progress of high temperature protective coatings by plasma spray-physical vapor deposition[J].China Surface Engineering,2018,31(5):39-53.(in Chinese)

    • [50] 袁佟,邓畅光,毛杰,等.等离子喷涂-物理气相沉积制备7YSZ热障涂层及其热导率研究[J].材料工程,2017,45(7):1-6.YUAN Tong,DENG Changguang,MAO Jie,et al.Preparation and thermal conductivity of 7YSZ thermal barrier coatings prepared by plasma spray-physical vapor deposition[J].Journal of Materials Engineering,2017,45(7):1-6.(in Chinese)

    • [51] ZHANG B P,WEI L L,GUO H B,et al.Microstructures and deposition mechanisms of quasi-columnar structured yttria-stabilized zirconia coatings by plasma spray physical vapor deposition[J].Ceramics International,2017,43(15):12920-12929.

    • [52] GAO L H,WEI L L,GUO H B,et al.Deposition mechanisms of yttria-stabilized zirconia coatings during plasma spray physical vapor deposition[J].Ceramics International,2016,42(4):5530-5536.

    • [53] 高丽华,冀晓鹃,侯伟骜,等.等离子物理气相沉积准柱状结构YSZ涂层的制备及抗热震性能[J].材料导报,2019,33(12):1963-1968.GAO Lihua,JI Xiaojuan,HOU Weiao,et al.Thermal shock-resistance property of quasi-columnar YSZ thermalbarrier coatings prepared by plasma spray-physical vapor deposition[J].Materials Reports,2019,33(12):1963-1968.(in Chinese)

    • [54] 范佳锋,张小锋,周克崧,等.镀铝改性对 PS-PVD 7YSZ 热障涂层抗CMAS腐蚀影响机制[J].无机材料学报,2019,34(9):938-946.FAN Jiafeng,ZHANG Xiaofeng,ZHOU Kesong,et al.Influence of Al-modification on CMAS corrosion resistance of PS-PVD 7YSZ thermal barrier coatings[J].Journal of Inorganic Materials,2019,34(9):938-946.(in Chinese)

    • [55] KONSTANTIN V N,MALKO G,REFKE A.Vapor phase deposition using plasma spray-PVD™[J].Journal of Thermal Spray Technology,2010,19(1-2):502-509.

    • [56] HE W,MAUER G,GINDRAT M,et al.Investigations on the nature of ceramic deposits in plasma spray-physical vapor deposition[J].Journal of Thermal Spray Technology,2017,26(1-2):83-92.

    • [57] SHAO F,ZHAO H Y,LIU C G,et al.Dense yttria-stabilized zirconia coatings fabricated by plasma spray-physical vapor deposition[J].Ceramics International,2017,43(2):2305-2313.

    • [58] CHEN Q Y,PENG X Z,YANG G J,et al.Characterization of plasma jet in plasma spray-physical vapor deposition of ysz using a <80 kW shrouded torch based on optical emission spectroscopy[J].Journal of Thermal Spray Technology,2015,24(6):1038-1045.

    • [59] HOSPACH A,MAUER G,VAßEN R,et al.Columnar-structured thermal barrier coatings(TBCs)by thin film low pressure plasma spraying(LPPS-TF)[J].Therm.Spray Technol.,2011,116(1-2):116-120.

    • [60] NIESSEN K V,GINDRAT M.Vapor phase deposition using a plasma spray process [J].Journal of Engineering for Gas Turbines and Power,2011,133(6):1-7.

    • [61] LIU M J,ZHANG M,ZHANG Q,et al.Gaseous material capacity of open plasma jet in plasma spray-physical vapor deposition process[J].Applied Surface Science,2018,428:877-884.

    • [62] MAUER Ge.Plasma characteristics and plasma-feedstock interaction under PS-PVD process conditions[J].Plasma Chemistry and Plasma Processing,2014,34(5):1171-1186.

    • [63] LIU M J,YANG G J.Condensation behavior of gaseous phase during transported in the near-substrate boundary layer of plasma spray-physical vapor deposition[J].Journal of Materials Science & Technology,2021,67(8):127-134.

    • [64] LIU M J,ZHANG M,ZHANG Q,et al.Evaporation of droplets in plasma spray–physical vapor deposition based on energy compensation between self-cooling and plasma heat transfer[J].Journal of Thermal Spray Technology,2017,26(7):1641-1650.

    • [65] VAUTHERIN B,PLANCHE M P,BOLOT R,et al.Vapors and droplets mixture deposition of metallic coatings by very low pressure plasma spraying[J].Journal of Thermal Spray Technology,2014,23(4):596-608.

    • [66] 张岩,邓畅光,毛杰,等.PS-PVD 等离子射流特性和YSZ粉末蒸发行为的光谱诊断[J].材料研究与应用,2019,13(4):287-294.ZHANG Yan,DENG Changguang,MAO Jie,et al.Spectral diagnosis of PS-PVD plasma jet characteristics and evaporation behavior of YSZ powder[J].Materials Research and Application,2019,13(4):287-294.(in Chinese)

    • [67] ZHANG X F,ZHOU K S,DENG C M,et al.Gas-deposition mechanisms of 7YSZ coating based on plasma spray-physical vapor deposition[J].Journal of the European Ceramic Society,2016,36(3):697-703.

    • [68] 刘梅军,李广荣,杨冠军,等.等离子-物理气相沉积(PS-PVD)及其射流非接触检测方法[J].表面技术,2020,49(1):1-16.LIU Meijun,LI Guangrong,YANG Guangjun,et al.Plasma spray-physical vapor deposition(PS-PVD)and non-contact detection method of plasma jet[J].Surface Technology,2020,49(1):1-16.(in Chinese)

    • [69] 张岩,邓畅光,毛杰,等.PS-PVD 等离子射流特性的光谱诊断研究进展[J].中国表面工程,2019,32(5):55-68.ZHANG Yan,DENG Changguang,MAO Jie,et al.Research progress in spectroscopic diagnosis of plasma jet characteristics under PS-PVD[J].China Surface Engineering,2019,32(5):55-68.(in Chinese)

    • [70] ZHANG N,SUN F,ZHU L,et al.Measurement of specific enthalpy under very low pressure plasma spray condition[J].Journal of Thermal Spray Technology,2012,21(3-4):489-495.

    • [71] FURUTA N,NOJIRI Y,FUWA K.Spatial profile measurement of electron number densities and analyte line intensities in an inductively coupled plasma[J].Spectrochimica Acta Part B:Atomic Spectroscopy,1985,40(3):423-434.

    • [72] KORNBLUM G R,DE G L.Spatial distribution of the temperature and the number densities of electrons and atomic and ionic species in an inductively coupled RF argon plasma[J].Spectrochimica Acta Part B:Atomic Spectroscopy,1977,32(2):71-96.

    • [73] ALDER J F,MERMET J M.A spectroscopic study of some radio frequency mixed gas plasmas[J].Spectrochimica Acta Part B:Atomic Spectroscopy,1973,28(11):421-433.

    • [74] LIU M J,ZHANG M,ZHANG X F,et al.Transport and deposition behaviors of vapor coating materials in plasma spray-physical vapor deposition[J].Applied Surface Science,2019,486:80-92.

    • [75] KONSTANTIN V N,MALKO G.Plasma spray-PVD:A new thermal spray process to deposit out of the vapor phase[J].Journal of Thermal Spray Technology,2011,20(4):736-743.

    • [76] LI S,HE W T,SHI J,et al.PS-PVD gadolinium zirconate thermal barrier coatings with columnar microstructure sprayed from sintered powder feedstocks[J].Surface and Coatings Technology,2020,383(C):125243.

    • [77] LIU M J,ZHANG K J,ZHANG Q,et al.Thermodynamic conditions for cluster formation in supersaturated boundary layer during plasma spray-physical vapor deposition[J].Applied Surface Science,2018,471:950-959.

    • [78] DENG Z Q,LIU M,MAO J,et al.Stage growth of columnar 7YSZ coating prepared by plasma spray-physical vapor deposition[J].Vacuum,2017,145:39-46.

    • [79] REICHELT K.Nucleation and growth of thin films[J].Vacuum,1988,38:1083–1099.

    • [80] LIN J C,LEE C.Nucleation and growth of Cu thin films on silicon wafers deposited by radio frequency sputtering[J].Thin Solid Films,1997,307(1):96-99.

    • [81] HWANG N M,LEE D K.Charged nanoparticles in thin film and nanostructure growth by chemical vapour deposition[J].Journal of Physics D:Applied Physics,2010,43(48):483001-483038.

    • [82] MELINON P,JENSEN P,HU J X,et al.Comparison of molecular and cluster deposition:Evidence of different percolation processes[J].Physical review.B,Condensed Matter,1991,44(22):12562-12564.

    • [83] 邓子谦,刘敏,毛杰,等.等离子喷涂-物理气相沉积的气相沉积机理[J].无机材料学报,2017,32(12):1285-1291.DENG Ziqian,LIU Min,MAO Jie,et al.Deposition mechanism based on plasma spray-physical vapor deposition[J].Journal of Inorganic Materials,2017,32(12):1285-1291.(in Chinese)

    • [84] 李荣久,邓畅光,胡永俊,等.尖端结构对 PS-PVD YSZ 涂层沉积的影响[J].材料研究与应用,2021,15(1):1-8.LI Rongjiu,DENG Changguang,HU Yongjun,et al.Effect of the tip structure with external centre on columnar-like PS-PVD coatings[J].Materials Research and Application,2021,15(1):1-8.(in Chinese)

    • [85] 陈清宇,李成新,杨冠军,等.PS-PVD 工艺中的气相及气/液混合沉积行为[J].热喷涂技术,2016,8(1):44-50.CHEN Qingyu,LI Chengxin,YANG Guanjun,et al.Vapor and vapor/droplet hybrid deposition behavior in PS-PVD processes[J].Thermal Spray Technology,2016,8(1):44-50.(in Chinese)

    • [86] ZHANG B P,WEO L L,GAO L H,et al.Microstructural characterization of PS-PVD ceramic thermal barrier coatings with quasi-columnar structures[J].Surface & Coatings Technology,2017,311:199-205.

    • [87] YANG J S,CHENG Z F,ZHONG X H,et al.Deposition behavior of PS-PVD yttria partially stabilized zirconia coatings[J].Journal of Thermal Spray Technology,2021,30:1136-1147.

    • [88] MAUER G,HOSPACH A,VAßEN R.Process development and coating characteristics of plasma spray-PVD[J].Surface & Coatings Technology,2013,220:219-224.

  • 参考文献

    • [1] LIU Q M,HUANG S Z,HE A J.Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines[J].Journal of Materials Science & Technology,2019,35(12):2814-2823.

    • [2] DAROLIA.Thermal barrier coatings technology:critical review,progress update,remaining challenges and prospects [J].International Materials Reviews,2013,58(6):315-348.

    • [3] LIU B,LIU Y C,ZHU C H,et al.Advances on strategies for searching for next generation thermal barrier coating materials[J].Journal of Materials Science & Technology,2019,35(5):833-851.

    • [4] MEHBOOB G,LIU M Jun,XU T,et al.A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime[J].Ceramics International,2020,46(7):8497-8521.

    • [5] FAN W,BAI Y.Review of suspension and solution precursor plasma sprayed thermal barrier coatings[J].Ceramics International,2016,42(13):14299-14312.

    • [6] 向阳,王义,朱程鑫,等.氧化物/氧化物陶瓷基复合材料研究进展[J].现代技术陶瓷,2020,41(6):394-404.XIANG Yang,WANG Yi,ZHU Chengxin,et al.Research progress of oxide/oxide ceramic matrix composites[J].Advanced Ceramics,2020,41(6):394-404.(in Chinese)

    • [7] DHOMNE Shailesh,MAHALLE A M.Thermal barrier coating materials for SI engine[J].Journal of Materials Research and Technology,2019,8(1):1532-1537.

    • [8] SZWABA R,KACZYNSKI P,TELEGA J,et al.Influence of internal channel geometry of gas turbine blade on flow structure and heat transfer[J].Journal of Thermal Science,2017,26(6):514-522.

    • [9] REZANKA S,MACK D E,MAUER G,et al.Investigation of the resistance of open-column-structured PS-PVD TBCs to erosive and high-temperature corrosive attack[J].Surface & Coatings Technology,2017,324:222-235.

    • [10] 刘飞,刘敏,毛杰,等.H2 对等离子喷涂-物理气相沉积热障涂层的结构和抗冲刷性能的影响[J].材料研究学报,2018,32(9):641-646.LIU Fei,LIU Min,MAO Jie,et al.Influence of H2 flow rate on structure and erosion resistance of thermal barrier coatings prepared by plasma spray-physical vapor deposition[J].Chinese Journal of Materials Research,2018,32(9):641-646.(in Chinese)

    • [11] SCHMITT M P,HARDER B J,WOLFE D E.Process-structure-property relations for the erosion durability of plasma spray-physical vapor deposition(PS-PVD)thermal barrier coatings[J].Surface & Coatings Technology,2016,297:11-18.

    • [12] 李建超,何箐,吕玉芬,等.热障涂层无损检测技术研究进展[J].中国表面工程,2019,32(2):16-26.LI Jianchao,HE Qing,LÜ Yufen,et al.Research progress on non-destructive testing method of thermal barrier coatings[J].China Surface Engineering,2019,32(2):16-26.(in Chinese)

    • [13] 刘丹丹,樊自拴.超高温陶瓷涂层的研究进展[J].材料保护,2020,53(5):105-110.LIU Dandan,FAN Zishuan.Research progress of ultrahigh temperature ceramic coating[J].Materials Protection,2020,53(5):105-110.(in Chinese)

    • [14] 赵娟利,杨岚,张成冠,等.热障涂层材料研究进展[J].现代技术陶瓷,2020,41(3):148-170.ZHAO Juanli,YANG Lan,ZHANG Chengguan,et al.Recent progress in thermal barrier coatings[J].Advanced Ceramics,2020,41(3):148-170.(in Chinese)

    • [15] LI F,ZHOU L,LIU J X,et al.High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials[J].Journal of Advanced Ceramics,2019,8(4):576-582.

    • [16] LI G R,YANG G J,LI C X,et al.Strain-induced multiscale structural changes in lamellar thermal barrier coatings[J].Ceramics International,2017,43(2):2252-2266.

    • [17] LI G R,XIE H,YANG G J,et al.A comprehensive sintering mechanism for TBCs— Part I:An overall evolution with two-stage kinetics[J].Journal of the American Ceramic Society,2017,100(5):2176-2189.

    • [18] 唐春华,李广荣,刘梅军,等.等离子喷涂 La2Zr2O7 热障涂层高温烧结的硬化行为[J].中国表面工程,2020,33(2):119-126.TANG Chunhua,LI Guangrong,LIU Meijun,et al.Sintering-stiffening behavior of plasma sprayed La2Zr2O7 thermal barrier coatings during high temperature exposure[J].China Surface Engineering,2020,33(2):119-126.(in Chinese)

    • [19] ZHAO Z F,CHEN H,XIANG H M,et al.High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications[J].Journal of Advanced Ceramics,2020,9(3):303-311.

    • [20] 陈琳,冯晶.稀土钽酸盐 RE3TaO7 和 RETa3O9 陶瓷热-力学性质研究进展[J].现代技术陶瓷,2019,40(6):367-397.CHEN Lin,FENG Jing.Research progress of thermo-mechanical properties of rare earth tantalates RE3TaO7 and RETa3O9 Ceramics[J].Advanced Ceramics,2019,40(6):367-397.(in Chinese)

    • [21] PADTURE N P.Advanced structural ceramics in aerospace propulsion[J].Nature Materials,2016,15(8):804-809.

    • [22] MYOUNG S W,LEE S S,KIM H S,et al.Effect of post heat treatment on thermal durability of thermal barrier coatings in thermal fatigue tests[J].Surface & Coatings Technology,2013,215:46-51.

    • [23] HE W T,MAUER G,SCHWEDT A,et al.Advanced crystallographic study of the columnar growth of YZS coatings produced by PS-PVD[J].Journal of the European Ceramic Society,2018,38(5):2449-2453.

    • [24] QIU S Y,LIU Y C,GUO H B,et al.Effect of splat-interface discontinuity on effective thermal conductivity of plasma sprayed thermal barrier coating[J].Ceramics International,2020,46(4):4824-4831.

    • [25] LIMA R S,GUERREIRO B,AGHASIBEIG M.Microstructural characterization and room-temperature erosion behavior of as-deposited SPS,EB-PVD and APS YSZ-based TBCs[J].Journal of Thermal Spray Technology,2019,28(1-2):223-232.

    • [26] 郭磊,辛会.V2O5+Na2SO4 熔盐作用下(Gd(0.9)Sc(0.1))2 Zr2O7/YSZ 热障涂层的热腐蚀行为研究[J].材料保护,2021,54(2):1-8.GUO Lei,XIN Hui.Hot corrosion behavior of(Gd09Sc0.1)2 Zr2O7/YSZ thermal barrier coatings exposed to V2O5+ Na2SO4 molten salt[J].Materials Protection,2021,54(2):1-8.(in Chinese)

    • [27] 李勇,高禄平,刘福广,等.基于真实组织的模拟技术在热障涂层热导率预测中的应用探索[J].材料保护,2021,54(3):9-14,22.LI Yong,GAO Luping,LIU Fuguang,et al.Application exploration on the thermal conductivity prediction of thermal barrier coating by the modeling technique based on real coating structure[J].Materials Protection,2021,54(3):9-14,22.(in Chinese)

    • [28] 高丽华,于月光,贾芳,等.等离子物理气相沉积热障涂层研究进展[J].热喷涂技术,2017,9(2):1-8.GAO Lihua,YU Yueguang,JIA Fang,et al.Progress in plasma spray-physical vapor deposition thermal barrier coatings[J].Thermal Spray Technology,2017,9(2):1-8.(in Chinese)

    • [29] GAO L H,GUO H B,WEI L L,et al.Microstructure,thermal conductivity and thermal cycling behavior of thermal barrier coatings prepared by plasma spray physical vapor deposition[J].Surface & Coatings Technology,2015,276:424-430.

    • [30] 付朗,张小锋,刘敏,等.等离子喷涂-物理气相沉积涡轮叶片7YSZ热障涂层[J].材料研究与应用,2020,14(2):95-101.FU Lang,ZHANG Xiaofeng,LIU Min,et al.Preparation of 7YSZ thermal barrier coatings for turbine blades by plasma spraying-physical vapor deposition[J].Materials Research and Application,2020,14(02):95-101.(in Chinese)

    • [31] 石佳,魏亮亮,张宝鹏,等.等离子物理气相沉积热障涂层研究进展[J].航空材料学报,2018,38(2):1-9.SHI Jia,WEI Liangliang,ZHANG Baopeng,et al.Research process in plasma spray physical vapor deposited thermal barrier coatings[J].Journal of Aeronautical Materials,2018,38(2):1-9.(in Chinese)

    • [32] CHEN Q Y,LI C X,ZHAO J Z,et al.Microstructure of YSZ coatings deposited by PS-PVD using 45 kW shrouded plasma torch [J].Materials and Manufacturing Processes,2016,31(9):1183-1191.

    • [33] HE W T,MAUER G,SOHN Y J,et al.Investigation on growth mechanisms of columnar structured YSZ coatings in plasma spray-physical vapor deposition(PS-PVD)[J].Journal of the European Ceramic Society,2019,39(10):3129-3138.

    • [34] MAUER G,HOSPACH A,ZOTOV N,et al.Process conditions and microstructures of ceramic coatings by gas phase deposition based on plasma spraying[J].Journal of Thermal Spray Technology,2013,22(2-3):83-89.

    • [35] HOSPACH A,MAUER G,VAßEN R,et al.Characteristics of ceramic coatings made by thin film low pressureplasma spraying(LPPS-TF)[J].Journal of Thermal Spray Technology,2012,21(3-4):435-440.

    • [36] LI G R,XIE H,YANG G J,et al.A comprehensive sintering mechanism for TBCs—Part Ⅱ:Multiscale multipoint interconnection-enhanced initial kinetics[J].Journal of the American Ceramic Society,2017,100(9):4240-4251.

    • [37] LI G R,YANAG G J,LI C X.A comprehensive sintering mechanism for thermal barrier coatings — Part Ⅲ:Substrate constraint effect on healing of 2D pores[J].Journal of the American Ceramic Society,2018,101(8):3636-3648.

    • [38] ZHANG Y,MALZBENDER J,MACK D E,et al.Mechanical properties of zirconia composite ceramics[J].Ceramics International,2013,39(7):7595-7603.

    • [39] REZANKA S,MACK D Emil,MAUER G,et al.Investigation of the resistance of open-column-structured PS-PVD TBCs to erosive and high-temperature corrosive attack[J].Surface & Coatings Technology,2017,324:222-235.

    • [40] MA Z,ZHANG Q,LIU L,et al.Preparation and heat insulating capacity of Sm2Zr2O7–SiC composites based on photon thermal transport[J].Journal of Advanced Ceramics,2020,9(4):454-461.

    • [41] GAO L H,GUO H B,WEI L L,et al.Microstructure,thermal conductivity and thermal cycling behavior of thermal barrier coatings prepared by plasma spray physical vapor deposition[J].Surface & Coatings Technology,2015,276:424-430.

    • [42] 陈文龙,刘敏,肖晓玲,等.PS-PVD 热障涂层抗沙尘冲刷行为研究[J].热喷涂技术,2019,11(3):22-29,43.CHEN Wenlong,LIU Min,XIAO Xiaoling,et al.Erosion behavior of PS-PVD thermal barrier coatings against sand dust[J].Thermal Spray Technology,2019,11(3):22-29,43.(in Chinese)

    • [43] KAMBARA M,SHINOZAWA A,AOSHIKA K,et al.Development of porous YSZ coatings with modified thermal and optical properties by plasma spray physical vapor deposition[J].Journal of Solid Mechanics & Materials Engineering,2010,4(2):94-106

    • [44] ZHAO C,HE W T,SHI J,et al.Deposition mechanisms of columnar structured La2Ce2O7 coatings via plasma spray-PVD[J].Ceramics International,2020,46(9):13424-13432.

    • [45] 刘梅军,李广荣,杨冠军,等.等离子-物理气相沉积(PS-PVD)热障涂层的结构调控与高隔热机理[J].湘潭大学学报(自然科学版),2019,41(6):88-103.LIU Meijun,LI Guangrong,YANG Guanjun,et al.Structural regulation and high thermal insulation mechanism of thermal barrier coatings prepared by plasma spray-physical vapor deposition(PS-PVD)[J].Journal of Xiangtan University(Natural Science Edition),2019,41(6):88-103.(in Chinese)

    • [46] 曾威,毛杰,马景涛,等.表面粗糙度对 PS-PVD 热障涂层陶瓷层沉积的影响[J].材料工程,2019,47(8):161-168.ZENG Wei,MAO Jie,MA Jingtao,et al.Effect of surface roughness on deposition of PS-PVD thermal barrier coating ceramic coating[J].Journal of Materials Engineering,2019,47(8):161-168.(in Chinese).

    • [47] HARDER B J,ZHU D,SCHMITT M P,et al.Microstructural effects and properties of non-line-of-sight coating processing via plasma spray-physical vapor deposition[J].J.Therm.Spray Tech.,2017,26:1052–1061.

    • [48] ZHANG B P,WEI L L,GAO L H,et al.Microstructural characterization of PS-PVD ceramic thermal barrier coatings with quasi-columnar structures[J].Surf.Coatings Tech.,2017,311:199-205.

    • [49] 张啸,刘敏,张小锋,等.等离子喷涂-物理气相沉积高温防护涂层研究进展[J].中国表面工程,2018,31(5):39-53.ZHANG Xiao,LIU Min,ZHANG Xiaofeng,et al.Research progress of high temperature protective coatings by plasma spray-physical vapor deposition[J].China Surface Engineering,2018,31(5):39-53.(in Chinese)

    • [50] 袁佟,邓畅光,毛杰,等.等离子喷涂-物理气相沉积制备7YSZ热障涂层及其热导率研究[J].材料工程,2017,45(7):1-6.YUAN Tong,DENG Changguang,MAO Jie,et al.Preparation and thermal conductivity of 7YSZ thermal barrier coatings prepared by plasma spray-physical vapor deposition[J].Journal of Materials Engineering,2017,45(7):1-6.(in Chinese)

    • [51] ZHANG B P,WEI L L,GUO H B,et al.Microstructures and deposition mechanisms of quasi-columnar structured yttria-stabilized zirconia coatings by plasma spray physical vapor deposition[J].Ceramics International,2017,43(15):12920-12929.

    • [52] GAO L H,WEI L L,GUO H B,et al.Deposition mechanisms of yttria-stabilized zirconia coatings during plasma spray physical vapor deposition[J].Ceramics International,2016,42(4):5530-5536.

    • [53] 高丽华,冀晓鹃,侯伟骜,等.等离子物理气相沉积准柱状结构YSZ涂层的制备及抗热震性能[J].材料导报,2019,33(12):1963-1968.GAO Lihua,JI Xiaojuan,HOU Weiao,et al.Thermal shock-resistance property of quasi-columnar YSZ thermalbarrier coatings prepared by plasma spray-physical vapor deposition[J].Materials Reports,2019,33(12):1963-1968.(in Chinese)

    • [54] 范佳锋,张小锋,周克崧,等.镀铝改性对 PS-PVD 7YSZ 热障涂层抗CMAS腐蚀影响机制[J].无机材料学报,2019,34(9):938-946.FAN Jiafeng,ZHANG Xiaofeng,ZHOU Kesong,et al.Influence of Al-modification on CMAS corrosion resistance of PS-PVD 7YSZ thermal barrier coatings[J].Journal of Inorganic Materials,2019,34(9):938-946.(in Chinese)

    • [55] KONSTANTIN V N,MALKO G,REFKE A.Vapor phase deposition using plasma spray-PVD™[J].Journal of Thermal Spray Technology,2010,19(1-2):502-509.

    • [56] HE W,MAUER G,GINDRAT M,et al.Investigations on the nature of ceramic deposits in plasma spray-physical vapor deposition[J].Journal of Thermal Spray Technology,2017,26(1-2):83-92.

    • [57] SHAO F,ZHAO H Y,LIU C G,et al.Dense yttria-stabilized zirconia coatings fabricated by plasma spray-physical vapor deposition[J].Ceramics International,2017,43(2):2305-2313.

    • [58] CHEN Q Y,PENG X Z,YANG G J,et al.Characterization of plasma jet in plasma spray-physical vapor deposition of ysz using a <80 kW shrouded torch based on optical emission spectroscopy[J].Journal of Thermal Spray Technology,2015,24(6):1038-1045.

    • [59] HOSPACH A,MAUER G,VAßEN R,et al.Columnar-structured thermal barrier coatings(TBCs)by thin film low pressure plasma spraying(LPPS-TF)[J].Therm.Spray Technol.,2011,116(1-2):116-120.

    • [60] NIESSEN K V,GINDRAT M.Vapor phase deposition using a plasma spray process [J].Journal of Engineering for Gas Turbines and Power,2011,133(6):1-7.

    • [61] LIU M J,ZHANG M,ZHANG Q,et al.Gaseous material capacity of open plasma jet in plasma spray-physical vapor deposition process[J].Applied Surface Science,2018,428:877-884.

    • [62] MAUER Ge.Plasma characteristics and plasma-feedstock interaction under PS-PVD process conditions[J].Plasma Chemistry and Plasma Processing,2014,34(5):1171-1186.

    • [63] LIU M J,YANG G J.Condensation behavior of gaseous phase during transported in the near-substrate boundary layer of plasma spray-physical vapor deposition[J].Journal of Materials Science & Technology,2021,67(8):127-134.

    • [64] LIU M J,ZHANG M,ZHANG Q,et al.Evaporation of droplets in plasma spray–physical vapor deposition based on energy compensation between self-cooling and plasma heat transfer[J].Journal of Thermal Spray Technology,2017,26(7):1641-1650.

    • [65] VAUTHERIN B,PLANCHE M P,BOLOT R,et al.Vapors and droplets mixture deposition of metallic coatings by very low pressure plasma spraying[J].Journal of Thermal Spray Technology,2014,23(4):596-608.

    • [66] 张岩,邓畅光,毛杰,等.PS-PVD 等离子射流特性和YSZ粉末蒸发行为的光谱诊断[J].材料研究与应用,2019,13(4):287-294.ZHANG Yan,DENG Changguang,MAO Jie,et al.Spectral diagnosis of PS-PVD plasma jet characteristics and evaporation behavior of YSZ powder[J].Materials Research and Application,2019,13(4):287-294.(in Chinese)

    • [67] ZHANG X F,ZHOU K S,DENG C M,et al.Gas-deposition mechanisms of 7YSZ coating based on plasma spray-physical vapor deposition[J].Journal of the European Ceramic Society,2016,36(3):697-703.

    • [68] 刘梅军,李广荣,杨冠军,等.等离子-物理气相沉积(PS-PVD)及其射流非接触检测方法[J].表面技术,2020,49(1):1-16.LIU Meijun,LI Guangrong,YANG Guangjun,et al.Plasma spray-physical vapor deposition(PS-PVD)and non-contact detection method of plasma jet[J].Surface Technology,2020,49(1):1-16.(in Chinese)

    • [69] 张岩,邓畅光,毛杰,等.PS-PVD 等离子射流特性的光谱诊断研究进展[J].中国表面工程,2019,32(5):55-68.ZHANG Yan,DENG Changguang,MAO Jie,et al.Research progress in spectroscopic diagnosis of plasma jet characteristics under PS-PVD[J].China Surface Engineering,2019,32(5):55-68.(in Chinese)

    • [70] ZHANG N,SUN F,ZHU L,et al.Measurement of specific enthalpy under very low pressure plasma spray condition[J].Journal of Thermal Spray Technology,2012,21(3-4):489-495.

    • [71] FURUTA N,NOJIRI Y,FUWA K.Spatial profile measurement of electron number densities and analyte line intensities in an inductively coupled plasma[J].Spectrochimica Acta Part B:Atomic Spectroscopy,1985,40(3):423-434.

    • [72] KORNBLUM G R,DE G L.Spatial distribution of the temperature and the number densities of electrons and atomic and ionic species in an inductively coupled RF argon plasma[J].Spectrochimica Acta Part B:Atomic Spectroscopy,1977,32(2):71-96.

    • [73] ALDER J F,MERMET J M.A spectroscopic study of some radio frequency mixed gas plasmas[J].Spectrochimica Acta Part B:Atomic Spectroscopy,1973,28(11):421-433.

    • [74] LIU M J,ZHANG M,ZHANG X F,et al.Transport and deposition behaviors of vapor coating materials in plasma spray-physical vapor deposition[J].Applied Surface Science,2019,486:80-92.

    • [75] KONSTANTIN V N,MALKO G.Plasma spray-PVD:A new thermal spray process to deposit out of the vapor phase[J].Journal of Thermal Spray Technology,2011,20(4):736-743.

    • [76] LI S,HE W T,SHI J,et al.PS-PVD gadolinium zirconate thermal barrier coatings with columnar microstructure sprayed from sintered powder feedstocks[J].Surface and Coatings Technology,2020,383(C):125243.

    • [77] LIU M J,ZHANG K J,ZHANG Q,et al.Thermodynamic conditions for cluster formation in supersaturated boundary layer during plasma spray-physical vapor deposition[J].Applied Surface Science,2018,471:950-959.

    • [78] DENG Z Q,LIU M,MAO J,et al.Stage growth of columnar 7YSZ coating prepared by plasma spray-physical vapor deposition[J].Vacuum,2017,145:39-46.

    • [79] REICHELT K.Nucleation and growth of thin films[J].Vacuum,1988,38:1083–1099.

    • [80] LIN J C,LEE C.Nucleation and growth of Cu thin films on silicon wafers deposited by radio frequency sputtering[J].Thin Solid Films,1997,307(1):96-99.

    • [81] HWANG N M,LEE D K.Charged nanoparticles in thin film and nanostructure growth by chemical vapour deposition[J].Journal of Physics D:Applied Physics,2010,43(48):483001-483038.

    • [82] MELINON P,JENSEN P,HU J X,et al.Comparison of molecular and cluster deposition:Evidence of different percolation processes[J].Physical review.B,Condensed Matter,1991,44(22):12562-12564.

    • [83] 邓子谦,刘敏,毛杰,等.等离子喷涂-物理气相沉积的气相沉积机理[J].无机材料学报,2017,32(12):1285-1291.DENG Ziqian,LIU Min,MAO Jie,et al.Deposition mechanism based on plasma spray-physical vapor deposition[J].Journal of Inorganic Materials,2017,32(12):1285-1291.(in Chinese)

    • [84] 李荣久,邓畅光,胡永俊,等.尖端结构对 PS-PVD YSZ 涂层沉积的影响[J].材料研究与应用,2021,15(1):1-8.LI Rongjiu,DENG Changguang,HU Yongjun,et al.Effect of the tip structure with external centre on columnar-like PS-PVD coatings[J].Materials Research and Application,2021,15(1):1-8.(in Chinese)

    • [85] 陈清宇,李成新,杨冠军,等.PS-PVD 工艺中的气相及气/液混合沉积行为[J].热喷涂技术,2016,8(1):44-50.CHEN Qingyu,LI Chengxin,YANG Guanjun,et al.Vapor and vapor/droplet hybrid deposition behavior in PS-PVD processes[J].Thermal Spray Technology,2016,8(1):44-50.(in Chinese)

    • [86] ZHANG B P,WEO L L,GAO L H,et al.Microstructural characterization of PS-PVD ceramic thermal barrier coatings with quasi-columnar structures[J].Surface & Coatings Technology,2017,311:199-205.

    • [87] YANG J S,CHENG Z F,ZHONG X H,et al.Deposition behavior of PS-PVD yttria partially stabilized zirconia coatings[J].Journal of Thermal Spray Technology,2021,30:1136-1147.

    • [88] MAUER G,HOSPACH A,VAßEN R.Process development and coating characteristics of plasma spray-PVD[J].Surface & Coatings Technology,2013,220:219-224.

  • 手机扫一扫看