en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

杨奇彪,男,1985年出生,副教授,博士,硕士研究生导师。主要研究方向为超快激光加工。

刘顿(通信作者),男,1980年出生,教授,博士研究生导师。E-mail:dun.liu@hbut.edu.cn

中图分类号:TN249

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210506001

参考文献 1
赵文杰,曾志翔,王立平,等.规则织构化硅片表面的制备及其润湿行为[J].中国表面工程,2011,24(3):4-10.ZHAO W J,ZENG Z X,WANG L P,et al.Preparation and wetting behavior of regular textured silicon wafers [J].China Surface Engineering,2011,24(3):4-10.(in Chinese)
参考文献 2
JEON N L,DERTINGER S,CHIU D T,et al.Generation of solution and surface gradients using microfluidic systems [J].Langmuir,2000,16(22):8311-8316.
参考文献 3
LIU Y F,YAMG N,LI X,et al.Water harvesting of bioinspired microfibers with rough spindle-knots from microfluidics [J].Small,2020,16(9):1901819.
参考文献 4
DANIEL S.Fast drop movements resulting from the phase change on a gradient surface [J].Science,2001,291(5504):633-636.
参考文献 5
ISHIZAKI T,SASAGAWA K,FURUKAWA T,et al.Effect of treatment temperature on surface wettability of methylcyclosiloxane layer formed by chemical vapor deposition [J].Applied Surface Science,2016,379(30):446-451.
参考文献 6
WU H P,ZHU K,CAO B B,et al.Smart design of wettabilitypatterned gradients on substrate-independent coated surfaces to control unidirectional spreading of droplets [J].Soft Matter,2017,13(16):2995-3002.
参考文献 7
SUN C,ZHAO X W,HAN Y H,et al.Control of water droplet motion by alteration of roughness gradient on silicon wafer by laser surface treatment[J].Thin Solid Films,2008,516(12):4059-4063.
参考文献 8
LIU X J,GU H C,WANG M.3D Printing of bioinspired liquid super-repellent structures [J].Advanced materials,2018,30(22):1800103.
参考文献 9
崔炜,郝秀清,陈馨雯,等.脉冲光纤激光制备聚晶金刚石疏液表面的研究[J].中国机械工程,2019,30(1):30-37.CUI W,HAO X Q,CHEN X W,et al.Study on fabrication of lyophobic PCD by pulsed fiber laser [J].China Mechanical Engineering,2019,30(1):30-37.(in Chinese)
参考文献 10
龙江游,范培迅,龚鼎为,等.超快激光制备具有特殊浸润性的仿生表面[J].中国激光,2016,43(8):7-24.LONG J Y,FAN P X,GONG D W,et al.Ultrafast laser preparation of bionic surface with special wettability[J].China Laser,2016,43(8):7-24.(in Chinese)
参考文献 11
PATEL D S,SINGH A,BALANI K,et al.Topographical effects of laser surface texturing on various time-dependent wetting regimes in Ti6Al4V [J].Surface and Coatings Technology,2018,349:816-829.
参考文献 12
ZORBA V,STRATAKIS E,BARBEROGLOU M,et al.Tailoring the wetting response of silicon surfaces via fs laser structuring[J].Applied Physics A,2008,93(4):819-825.
参考文献 13
BAI S X,WANG R.Wettability of laser micro-circle-dimpled SiC surfaces [J].Applied Surface Science,2015,346(15):107-110.
参考文献 14
PARADISANOS I,FOTAKIS C,ANASTASIADIS S H,et al.Gradient induced liquid motion on laser structured black Si surfaces [J].Applied Physics Letters,2015,107(11):1403-531.
参考文献 15
DANIEL S,CHAUDHURY M K.Rectified motion of liquid drops on gradient surfaces induced by vibration[J].Langmuir,2002,18(9):3404-3407.
参考文献 16
泮怀海,王卓,范文中,等.飞秒激光诱导超疏水钛表面微纳结构[J].中国激光,2016,43(8):101-107.PAN H H,WANG Z,FAN W Z,et al.Micronano structure of superhydrophobic titanium surface induced by femtosecond laser [J].Chinese Journal of Lasers,2016,43(8):101-107.(in Chinese)
参考文献 17
YANG Q B,LV Z H,WU T Y,et al.Formation mechanism of gradient wettability of Si3N4 ceramic surface induced using a femtosecond laser[J].Physica Status Solidi,2020,217(15):2000105.
参考文献 18
YAO X,SONG Y L,JIANG L.Applications of bio-inspired special wettable surfaces [J].Advanced Materials,2011,23(6):719-734.
参考文献 19
卢志成,郑佳宜,余延顺.润湿性表面液滴导向运动的研究进展[J].表面技术,2021,50(1):138-149.LU Z Z ZHENG J Y,YU Y S.Research progress of droplet guided motion on wetting surface [J].Surface Technology,2021,50(1):138-149.(in Chinese)
参考文献 20
叶云霞,刘远方,杜婷婷.激光快速加工梯度润湿性表面的试验研究[J].中国激光,2019,46(10):97-104.YE Y X,LIU Y F,DU T G.Experimental study on laser rapid processing gradient wettability surface[J].Chinese Laser,2019,46(10):97-104.(in Chinese)
参考文献 21
熊其玉,董磊,焦云龙,等.应用激光蚀刻不同微织构表面的润湿性[J].物理学报,2015,64(20):304-313.XIONG Q Y,DONG L,JIAO Y L,et al.Laser etching of wettability of different micro-texture surfaces[J].Chinese Journal of Physics,2015,64(20):304-313.(in Chinese)
参考文献 22
廖强,王宏,朱恂,等.梯度表面能材料上液滴运动特性试验[J].工程热物理学报,2007(1):134-136.LIAO Q,WANG H,ZHU X,et al.Experiment of droplet motion characteristics on gradient surface energy materials[J].Journal of Engineering Thermophysics,2007(1):134-136.(in Chinese)
参考文献 23
ZHU X,WANG H,LIAO Q,et al.Experiments and analysis on self-motion behaviors of liquid droplets on gradient surfaces[J].Experimental Thermal and Fluid Science,2009,33(6):947-954.
目录contents

    摘要

    针对化学气相沉积、自组装技术等表面制备方法存在化学污染、表面结合强度低等问题,运用飞秒激光在单晶硅表面加工正方形微凹坑阵列制备梯度润湿性表面,使用白光干涉仪、扫描电子显微镜、能谱仪和接触角测量仪分别测量单晶硅表面粗糙度、微观形貌、化学成分及接触角。 通过改变激光能量密度制备不同梯度润湿性表面,研究不同激光能量密度下液滴在梯度润湿性表面上的铺展规律。 结果表明:随激光能量密度增大,表面粗糙度参数算术平均高度、均方根斜率和界面扩展面积比整体呈增大趋势,表面接触角整体呈减小趋势。 由于激光能量密度增大导致的单晶硅表面平行微凹槽、重凝层及不规则微纳结构使均方根斜率、界面扩展面积比及表面接触角出现波动。 液滴在梯度润湿性表面定向铺展分为加速与减速两个阶段,减速阶段速度伴随明显波动现象,小体积液滴的铺展速度更快。 实现了飞秒激光高精度、非接触、过程可控的梯度润湿性表面制备,结果可为制备单晶硅微流控器件提供理论参考。

    Abstract

    Aiming at the problems of chemical vapor deposition, self-assembly technology and other surface preparation methods such as chemical pollution and low surface bonding strength, femtosecond lasers are used to process square micro-pit arrays on the surface of monocrystalline silicon to prepare gradient wettability surfaces. A white light interferometer, scanning electron microscope, energy spectrometer and contact angle measuring instrument are used respectively to measure the surface roughness, micro morphology, chemical composition and contact angle of monocrystalline silicon. The different gradient wettability surfaces are prepared by changing the laser fluence, and the spread mechanism of droplets on the gradient wettability surface under different laser fluence is studied. The results show that with the increase of the laser fluence, the surface roughness parameters such as the arithmetic average height, root mean square slope and interface expansion area ratio show an overall increasing trend, and the surface contact angle shows an overall decreasing trend. The parallel microgrooves, recast layers and irregular micro-nano structures on the surface of single crystalline silicon caused by the increase of the laser fluence induce fluctuations of the root mean square slope, the interface expansion area ratio, and the surface contact angle. The directional spreading process of droplets on the gradient wettability surface can be divided into two stages: the acceleration stage and the deceleration stage. The speed of the deceleration stage is accompanied by obvious fluctuations, and the spreading speed of small-volume droplets is faster. The experiment has realized the high-precision, non-contact, and process-controllable gradient wettability surface preparation of femtosecond laser. The results can provide a theoretical reference for the preparation of monocrystalline silicon microfluidic devices.

  • 0 前言

  • 随着单晶硅在微流控领域的广泛应用,输运可控的单晶硅表面绿色高效制备逐渐成为学者们研究的热点问题[1-3]。 2001年,DANIEL等[4]发现梯度润湿性表面可实现液滴的定向输运。此后,国内外学者不断探索梯度润湿性表面的制备方法,如化学气相沉积[5]、光刻[6]、激光加工[7]和自组装技术[8]等。

  • 飞秒激光加工以其污染少、稳定性好、效率高, 在调控微流控装置表面润湿性方面具有显著优势[9-11]。 ZORBA等[12]使用飞秒激光在单晶硅片表面制备了仿荷叶的稳定超疏水结构,结果表明通过改变激光能量密度可实现对单晶硅片润湿性能的调控。白少先等[13] 使用激光微织构技术在碳化硅表面刻蚀微圆凹坑研究微织构参数与表面化学成分对表面润湿性的影响,结果发现微圆凹坑的直径对表面润湿性影响最为明显。 PARADISANOS等[14] 制备了梯度润湿性微纳米图案硅表面,通过逐渐降低飞秒激光能量密度,制备出从疏水逐渐转变到超亲水的梯度润湿性表面,证明了激光微织构技术制备梯度润湿性表面在开放性微流控系统中的潜在应用。 DANIEL等[15]发现液滴在具有连续梯度润湿性表面上时液滴会以1~2mm/s的速度向润湿性更好的区域定向移动。泮怀海等[16]研究了激光能量密度对钛表面润湿性的影响机制,并辅以超声作用在其表面黏附低表面能物质制备了稳定分布的超疏水钛表面。杨奇彪等[17]研究了不同激光参数下氮化硅陶瓷的润湿性,制备不同密度的微凹坑梯度润湿表面,发现微结构梯度越大,越有利于切削液的流动。

  • 目前,梯度润湿性表面的制备方法大多存在工艺复杂或时间漫长的问题,因此开发简单高效的制备工艺对梯度润湿性表面研究与应用具有重要推进作用[18]。本文以单晶硅为研究对象,通过飞秒激光在单晶硅表面制备梯度润湿性结构,研究液滴在梯度润湿表面的定向铺展机理,以期为微流控器件的制备提供理论指导。

  • 1 试验

  • 1.1 试验材料

  • 试验使用单晶硅片,样品尺寸为15mm×15mm× 0.5mm。试验前样品先用超声波清洗机 ( DRMS07)在无水乙醇中超声清洗15min以去除表面油污,而后用冷风吹干备用。

  • 1.2 样品制备

  • 试验采用的飞秒脉冲激光器 ( YSL FemYL-50),波长为1 030nm,脉宽为480fs,理论聚焦光斑直径为20 μm,激光束截面光强呈高斯分布,飞秒激光加工系统示意图如图1所示。

  • 图1 飞秒激光加工系统示意图

  • Fig.1 Schematic of the femtosecond laser setup

  • 重复频率为100kHz,扫描速度为500mm/s,扫描次数为1次,加工面积单元为100 μm×100 μm, 加工间距为100 μm,通过调整不同区域加工时的能量密度在样品表面加工微凹坑阵列,如图2所示,尺寸为 L×D,分为8个区域。然后将加工后的样品在无水乙醇溶液中超声清洗15min,以去除加工残留在样品表面上的污物,而后用冷风吹干备用。

  • 图2 飞秒激光加工润湿性梯度通道示意图

  • Fig.2 Wetting gradient channel of laser micro texture

  • 1.3 试验表征

  • 试验采用高分辨场发射扫描电子镜( SU8010) 测量样品表面微观形貌,采用白光干涉仪( Bruker contour GT-K)测量样品表面粗糙度,以3个不同位置表面粗糙度平均值作为最终测量结果,采用能谱仪(OXRORD INSTRUMENTS)测量样品表面化学成分。试验使用接触角测量仪(MAIST Vision A-300) 运用座滴法测量样品表面的接触角,具体滴液装置如图3所示。为保证试验结果的准确性和一致性, 试验测定环境为恒温21℃、相对湿度35%,样品原始表面接触角为79.2°。

  • 图3 滴液装置示意图

  • Fig.3 Schematic diagram of dripping device

  • 2 结果与讨论

  • 润湿性是固液接触界面的重要特性,是液体在固体表面铺展能力的表征[19],研究单晶硅表面润湿性影响机制有利于更好地构建梯度润湿性单晶硅表面。

  • 2.1 材料表面润湿性的影响机制

  • 激光重复频率为100kHz,扫描速度为500mm/s, 扫描次数为1次,加工微凹坑阵列,微凹坑边长和间距为100 μm,液滴体积为3 μL时,不同能量密度下单晶硅样品表面接触角变化规律如图4所示,经激光加工后的表面均呈现亲水性,能量密度为9.6J/cm 2 时接触角最小。样品表面接触角随能量密度增大显著减小;当能量密度为4J/cm 2 和8.8J/cm 2 时,表面接触角变化出现波动。根据Wenzel全润湿理论及反映润湿过程中三相能量的动态平衡理论,表面接触角变化由表面微观形貌与化学成分共同决定[20]

  • 不同能量密度下单晶硅表面粗糙度参数变化规律如图5所示。随着激光能量密度增大,单晶硅表面粗糙度参数算术平均高度 Sa、均方根斜率 Sdq 和界面扩展面积比 Sdr 整体呈上升趋势。能量密度从0增大到4J/cm 2 时,均方根斜率 Sdq 和界面扩展面积比 Sdr 显著增大。当能量密度继续增大,激光烧蚀过程中材料熔化再凝固形成微纳尺度的突起导致均方根斜率 Sdq 增加幅度逐渐变缓并出现波动。图6为两种不同能量密度下的样品表面形貌,当能量密度达到材料烧蚀阈值后,样品表面出现周期性的平行微凹槽和重凝层结构,微凹槽表面和重凝层被球形及不规则形状的纳米结构所覆盖。这些微纳尺度的突起结构显著增加了样品表面积,使得样品表面接触角发生改变。

  • 图4 表面接触角大小随能量密度变化曲线

  • Fig.4 Variation of the Surface contact Angle under different laser fluence

  • 图5 单晶硅表面粗糙度 SaSdqSdr 随能量密度变化曲线

  • Fig.5 Variation of the SaSdq and Sdr under different laser fluence

  • 图6 不同激光能量密度下单晶硅表面形貌

  • Fig.6 SEM images of sample surface topography under different laser fluence

  • 飞秒激光加工的纹理在宏观上为液滴铺展提供导向,使得液滴铺展沿微沟槽平行方向。在微观上提升固-液-气接触线的连续性,降低能量势垒,减小液滴铺展的阻力[21]。随激光能量密度增大,Sa 逐渐增大,表面接触角逐渐减小,表面亲水性增强。 Sdr 数值增大表明样品的表面积增大,导致固液接触面积增大,接触角减小。 Sdq 越大表明样品表面尖锐微结构越多,且尖锐程度也增加,对液滴铺展的阻碍力增加。因此当能量密度超过4J/cm 2 后,材料表面的润湿性出现波动。

  • 为探究化学成分对润湿性的影响,对飞秒激光加工的单晶硅表面进行EDS能谱分析。样品原始表面硅的含量为100%,能量密度为1.6J/cm 2 (图7)时,样品表面C与O含量增加,这是由于在激光加工产生的高温环境下,硅在空气中生成亲水性颗粒SiO2 与SiC,C含量增加幅度显著高于O含量说明表面碳化程度高于氧化程度。当能量密度增大到9.6J/cm 2 (图7) 时,样品表面的C与O含量均增大,硅的碳化与氧化程度均增大,这是由于更高的能量密度会加剧热效应;同时样品表面出现少量N元素,硅在高温下会生成Si3N4

  • 图7 不同激光能量密度下的表面元素含量

  • Fig.7 EDS images of sample surface under different laser fluence

  • 2.2 梯度润湿性表面制备及液滴定向铺展机理分析

  • 为研究不同润湿性梯度对单晶硅表面液滴润湿速度的影响规律,试验通过改变能量密度来制备不同润湿性梯度表面。激光重复频率为100kHz,扫描速度为500mm/s,扫描次数为1次,加工微凹坑阵列,理论微凹坑边长和间距为100 μm,加工润湿梯度通道长8mm,宽2mm。依次增加能量密度,构建表面接触角逐渐减小的单晶硅梯度结构表面,三种不同能量密度的梯度通道表面如图8所示。

  • 图8 不同能量密度的梯度通道表面

  • Fig.8 Gradient wettability surface with different laser fluence

  • 液滴体积为3 μL时,不同单晶硅样品表面的液滴铺展速度随时间变化规律如图9所示,由图可知,液滴在梯度润湿性表面的铺展可分为加速铺展阶段和减速铺展阶段两个阶段,在亲水性更强的3#单晶硅表面上,液滴峰值速度最大。不同单晶硅样品表面液滴最后均能铺满整个微通道区域,能量密度越高的梯度表面液滴定向铺展的速度越快。在加速铺展区域,由于液滴自身重力势能影响,液滴刚接触单晶硅样品表面时,具有极大的加速度,会在短时间内快速达到峰值速度,并铺展较远距离;在减速运动区域,由于液滴在单晶硅样品表面铺展距离和接触面积的增加导致所受滞后力与黏附阻力上升,液滴速度降低。同时,液滴形变释放界面能提供动力,液滴速度增大。气液界面的形变影响了三相接触线使得表面接触角发生变化,导致铺展速度的波动[22]

  • 图9 不同通道液滴铺展速度随铺展时间变化规律

  • Fig.9 Variation of the droplet spreading velocity with spreading time on different gradient wettability surface

  • 图10 为液滴体积分别为5 μL、3 μL、2 μL时,3 #单晶硅样品表面液滴运动速度随时间变化情况。由图10可知,随着液滴体积的增加,液滴铺展时间增加,而铺展过程中的峰值速度减小。不同体积液滴最终均能铺满整个微通道,但小体积液滴所用时间明显较少,因此更小体积的液滴能够提高铺展效率。当液滴铺展时,表面张力会对沿三相接触线的界面产生影响,滞后力和黏附阻力作用在液-固界面上降低铺展速度。同时在液固接触区域之外,重力作用于整个液滴,体积增大使得沿垂直方向的压力增加,液滴的初始加速度减小进一步导致峰值速度减小。

  • 图10 不同体积液滴铺展速度随铺展时间变化规律

  • Fig.10 Variation of the droplet spreading velocity with spreading time of different volume

  • 液滴在梯度润湿性表面铺展原理如图11所示, 液滴在单晶硅样品表面主要受两侧自由能差异产生的驱动力F dri、接触角滞后所产生的滞后力F hys,以及固液间相对运动产生的黏附阻力F vis 共同作用。因此,液滴在梯度润湿性表面上运动所受的合力可以表示为:

  • FR=F=Fdri-Fhys-Fvis =ma
    (1)
  • 式中,由液滴两端的自由能不同而产生的驱动力可以表示为[22] :

  • Fdri=-dG/dxπr2γ1vdcosθdx
    (2)
  • 式中,r 表示当液滴刚好接触基材表面时垂直于运动方向的接触半径; γlv 是液滴的液-气表面张力;θ 是液滴沿着梯度润湿性方向运动到 x 位置时的接触角。

  • 液滴在运动过程中受到的阻力主要来自于接触角滞后产生的滞后力F hys,可以表示为:

  • Fhys=γlv-rr cosθr-cosθady=2rγlvcosθr-cosθa
    (3)
  • 式中, θrθa表示液滴运动到 x 位置时的后退角与前进角,黏附阻力远小于驱动力和滞后力可忽略不计[23]。当F R> 0时,液滴可沿着梯度方向自发运动;当F R< 0时,液滴会定扎在表面上。因此,可以通过改变接触角大小、接触角变化梯度大小和液滴的表面张力来调控合力F R 的大小。

  • 图11 液滴在梯度润湿性表面铺展示意图

  • Fig.11 Schematic diagram of droplets moving on a gradient wettability surface

  • 3 结论

  • 通过飞秒激光在单晶硅表面加工方形微凹坑阵列,研究了液滴在梯度润湿性单晶硅表面的铺展机理,得到结论如下:

  • (1) 随激光能量密度增大,单晶硅表面接触角整体呈减小趋势,表面粗糙度参数 SaSdqSdr 整体呈增大趋势,单晶硅表面出现的周期性微凹槽、重凝层及不规则形状微纳结构使得样品表面接触角发生波动性改变。

  • (2) 飞秒激光加工后的单晶硅表面发生了碳化、氧化及少量氮化反应,随激光能量密度增大,表面碳和氧元素含量明显增大。

  • (3) 液滴在梯度润湿性表面的铺展可分为加速铺展阶段和减速铺展阶段两个阶段,能量密度越高的梯度表面液滴定向铺展速度越快,液滴体积越小, 液滴在梯度润湿性表面上的定向铺展速度越快。

  • 参考文献

    • [1] 赵文杰,曾志翔,王立平,等.规则织构化硅片表面的制备及其润湿行为[J].中国表面工程,2011,24(3):4-10.ZHAO W J,ZENG Z X,WANG L P,et al.Preparation and wetting behavior of regular textured silicon wafers [J].China Surface Engineering,2011,24(3):4-10.(in Chinese)

    • [2] JEON N L,DERTINGER S,CHIU D T,et al.Generation of solution and surface gradients using microfluidic systems [J].Langmuir,2000,16(22):8311-8316.

    • [3] LIU Y F,YAMG N,LI X,et al.Water harvesting of bioinspired microfibers with rough spindle-knots from microfluidics [J].Small,2020,16(9):1901819.

    • [4] DANIEL S.Fast drop movements resulting from the phase change on a gradient surface [J].Science,2001,291(5504):633-636.

    • [5] ISHIZAKI T,SASAGAWA K,FURUKAWA T,et al.Effect of treatment temperature on surface wettability of methylcyclosiloxane layer formed by chemical vapor deposition [J].Applied Surface Science,2016,379(30):446-451.

    • [6] WU H P,ZHU K,CAO B B,et al.Smart design of wettabilitypatterned gradients on substrate-independent coated surfaces to control unidirectional spreading of droplets [J].Soft Matter,2017,13(16):2995-3002.

    • [7] SUN C,ZHAO X W,HAN Y H,et al.Control of water droplet motion by alteration of roughness gradient on silicon wafer by laser surface treatment[J].Thin Solid Films,2008,516(12):4059-4063.

    • [8] LIU X J,GU H C,WANG M.3D Printing of bioinspired liquid super-repellent structures [J].Advanced materials,2018,30(22):1800103.

    • [9] 崔炜,郝秀清,陈馨雯,等.脉冲光纤激光制备聚晶金刚石疏液表面的研究[J].中国机械工程,2019,30(1):30-37.CUI W,HAO X Q,CHEN X W,et al.Study on fabrication of lyophobic PCD by pulsed fiber laser [J].China Mechanical Engineering,2019,30(1):30-37.(in Chinese)

    • [10] 龙江游,范培迅,龚鼎为,等.超快激光制备具有特殊浸润性的仿生表面[J].中国激光,2016,43(8):7-24.LONG J Y,FAN P X,GONG D W,et al.Ultrafast laser preparation of bionic surface with special wettability[J].China Laser,2016,43(8):7-24.(in Chinese)

    • [11] PATEL D S,SINGH A,BALANI K,et al.Topographical effects of laser surface texturing on various time-dependent wetting regimes in Ti6Al4V [J].Surface and Coatings Technology,2018,349:816-829.

    • [12] ZORBA V,STRATAKIS E,BARBEROGLOU M,et al.Tailoring the wetting response of silicon surfaces via fs laser structuring[J].Applied Physics A,2008,93(4):819-825.

    • [13] BAI S X,WANG R.Wettability of laser micro-circle-dimpled SiC surfaces [J].Applied Surface Science,2015,346(15):107-110.

    • [14] PARADISANOS I,FOTAKIS C,ANASTASIADIS S H,et al.Gradient induced liquid motion on laser structured black Si surfaces [J].Applied Physics Letters,2015,107(11):1403-531.

    • [15] DANIEL S,CHAUDHURY M K.Rectified motion of liquid drops on gradient surfaces induced by vibration[J].Langmuir,2002,18(9):3404-3407.

    • [16] 泮怀海,王卓,范文中,等.飞秒激光诱导超疏水钛表面微纳结构[J].中国激光,2016,43(8):101-107.PAN H H,WANG Z,FAN W Z,et al.Micronano structure of superhydrophobic titanium surface induced by femtosecond laser [J].Chinese Journal of Lasers,2016,43(8):101-107.(in Chinese)

    • [17] YANG Q B,LV Z H,WU T Y,et al.Formation mechanism of gradient wettability of Si3N4 ceramic surface induced using a femtosecond laser[J].Physica Status Solidi,2020,217(15):2000105.

    • [18] YAO X,SONG Y L,JIANG L.Applications of bio-inspired special wettable surfaces [J].Advanced Materials,2011,23(6):719-734.

    • [19] 卢志成,郑佳宜,余延顺.润湿性表面液滴导向运动的研究进展[J].表面技术,2021,50(1):138-149.LU Z Z ZHENG J Y,YU Y S.Research progress of droplet guided motion on wetting surface [J].Surface Technology,2021,50(1):138-149.(in Chinese)

    • [20] 叶云霞,刘远方,杜婷婷.激光快速加工梯度润湿性表面的试验研究[J].中国激光,2019,46(10):97-104.YE Y X,LIU Y F,DU T G.Experimental study on laser rapid processing gradient wettability surface[J].Chinese Laser,2019,46(10):97-104.(in Chinese)

    • [21] 熊其玉,董磊,焦云龙,等.应用激光蚀刻不同微织构表面的润湿性[J].物理学报,2015,64(20):304-313.XIONG Q Y,DONG L,JIAO Y L,et al.Laser etching of wettability of different micro-texture surfaces[J].Chinese Journal of Physics,2015,64(20):304-313.(in Chinese)

    • [22] 廖强,王宏,朱恂,等.梯度表面能材料上液滴运动特性试验[J].工程热物理学报,2007(1):134-136.LIAO Q,WANG H,ZHU X,et al.Experiment of droplet motion characteristics on gradient surface energy materials[J].Journal of Engineering Thermophysics,2007(1):134-136.(in Chinese)

    • [23] ZHU X,WANG H,LIAO Q,et al.Experiments and analysis on self-motion behaviors of liquid droplets on gradient surfaces[J].Experimental Thermal and Fluid Science,2009,33(6):947-954.

  • 参考文献

    • [1] 赵文杰,曾志翔,王立平,等.规则织构化硅片表面的制备及其润湿行为[J].中国表面工程,2011,24(3):4-10.ZHAO W J,ZENG Z X,WANG L P,et al.Preparation and wetting behavior of regular textured silicon wafers [J].China Surface Engineering,2011,24(3):4-10.(in Chinese)

    • [2] JEON N L,DERTINGER S,CHIU D T,et al.Generation of solution and surface gradients using microfluidic systems [J].Langmuir,2000,16(22):8311-8316.

    • [3] LIU Y F,YAMG N,LI X,et al.Water harvesting of bioinspired microfibers with rough spindle-knots from microfluidics [J].Small,2020,16(9):1901819.

    • [4] DANIEL S.Fast drop movements resulting from the phase change on a gradient surface [J].Science,2001,291(5504):633-636.

    • [5] ISHIZAKI T,SASAGAWA K,FURUKAWA T,et al.Effect of treatment temperature on surface wettability of methylcyclosiloxane layer formed by chemical vapor deposition [J].Applied Surface Science,2016,379(30):446-451.

    • [6] WU H P,ZHU K,CAO B B,et al.Smart design of wettabilitypatterned gradients on substrate-independent coated surfaces to control unidirectional spreading of droplets [J].Soft Matter,2017,13(16):2995-3002.

    • [7] SUN C,ZHAO X W,HAN Y H,et al.Control of water droplet motion by alteration of roughness gradient on silicon wafer by laser surface treatment[J].Thin Solid Films,2008,516(12):4059-4063.

    • [8] LIU X J,GU H C,WANG M.3D Printing of bioinspired liquid super-repellent structures [J].Advanced materials,2018,30(22):1800103.

    • [9] 崔炜,郝秀清,陈馨雯,等.脉冲光纤激光制备聚晶金刚石疏液表面的研究[J].中国机械工程,2019,30(1):30-37.CUI W,HAO X Q,CHEN X W,et al.Study on fabrication of lyophobic PCD by pulsed fiber laser [J].China Mechanical Engineering,2019,30(1):30-37.(in Chinese)

    • [10] 龙江游,范培迅,龚鼎为,等.超快激光制备具有特殊浸润性的仿生表面[J].中国激光,2016,43(8):7-24.LONG J Y,FAN P X,GONG D W,et al.Ultrafast laser preparation of bionic surface with special wettability[J].China Laser,2016,43(8):7-24.(in Chinese)

    • [11] PATEL D S,SINGH A,BALANI K,et al.Topographical effects of laser surface texturing on various time-dependent wetting regimes in Ti6Al4V [J].Surface and Coatings Technology,2018,349:816-829.

    • [12] ZORBA V,STRATAKIS E,BARBEROGLOU M,et al.Tailoring the wetting response of silicon surfaces via fs laser structuring[J].Applied Physics A,2008,93(4):819-825.

    • [13] BAI S X,WANG R.Wettability of laser micro-circle-dimpled SiC surfaces [J].Applied Surface Science,2015,346(15):107-110.

    • [14] PARADISANOS I,FOTAKIS C,ANASTASIADIS S H,et al.Gradient induced liquid motion on laser structured black Si surfaces [J].Applied Physics Letters,2015,107(11):1403-531.

    • [15] DANIEL S,CHAUDHURY M K.Rectified motion of liquid drops on gradient surfaces induced by vibration[J].Langmuir,2002,18(9):3404-3407.

    • [16] 泮怀海,王卓,范文中,等.飞秒激光诱导超疏水钛表面微纳结构[J].中国激光,2016,43(8):101-107.PAN H H,WANG Z,FAN W Z,et al.Micronano structure of superhydrophobic titanium surface induced by femtosecond laser [J].Chinese Journal of Lasers,2016,43(8):101-107.(in Chinese)

    • [17] YANG Q B,LV Z H,WU T Y,et al.Formation mechanism of gradient wettability of Si3N4 ceramic surface induced using a femtosecond laser[J].Physica Status Solidi,2020,217(15):2000105.

    • [18] YAO X,SONG Y L,JIANG L.Applications of bio-inspired special wettable surfaces [J].Advanced Materials,2011,23(6):719-734.

    • [19] 卢志成,郑佳宜,余延顺.润湿性表面液滴导向运动的研究进展[J].表面技术,2021,50(1):138-149.LU Z Z ZHENG J Y,YU Y S.Research progress of droplet guided motion on wetting surface [J].Surface Technology,2021,50(1):138-149.(in Chinese)

    • [20] 叶云霞,刘远方,杜婷婷.激光快速加工梯度润湿性表面的试验研究[J].中国激光,2019,46(10):97-104.YE Y X,LIU Y F,DU T G.Experimental study on laser rapid processing gradient wettability surface[J].Chinese Laser,2019,46(10):97-104.(in Chinese)

    • [21] 熊其玉,董磊,焦云龙,等.应用激光蚀刻不同微织构表面的润湿性[J].物理学报,2015,64(20):304-313.XIONG Q Y,DONG L,JIAO Y L,et al.Laser etching of wettability of different micro-texture surfaces[J].Chinese Journal of Physics,2015,64(20):304-313.(in Chinese)

    • [22] 廖强,王宏,朱恂,等.梯度表面能材料上液滴运动特性试验[J].工程热物理学报,2007(1):134-136.LIAO Q,WANG H,ZHU X,et al.Experiment of droplet motion characteristics on gradient surface energy materials[J].Journal of Engineering Thermophysics,2007(1):134-136.(in Chinese)

    • [23] ZHU X,WANG H,LIAO Q,et al.Experiments and analysis on self-motion behaviors of liquid droplets on gradient surfaces[J].Experimental Thermal and Fluid Science,2009,33(6):947-954.

  • 手机扫一扫看