en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张志慧,男,1995年出生,硕士研究生。主要研究方向为电射流法增材制造和表面微织构。E-mail:zhang_zhihui@126.com

邓建新(通信作者),男,1966年出生,博士,教授,博士研究生导师。主要研究方向为刀具涂层技术、微织构刀具和摩擦磨损。E-mail:jxdeng@sdu.edu.cn

中图分类号:TG174;TH140

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210721001

参考文献 1
RYNDZIONEK R,SIENKIEWICZ U.A review of recent advances in the single-and multi-degree-of-freedom ultrasonic piezoelectric motors[J].Ultrasonics,2021(3):106471.
参考文献 2
YU H,LIU Y,TIAN X,et al.A precise rotary positioner driven by piezoelectric bimorphs:Design,analysis and experimental evaluation[J].Sensors and Actuators A Physical,2020,313:112197.
参考文献 3
PENG J,MA L,LI X,et al.A novel synchronous micro motor for intravascular ultrasound imaging[J].IEEE Transactions on Biomedical Engineering,2019,66(3):802-809.
参考文献 4
KANG D,KIM K,KIM D,et al.Optimal design of high precision XY-scanner with nanometer-level resolution and millimeter-level working range [J].Mechatronics,2009,194:562-570.
参考文献 5
赵盖,雷浩,宋敬伏,等.一种基于表面织构的超声电机用增摩结构:CN211296596U[P].2020-08-18.ZHAO G,LEI H,SONG J F,et al.A friction-increasing structure for ultrasonic motor based on surface texture:CN211296596U[P].2020-08-18.(in Chinese)
参考文献 6
汪溢汀,曹敏.推荐两种在摩擦材料中作增摩成分的新型优质原料[C]//第九届中国摩擦密封材料技术交流暨产品展示会.上海:中国摩擦密封材料协会,2007:130-132,136.WANG Y T,CAO M.Two new raw-materials for frictionincreasing [ C ]//The 9th China Friction & Sealing Material Technology Exchange and Product Exhibition.Shanghai:China Friction & Sealing Material Association,2007:130-132,136.(in Chinese)
参考文献 7
MITTRA J,KAVALUR A,KUMBHAR N T,et al.Effectiveness of pulsed laser deposited ZrO2 surface film over autoclaved oxide film on a Zr alloy for hydrogen barrier application[J].Surface and Coatings Technology,2020,404(5):126548.
参考文献 8
LI X,DENG J,GE D,et al.Rapid crystallization of electrohydrodynamically atomized ZrO2 thin films by laser annealing[J].Applied Surface Science,2020,510(Apr.30):145510.1-145510.11.
参考文献 9
MADHUSUDHANA R,NAYYASHREE K C,KRISHNAMURTHY L,et al.Synthesis and characterization of zirconium oxide ZrO2 films on AA5052 and glass substrates[J].IOP Conference Series:Materials Science and Engineering,2021,10651(1):012018.
参考文献 10
LI X,DENG J,LU Y,et al.Tribological behavior of ZrO2/WS2 coating surfaces with biomimetic shark-skin structure [J].Ceramics International,2019,45(17):21759-21767.
参考文献 11
MAHALINGAM S,EDIRISINGHE M J.Novel preparation of nitrogen-doped titanium dioxide films[J].Journal of Physics D Applied Physics,2008,41(21):215406.
参考文献 12
MUHAMMAD N M,NAEEM A M,DURAISAMY N,et al.Fabrication of high quality zinc-oxide layers through electrohydrodynamic atomization [J].Thin Solid Films,2012,520(6):1751-1756.
参考文献 13
SUN J,DENG J,LI X,et al.Preparation and tribological properties of MoS2-based multiple-layer structured films fabricated by electrohydrodynamic jet deposition[J].Surface and Coatings Technology,2020,384:125334.
参考文献 14
LI X,DENG J,YUE H,et al.Wear performance of electrohydrodynamically atomized WS2 coatings deposited on biomimetic shark-skin textured surfaces [J].Tribology International,2019,134(5):240-251.
参考文献 15
MENDEZ A R,TAN T Y,LOW H Y,et al.Micro-textured films for reducing microbial colonization in a clinical setting[J].Journal of Hospital Infection,2018,98(1):83-89.
参考文献 16
WANG D,ZHU X,LIANG J,et al.Electrohydrodynamic jet printing of PZT thick film micro-scale structures[J].Journal of the European Ceramic Society,2015,35(13):3475-3483.
参考文献 17
YANG X,JIANG X,YIN Z,et al.An economic and concise method to solve nozzle clogging issue during electro hydrodynamic printing[J].International Journal of Modern Physics B,2019,33(23):1950260.
参考文献 18
WANG D,ZHA W,FENG L,et al.Electrohydrodynamic jet printing and a preliminary electrochemistry test of graphene micro-scale electrodes [J].Journal of Micromechanics and Microengineering,2016,26(4):045010.
参考文献 19
LI X,DENG J,MENG Y.One-step mask patterning of micro lead zirconate titanate arrays by electrohydrodynamic atomization [J].Ceramics International,2020,46(17):27570-27578.
参考文献 20
李学木.基于电射流的PZT厚膜制备及其性能表征[D].大连:大连理工大学,2017.LI X M.Fabrication and characterization of PZT thick films based on electrohydrodynamic jet deposition[D].Dalian:Dalian University of Technology,2017.(in Chinese)
参考文献 21
李杰,黄镕敏,王超磊,等.仿生微织构与氟硅烷修饰对6061铝合金浸润性的影响[J].中国表面工程,2020,33(2):29-36.LI J,HUANG R M,WANG C L,et al.Effects of biomimetic microtexture and fluoroalkylsilane modification on wettability of 6061 aluminum alloy[J].China Surface Engineering,2020,33(2):29-36.(in Chinese)
参考文献 22
侯启敏,杨学锋,王守仁,等.仿生织构类型及其对表面摩擦性能影响[J].中国表面工程,2020,33(3):18-32.HOU Q M,YANG X F,WANG S R,et al.Bionic texture types and their influence on surface friction properties [J].China Surface Engineering,2020,33(3):18-32.(in Chinese)
参考文献 23
缪晨炜,郭智威,袁成清.仿生多尺度沟槽织构对表面摩擦性能的影响[J].中国表面工程,2019,32(1):22-30.MIAO C W,GUO Z W,YUAN C Q.Effects of bionic multiscales groove textures on surface tribological properties [J].China Surface Engineering,2019,32(1):22-30.(in Chinese)
参考文献 24
张占立.蛇类爬行动物腹鳞的材料特性及摩擦学行为研究 [D].镇江:江苏大学,2007.ZHANG Z L.Research on material characteristic and tribological behavior for vental scale of snakes [ D].Zhenjiang:Jiangsu University,2007.(in Chinese)
参考文献 25
林振汉,林钢,吴亮,等.氧化锆系的相结构和转变[J].稀有金属,2003,27(1):49-52.LIN Z H,LIN G,WU L,et al.Phase structure and transformation of zirconia system [J].Rare Metal,2003,27(1):49-52.(in Chinese)
参考文献 26
管昊,贡湘君,刘荣,等.不同晶型结构纳米 ZrO2 的稳定化制备[J].材料研究学报,2014,28(2):139-143.GUAN H,GONG X J,LIU R,et al.Preparation of stable nanosized ZrO2 particles with different crystallographic structures [J].Materials Research Journal,2014,28(2):139-143.(in Chinese)
目录contents

    摘要

    精密器械中的微摩擦零件的增摩需求逐渐被重视,电射流沉积法可以低成本制备出增摩表面。 利用溶胶凝胶法制作 ZrO2 溶液,通过电射流沉积技术结合掩膜板在 316L 不锈钢表面制备具有仿生图案的二氧化锆(ZrO2 )织构化表面,测试织构化表面的亲水性和不同加载力下的摩擦磨损性能,并与相同试验条件下的光滑基体、薄膜作对比。 结果表明:利用电射流沉积技术通过掩膜板制备织构化增摩表面的方法简单可行,织构化表面与基体和薄膜相比亲水性更弱,与光滑基体相比在小加载力下其摩擦因数增加约 70%,磨损率下降约 50%,有明显的增摩、耐磨效果。 电射流法借助掩膜板沉积的 ZrO2 织构化表面可为微摩擦零件表面的增摩耐磨提供一种新方式。

    Abstract

    The increasing demand of micro-friction parts in the precision machining is gradually valued, and it can be satisfied by electrohydrodynamic atomization. A zirconium dioxide (ZrO2 ) film with a bionic micro-texture pattern is prepared on the surface of 316L stainless steel by electrohydrodynamic atomization with a mask. The ZrO2 solution is prepared by sol-gel method. Then the hydrophilicity and tribological property of ZrO2 micro-texture surface are evaluated. The results are compared with the smooth substrate and the ZrO2 films which has the same number of layers under the same test conditions. It is identified that the method using the electrohydrodynamic jet deposition to prepare the ZrO2 micro-texture surface with the mask is simple and feasible. And the prepared ZrO2 micro-texture surface shows its weak hydrophilicity. Compared with the smooth substrate, the micro-texture surface has remarkable friction-increasing effects. The friction coefficient increases by ~ 70%, and the wear rate decreases by ~ 50% under small loading. Thus, the ZrO2 micro-texture surface made by electrohydrodynamic atomization with mask is a new way to be used as a friction-increasing surface of the micro-friction parts.

  • 0 前言

  • 目前机械行业向着高精尖的方向稳步发展,精密加工与超精密加工技术在零件的性能、质量、可靠性方面发挥着重要作用,而精密器械的微摩擦传动零件占据举足轻重的地位。其中超声波电机由于小型轻量、低速大转矩和真空下无需润滑油的特点而受到精密器械、航空航天、计算机和生物医学等领域的青睐[1-4]。超声电机依靠转子与定子间的摩擦接触提供转矩,而如何提高接触面间摩擦因数来增大精密器械的力矩,且保证零件有足够的耐磨性,是当下不断深入研究的重点。赵盖等[5] 用超声精细加工的方法在超声电机的转子外端面和聚合物摩擦材料基底表面制作了不同图案的凹凸微织构,发现其能够明显增加输出力矩和工作效率,且织构间隙可以减少磨粒磨损。织构化表面在微摩擦精密器械的干摩擦增摩领域中有广泛的应用前景。

  • 氧化锆 ( ZrO2) 陶瓷是种新兴的增摩压电材料[6],具有较高的硬度、强度和韧性,良好的耐磨、耐腐蚀性、化学稳定性、生物相容性等,已被广泛应用于许多行业,如刀具涂层、薄膜材料、光学材料和生物医学等[7-10]。以电射流打印技术制备ZrO2 织构化表面是一种新型的增材制造技术,它利用流体在电场力和机械力作用下形成的稳定射流,结合工作平台的运动,实现材料在常温常压下的非接触式打印制造[11]。电射流技术可以直接将金属、金属化合物、陶瓷等材料沉积出均匀而致密的薄膜[12],也可以制作出叠层材料、梯度层材料等新型材料[13]。与其他技术相比,电射流技术具有较高的沉积效率、便于控制、材料范围广和成本低廉等特点[14]。 MENDEZ等[15]利用模具进行热压印,制备出聚碳酸酯微织构薄膜,发现它能明显抑制物体表面的细菌增殖。 WANG等[16]利用电射流沉积技术在硅片上打印了不同宽度、间距的PZT直线微结构。目前利用电射流技术的织构化表面制备的常见方法有直写成型法[17]、脉冲法[18]、金属掩膜板法[19],三者各有优缺点。直写法的材料选择范围广、打印分辨率高, 但为了减小移动过程中对打印精度的影响,对 X-Y 移动平台的精度要求较高,更适用于单层织构的制备;脉冲法则是利用可控的高压脉冲实现间断打印,其控制更加复杂,对基底的平面度和导轨的运动精度要求较高;掩膜板法则是借助金属光刻掩膜板实现不同图案的打印,过程简单,虽然移除掩膜板可能会影响织构边缘形貌,但烧结时晶粒的体积变化会使影响减弱。目前利用电射流法制备织构化表面的研究还有待深入。

  • 本文根据仿生学原理设计了菱形织构掩膜板, 基于电射流法在基体表面制备出ZrO2 织构化表面, 并测量了沉积的ZrO2 织构化表面的物理性质,例如表面形貌、织构高度、表面粗糙度等。以同等温度烧结的光滑基体、相同喷涂层数的ZrO2 薄膜作为对照组,通过润湿性试验和摩擦磨损试验研究了织构化表面的疏水性和耐磨性,为微摩擦零件的增摩问题提供又一种解决方案。

  • 1 材料与方法

  • 1.1 样品制备

  • 试验选用15mm×15mm×4mm的316L不锈钢为基体材料,依次用800、1200目的砂纸进行表面的打磨,并用W 2.5粒度号的金刚石喷雾抛光剂在金相抛光机上处理,最后在无水乙醇中对其超声清洗去除附着物,干燥待用。

  • 选用阿拉丁公司生产的正丙醇锆2g、乙酸0.5g和无水乙醇9g充分混合,室温下置于磁力搅拌器上以500r/min搅拌1h,静置24h得到稳定均匀的ZrO2 溶液,其特征见表1,满足了形成锥射流的物理条件: 黏度 η< 1.338Pa·s、电导率 K> 10-11 S/m、表面张力 σ<50mN/m [20]

  • 表1 ZrO2 溶液的特征

  • Table1 Characteristics of the ZrO2 solution

  • 1.2 仿生织构化表面的设计

  • 仿生织构即是将织构与自然界生物体表形貌相结合,运用仿生学原理设计出具有一定外形、尺寸和排列规律的阵列, 是当下研究的热点[ 21-23]。自然界的红点锦蛇的腹部鳞片具有非光滑的微观结构,如图1a所示,这种半菱形凸结构能够为蛇在运动捕食过程中增大与外界的摩擦,可以实现爬树、快速爬行等。试验考虑织构化表面的菱形尺寸过大会导致织构化表面更接近平面薄膜,弱化仿生菱形的作用;而菱形尺寸过小则会导致电射流法制备的菱形棱角钝化明显,影响形貌;并综合考虑掩膜板的加工变形因素,据此设计了图1b所示的厚度为0.08mm的菱形织构掩膜板。

  • 1.3 织构化表面的制备

  • 沉积所用的设备为图2所示的电射流沉积试验平台,主要由计算机、高压电源、CCD相机、铝基板、 X-Y 运动平台及注射泵、毛细软管、内径0.4mm的喷针组成。工作时,调节针头与基体间距为0.3mm左右,注射泵以0.6 μL/min的速度均匀地将ZrO2 溶液注入喷针,将高压电源调至2.6~3.0kV,使溶液雾化为锥射流状态, 借助 X-Y 移动平台以15mm/s的速度均匀地喷涂在基体上,每喷涂一层便依次置于120℃、300℃ 的预热平台上各加热60s,以去除多余的有机溶剂,再逐步冷却至室温, 进行下一层的喷涂。喷涂完成后置于马弗炉中烧结,试验的烧结温度分别设定为600℃、700℃ 和800℃,研究了不同烧结温度对表面形态的影响, 据此优化了烧结温度为600℃。制备织构化表面的方法是先利用有限元仿真优化加工层数为2 ∶8, 即喷完2层薄膜后置于马弗炉中600℃ 下烧结, 随炉冷却至室温。取出样品后再将掩膜板固定在基体上,按上述方式喷涂8层ZrO2,移除掩膜板后再次烧结,得到稳定的织构化表面。为了保证层数相同,制备ZrO2 薄膜时则是喷完10层后置于马弗炉中600℃ 下烧结。

  • 图1 掩膜板示意图

  • Fig.1 Schematic diagram of mask

  • 1.4 润湿性试验

  • 为了表征织构化表面的润湿性,使用接触角测量装置(KrussDSA100,Kruss GMBH,德国) 测量每个样品上的液滴接触角,其原理如图3a所示。将1滴去离子水(约14 μL)通过微量注射泵滴到样品表面,待大约10s后液滴形状不再变化,此时利用CCD相机拍摄其外部轮廓,并利用图3b所示的拟合圆测量出其接触角 θca,对每个样品表面的液滴接触角进行5次测量取平均值,研究其表面润湿性。

  • 图2 电射流沉积试验平台

  • Fig.2 Electrohydrodynamic atomization platform

  • 1.5 摩擦磨损试验

  • 利用多功能摩擦试验机(UMT-2型) 进行摩擦磨损试验,试验机加载力精度为0.01N,采用球-板接触式直线往复摩擦, 摩擦球选用直径为9.525mm、表面粗糙度低于0.1 μm的45钢,固定在夹具中, 对试样垂直加载一定大小的力, 以6mm的滑移距离、3mm/s的滑移速度往复运动1 200s,分析对比不同试样磨损后的磨痕形貌和元素分布。试验以600℃ 烧结后的光滑基体表面 ( JT)、涂层基体表面( JTC) 和织构化表面( JTZ) 为研究对象,对比了不同加载力下三者的摩擦磨损性能和相应对磨球的磨损率,由此得到织构化表面的摩擦特性。

  • 磨损率计算公式如下[18] :

  • ω=VFl

  • V=23πR3-13π2R2+r2R2-r2式中, ω 为磨损率,F 为载荷,l 为滑动距离,V 为磨损体积,R 为磨球半径,r 为对磨球上磨损面半径。

  • 图3 测量表面润湿性的示意图

  • Fig.3 Schematic diagram of measuring surface wetting

  • 2 结果与分析

  • 2.1 仿生织构化表面制备时的烧结温度优化

  • 氧化锆( ZrO2) 在常温状态下具有较好的物理性能,热膨胀率与316L不锈钢相近,是一种克服了普通陶瓷脆性易碎缺点的产品。通常情况下氧化锆在常温下以单斜晶相m-ZrO2 的状态存在,温度上升到1 163℃过程中会逐步转变成四方晶相t-ZrO2,再上升至2 370℃时则转换成立方相c-ZrO2。单斜晶相与四方晶相之间的这种相转换会产生体积变化, 造成陶瓷表面出现微裂缝[25]。图4为扫描电子显微镜下不同烧结温度后的氧化锆织构化表面形貌, 由600℃烧结后的SEM图4a可见表层较为均匀致密,无明显的裂缝或气孔,但有少量的团聚物,这是由于喷涂过程中,部分团聚物或大颗粒率先沉积到表层,并以此为中心形成小电极,吸引液滴向此处聚集,造成局部微小凸起。图4b为700℃ 烧结后的SEM图,与800℃ 烧结后的图4c相比,裂缝数量相对较少且裂缝宽度较小。这是由于在600~800℃ 温度烧结时,氧化锆发生可逆的同素异构变化,有部分单斜晶相转变为四方晶相,并伴随着约5%的体积收缩变化,而在冷却至室温过程中,四方晶相回复为单斜晶相,体积膨胀约8%,从而造成开裂[26]。而且,800℃时发生相转换的m-ZrO2 所占比例更大, 所以裂缝更多更明显。 600℃ 烧结后的ZrO2 织构化表面形貌已经无明显缺陷,且由于四方相氧化锆 (t-ZrO2)在承载时由应力诱发产生四方相→单斜相 (t→m)的转化,其产生的体积效应会吸收大量的断裂能,从而产生相变增韧,获得高韧性、高耐磨性的表面。为了在冷却后获得更多的t-ZrO2,需要将烧结温度尽可能升高,使烧结时有更多的单斜相转化为四方相。故将600℃定为烧结温度。

  • 图4 SEM下不同烧结温度下的ZrO2 表面形貌

  • Fig.4 SEM of ZrO2 appearance at different sintering temperatures

  • 2.2 织构化表面形貌

  • 将600℃制备出的织构化表面置于共聚焦显微镜LSM800下观察并提取其剖面,由图5可知微织构高度达到0.5 μm,菱形块内部表面较为平整,但边缘有约0.3 μm的凸峰,这是由于喷涂时ZrO2 溶液具有一定的表面张力,发生毛细现象吸附在掩膜板菱形缝的侧壁。试验测得制备的织构化表面的面粗糙度 Sa 为0.376 μm,说明织构化表面较为平整。

  • 对600℃烧结后的氧化锆织构化表面进行EDS能谱分析得到图6a,其中Fe元素占主导,并伴随Cr、Ni等基体中的元素,可知烧结时发生了明显的扩散现象,316L基体中大量元素扩散到ZrO2 薄膜中,这有利于增强基体与ZrO2 层间的结合力,有利于后续的摩擦磨损试验。图6b为经600℃ 烧结后ZrO2 的XRD图谱,与标准XRD图谱m-ZrO2(JCPDS 37-1484)、t-ZrO2(JCPDS 50-1089)比较,可见明显的单斜晶相与四方相并存的状态。降温过程中由于表面受到的基体约束较少,四方相更容易发生马氏体相变退回单斜相,内部的四方相则维持在亚稳定状态。在材料表面会因晶相体积的变化产生残余压应力,可与后续的摩擦磨损试验引入的外界拉应力部分抵消,是一种有利的表面强化增韧现象。

  • 图5 菱形织构化表面形貌及其参数

  • Fig.5 Appearance and parameters of rhombus-texture surface

  • 图6 600℃烧结后ZrO2 织构化的表面分析

  • Fig.6 Spectrum of ZrO2 rhombus-texture surface after sintering at 600℃

  • 2.3 热应力仿真及沉积层数优化

  • 为了增强织构化表面与基体的结合力,试验考虑先在基体表面喷涂ZrO2 均匀薄膜作为基层, 烧结之后再在其上覆盖掩膜板,以同样的方式制备特定图案的ZrO2 织构化表面。为了减少烧结后的残余热应力,利用ANSYS有限元仿真的瞬态热应力分析,确定最佳的织构高度与底层薄膜高度的比例,仿真所需的参数如表2所示。首先建立薄膜模型(15 μm× 15 μm× 2 μm),在其上建立菱形凸起,依次增加织构的高度并对可能的应力集中部位进行渐近线网格划分,提高模拟精度。按照实际情况模拟600℃ 烧结后冷却至室温25℃, 得到如图7a所示的最大等效残余热应力变化曲线图,得知随着底层薄膜与织构高度比逐渐增大,其最大等效残余热应力不断减小,但织构高度较大时下降趋势较缓慢。结合图7b~7e可见,2 ∶ 8时织构与薄膜的交接处残余热应力为蓝色,应力最小,更能保证织构的热稳定性。故选择先喷涂2层ZrO2 薄膜,烧结完成后覆盖掩膜板,再喷涂8层制备织构化表面。

  • 表2 316L不锈钢和ZrO2 材料的物理参数

  • Table2 Physical parameters of 316L stainless steel and ZrO2 materials

  • 2.4 织构化表面的润湿性

  • 图8 显示了稳定后的三种样品表面的去离子水滴的接触角 θca。光滑基体JT表面的 θca 为65.2°, 涂层基体JTC表面和织构化涂层JTZ表面的接触角均在70°以上,且JTZ表面接触角更大,说明虽然同为亲水性表面,但与光滑基体JT相比,利用电射流法制备的氧化锆涂层的亲水性较弱,且织构化表面的亲水性更弱,表面能更低,对水的吸附能力较弱, 更适合用于干摩擦试验,制备增摩材料等。

  • 图7 不同织构高度下的等效残余热应力及其分布云图

  • Fig.7 Equivalent residual thermal stress and distribution at different texture height

  • 图8 不同样品的表面接触角

  • Fig.8 Contact angle of different samples

  • 2.5 摩擦因数与磨损率

  • 由图9a~9c不同加载力条件下试样表面的摩擦因数曲线得知,光滑基体JT表面的摩擦因数在1N、2N时稳定为0.3,在4N的350s时由0.3上升到0.48,这是因为烧结后的基体表面有一层氧化膜,在小载荷下能起到减摩作用,而在4N时表面膜磨损而出现摩擦因数上升的现象。与JT相比,ZrO2 薄膜JTC具有明显的减摩效果,1N加载力下的摩擦因数约为0.15,是光滑基体的一半,在650s后摩擦因数剧烈波动并逐步升高至0.3,此时薄膜被磨穿而逐渐失去减摩效果。 2N加载力下的摩擦因数约为0.13,在500s后开始上升,减摩时间缩短。在加载力为4N时摩擦因数稳定在0.15左右且波动较小,涂层寿命更长,在730s时摩擦因数小幅度上升,但仍然有较好的减摩效果。结合图9d磨球的磨损率与图10薄膜JTC磨痕可知,薄膜能大幅度降低磨损率,当加载力为1N、2N、4N时,其对应磨球的磨损率分别为相同条件下JT试样的3.66%、 5.36%、1.00%。磨痕主要为黏着磨损,并且随着加载力增加,磨痕的宽度不断加大。摩擦学黏着理论认为物体移动过程中,需要克服表面微凸体间由于塑性变形而产生的的啮合力和接触后产生的黏结, 同时还要提供物体相互位移所需要的切向力。在力较小时,微观阻力的影响大,磨球与涂层间的黏着现象严重,加快了涂层的失效,致使其摩擦因数较高且寿命较短。随着力的增大,微观阻力的影响减弱,但磨损率增加。而4N加载力下薄膜没有被磨穿,磨损率大幅度降低。

  • ZrO2 织构化表面JTZ具有明显的增摩效果。 1N载荷下摩擦因数从0.4逐步上升到0.5左右, 并有较大波动,因为在力较小的情况下,微观阻力和黏着现象的影响较大,造成摩擦力不稳定的现象。 2N加载力下摩擦因数在150s内快速升高到0.5左右并保持稳定。当力增大到4N时摩擦因数在100s时急剧上升后迅速下降,并略低于JT的摩擦因数,这是由于JTZ的表面织构在较大加载力下被迅速损毁,部分ZrO2 碎片进入摩擦轨道,起到了一定的减摩效果。对于织构化表面JTZ,相应力条件下其对应磨球的磨损率分别为相同力条件下光滑基体对应磨球磨损率的48.13%、 41.91%、 70.18%。结合图11JTZ表面的磨痕形貌可知,在干摩擦条件下,JTZ表面的磨痕槽在1N时宽度为171 μm,主要为磨粒磨损,少量的磨损碎屑黏附在磨损轨道上,这些磨损颗粒是二氧化锆碎片和从对磨球上转移出的金属颗粒的混合物。随着加载力增加,磨痕宽度增大,磨痕内部有明显的黏着物,在滑动疲劳和剪应力的作用下转为较严重的黏着磨损,并且由Zr元素分布看出4N时织构化表面的ZrO2 材料被明显挤压到磨痕的两侧,磨痕内Fe元素含量增加,这是织构化表面被磨穿,磨球与基体对磨所致,此时织构化表面已经失去增摩效果。

  • 图9 不同加载力下的三种样品的瞬时摩擦因数曲线及磨损率对比图

  • Fig.9 Instantaneous friction coefficient and wear rate of three samples under different forces

  • 图10 不同加载力下的JTC磨痕形貌及EDS元素分析

  • Fig.10 Appearance and EDS spectra of JTC sample under different loading forces

  • 图11 不同加载力下的JTZ磨痕形貌及EDS元素分析

  • Fig.11 Appearance and EDS spectra of JTZ sample under different loading forces

  • 综合分析可知,低载荷条件下薄膜JTC能够起到明显的减摩作用,磨损率仅为相同加载力下光滑基体的1%~5%,且在大加载力条件下减摩效果更好。低载荷条件下织构化表面JTZ能够起到明显的增摩作用,与光滑基体相比磨损率下降50%以上, 但在较大力条件下会被快速磨穿失效。

  • 3 结论

  • 利用电射流沉积法在基体上制备织构化表面的方法简单可行,且可随时更换掩膜板来制备不同的图案。制得的织构化表面有更弱的亲水性,与ZrO2 薄膜相比,织构化表面在较小加载力下增摩效果更好,大加载力下容易被破坏。薄膜则在较大加载力下减摩效果更好,小加载力下容易被破坏。织构化表面与光滑基体相比,在小加载力下摩擦因数增加~70%,磨损率下降~50%,呈现出明显的增摩耐磨效果,可作为微摩擦零件的增摩表面。

  • 参考文献

    • [1] RYNDZIONEK R,SIENKIEWICZ U.A review of recent advances in the single-and multi-degree-of-freedom ultrasonic piezoelectric motors[J].Ultrasonics,2021(3):106471.

    • [2] YU H,LIU Y,TIAN X,et al.A precise rotary positioner driven by piezoelectric bimorphs:Design,analysis and experimental evaluation[J].Sensors and Actuators A Physical,2020,313:112197.

    • [3] PENG J,MA L,LI X,et al.A novel synchronous micro motor for intravascular ultrasound imaging[J].IEEE Transactions on Biomedical Engineering,2019,66(3):802-809.

    • [4] KANG D,KIM K,KIM D,et al.Optimal design of high precision XY-scanner with nanometer-level resolution and millimeter-level working range [J].Mechatronics,2009,194:562-570.

    • [5] 赵盖,雷浩,宋敬伏,等.一种基于表面织构的超声电机用增摩结构:CN211296596U[P].2020-08-18.ZHAO G,LEI H,SONG J F,et al.A friction-increasing structure for ultrasonic motor based on surface texture:CN211296596U[P].2020-08-18.(in Chinese)

    • [6] 汪溢汀,曹敏.推荐两种在摩擦材料中作增摩成分的新型优质原料[C]//第九届中国摩擦密封材料技术交流暨产品展示会.上海:中国摩擦密封材料协会,2007:130-132,136.WANG Y T,CAO M.Two new raw-materials for frictionincreasing [ C ]//The 9th China Friction & Sealing Material Technology Exchange and Product Exhibition.Shanghai:China Friction & Sealing Material Association,2007:130-132,136.(in Chinese)

    • [7] MITTRA J,KAVALUR A,KUMBHAR N T,et al.Effectiveness of pulsed laser deposited ZrO2 surface film over autoclaved oxide film on a Zr alloy for hydrogen barrier application[J].Surface and Coatings Technology,2020,404(5):126548.

    • [8] LI X,DENG J,GE D,et al.Rapid crystallization of electrohydrodynamically atomized ZrO2 thin films by laser annealing[J].Applied Surface Science,2020,510(Apr.30):145510.1-145510.11.

    • [9] MADHUSUDHANA R,NAYYASHREE K C,KRISHNAMURTHY L,et al.Synthesis and characterization of zirconium oxide ZrO2 films on AA5052 and glass substrates[J].IOP Conference Series:Materials Science and Engineering,2021,10651(1):012018.

    • [10] LI X,DENG J,LU Y,et al.Tribological behavior of ZrO2/WS2 coating surfaces with biomimetic shark-skin structure [J].Ceramics International,2019,45(17):21759-21767.

    • [11] MAHALINGAM S,EDIRISINGHE M J.Novel preparation of nitrogen-doped titanium dioxide films[J].Journal of Physics D Applied Physics,2008,41(21):215406.

    • [12] MUHAMMAD N M,NAEEM A M,DURAISAMY N,et al.Fabrication of high quality zinc-oxide layers through electrohydrodynamic atomization [J].Thin Solid Films,2012,520(6):1751-1756.

    • [13] SUN J,DENG J,LI X,et al.Preparation and tribological properties of MoS2-based multiple-layer structured films fabricated by electrohydrodynamic jet deposition[J].Surface and Coatings Technology,2020,384:125334.

    • [14] LI X,DENG J,YUE H,et al.Wear performance of electrohydrodynamically atomized WS2 coatings deposited on biomimetic shark-skin textured surfaces [J].Tribology International,2019,134(5):240-251.

    • [15] MENDEZ A R,TAN T Y,LOW H Y,et al.Micro-textured films for reducing microbial colonization in a clinical setting[J].Journal of Hospital Infection,2018,98(1):83-89.

    • [16] WANG D,ZHU X,LIANG J,et al.Electrohydrodynamic jet printing of PZT thick film micro-scale structures[J].Journal of the European Ceramic Society,2015,35(13):3475-3483.

    • [17] YANG X,JIANG X,YIN Z,et al.An economic and concise method to solve nozzle clogging issue during electro hydrodynamic printing[J].International Journal of Modern Physics B,2019,33(23):1950260.

    • [18] WANG D,ZHA W,FENG L,et al.Electrohydrodynamic jet printing and a preliminary electrochemistry test of graphene micro-scale electrodes [J].Journal of Micromechanics and Microengineering,2016,26(4):045010.

    • [19] LI X,DENG J,MENG Y.One-step mask patterning of micro lead zirconate titanate arrays by electrohydrodynamic atomization [J].Ceramics International,2020,46(17):27570-27578.

    • [20] 李学木.基于电射流的PZT厚膜制备及其性能表征[D].大连:大连理工大学,2017.LI X M.Fabrication and characterization of PZT thick films based on electrohydrodynamic jet deposition[D].Dalian:Dalian University of Technology,2017.(in Chinese)

    • [21] 李杰,黄镕敏,王超磊,等.仿生微织构与氟硅烷修饰对6061铝合金浸润性的影响[J].中国表面工程,2020,33(2):29-36.LI J,HUANG R M,WANG C L,et al.Effects of biomimetic microtexture and fluoroalkylsilane modification on wettability of 6061 aluminum alloy[J].China Surface Engineering,2020,33(2):29-36.(in Chinese)

    • [22] 侯启敏,杨学锋,王守仁,等.仿生织构类型及其对表面摩擦性能影响[J].中国表面工程,2020,33(3):18-32.HOU Q M,YANG X F,WANG S R,et al.Bionic texture types and their influence on surface friction properties [J].China Surface Engineering,2020,33(3):18-32.(in Chinese)

    • [23] 缪晨炜,郭智威,袁成清.仿生多尺度沟槽织构对表面摩擦性能的影响[J].中国表面工程,2019,32(1):22-30.MIAO C W,GUO Z W,YUAN C Q.Effects of bionic multiscales groove textures on surface tribological properties [J].China Surface Engineering,2019,32(1):22-30.(in Chinese)

    • [24] 张占立.蛇类爬行动物腹鳞的材料特性及摩擦学行为研究 [D].镇江:江苏大学,2007.ZHANG Z L.Research on material characteristic and tribological behavior for vental scale of snakes [ D].Zhenjiang:Jiangsu University,2007.(in Chinese)

    • [25] 林振汉,林钢,吴亮,等.氧化锆系的相结构和转变[J].稀有金属,2003,27(1):49-52.LIN Z H,LIN G,WU L,et al.Phase structure and transformation of zirconia system [J].Rare Metal,2003,27(1):49-52.(in Chinese)

    • [26] 管昊,贡湘君,刘荣,等.不同晶型结构纳米 ZrO2 的稳定化制备[J].材料研究学报,2014,28(2):139-143.GUAN H,GONG X J,LIU R,et al.Preparation of stable nanosized ZrO2 particles with different crystallographic structures [J].Materials Research Journal,2014,28(2):139-143.(in Chinese)

  • 参考文献

    • [1] RYNDZIONEK R,SIENKIEWICZ U.A review of recent advances in the single-and multi-degree-of-freedom ultrasonic piezoelectric motors[J].Ultrasonics,2021(3):106471.

    • [2] YU H,LIU Y,TIAN X,et al.A precise rotary positioner driven by piezoelectric bimorphs:Design,analysis and experimental evaluation[J].Sensors and Actuators A Physical,2020,313:112197.

    • [3] PENG J,MA L,LI X,et al.A novel synchronous micro motor for intravascular ultrasound imaging[J].IEEE Transactions on Biomedical Engineering,2019,66(3):802-809.

    • [4] KANG D,KIM K,KIM D,et al.Optimal design of high precision XY-scanner with nanometer-level resolution and millimeter-level working range [J].Mechatronics,2009,194:562-570.

    • [5] 赵盖,雷浩,宋敬伏,等.一种基于表面织构的超声电机用增摩结构:CN211296596U[P].2020-08-18.ZHAO G,LEI H,SONG J F,et al.A friction-increasing structure for ultrasonic motor based on surface texture:CN211296596U[P].2020-08-18.(in Chinese)

    • [6] 汪溢汀,曹敏.推荐两种在摩擦材料中作增摩成分的新型优质原料[C]//第九届中国摩擦密封材料技术交流暨产品展示会.上海:中国摩擦密封材料协会,2007:130-132,136.WANG Y T,CAO M.Two new raw-materials for frictionincreasing [ C ]//The 9th China Friction & Sealing Material Technology Exchange and Product Exhibition.Shanghai:China Friction & Sealing Material Association,2007:130-132,136.(in Chinese)

    • [7] MITTRA J,KAVALUR A,KUMBHAR N T,et al.Effectiveness of pulsed laser deposited ZrO2 surface film over autoclaved oxide film on a Zr alloy for hydrogen barrier application[J].Surface and Coatings Technology,2020,404(5):126548.

    • [8] LI X,DENG J,GE D,et al.Rapid crystallization of electrohydrodynamically atomized ZrO2 thin films by laser annealing[J].Applied Surface Science,2020,510(Apr.30):145510.1-145510.11.

    • [9] MADHUSUDHANA R,NAYYASHREE K C,KRISHNAMURTHY L,et al.Synthesis and characterization of zirconium oxide ZrO2 films on AA5052 and glass substrates[J].IOP Conference Series:Materials Science and Engineering,2021,10651(1):012018.

    • [10] LI X,DENG J,LU Y,et al.Tribological behavior of ZrO2/WS2 coating surfaces with biomimetic shark-skin structure [J].Ceramics International,2019,45(17):21759-21767.

    • [11] MAHALINGAM S,EDIRISINGHE M J.Novel preparation of nitrogen-doped titanium dioxide films[J].Journal of Physics D Applied Physics,2008,41(21):215406.

    • [12] MUHAMMAD N M,NAEEM A M,DURAISAMY N,et al.Fabrication of high quality zinc-oxide layers through electrohydrodynamic atomization [J].Thin Solid Films,2012,520(6):1751-1756.

    • [13] SUN J,DENG J,LI X,et al.Preparation and tribological properties of MoS2-based multiple-layer structured films fabricated by electrohydrodynamic jet deposition[J].Surface and Coatings Technology,2020,384:125334.

    • [14] LI X,DENG J,YUE H,et al.Wear performance of electrohydrodynamically atomized WS2 coatings deposited on biomimetic shark-skin textured surfaces [J].Tribology International,2019,134(5):240-251.

    • [15] MENDEZ A R,TAN T Y,LOW H Y,et al.Micro-textured films for reducing microbial colonization in a clinical setting[J].Journal of Hospital Infection,2018,98(1):83-89.

    • [16] WANG D,ZHU X,LIANG J,et al.Electrohydrodynamic jet printing of PZT thick film micro-scale structures[J].Journal of the European Ceramic Society,2015,35(13):3475-3483.

    • [17] YANG X,JIANG X,YIN Z,et al.An economic and concise method to solve nozzle clogging issue during electro hydrodynamic printing[J].International Journal of Modern Physics B,2019,33(23):1950260.

    • [18] WANG D,ZHA W,FENG L,et al.Electrohydrodynamic jet printing and a preliminary electrochemistry test of graphene micro-scale electrodes [J].Journal of Micromechanics and Microengineering,2016,26(4):045010.

    • [19] LI X,DENG J,MENG Y.One-step mask patterning of micro lead zirconate titanate arrays by electrohydrodynamic atomization [J].Ceramics International,2020,46(17):27570-27578.

    • [20] 李学木.基于电射流的PZT厚膜制备及其性能表征[D].大连:大连理工大学,2017.LI X M.Fabrication and characterization of PZT thick films based on electrohydrodynamic jet deposition[D].Dalian:Dalian University of Technology,2017.(in Chinese)

    • [21] 李杰,黄镕敏,王超磊,等.仿生微织构与氟硅烷修饰对6061铝合金浸润性的影响[J].中国表面工程,2020,33(2):29-36.LI J,HUANG R M,WANG C L,et al.Effects of biomimetic microtexture and fluoroalkylsilane modification on wettability of 6061 aluminum alloy[J].China Surface Engineering,2020,33(2):29-36.(in Chinese)

    • [22] 侯启敏,杨学锋,王守仁,等.仿生织构类型及其对表面摩擦性能影响[J].中国表面工程,2020,33(3):18-32.HOU Q M,YANG X F,WANG S R,et al.Bionic texture types and their influence on surface friction properties [J].China Surface Engineering,2020,33(3):18-32.(in Chinese)

    • [23] 缪晨炜,郭智威,袁成清.仿生多尺度沟槽织构对表面摩擦性能的影响[J].中国表面工程,2019,32(1):22-30.MIAO C W,GUO Z W,YUAN C Q.Effects of bionic multiscales groove textures on surface tribological properties [J].China Surface Engineering,2019,32(1):22-30.(in Chinese)

    • [24] 张占立.蛇类爬行动物腹鳞的材料特性及摩擦学行为研究 [D].镇江:江苏大学,2007.ZHANG Z L.Research on material characteristic and tribological behavior for vental scale of snakes [ D].Zhenjiang:Jiangsu University,2007.(in Chinese)

    • [25] 林振汉,林钢,吴亮,等.氧化锆系的相结构和转变[J].稀有金属,2003,27(1):49-52.LIN Z H,LIN G,WU L,et al.Phase structure and transformation of zirconia system [J].Rare Metal,2003,27(1):49-52.(in Chinese)

    • [26] 管昊,贡湘君,刘荣,等.不同晶型结构纳米 ZrO2 的稳定化制备[J].材料研究学报,2014,28(2):139-143.GUAN H,GONG X J,LIU R,et al.Preparation of stable nanosized ZrO2 particles with different crystallographic structures [J].Materials Research Journal,2014,28(2):139-143.(in Chinese)

  • 手机扫一扫看