en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张诗怡,女,1999年出生,硕士研究生。主要研究方向为材料表面工程与摩擦学。E-mail:1178438743@qq.com

刘秀波(通信作者),男,1968年出生,博士,教授,博士研究生导师。主要研究方向为表面工程与摩擦学、激光加工。E-mail:liuxiubosz@163.com

中图分类号:TG146;TH117

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210707002

参考文献 1
ZHANG Z Q,YANG F,ZHANG H W,et al.Influence of CeO2 addition on forming quality and microstructure of TiCx-reinforced CrTi4-based laser cladding composite coating [J].Materials Characterization,2021,171:110732.
参考文献 2
杨凡,张志强,张宏伟,等.CeO2 对 TiCx 增强钛基激光熔覆层成形质量和组织的影响[J].中国表面工程,2020,33(3):137-151.YANG F,ZHANG Z Q,ZHANG H W,et al.Effects of CeO2 on forming quality and microstructure of TiCx-reinforced Ti-based laser cladding coating[J].China Surface Engineering,2020,33(3):137-151.(in Chinese)
参考文献 3
祝杨,庄宿国,刘秀波,等.Ti6Al4V 合金激光熔覆 Ti3 SiC2 增强Ni60复合涂层组织与摩擦学性能[J].摩擦学学报,2021,41(3):414-422.ZHU Y,ZHUANG S G,LIU X B,et al.Microstructure and tribological properties of Ti3 SiC2 enhanced Ni60 composite coatings on Ti6Al4V alloy by laser cladding [J].Tribology,2021,41(3):414-422.(in Chinese)
参考文献 4
柯金,刘秀波,庄宿国,等.Ti6Al4V 合金激光熔覆NiMoSi复合涂层的高温抗氧化性能[J].中国表面工程,2018,31(6):109-117.KE J,LIU X B,ZHUANG S G,et al.High temperature oxidation resistance of NiMoSi composite coatings on Ti6Al4V alloy by laser cladding[J].China Surface Engineering,2018,31(6):109-117.(in Chinese)
参考文献 5
王一澎,陈志国,汪力,等.激光比能对 Fe2B 激光熔覆涂层微观组织与性能的影响[J].中国表面工程,2020,33(1):117-124.WANG Y P,CHENG Z G,WANG L,et al.Effects of laser specific energy on microstructure and properties of Fe2B laser cladding coating[J].China Surface Engineering,2020,33(1):117-124.(in Chinese)
参考文献 6
毛邈,苏钰,蔡李,等.钛合金激光熔覆纯Cu粉的热力学与组织性能[J].材料热处理学报,2016,37(1):200-204.MAO M,SU Y,CAI L,et al.Thermodynamics of laser cladding pure copper powder on titanium alloy and microstructure and performance of the coatings [J].Transaction of Materials and Heat Treatment,2016,37(1):200-204.(in Chinese)
参考文献 7
ZHOU Z Y,LIU X B,ZHUANG S G,et al.Laser in-situ synthesizing Ti5 Si3/Al3Ni2 reinforced Al3Ti/NiTi composite coatings:Microstructure,mechanical characteristics and oxidation behavior [J].Optics and Laser Technology,2019,109:99-109.
参考文献 8
WENG F,YU H J,CHEN C Z,et al.Microstructures and wear properties of laser cladding Co-based composite coatings on Ti6Al4V[J].Materials and Design,2015,80:174-181.
参考文献 9
周仲炎,庄宿国,杨霞辉,等.Ti6Al4V 合金激光原位合成自润滑复合涂层高温摩擦学性能[J].材料工程,2019,47(3):101-108.ZHOU Z Y,ZHUANG S G,YANG X H,et al.High temperature tribological properties of laser in-situ synthesized self-lubricating composite coating on Ti6Al4V alloy [J].Journal of Materials Engineering,2019,47(3):101-108.(in Chinese)
参考文献 10
HECTOR T,MANEL R R,BRAHAM P.Tribological behaviour of self-lubricating materials at high temperatures [J].International Materials Reviews,2018,63(5):309-340.
参考文献 11
SHI X L,WANG M,ZHAI W Z,et al.Influence of Ti3 SiC2 content on tribological properties of NiAl matrix self-lubricating composites[J].Materials and Design,2013,45:179-189.
参考文献 12
欧阳春生,刘秀波,罗迎社,等.304 不锈钢表面激光制备 Ti3 SiC2-Ni 基自润滑复合涂层的高温摩擦学性能[J].表面技术,2020,49(8):161-171.OUYANG C S,LIU X B,LUO Y S,et al.High-temperature tribological properties of Ti3 SiC2-Ni based self-lubricating composite coatings prepared on 304 stainless steel by laser cladding[J].Surface Technology,2020,49(8):161-171.(in Chinese)
参考文献 13
VOEVODIN A A,MURATORE C,AOUADI S M.Hard coatings with high temperature adaptive lubrication and contact thermal management:Review [J].Surface & Coatings Technology,2014,257:247-265.
参考文献 14
WENG F,YU H J,CHEN C Z,et al.Microstructure and property of composite coatings on titanium alloy deposited by laser cladding with Co42 +TiN mixed powders[J].Journal of Alloys and Compounds,2016,686:74-81.
参考文献 15
EMMERLICH J,MUSIC D,EKLUND P,et al.Thermal stability of Ti3 SiC2 thin films [J].Acta Materialia,2007,55(4):1479-1488.
参考文献 16
LIU K,LI Y J,WANG J,et al.In-situ synthesized Ni-Zr intermetallic/ceramic reinforced composite coatings on zirconium substrate by high power diode laser[J].Journal of Alloys and Compounds,2015,624:234-240.
参考文献 17
LI X,ZHANG C H,ZHANG S,et al.Manufacturing of Ti3 SiC2 lubricated Co-based alloy coatings using laser cladding technology [J].Optics and Laser Technology,2019,114:209-215.
参考文献 18
秦阳,闫华,高秋实,等.TC4 表面激光熔覆原位合成 Ti3 SiC2/Ni 基涂层的组织与耐磨性能[J].有色金属工程,2019,9(4):34-40,85.QIN Y,YAN H,GAO Q S,et al.Microstructure and wear resistance of in-situ synthesized Ti3 SiC2/Ni-based coating by laser cladding on titanium alloy [J].Nonferrous Metals Engineering,2019,9(4):34-40,85.(in Chinese)
参考文献 19
LI N,LIU W,XIONG H P,et al.In-situ reaction of Ti-Si-C composite powder and formation mechanism of laser deposited Ti6Al4V/(TiC + Ti3 SiC2)system functionally graded material [J].Materials & Design,2019,183:108155-108155.
参考文献 20
XUE Y,WANG H M.Microstructure and wear properties of laser clad TiCo/Ti2Co intermetallic coatings on titanium alloy [J].Applied Surface Science,2004,243(1):278-286.
参考文献 21
LI H,PENG L M,GONG M,et al.Processing and microstructure of Ti3 SiC2/M(M = Ni or Co)composites [J].Materials Letters,2005,59(21):2647-2649.
参考文献 22
YUAN J H,ZHU Y C,ZHENG X B,et al.Improvement in tribological properties of atmospheric plasma-sprayed WC-Co coating followed by Cu electrochemical impregnation [J].Applied Surface Science,2009,255(18):7959-7965.
参考文献 23
REN S,MENG J,LU J,et al.Tribological behavior of Ti3 SiC2 sliding against Ni-based alloys at elevated temperatures [J].Tribology Letters,2008,31(2):129-137.
参考文献 24
REN S,MENG J,LU J,et al.Tribo-physical and tribo-chemical aspects of WC-based cermet/Ti3 SiC2 tribo-pair at elevated temperatures [J].Tribology International,2010,43(1):512-517.
参考文献 25
VERMA A,TARATE P,ABHYANKAR A C,et al.High temperature wear in CoCrFeNiCux high entropy alloys:The role of Cu[J].Scripta Materialia,2019,161:28-31.
参考文献 26
XIN B B,YU Y J,ZHOU J S,et al.Effect of copper molybdate on the lubricating properties of NiCrAlY laser clad coating at elevated temperatures [J].Surface & Coatings Technology,2017,313:328-336.
参考文献 27
袁建辉,祝迎春,雷强,等.WC-Co 涂层中Cu和 MoS2 的添加对其高温摩擦性能的影响[J].材料导报,2012,26(16):9-12,41.YUAN J H,ZHU Y C,LEI Q,et al.Effects of Cu and MoS2 addition on high temperature tribological properties of WC-Co coating[J].Materials Reports,2012,26(16):9-12,41.(in Chinese)
目录contents

    摘要

    为突破 Ti6Al4V 合金在关键运动零部件的应用限制,提高其耐磨减摩性能并延长稳定服役周期,采用激光熔覆技术成功在其表面制备 Co-5%Ti 3 SiC2 、Co-5%Ti 3 SiC2 -10%Cu、Co-5%Ti 3 SiC2 -20%Cu (wt. %) 三种配比的复合涂层,系统分析三种复合涂层的微观组织、物相、显微硬度以及室温和 600 ℃ 下的摩擦学性能和磨损机理。 研究发现:Co-5%Ti 3 SiC2 涂层主要由γ-Co 固溶体、润滑相 Ti 3 SiC2 、硬质相 TiC 和金属间化合物 CoTi x 构成,含 Cu 涂层出现新物相 Cu 及 CuTi x。 性能上,复合涂层的显微硬度均得到大幅提高,达到 Ti6Al4V 基体(370 HV0. 5 )的 2. 1 ~ 2. 4 倍。 室温下,Co-5%Ti 3 SiC2 -10%Cu 涂层表现出最好的减摩性能,摩擦因数降低了 68. 7%;而在 600 ℃ 下,复合涂层发生严重氧化,形成氧化膜使磨损率降低,其中 Co-5%Ti 3 SiC2-20%Cu 涂层磨损率为 2. 5×10-7 mm 3 / N·m,表现出最好的耐磨性。 探索了一类新的耐磨减摩涂层体系,表现出良好的提升效果,并揭示了 MAX 相与传统软金属之间的协同润滑过程。

    Abstract

    In order to break through the application limitation of Ti6Al4V alloy in key moving parts, three composite coatings of Co-5% Ti 3 SiC2 , Co-5%Ti 3 SiC2 -10%Cu, Co-5%Ti 3 SiC2 -20%Cu (wt. %) are successfully prepared on the surface of Ti6Al4V alloy by laser cladding to improve its wear resistance and friction reduction performance and extend the stable service cycle. Their microstructure, phase, microhardness as well as tribological properties and wear mechanisms are systematically investigated at room temperature (RT) and 600 ℃ . The study shows that Co-5%Ti 3 SiC2 coating is mainly composed of γ-Co solid solution, lubricating phase Ti 3 SiC2 , hard phase TiC as well as intermetallic compounds CoTi x, and the new phases Cu and CuTi x appear in the Cu containing coatings. In terms of performance, the microhardness of the composite coatings is greatly improved, which is 2. 1 ~ 2. 4 times of the Ti6Al4V substrate (370 HV0. 5 ). At RT, the Co-5%Ti 3 SiC2 -10%Cu coating exhibits the best friction reduction performance, and the coefficient of friction (COF) is reduced by 68. 7%. At 600 ℃ , the composite coatings are seriously oxidized and form an oxide film, which reduces the wear rate, in which the wear rate of Co-5%Ti 3 SiC2 -20%Cu coating is 2. 5×10-7 mm 3 / N·m, showing the best wear resistance. This paper explores a new kind of wear-resistant and anti-friction coating system, shows a good improvement effect, and reveals the synergistic lubrication process between MAX phase and traditional soft metals.

  • 0 前言

  • Ti6Al4V(TC4)合金作为一种(α+β)双相合金, 具有密度低、耐高温、耐腐蚀、生物相容性好等特点, 在航空、医疗、海洋等领域广泛应用[1-2]。而Ti6Al4V合金耐磨减摩性能较差,严重缩短了其作为运动零部件的使用寿命,使其在工业上的应用受到限制,因此提高钛合金表面耐磨性引发了国内外研究学者的广泛关注[3-4]

  • 目前,激光熔覆技术由于稀释率低、形成组织致密、材料选择广泛等特点[5],广泛应用于材料表面改性和功能性修复。毛邈等[6] 用预置粉末法在Ti6Al4V基体表面成功熔覆纯Cu粉涂层,涂层的显微硬度达到800HV0.05,磨损量是基体(8.2mg)的1/4。 ZHOU等[7] 采用激光原位合成法成功地在Ti6Al4V合金表面制备了Al-Si-Ni20Cr复合涂层,复合涂层主要由Ti5 Si3/Al3Ni2 增强颗粒和Al3Ti/NiTi金属间化合物组成,使得硬度高达基体的2.5~3倍。另外,WENG等[8] 在Ti6Al4V合金表面成功熔覆了Co42/B4C/SiC/Y2O3 复合涂层, 涂层主要由CoTi、NiTi、TiC、TiB2、CoTi2、和Cr7C3、Ti5 Si3 组成,其硬度高至1314HV0.2,其中,加入20%B4C-7%SiC1%Y2O3 的涂层耐磨性最好。周仲炎等[9] 在Ti6Al4V合金表面激光熔覆Ni60-16.8%TiC-23.2%WS2 高温自润滑耐磨复合涂层,其显微硬度达到701.88HV0.5,约为基体的2倍,800℃ 时的磨损率为2.92×10-5 mm 3/N·m,是基体的1/6,明显改善了基体耐磨性。

  • Ti3 SiC2 属于层状六方结构化合物,由于其优异的可加工性、导电性、塑性以及抗氧化性和自润滑性能,已被逐渐应用于自润滑涂层[10-12]。而Cu作为一种软金属,具有高导热率、高导电性以及延展性好等特点,也可作固体润滑剂来提高涂层力学性能,但与Ag等其他软金属相比,铜在高温条件下作固体润滑剂的研究很少,因此需要进一步研究,以评估其在高温应用中替代Ag的潜力[13]

  • 本文拟将Cu与Ti3 SiC2 两类润滑相结合,辅以纯Co作为主要黏结相及增强相, 设计了Co-5%Ti3 SiC2、 Co-5%Ti3 SiC2-10%Cu、 Co-5%Ti3 SiC2-20%Cu (wt.%) 三种不同配比的Co-Cu/Ti3 SiC2 材料体系,采用同步送粉法在Ti6Al4V合金表面分别制备三种复合涂层,深入研究其微观组织、物相、显微硬度及宽温域下的摩擦学性能。

  • 1 材料及方法

  • 试验选取Ti6Al4V合金为基体,化学成分为Ti-6.01Al-3.8V-0.3Fe-0.1C (质量分数wt.%)。加工成40mm× 20mm × 8mm的试样,以40mm × 20mm为激光熔覆试验面,用砂纸研磨去除表面氧化皮后使用无水乙醇清洗干燥。

  • 激光熔覆工艺的涂层原料采用纯度均为99.9%的纯Co粉末( 平均粒径110 μm)、纯Cu粉末(平均粒径110 μm)和三元层状陶瓷Ti3 SiC2 (平均粒径75 μm)粉末混合而成,各合金粉末及复合粉末的微观形貌可见图1。使用精确度为0.001g的电子秤精确测量每种粉末的重量,具体配比见表1,随后置于DECO-PBM-V-0.4L型行星立式球磨机中,以540r/min球磨2h,获得均匀的混合粉末,并用真空干燥箱以100℃ 干燥2h, 为方便说明, 将Co-5%Ti3 SiC2、 Co-5%Ti3 SiC2-10%Cu和Co-5%Ti3 SiC2-20%Cu涂层分别定义为C1、C2和C3。

  • 使用2kW激光功率的LDM-8060型半导体激光加工系统在Ti6Al4V基体上以同步送粉法制备复合涂层,试验工艺参数如表2所示。利用线切割将所得试样制成所需形状,抛光后用王水腐蚀便于观察复合涂层微观形貌。

  • 选用TESCAN MIRA3/Quanta FEG 250型SEM观察涂层显微组织,EDS分析组织元素分布,XRD分析物相组成。利用HX-1000TM/LCD显微硬度计测量涂层沿深度方向的显微硬度。利用高温磨损试验机(HT-1000)测量涂层摩擦学性能,其中用氮化硅球(Si3N4,直径为5mm)作对磨球,试验参数如表3所示。用探针式磨痕测量仪(MT-500)测量磨损轮廓。在室温和600℃条件下对每个试样进行三次磨损试验,并计算出平均值。磨损试验结束后,利用SEM/EDS重复对磨损表面和收集的磨屑进行进一步的形貌表征及元素定量分析。磨损率的计算公式如式(1)所示:

  • 图1 激光熔覆粉末的微观形貌

  • Fig.1 Morphologies of laser cladding powder

  • 表1 三种复合涂层的组成和比例

  • Table1 Composition and proportion of the three kinds of composited coatings materials (wt.%)

  • WR=V/(LS)
    (1)
  • 式中,V 为磨损量(mm 3),L为正载荷(N),S 为滑动距离(m),WR 为磨损率(mm 3/N·m)。

  • 表2 激光熔覆工艺参数

  • Table2 Laser cladding process parameters

  • 表3 摩擦磨损试验参数

  • Table3 Experimental parameters of friction and wear test

  • 2 试验结果及分析

  • 2.1 物相分析

  • 图2 为三种复合涂层的XRD谱图,C1复合涂层的主要物相为固溶体 γ-Co、硬质相TiC,润滑相Ti3 SiC2 和金属间化合物CoTi x。在C2、C3复合涂层中明显地检测到了Cu和CuTi x 等物相。由于制备过程中保护气( Ar) 的存在,未检测到氧化物[14]。激光熔覆过程中,Ti3 SiC2 在高温下部分分解,Si原子脱出并部分挥发,且由于涂层材料中添加Ti3 SiC2 的含量很少,使熔池中Si元素很少,难以被检测到[15]。而且,根据文献[15],仅XRD图谱很难识别激光熔覆制备涂层中的所有相,其原因有两个,激光熔覆期间快速冷却速率的非平衡效应,导致晶格过饱和和变形,另外涂层中可能相的衍射峰对应的晶面间距彼此接近,而且一些相(尤其是沉淀)的较小尺寸和较少数量导致其难以识别。根据现有文献, γ-Co是一种能在417℃以上稳定存在且具有fcc结构的亚稳态过饱和固溶体,当温度低于417℃ 时,γ-Co将转变为hcp结构的 α-Co固溶体,而激光熔覆技术具有冷凝速度快的特点,使得大部分 γ-Co并不能及时转化,因此成为涂层中的主要固溶相[17]。同时,Ti3 SiC2 在激光熔覆过程中会分解生成TiC [18-19], 熔池中大量存在的Co会与基体表层Ti结合,形成金属间化合物CoTi x,在强对流下弥散分布并起到增强增韧作用[20]。当加入Cu后,Cu主要以单质Cu、 (Cu, Co)及CuTi x 三种形式存在。

  • 2.2 显微组织分析

  • 图3 为C1涂层上部、中部以及结合区的组织形貌,C1涂层由于激光熔覆快速熔化及冷却的特征,出现的析出相主要为树枝晶A、胞状组织B和连续基体C,EDS结果如表4所示,结合涂层的XRD图谱可知:树枝晶A主要由Ti和C组成,推测其为TiC;胞状组织B主要包括Ti和Co,其原子比接近2 ∶1,推测为CoTi2;连续基体C主要由Ti、Al和Co组成,推测主要是 α-Ti固溶体和 γ-Co固溶体。同时在结合区观察到大量针状组织,主要是钛合金在激光熔覆后发生快速冷却使 β 相发生马氏体转变而形成的过饱和固溶体。

  • 图2 C1、C2、C3涂层的XRD图谱

  • Fig.2 XRD patterns of C1, C2, C3coatings

  • 图3 C1涂层典型组织形貌图

  • Fig.3 Morphology of typical microstructures in C1coating

  • 表4 C1涂层典型显微组织EDS结果

  • Table4 EDS results of typical microstructures of C1coating (at.%)

  • 由于C2与C3涂层微观结构类似,因此选取Cu含量较高的C3涂层进行分析。图4为C3涂层上部、中部以及结合区的组织形貌图。因为熔池凝固特征,如图4c所示结合区基体与熔池界面垂直方向上的温度梯度较大,冷却后形成的针状组织清晰可见。如图4b所示,涂层中部区域主要由块状组织D,灰色连续基体E以及树枝晶F组成,其EDS结果如表5所示,与XRD图谱结合分析可知块状组织D主要由Ti、Co、Cu元素构成,推测其为 γ-Co及部分金属间化合物构成。灰色连续基体E主要由Ti、 Co构成,推测其为Co-Ti金属间化合物,黑色树枝晶F则主要为TiC硬质相。

  • 图4 C3涂层典型组织形貌图

  • Fig.4 Morphology of typical microstructures in C3coating

  • 表5 C3涂层典型显微组织EDS结果

  • Table5 EDS results of typical microstructures of C3coating (at.%)

  • 2.3 显微硬度

  • 图5 为C1、C2、C3三种复合涂层的显微硬度曲线图,分别测得C1、 C2、 C3涂层的显微硬度为902.51HV0.5、799.53HV0.5、884.73HV0.5,均为基体(370HV0.5)的2.1~2.4倍。这是由于复合涂层中产生的硬质相TiC和Ti-Co/Ti-Cu金属间化合物随着熔池中产生强对流从而在熔覆层中均匀分布, 导致弥散强化;其次激光熔覆过程中过冷度很大,晶粒生长受抑制,使晶粒得到细化。由图5可知,C2与C3涂层显微硬度略低于C1涂层是因为添加Cu粉后,形成金属间化合物CuTi x,CoTi x 的含量减少, Cu及形成的化合物硬度低于含Co化合物,因此涂层硬度降低;Cu的导热性较好,使C3涂层的稀释率大于C2,使Cu/Ti/Co之间的化合物增多,且Cu较多时,未能形成化合物的Cu固溶入 γ-Co中形成固溶强化,使得C3涂层的硬度高于C2涂层。

  • 图5 三种激光熔覆涂层的显微硬度

  • Fig.5 Microhardness of three laser cladded coatings

  • 2.4 摩擦因数和磨损率

  • 图6 为室温和600℃下Ti6Al4V合金基体、C1、 C2、C3涂层的摩擦因数变化图。室温下,Ti6Al4V合金基体的摩擦因数约为0.48,而C1、C2、C3涂层的摩擦因数分别为0.53、0.15、0.21。 Ti3 SiC2 与Co的润湿性较差,易于形成疏松颗粒,力学性能差[21], 使得C1涂层的摩擦因数最高。加入软金属Cu粉后,Cu能够均匀渗透进入多孔层,分布于弥散的硬质相间,难以移出。硬质相提高承载能力,同时,Cu缓冲硬质相在摩擦过程中受到的压力,两者相互协同,使C2、C3涂层的摩擦因数下降,室温下的减摩性能优异[22]。在600℃ 条件下,基体、C1、C2和C3涂层的摩擦因数为0.46、0.51、0.43和0.46,C2、C3涂层的摩擦因数与基体相当,说明在高温下,Cu的加入对改善基体减摩性能的作用并不明显。

  • 图7 和图8为Ti6Al4V合金和Co-Cu/Ti3 SiC2 复合涂层在室温和600℃ 下的磨损率和磨损轮廓。 Ti6Al4V合金与C1、C2、C3复合涂层在室温下的磨损率分别为16 × 10-6、 2.90 × 10-6 、 0.18 × 10-6 、0.25× 10-6 mm 3/( N·m),Ti6Al4V基体具有最低的显微硬度,导致磨损轮廓宽而深,磨损率最高且耐磨性最差;C1、C2、C3涂层的硬度高,对磨球压入涂层表面的深度浅,磨损率低,且由于Cu元素的加入,C2、C3涂层韧性提高,磨损率降低, 耐磨性提高。在600℃ 条件下, Ti6Al4V合金与C1、C2、C3复合涂层的磨损率分别为3.41×10-6 、 0.31×10-6、0.38 × 10-6、0.25 × 10-6 mm 3/( N·m); 与室温相比,C1涂层磨损率出现明显下降,推测在600℃ 条件下Ti3 SiC2 发生氧化生成TiO2 和SiO2, 这两类氧化物均具有较稳定及致密的金红石结构,可起到良好的润滑作用[23-24]

  • 2.5 磨损机理

  • 图9 为Ti6Al4V合金和Co-Cu/Ti3 SiC2 复合涂层在室温下的磨损以及磨屑形貌图。从图9a1可以看出,Ti6Al4V合金的磨损表面出现了严重的塑性变形以及大量犁沟,可归因于基体显微硬度较低,在磨损过程中,Si3N4 球在正压力作用下压入基体并沿滑移方向进行持续剪切,在基体磨损轨道上形成微切削和犁沟,磨损轨道两侧材料受到损伤,从表面挤出或剥落形成磨粒, 与对磨球和摩擦表面一起形成三体磨粒磨损,也导致Ti6Al4V合金基体在摩擦试验中阻力增大,即摩擦因数上升。图9a2为室温下Ti6Al4V合金的磨屑形貌图,可以发现磨屑主要为粉末状,这也进一步验证了三体磨损的出现。所以Ti6Al4V合金在室温下的磨损机理主要为严重的磨粒磨损和塑性变形。

  • 图6 Ti6Al4V合金基体和Co-Cu/Ti3 SiC2 复合涂层在室温和600℃下的摩擦因数图

  • Fig.6 Friction coefficients of Ti6Al4V alloy substrate and Co-Cu/Ti3 SiC2 composite coatings at room temperature and 600℃

  • 图7 Ti6Al4V合金基体和Co-Cu/Ti3 SiC2 复合涂层在室温和600℃下的磨损率

  • Fig.7 Wear rates of Ti6Al4V alloy substrate and Co-Cu/Ti3 SiC2 composite coatings at room temperature and 600℃

  • 图8 Ti6Al4V合金基体和Co-Cu/Ti3 SiC2 复合涂层在室温和600℃下的磨损轮廓

  • Fig.8 Profile of worn Ti6Al4V alloy substrate and Co-Cu/Ti3 SiC2 composite coatings at room temperature and 600℃

  • 图9 Ti6Al4V合金和Co-Cu/Ti3 SiC2 复合涂层在室温下的磨损及磨屑形貌图

  • Fig.9 Morphology of wear and debris of Ti6Al4V alloy and Co-Cu/Ti3 SiC2 composite coatings at room temperature

  • 图9b1为C1涂层在室温下的磨损形貌图,与Ti6Al4V基体相比,C1涂层的表面磨损较轻,存在少量白色破碎颗粒,出现轻微犁沟、微塑性变形及部分点蚀坑。 C1涂层硬度高,磨损时对磨球不能压入涂层内部,在应力作用下部分黏着物与对磨球之间形成持续黏接-断裂过程,断裂部分被直接拉出而形成点蚀坑。从图9b2可见C1涂层的磨屑以块状为主,从表6的EDS分析可知,磨损过程中的摩擦热使部分Ti和Si元素氧化形成氧化薄层,对涂层表面起到一定的保护作用,并且涂层中层状固体润滑剂Ti3 SiC2 及TiC和CoTi x 大量硬质相的出现,涂层硬度提高使磨粒磨损减轻,白色磨屑明显减少,犁沟及塑性变形情况减轻。所以,C1涂层在室温下的磨损机理主要为黏着磨损、微磨粒磨损、微氧化磨损。

  • 图9c1、9d1分别为C2、C3涂层在室温下的磨损形貌图,可发现C2、C3涂层表面出现塑性变形,几乎没有碎屑颗粒;层状固体润滑剂Ti3 SiC2 在磨损过程中易出现晶格滑移,提高润滑性能, 而且Cu较软,受力时易产生塑性变形,在摩擦过程中可做固体润滑剂,使磨痕较为平滑,降低磨粒磨损,并且具有良好的导热性,可降低磨损表面由于持续摩擦而产生的温度,减轻磨损表面的黏着倾向。从图9c2、9d2可知,C2涂层的磨屑为颗粒状及少量片状, C3涂层为片状磨屑, 其EDS结果如表6, 可知其中氧元素分别为71.72%、80.37%,在对磨过程产生的摩擦热会使Ti、Si和Cu部分氧化为TiO2、SiO2 和CuO,Cu的加入一方面可以减缓氧化物的剥落,另一方面也为氧化膜的新生成提供了“缓冲” 时间。由此, C2和C3涂层的磨损机制主要为塑性变形和微氧化磨损。

  • 表6 Co-Cu/Ti3SiC2 复合涂层在室温下的磨屑EDS结果

  • Table6 EDS results of wear debris of Co-Cu/Ti3SiC2 composite coatings at room temperature (at.%)

  • 图10 为Ti6Al4V合金和Co-Cu/Ti3 SiC2 复合涂层在600℃ 下的磨损以及磨屑形貌图。从图10a1可以发现,基体表面存在磨损颗粒,氧化膜的分层现象较为明显,这是由于在高温磨损过程中, 低硬度的基体变得更软,使高温下形成的氧化膜更易断裂,形成片状磨屑,其中部分磨屑受到持续研磨形成细碎颗粒,磨屑形状如图10a2所示。由表7中EDS分析可知,磨屑成分主要为TiO2。故此,600℃ 下基体的磨损由磨粒磨损和氧化磨损造成。

  • 图10b1和图10b2为C1复合涂层在600℃ 条件下的磨损和磨屑形貌。可以发现在压应力作用下C1涂层表面氧化膜出现大量鳞状剥落,一方面,C1涂层本身的高硬度使氧化层受挤压深度得到限制, 形成多而浅的凹坑;另一方面,氧化膜的不断脱落与生成也使摩擦阻力增大,即表现为摩擦因数曲线不断上升。由图10b2可发现磨屑主要为片状和团聚的颗粒状,表7为磨屑的EDS元素分析,其中氧元素含量为83.43%,可以发现CoOx 替代TiO2 成为表面氧化膜的主要构成。

  • 同时高温下磨损表面产生了一定的塑性流动, 在一定程度上,塑性流动延缓了磨粒磨损的程度,使得在该温度下涂层的磨损率相较于常温变小。因此,C1涂层的磨损机制主要为氧化磨损和磨粒磨损。

  • 图10c1~10c2为C2、C3涂层600℃ 下的磨损和磨屑形貌。可以看出C2磨损表面没有表现出明显破坏现象,磨损轨迹上残留着部分磨粒颗粒和轻微的片状脱落,磨屑整体呈现细碎的颗粒状和薄片状;C3涂层表面散布着少量白色颗粒,其磨屑为团聚的颗粒状,说明在磨损过程中轻微的磨粒磨损仍有发生,同时观测到部分黏着坑,表明在磨损过程中,Si3N4 对磨球在高温下对涂层表面产生较大的黏着力,涂层表面的材料随对磨球的移动挣脱拉力,从而留下了如图所示的黏着坑。根据表7中涂层的磨屑元素含量,其中氧元素含量分别达到84.43%和83.01%,表明同样发生了较为严重的氧化磨损,氧化膜主要成分为CoOx、TiO2 和少量CuO [25-26];在对磨球作用下,C2、C3复合涂层的亚表面沿滑动方向产生塑性变形和裂纹,涂层内部的固体润滑剂Cu被挤出,其中一部分在对磨球表面与磨屑混合,磨损时受到机械混合形成含有固体润滑剂和磨屑的混合物,因Cu具有良好的塑性,在高温和压应力作用下混合物在涂层表面逐渐形成连续的摩擦产物层并不断产生塑性变形,摩擦产物层隔绝了涂层表面与对磨球的直接接触并且起到一定的固体润滑作用[27]。由于C3涂层Cu含量高于C2,会形成更连续的摩擦产物层, C3涂层的磨损率有所降低。由此, 在600℃下,C2、C3涂层的磨损主要由氧化磨损、磨粒磨损和黏着磨损导致。

  • 图10 Ti6Al4V合金和Co-Cu/Ti3 SiC2 复合涂层在600℃下的磨损及磨屑形貌图

  • Fig.10 Morphology of wear and debris of Ti6Al4V alloy and Co-Cu/Ti3 SiC2 composite coatings at 600℃

  • 表7 Co-Cu/Ti3SiC2 复合涂层在600℃下的磨屑EDS结果

  • Table7 EDS results of wear debris of Co-Cu/Ti3SiC2 composite coatings at 600℃ (at.%)

  • 3 结论

  • (1)以Co、Ti3 SiC2 和Cu为原料,采用激光熔覆技术在Ti6Al4V基体表面成功设计并制备出Co-5%Ti3 SiC2、Co-5%Ti3 SiC2-10%Cu和Co-5%Ti3 SiC2-20%Cu复合涂层。其中Co-5%Ti3 SiC2 涂层的主要物相为 γ-Co、TiC、Ti3 SiC2 和CoTi x,新添加的Cu以单质和金属间化合物存在。

  • (2)室温下,复合涂层相对于Ti6Al4V基体具有更低的摩擦因数和磨损率,添加Cu元素后,涂层韧性提高,使摩擦系数降低;600℃ 下,复合涂层表面产生多种氧化物使磨损率得到不同程度降低,且随Cu含量的增加,磨损表面产生摩擦产物层提供润滑作用,Co-Cu/Ti3 SiC2 涂层的磨损由氧化、磨粒及黏着磨损造成。

  • (3)复合涂层为Ti6Al4V合金高温磨损问题提供了新的解决方案,具有良好的应用前景,但其减摩性能仅在室温下提升明显,高温性能仍需要进一步优化及深入。

  • 参考文献

    • [1] ZHANG Z Q,YANG F,ZHANG H W,et al.Influence of CeO2 addition on forming quality and microstructure of TiCx-reinforced CrTi4-based laser cladding composite coating [J].Materials Characterization,2021,171:110732.

    • [2] 杨凡,张志强,张宏伟,等.CeO2 对 TiCx 增强钛基激光熔覆层成形质量和组织的影响[J].中国表面工程,2020,33(3):137-151.YANG F,ZHANG Z Q,ZHANG H W,et al.Effects of CeO2 on forming quality and microstructure of TiCx-reinforced Ti-based laser cladding coating[J].China Surface Engineering,2020,33(3):137-151.(in Chinese)

    • [3] 祝杨,庄宿国,刘秀波,等.Ti6Al4V 合金激光熔覆 Ti3 SiC2 增强Ni60复合涂层组织与摩擦学性能[J].摩擦学学报,2021,41(3):414-422.ZHU Y,ZHUANG S G,LIU X B,et al.Microstructure and tribological properties of Ti3 SiC2 enhanced Ni60 composite coatings on Ti6Al4V alloy by laser cladding [J].Tribology,2021,41(3):414-422.(in Chinese)

    • [4] 柯金,刘秀波,庄宿国,等.Ti6Al4V 合金激光熔覆NiMoSi复合涂层的高温抗氧化性能[J].中国表面工程,2018,31(6):109-117.KE J,LIU X B,ZHUANG S G,et al.High temperature oxidation resistance of NiMoSi composite coatings on Ti6Al4V alloy by laser cladding[J].China Surface Engineering,2018,31(6):109-117.(in Chinese)

    • [5] 王一澎,陈志国,汪力,等.激光比能对 Fe2B 激光熔覆涂层微观组织与性能的影响[J].中国表面工程,2020,33(1):117-124.WANG Y P,CHENG Z G,WANG L,et al.Effects of laser specific energy on microstructure and properties of Fe2B laser cladding coating[J].China Surface Engineering,2020,33(1):117-124.(in Chinese)

    • [6] 毛邈,苏钰,蔡李,等.钛合金激光熔覆纯Cu粉的热力学与组织性能[J].材料热处理学报,2016,37(1):200-204.MAO M,SU Y,CAI L,et al.Thermodynamics of laser cladding pure copper powder on titanium alloy and microstructure and performance of the coatings [J].Transaction of Materials and Heat Treatment,2016,37(1):200-204.(in Chinese)

    • [7] ZHOU Z Y,LIU X B,ZHUANG S G,et al.Laser in-situ synthesizing Ti5 Si3/Al3Ni2 reinforced Al3Ti/NiTi composite coatings:Microstructure,mechanical characteristics and oxidation behavior [J].Optics and Laser Technology,2019,109:99-109.

    • [8] WENG F,YU H J,CHEN C Z,et al.Microstructures and wear properties of laser cladding Co-based composite coatings on Ti6Al4V[J].Materials and Design,2015,80:174-181.

    • [9] 周仲炎,庄宿国,杨霞辉,等.Ti6Al4V 合金激光原位合成自润滑复合涂层高温摩擦学性能[J].材料工程,2019,47(3):101-108.ZHOU Z Y,ZHUANG S G,YANG X H,et al.High temperature tribological properties of laser in-situ synthesized self-lubricating composite coating on Ti6Al4V alloy [J].Journal of Materials Engineering,2019,47(3):101-108.(in Chinese)

    • [10] HECTOR T,MANEL R R,BRAHAM P.Tribological behaviour of self-lubricating materials at high temperatures [J].International Materials Reviews,2018,63(5):309-340.

    • [11] SHI X L,WANG M,ZHAI W Z,et al.Influence of Ti3 SiC2 content on tribological properties of NiAl matrix self-lubricating composites[J].Materials and Design,2013,45:179-189.

    • [12] 欧阳春生,刘秀波,罗迎社,等.304 不锈钢表面激光制备 Ti3 SiC2-Ni 基自润滑复合涂层的高温摩擦学性能[J].表面技术,2020,49(8):161-171.OUYANG C S,LIU X B,LUO Y S,et al.High-temperature tribological properties of Ti3 SiC2-Ni based self-lubricating composite coatings prepared on 304 stainless steel by laser cladding[J].Surface Technology,2020,49(8):161-171.(in Chinese)

    • [13] VOEVODIN A A,MURATORE C,AOUADI S M.Hard coatings with high temperature adaptive lubrication and contact thermal management:Review [J].Surface & Coatings Technology,2014,257:247-265.

    • [14] WENG F,YU H J,CHEN C Z,et al.Microstructure and property of composite coatings on titanium alloy deposited by laser cladding with Co42 +TiN mixed powders[J].Journal of Alloys and Compounds,2016,686:74-81.

    • [15] EMMERLICH J,MUSIC D,EKLUND P,et al.Thermal stability of Ti3 SiC2 thin films [J].Acta Materialia,2007,55(4):1479-1488.

    • [16] LIU K,LI Y J,WANG J,et al.In-situ synthesized Ni-Zr intermetallic/ceramic reinforced composite coatings on zirconium substrate by high power diode laser[J].Journal of Alloys and Compounds,2015,624:234-240.

    • [17] LI X,ZHANG C H,ZHANG S,et al.Manufacturing of Ti3 SiC2 lubricated Co-based alloy coatings using laser cladding technology [J].Optics and Laser Technology,2019,114:209-215.

    • [18] 秦阳,闫华,高秋实,等.TC4 表面激光熔覆原位合成 Ti3 SiC2/Ni 基涂层的组织与耐磨性能[J].有色金属工程,2019,9(4):34-40,85.QIN Y,YAN H,GAO Q S,et al.Microstructure and wear resistance of in-situ synthesized Ti3 SiC2/Ni-based coating by laser cladding on titanium alloy [J].Nonferrous Metals Engineering,2019,9(4):34-40,85.(in Chinese)

    • [19] LI N,LIU W,XIONG H P,et al.In-situ reaction of Ti-Si-C composite powder and formation mechanism of laser deposited Ti6Al4V/(TiC + Ti3 SiC2)system functionally graded material [J].Materials & Design,2019,183:108155-108155.

    • [20] XUE Y,WANG H M.Microstructure and wear properties of laser clad TiCo/Ti2Co intermetallic coatings on titanium alloy [J].Applied Surface Science,2004,243(1):278-286.

    • [21] LI H,PENG L M,GONG M,et al.Processing and microstructure of Ti3 SiC2/M(M = Ni or Co)composites [J].Materials Letters,2005,59(21):2647-2649.

    • [22] YUAN J H,ZHU Y C,ZHENG X B,et al.Improvement in tribological properties of atmospheric plasma-sprayed WC-Co coating followed by Cu electrochemical impregnation [J].Applied Surface Science,2009,255(18):7959-7965.

    • [23] REN S,MENG J,LU J,et al.Tribological behavior of Ti3 SiC2 sliding against Ni-based alloys at elevated temperatures [J].Tribology Letters,2008,31(2):129-137.

    • [24] REN S,MENG J,LU J,et al.Tribo-physical and tribo-chemical aspects of WC-based cermet/Ti3 SiC2 tribo-pair at elevated temperatures [J].Tribology International,2010,43(1):512-517.

    • [25] VERMA A,TARATE P,ABHYANKAR A C,et al.High temperature wear in CoCrFeNiCux high entropy alloys:The role of Cu[J].Scripta Materialia,2019,161:28-31.

    • [26] XIN B B,YU Y J,ZHOU J S,et al.Effect of copper molybdate on the lubricating properties of NiCrAlY laser clad coating at elevated temperatures [J].Surface & Coatings Technology,2017,313:328-336.

    • [27] 袁建辉,祝迎春,雷强,等.WC-Co 涂层中Cu和 MoS2 的添加对其高温摩擦性能的影响[J].材料导报,2012,26(16):9-12,41.YUAN J H,ZHU Y C,LEI Q,et al.Effects of Cu and MoS2 addition on high temperature tribological properties of WC-Co coating[J].Materials Reports,2012,26(16):9-12,41.(in Chinese)

  • 参考文献

    • [1] ZHANG Z Q,YANG F,ZHANG H W,et al.Influence of CeO2 addition on forming quality and microstructure of TiCx-reinforced CrTi4-based laser cladding composite coating [J].Materials Characterization,2021,171:110732.

    • [2] 杨凡,张志强,张宏伟,等.CeO2 对 TiCx 增强钛基激光熔覆层成形质量和组织的影响[J].中国表面工程,2020,33(3):137-151.YANG F,ZHANG Z Q,ZHANG H W,et al.Effects of CeO2 on forming quality and microstructure of TiCx-reinforced Ti-based laser cladding coating[J].China Surface Engineering,2020,33(3):137-151.(in Chinese)

    • [3] 祝杨,庄宿国,刘秀波,等.Ti6Al4V 合金激光熔覆 Ti3 SiC2 增强Ni60复合涂层组织与摩擦学性能[J].摩擦学学报,2021,41(3):414-422.ZHU Y,ZHUANG S G,LIU X B,et al.Microstructure and tribological properties of Ti3 SiC2 enhanced Ni60 composite coatings on Ti6Al4V alloy by laser cladding [J].Tribology,2021,41(3):414-422.(in Chinese)

    • [4] 柯金,刘秀波,庄宿国,等.Ti6Al4V 合金激光熔覆NiMoSi复合涂层的高温抗氧化性能[J].中国表面工程,2018,31(6):109-117.KE J,LIU X B,ZHUANG S G,et al.High temperature oxidation resistance of NiMoSi composite coatings on Ti6Al4V alloy by laser cladding[J].China Surface Engineering,2018,31(6):109-117.(in Chinese)

    • [5] 王一澎,陈志国,汪力,等.激光比能对 Fe2B 激光熔覆涂层微观组织与性能的影响[J].中国表面工程,2020,33(1):117-124.WANG Y P,CHENG Z G,WANG L,et al.Effects of laser specific energy on microstructure and properties of Fe2B laser cladding coating[J].China Surface Engineering,2020,33(1):117-124.(in Chinese)

    • [6] 毛邈,苏钰,蔡李,等.钛合金激光熔覆纯Cu粉的热力学与组织性能[J].材料热处理学报,2016,37(1):200-204.MAO M,SU Y,CAI L,et al.Thermodynamics of laser cladding pure copper powder on titanium alloy and microstructure and performance of the coatings [J].Transaction of Materials and Heat Treatment,2016,37(1):200-204.(in Chinese)

    • [7] ZHOU Z Y,LIU X B,ZHUANG S G,et al.Laser in-situ synthesizing Ti5 Si3/Al3Ni2 reinforced Al3Ti/NiTi composite coatings:Microstructure,mechanical characteristics and oxidation behavior [J].Optics and Laser Technology,2019,109:99-109.

    • [8] WENG F,YU H J,CHEN C Z,et al.Microstructures and wear properties of laser cladding Co-based composite coatings on Ti6Al4V[J].Materials and Design,2015,80:174-181.

    • [9] 周仲炎,庄宿国,杨霞辉,等.Ti6Al4V 合金激光原位合成自润滑复合涂层高温摩擦学性能[J].材料工程,2019,47(3):101-108.ZHOU Z Y,ZHUANG S G,YANG X H,et al.High temperature tribological properties of laser in-situ synthesized self-lubricating composite coating on Ti6Al4V alloy [J].Journal of Materials Engineering,2019,47(3):101-108.(in Chinese)

    • [10] HECTOR T,MANEL R R,BRAHAM P.Tribological behaviour of self-lubricating materials at high temperatures [J].International Materials Reviews,2018,63(5):309-340.

    • [11] SHI X L,WANG M,ZHAI W Z,et al.Influence of Ti3 SiC2 content on tribological properties of NiAl matrix self-lubricating composites[J].Materials and Design,2013,45:179-189.

    • [12] 欧阳春生,刘秀波,罗迎社,等.304 不锈钢表面激光制备 Ti3 SiC2-Ni 基自润滑复合涂层的高温摩擦学性能[J].表面技术,2020,49(8):161-171.OUYANG C S,LIU X B,LUO Y S,et al.High-temperature tribological properties of Ti3 SiC2-Ni based self-lubricating composite coatings prepared on 304 stainless steel by laser cladding[J].Surface Technology,2020,49(8):161-171.(in Chinese)

    • [13] VOEVODIN A A,MURATORE C,AOUADI S M.Hard coatings with high temperature adaptive lubrication and contact thermal management:Review [J].Surface & Coatings Technology,2014,257:247-265.

    • [14] WENG F,YU H J,CHEN C Z,et al.Microstructure and property of composite coatings on titanium alloy deposited by laser cladding with Co42 +TiN mixed powders[J].Journal of Alloys and Compounds,2016,686:74-81.

    • [15] EMMERLICH J,MUSIC D,EKLUND P,et al.Thermal stability of Ti3 SiC2 thin films [J].Acta Materialia,2007,55(4):1479-1488.

    • [16] LIU K,LI Y J,WANG J,et al.In-situ synthesized Ni-Zr intermetallic/ceramic reinforced composite coatings on zirconium substrate by high power diode laser[J].Journal of Alloys and Compounds,2015,624:234-240.

    • [17] LI X,ZHANG C H,ZHANG S,et al.Manufacturing of Ti3 SiC2 lubricated Co-based alloy coatings using laser cladding technology [J].Optics and Laser Technology,2019,114:209-215.

    • [18] 秦阳,闫华,高秋实,等.TC4 表面激光熔覆原位合成 Ti3 SiC2/Ni 基涂层的组织与耐磨性能[J].有色金属工程,2019,9(4):34-40,85.QIN Y,YAN H,GAO Q S,et al.Microstructure and wear resistance of in-situ synthesized Ti3 SiC2/Ni-based coating by laser cladding on titanium alloy [J].Nonferrous Metals Engineering,2019,9(4):34-40,85.(in Chinese)

    • [19] LI N,LIU W,XIONG H P,et al.In-situ reaction of Ti-Si-C composite powder and formation mechanism of laser deposited Ti6Al4V/(TiC + Ti3 SiC2)system functionally graded material [J].Materials & Design,2019,183:108155-108155.

    • [20] XUE Y,WANG H M.Microstructure and wear properties of laser clad TiCo/Ti2Co intermetallic coatings on titanium alloy [J].Applied Surface Science,2004,243(1):278-286.

    • [21] LI H,PENG L M,GONG M,et al.Processing and microstructure of Ti3 SiC2/M(M = Ni or Co)composites [J].Materials Letters,2005,59(21):2647-2649.

    • [22] YUAN J H,ZHU Y C,ZHENG X B,et al.Improvement in tribological properties of atmospheric plasma-sprayed WC-Co coating followed by Cu electrochemical impregnation [J].Applied Surface Science,2009,255(18):7959-7965.

    • [23] REN S,MENG J,LU J,et al.Tribological behavior of Ti3 SiC2 sliding against Ni-based alloys at elevated temperatures [J].Tribology Letters,2008,31(2):129-137.

    • [24] REN S,MENG J,LU J,et al.Tribo-physical and tribo-chemical aspects of WC-based cermet/Ti3 SiC2 tribo-pair at elevated temperatures [J].Tribology International,2010,43(1):512-517.

    • [25] VERMA A,TARATE P,ABHYANKAR A C,et al.High temperature wear in CoCrFeNiCux high entropy alloys:The role of Cu[J].Scripta Materialia,2019,161:28-31.

    • [26] XIN B B,YU Y J,ZHOU J S,et al.Effect of copper molybdate on the lubricating properties of NiCrAlY laser clad coating at elevated temperatures [J].Surface & Coatings Technology,2017,313:328-336.

    • [27] 袁建辉,祝迎春,雷强,等.WC-Co 涂层中Cu和 MoS2 的添加对其高温摩擦性能的影响[J].材料导报,2012,26(16):9-12,41.YUAN J H,ZHU Y C,LEI Q,et al.Effects of Cu and MoS2 addition on high temperature tribological properties of WC-Co coating[J].Materials Reports,2012,26(16):9-12,41.(in Chinese)

  • 手机扫一扫看