en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

黄盛辉,男,1996年出生,硕士研究生。主要研究方向为MAX相薄膜低温制备与性能。E-mail:1900341023@email.szu.edu.cn;

谷坤明(通信作者),男,1973年出生,博士,副教授。主要研究方向为材料表面与界面。E-mail:kmgu@szu.edu.cn

中图分类号:TG174

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210609001

参考文献 1
BARSOUM M W.The Mn+1AXn phases:A new class of solids;Thermodynamically stable nanolaminates [J].Prog.Solid State Chem.,2000(28):201-281.
参考文献 2
MO Y,RULIS P,CHING W Y.Electronic structure and optical conductivities of 20 MAX-phase compounds[J].Physical Review B,2012,86(16):1098-1121.
参考文献 3
ARYAL S,SAKIDJA R,BARSOUM M W,et al.A genomic approach to the stability,elastic,and electronic properties of the MAX phases [J].Physica Status Solidi B-Basic Solid State Physics,2014,251(8):1480-1497.
参考文献 4
RADOVIC M,BARSOUM M W.MAX phases:Bridging the gap between metals and ceramics [J].American Ceramic Society Bulletin,2013,92(3):20-27.
参考文献 5
张雅丁,莫丹,吕岩甲,等.基于专利分析的核燃料领域MAX相材料发展态势研究[C]//中国核科学技术进展报告(第五卷)———中国核学会2017年学术年会论文集第9册(核情报分卷、核技术经济与管理现代化分卷、核电子学与核探测技术分卷),2017:46-50.ZHANG Yading,MO Dan,LÜ Yanjia,et al.Study on development trend of MAX phase material in nuclear fuel field based on patent analysis[C]//Progress Report on China Nuclear Science & Technology(Vol.5).Volume 9 of proceedings of 2017 academic annual meeting of China Nuclear Society,2017:46-50.(in Chinese)
参考文献 6
施立群,戚强.新型反应堆侯选结构材料及其抗辐照特性 [C]//中国核物理学会核靶专业组.第十二届全国核靶技术学术交流会会议论文摘要集.中国核物理学会核靶专业组:中国核物理学会,2013:29-30.SHI Liqun,QI Qiang.Novel reactor candidate structural materials and their radiation resistance characteristics [ C ]//Nuclear target professional group of Chinese Nuclear Physics Society.Abstracts of the 12th National Symposium on nuclear target technology.Chinese society of nuclear physics,2013:29-30.(in Chinese)
参考文献 7
赵公澍,葛芳芳,程晓英,等.轰击离子能量对 V2AlC MAX 相涂层结构及力学性能的影响[J].中国表面工程,2019,32(3):80-87.ZHAO Gongshu,GE Fangfang,CHENG Xiaoying,et al.Effects of bombarding ions energy on structure and mechanical properties of V2AlC MAX-phase coatings[J].China Surface Engineering,2019,32(3):80-87.(in Chinese)
参考文献 8
郑伟.高性能锂/钠离子电池MXene基负极材料的制备与性能研究[D].南京:东南大学,2019.ZHENG Wei.Preparation and properties of MXene-based composite anode materials for high performance lithium/sodium ion batteries [ D].Nanjing:Southeast University,2019.(in Chinese)
参考文献 9
邹国栋.新型 MAX/MXene 基复合电极材料的构筑及电化学性能研究[D].秦皇岛:燕山大学,2019.ZOU Guodong.Architecture and elecerochemical properties of novel MAX/MXene-based composite electrode materials [ D].Qinhuangdao:Yanshan University,2019.(in Chinese)
参考文献 10
陆境莲.燃料电池双极板表面制备MAX相薄膜的研究[D].深圳:深圳大学,2019.LU Jinglian.Preparation and characterization of MAX phase films for bipolar plates in PEMFC [ D ].Shenzhen:Shenzhen University,2019.(in Chinese)
参考文献 11
ABBAS N,QIN X,ALI S,et al.Direct deposition of extremely low Interface-contact-resistant Ti2AlC MAX-phase coating on stainless-steel by mid-frequency magnetron sputtering method [J].Journal of the European Ceramic Society,2020,40(8):3338-3342.
参考文献 12
ABBAS N,QIN X,ALI S,et al.Study of microstructural variation with annealing temperature of Ti-Al-C films coated on stainless steel substrates[J].International Journal of Hydrogen Energy,2020,45(4):3186-3192.
参考文献 13
秦琴,张耀,干好,等.MAX 相的制备方法研究进展[J].兵器材料科学与工程,2020,300(3):148-152.QIN Qin,ZHANG Yao,GAN Hao,et al.Research progress in preparation of MAX phase[J].Ordnance Material Science and Engineering,2020,300(3):148-152.(in Chinese)
参考文献 14
史沛然,法涛.MAX 相薄膜制备技术的研究进展[J].热加工工艺,2018.498(20):38-41.SHI Peiran,FA Tao.Research progress of preparation technology of MAX phase film[J].Hot Working Technology,2018,498(20):38-41.(in Chinese)
参考文献 15
李子峰,刘国潭,傅宇东.MAX 相金属陶瓷制备技术的研究进展[J].热加工工艺,2021,50(6):26-29.LI Zifeng,LIU Guotan,FU Yudong.Research progress of preparation technology of MAX phases metal-ceramic materials [J].Hot Working Technology,2021,50(6):26-29.(in Chinese)
参考文献 16
SONODA T,NAKAO S,IKEYAMA M.Deposition and characterization of MAX-phase containing Ti-Si-C thin films by sputtering using elemental targets [J].Vacuum,2013,92:95-99.
参考文献 17
SONODA T,NAKAO S,IKEYAMA M.Preparation of MAXphase-containing Ti-Si-C thin films by magnetron sputtering using elemental targets [J].Japanese Journal of Applied Physics,2012,51(1):01AC06.
参考文献 18
WILHELMSSON O,PALMQUIST J P,NYBERG T,et al.Deposition of Ti2AlC and Ti3AlC2 epitaxial films by magnetron sputtering [J].Applied Physics Letters,2004,85(6):1066-1068.
参考文献 19
WILHELMSSON O,PALMQUIST J P,LEWIN E,et al.Deposition and characterization of ternary thin films within the TiAl-C system by DC magnetron sputtering[J].Journal of Crystal Growth,2006,291:290-300.
参考文献 20
PALMQUIST J P,LI S,PERSSON P O.et al.Mn + 1AXn phases in the Ti-Si-C system studied by thin-film synthesis and ab initio calculations [J].Physical Review B,2004,70(16):165401.
参考文献 21
PALMQUIST J P,JANSSON U,SEPPANEN T,et al.Magnetron sputtered epitaxial single-phase Ti3 SiC2 thin films [J].Applied Physics Letters,2002,81(5):835-837.
参考文献 22
HOGBERG H,HULTMAN L,EMMERLICH J,et al.Growth and characterization of MAX-phase thin films [J].Surface & Coatings Technology,2005,193:6-10.
参考文献 23
HOGBERG H,EKLUND P,EMMERLICH J,et al.Epitaxial Ti2GeC,Ti3GeC2,and Ti4GeC3 MAX-phase thin films grown by magnetron sputtering [J].Journal of Materials Research,2011,20(4):779-782.
参考文献 24
MERTENS R,SUN Z M,MUSIC D,et al.Effect of the composition on the structure of Cr ‐ Al ‐ C investigated by combinatorial thin film synthesis and ab initio calculations[J].Advanced Engineering Materials,2010,6(11):903-907.
参考文献 25
SCHNEIDER J M,MERTENS R,MUSIC D.Structure of V2AlC studied by theory and experiment [J].Journal of Applied Physics,2006,99(1):092102.
参考文献 26
LI Y M,ZHAO G,QIAN Y,et al.Deposition and characterization of phase-pure Ti2AlC and Ti3AlC2 coatings by DC magnetron sputtering with cost-effective targets[J].Vacuum,2018,153:62-69.
参考文献 27
BEHRISCH R,ECKSTEIN W.Sputtering by particle bombardment[M].Berlin:Springer-Verlag Berlin,2007.
参考文献 28
OHRING M.Materials science of thin films[ M].Amsterdam:Elsevier,2001.
参考文献 29
SU R,ZHANG H,O′ CONNOR D J,et al.Deposition and characterization of Ti2AlC MAX phase and Ti3AlC thin films by magnetron sputtering [J].Materials Letters,2016,179(15):194-197.
参考文献 30
EMMERLICH J,MUSIC D,EKLUND P,et al.Thermal stability of Ti3SiC2 thin films[J].Acta Materialia,2007,55(4):1479-1488.
参考文献 31
EKLUND P,VIROJANADARA C,EMMERLICH J,et al.Photoemission studies of Ti3SiC2 and nanocrystalline-TiC/amorphous-SiC nanocomposite thin films [J].Physical Review B,2006,74(4):35-41.
参考文献 32
JOELSSON T,FLINK A,BIRCH J,et al.Deposition of singlecrystal Ti2AlN thin films by reactive magnetron sputtering from a 2Ti:Al compound target[J].Journal of Applied Physics,2007,102(7):2259.
参考文献 33
PERSSON P O,KODAMBAKA S,PETROV I,et al.Epitaxial TiAlN(0001)thin film deposition by dual-target reactive magnetron sputtering [J].Acta Materialia,2007,55(13):4401-4407.
参考文献 34
ZHANG Z,JIN H,CHAI J,et al.Temperature-dependent microstructural evolution of Ti2AlN thin films deposited by reactive magnetron sputtering [J].Applied Surface Science,2016,368:88-96.
参考文献 35
SU R,ZHANG H,MENG X,et al.Synthesis of Cr2AlC thin films by reactive magnetron sputtering[J].Fusion Engineering & Design,2017,125:562-566.
参考文献 36
ALAMI J,EKLUND P,EMMERLICH J,et al.High-power impulse magnetron sputtering of Ti-Si-C thin films from a Ti3SiC2 compound target [J].Thin Solid Films,2006,515(4):1731-1736.
参考文献 37
FIELD M R,CARLSSON P,EKLUND P,et al.A combinatorial comparison of DC and high power impulse magnetron sputtered Cr2AlC [J].Surface & Coatings Technology,2014,259:746-750.
参考文献 38
OUGIER M,MICHAU A,SCHUSTER F,et al.Effects of HiPIMS discharges and annealing on Cr-Al-C thin films [J].Surface and Coatings Technology,2020,399:126144.
参考文献 39
JIANG Y,STANISLAV M,SCHNEIDER J M.Growth of V-Al-C thin films by direct current and high power impulse magnetron sputtering from a powder metallurgical composite target[J].Thin Solid Films,2013,538:1-6.
参考文献 40
ZHANG T F,WANG Q M,LEE J,et al.Nanocrystalline thin films synthesized from a Ti2AlN compound target by high power impulse magnetron sputtering technique[J].Surface & Coatings Technology,2012,212:199-206.
参考文献 41
凌国伟,沈辉宇,周福堂.阴极电弧沉积技术及其发展[J].真空,1996,1:1-12.LING Guowei,SHEN Huiyu,ZHOU Futang.Cathodic arc plasma deposition as a coating technique and its development [J].Vacuum,1996,1:1-12.(in Chinese)
参考文献 42
张而耕,吴雁.现代PVD表面工程技术及应用[M].北京:科学出版社,2013.ZHANG Ergeng,WU Yan.Modern PVD surface engineering technology and application[M].Beiijing:Science Press,2013.(in Chinese)
参考文献 43
ROSEN J,RYVES L,PERSSON P O A,et al.Deposition of epitaxial Ti2AlC thin films by pulsed cathodic arc[J].Journal of Applied Physics,2007,101(5):27.
参考文献 44
MOCKUTE A,PERSSON O,MAGNUS F.Synthesis and characterization of arc deposited magnetic(Cr,Mn)2AlC MAX phase films[J].Physica Status Solidi(RRL)-Rapid Research Letters,2014,8(5):420-423.
参考文献 45
WANG Z,LIU J,WANG L,et al.Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique[J].Applied Surface Science,2017,396:1435-1442.
参考文献 46
PHANI A R,KRZANOWSKI J E,NAINAPARAMPIL J J.Structural and mechanical properties of TiC and Ti-Si-C films deposited by pulsed laser deposition [J].Journal of Vacuum Science & Technology A Vacuum Surfaces & Films,2001,19(5):2252-2258.
参考文献 47
LANGE C,BARSOUM M W,SCHAAF P.Towards the synthesis of MAX-phase functional coatings by pulsed laser deposition [J].Applied Surface Science,2007,254(4):1232-1235.
参考文献 48
LANGE C,HOPFELD M,WILKE M,et al.Pulsed laser deposition from a pre-synthesized Cr2AlC MAX phase target with and without ion-beam assistance [J].Physica Status Solidi,2012,209(3):545-552.
参考文献 49
HU J J,BULTMAN J E,PATTON S,et al.Pulsed laser deposition and properties of Mn+1AXn phase formulated Ti3SiC2 thin films[J].Tribology Letters,2004,16(1):113-122.
参考文献 50
EKLUND P,PALMQUIST J P,WILHELMSSON O,et al.Comment on “ pulsed laser deposition and properties of Mn + 1AXn phase formulated Ti3SiC2 thin films ” [J].Tribology Letters,2004,17(4):977-978.
参考文献 51
BISWAS A,SENGUPTA A,RAJPUT U,et al.Growth,properties,and applications of pulsed laser deposited nanolaminate Ti3AlC2 thin films[J].Physical Review Applied,2020,13(4):044075.
参考文献 52
NICKL J J,SCHWEITZER K K,LUXENBERG P.Gasphasenabscheidung imsystem Ti-Si-C [J].Journal of The Less-Common Metals,1972,26(3):335-353.
参考文献 53
GOTO T,HIRAI T.Chemically vapor deposited Ti3SiC2 [J].Materials Research Bulletin,1987,22(9):1195-1201.
参考文献 54
RACAULT C,LANGLAIS F,NASLAIN R,et al.On the chemical vapour deposition of Ti3SiC2 from TiCl4-SiCl4-CH4-H2 gas mixtures[J].Journal of Materials Science,1994,29(15):3941-3948.
参考文献 55
PICKERING E,LACKEY W J,CRAIN S.CVD of Ti3SiC2 [J].Chemical Vapor Deposition,2000,6(6):289-295.
参考文献 56
JACQUES S,DI-MURRO H,BERTHET M,et al.Pulsed reactive chemical vapor deposition in the C-Ti-Si system from H2/TiCl4/SiCl4 [J].Thin Solid Films,2005,478(1-2):13-20.
参考文献 57
FAKIH H,JACQUES S,BERTHET M P,et al.The growth of Ti3SiC2 coatings onto SiC by reactive chemical vapor deposition using H2 and TiCl4 [J].Surface and Coatings Technology,2006,201(6):3748-3755.
参考文献 58
FAKIH H,JACQUES S,DEZELLUS O,et al.Phase equilibria and reactive chemical vapor deposition(RCVD)of Ti3SiC2[J].Journal of Phase Equilibria & Diffusion,2008,29(3):239-246.
参考文献 59
JACQUES S,FAKIH H,VIALA J C.Reactive chemical vapor deposition of Ti3SiC2 with and without pressure pulses:Effect on the ternary carbide texture [J].Thin Solid Films,2010,518(18):5071-5077.
参考文献 60
EMMERLICH J,HOGBERG H,SASVARI S,et al.Growth of Ti3SiC2 thin films by elemental target magnetron sputtering[J].Journal of Applied Physics,2004,96(9):4817-4826.
参考文献 61
CHEN Z S,LI H J,FU Q G,et al.Annealing effect on microstructure and mechanical properties of magnetron sputtering Ti-Si-C thin film[J].Materials Science & Technology,2013,29(8):975-979.
参考文献 62
MAHMOUDI Z,TABAIAN S H,REZAIE H R,et al.Synthesis of Ti2AlC & Ti3AlC2 MAX phases by Arc-PVD using Ti-Al target in C2H2/Ar gas mixture and subsequent annealing [J].Ceramics International,2019,46(4):4968-4976.
参考文献 63
WANG Z Y,LI W T,WANG C C,et al.Transforming the amorphous Ti-Al-C coatings to high-purity Ti2AlC MAX phase coatings by prolonged annealing at 550℃ [J].Materials Letters,2020,261:127160.
参考文献 64
NICOLAI J,FURGEAUD C,FONROSE B W,et al.Formation mechanisms of Ti2AlC MAX phase on SiC-4H using magnetron sputtering and post-annealing [J].Materials & Design,2018,144,209-213.
参考文献 65
FRODELIUS J,EKLUND P,BECKERS M,et al.Sputter deposition from a Ti2AlC target:Process characterization and conditions for growth of Ti2AlC[J].Thin Solid Films,2010,518(6):1621-1626.
参考文献 66
BARSOUM M W,GOLCZEWSKI J,SEIFERT H J,et al.Fabrication and electrical and thermal properties of Ti2InC,Hf2InC and(Ti,Hf)2InC[J].Journal of Alloys & Compounds,2002,340(1-2):173-179.
参考文献 67
BECKERS M,SCHELL N,MARTINS R M S,et al.Nucleation and growth of Ti2AlN thin films deposited by reactive magnetron sputtering onto MgO(111)[J].Journal of Applied Physics,2007,102(7):201-143.
参考文献 68
EKLUND P,BECKERS M,JANSSON U,et al.The Mn+1AXn phases:materials science and thin-film processing [J].Thin Solid Films,2010,518(8):1851-1878.
参考文献 69
BECKERS M,SCHELL N,MARTINS R M S,et al.Phase stability of epitaxially grown Ti2AlN thin films [J].Applied Physics Letters,2006,89:74101-74101.
参考文献 70
HETTINGER J D,LOFLAND S E,FINKEL P,et al.Electrical transport,thermal transport,and elastic properties of M2AlC(M =Ti,Cr,Nb,and V)[J].Physical Review B,2005,72(11):115120.
参考文献 71
JOVIC V D,JOVIC B M,GUPTA S,et al.Corrosion behavior of select MAX phases in NaOH,HCl and H2SO4[J].Corrosion Science,2006,48(12):4274-4282.
参考文献 72
BARSOUM M W,EL-RAGHY T,ALI M.Processing and characterization of Ti2AlC,Ti2AlN,and Ti2AlC0.5N0.5[J].Metallurgical and Materials Transactions A,2000,31(7):1857-1865.
参考文献 73
WANG X H,ZHOU Y C.Intermediate-temperature oxidation behavior of Ti2AlC in air [J].Journal of Materials Research,2002,17(11):2974-2981.
参考文献 74
SUN Z M.Progress in research and development on MAX phases:a family of layered ternary compounds[J].International Materials Reviews,2011,56(3):143-166.
参考文献 75
WANG J Y,ZHOU Y C.Dependence of elastic stiffness on electronic band structure of nanolaminate M2AlC(M = Ti,V,Nb,and Cr)ceramics[J].Physical Review B,2004,69(21):1681-1685.
参考文献 76
WANG X H,ZHOU Y C.Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics:a review[J].Journal of Materials Science & Technology,2010,26(5):385-416.
参考文献 77
SUN Z M,LI S,AHUJA R,et al.Calculated elastic properties of M2AlC [J].Solid State Communications,2004,129(9):589-592.
参考文献 78
COVER M F,WARSCHKOW O M,BILEK M M.et al.Elastic properties of Tin + 1AlCn and Tin + 1AlNn MAX phases [J].Advanced Engineering Materials,2008,10(10):935-938.
参考文献 79
TANG C,STUEBER M,JAENTSCH U,et al.Synthesis and characterization of Ti2AlC coatings by magnetron sputtering from three elemental targets and ex-situ annealing [J].Surface and Coatings Technology,2017,309:445-455.
参考文献 80
PSHYK A,COY E,MATEUSZ K,et al.Low-temperature growth of epitaxial Ti2AlC MAX phase thin films by low-rate layer-by-layer PVD [J].Materials Research Letters,2019,7(6):244-250.
参考文献 81
WANG X H,ZHOU Y C.Microstructure and properties of Ti3AlC2 prepared by the solid-liquid reaction synthesis and simultaneous in-situ hot pressing process[J].Acta Materialia,2002,50(12):3143-3151.
参考文献 82
SCABAROZI T,GANGULY A,HETTINGER J D,et al.Electronic and thermal properties of Ti3Al(C0.5,N0.5)2,Ti2Al(C0.5,N0.5)and Ti2AlN [J].Journal of Applied Physics,2008,104(7):27.
参考文献 83
TZENOV N V,BARSOUM M W.Synthesis and characterization of Ti3AlC2[J].Journal of the American Ceramic Society,2000,83(4):825-832.
参考文献 84
CHING W Y,MO Y,ARYAL S,et al.Intrinsic mechanical properties of 20 MAX ‐ Phase compounds[J].Journal of the American Ceramic Society,2013,96(7):2292-2297.
参考文献 85
GHEBOULI B,GHEBOULI M A,FATMI M,et al.Firstprinciples calculations of structural,electronic,elastic and thermal properties of phase M2SiC(M = Ti,V,Cr,Zr,Nb,Mo,Hf,Ta and W)[J].Transactions of Nonferrous Metals Society of China,2015,25(3):915-925.
参考文献 86
LI J F,SATO F,WATANABE R.Synthesis of Ti3SiC2 polycrystals by hot-isostatic pressing of the elemental powders [J].Journal of Materials Science Letters,1999,18(19):1595-1597.
参考文献 87
HOLM B,AHUJA R,JOHANSSON B.Ab initio calculations of the mechanical properties of Ti3SiC2 [J].Applied Physics Letters,2001,79(10):1450-1452.
参考文献 88
FINKEL P,BARSOUM M W,EL-RAGHY T.Low temperature dependencies of the elastic properties of Ti4AlN3,Ti3Al1.1C1.8,and Ti3SiC2[J].Journal of Applied Physics,2000,87(4):1701-1703.
参考文献 89
BARSOUM M W,EL-RAGHY T.Synthesis and characterization of a remarkable ceramic:Ti3SiC2[J].Journal of the American Ceramic Society,1996,79(7):1953-1956.
参考文献 90
KOOI B J,POPPEN R J,CARVALHO N J M,et al.Ti3SiC2:A damage tolerant ceramic studied with nano-indentations and transmission electron microscopy[J].Acta Materialia,2003,51(10):2859-2872.
参考文献 91
EL-RAGHY T,BARSOUM M W,ZAVALIANGOS A,et al.Processing and mechanical properties of Ti3SiC2:part II.Mechanical properties [J].Journal of the American Ceramic Society,1999,82:2855-2859.
参考文献 92
RADOVIC M,BARSOUM M W,EL-RAGHY T,et al.Tensile properties of Ti3SiC2 in the 25-1 300 ℃ temperature range[J].Acta Materialia,2000,48(2):453-459.
参考文献 93
EKLUND P,EMMERLICH J,HOGBERG H,et al.Structural,electrical,and mechanical properties of nc-TiC ∕ a-SiC nanocomposite thin films [J].Journal of Vacuum Science & Technology B Microelectronics & Nanometer Structures Processing Measurement & Phenomena,2005,28(6):2486-2495.
参考文献 94
BARSOUM M W,BRODKIN D,ELRAGHY T.Layered machinable ceramics for high temperature applications [J].Scripta Materialia,1997,36(5):535-541.
参考文献 95
FINKEL P,SEAMAN B,HARRELL K,et al.Electronic,thermal,and elastic properties of Ti3Si1-xGexC2 solid solutions [J].Physical Review B,2004,70(8):97-114.
参考文献 96
WILHELMSSON O,EKLUND P,HOGBERG H,et al.Structural,electrical and mechanical characterization of magnetron-sputtered V-Ge-C thin films [J].Acta Materialia,2008,56(11):2563-2569.
参考文献 97
BOUHEMADOU A.Calculated structural,electronic and elastic properties of M2GeC(M=Ti,V,Cr,Zr,Nb,Mo,Hf,Ta and W)[J].Applied Physics A,2009,96(4):959-967.
参考文献 98
YANG Z J,GUO Y D,LINGHU R F,ea al.First-principles calculation of the lattice compressibility,elastic anisotropy and thermodynamic stability of V2GeC [J].Chinese Physics B,2012,21(3):328-334.
参考文献 99
YI J X,CHEN P,LI D L,et al.Elastic and electronic properties of a new MAX compound(Cr0.5V0.5)2GeC from first-principles calculations [J].Solid State Communications,2010,150(1-2):49-53.
参考文献 100
HU C,HE L,LIU M,et al.In situ reaction synthesis and mechanical properties of V2AlC[J].Journal of the American Ceramic Society,2010,91(12):4029-4035.
参考文献 101
SIGUMONRONG D P,ZHANG J,ZHOU Y C,et al.Synthesis and elastic properties of V2AlC thin films by magnetron sputtering from elemental targets [J].Journal of Physics DApplied Physics,2009,42(18):185408-185415.
参考文献 102
BARSOUM M W.The Mn + 1AXn phases and their properties [M]//Ceramics science and technology.Berlin:Wiley ‐ VCH Verlag GmbH & Co.KGaA,2014.
参考文献 103
WANG Z,LI X,ZHOU J,et al.Microstructure evolution of VAl-C coatings synthesized from a V2AlC compound target after vacuum annealing treatment [J].Journal of Alloys and Compounds,2016,661,476-482.
参考文献 104
BARSOUM M W.MAX Phases:Properties of machinable ternary carbides and nitrides[ M].Berlin:Wiley-VCH Verlag GmbH & Co.KGaA,2013.
参考文献 105
TIAN W B,WANG P L,ZHANG G J,et al.Synthesis and thermal and electrical properties of bulk Cr2AlC [J].Scripta Materialia,2006,54(5):841-846.
参考文献 106
GRIESELER R,HAEHNLEIN B,STUBENRAUCH M,et al.Nanostructured plasma etched,magnetron sputtered nanolaminar Cr2AlC MAX phase thin films[J].Applied Surface Science,2014,292(Feb.15):997-1001.
参考文献 107
TIAN W B,WANG P L,ZHANG G J,et al.Mechanical properties of Cr2AlC ceramic [J].Journal of the American Ceramic Society,2007,90(5):1663-1666.
参考文献 108
LIU J,ZUO X,WANG Z,et al.Fabrication and mechanical properties of high purity of Cr2AlC coatings by adjustable Al contents[J].Journal of Alloys and Compounds,2018,753:11-17.
参考文献 109
NAVEED M,OBROSOV A,ZAK A,et al.Sputtering power effects on growth and mechanical properties of Cr2AlC MAX phase coatings [J].Metals-Open Access Metallurgy Journal,2016,6(11):265.
参考文献 110
LIN Z,ZHOU Y,LI M,et al.In-situ hot pressing/solid-liquid reaction synthesis of bulk Cr2AlC [J].Ztschrift fur Metallkunde,2005,96(3):291-296.
参考文献 111
SCHNEIDER J M,SIGUMONRONG D P,MUSIC D,et al.Elastic properties of Cr2AlC thin films probed by nanoindentation and ab initio molecular dynamics[J].Scripta Materialia,2007,57(12):1137-1140.
参考文献 112
DU Y L,SUN Z M,HASHIMOTO H,et al.Theoretical investigations on the elastic and thermodynamic properties of Ti2AlC0.5N0.5 solid solution[J].Physics Letters A,2009,374(1):78-82.
参考文献 113
LIN Z J,ZHUO M J,LI M S,et al.Synthesis and microstructure of layered-ternary Ti2AlN ceramic [J].Scripta Materialia,2007,56(12):1115-1118.
参考文献 114
SCABAROZI T H,ROCHE J,ROSENFELD A,et al.Synthesis and characterization of Nb2AlC thin films[J].Thin Solid Films,2009,517(9):2920-2923.
参考文献 115
SALAMA I,EL-RAGHY T,BARSOUM M W.Synthesis and mechanical properties of Nb2AlC and(Ti,Nb)2AlC [J].Journal of Alloys and Compounds,2002,347:271-278.
参考文献 116
ZHANG W,TRAVITZKY N,HU C,et al.Reactive hot pressing and properties of Nb2AlC[J].Journal of the American Ceramic Society,2010,92(10):2396-2399.
参考文献 117
SHANG L,BABEN M T,PRADEEP K G,et al.Phase formation of Nb2AlC investigated by combinatorial thin film synthesis and ab initio calculations[J].Journal of the European Ceramic Society,2016,37(1):35-41.
参考文献 118
XIE J,WANG XH,LI AJ,et al.Corrosion behavior of selected Mn+1AXn phases in hot concentrated HCl solution:Effect of a element and MX layer [J].Corrosion Science,2012,60:129-135.
参考文献 119
LI D,LIANG Y,LIU X,et al.Corrosion behavior of TiAlC in NaOH and H2SO4 [J].Journal of the European Ceramic Society,2010,30(15):3227-3234.
参考文献 120
TRAVAGLINI J,BARSOUM M W,JOVIC V,et al.The corrosion behavior of Ti3SiC2 in common acids and dilute NaOH [J].Corrosion Science,2003,45(6):1313-1327.
参考文献 121
李凌,俞国军,周兴泰.Ti3 SiC2 、Ti3AlC2 在 LiF-NaF-KF 熔盐中的腐蚀行为研究[J].核技术,2014,37(6):1-6.LI Ling,YU Guojun,ZHOU Xingtai.Corrrosion behaviour of Ti3 SiC2 and Ti3AlC2 with LiF-NaF-KF molten salt[J].Nuclear Technioues,2014,37(6):1-6.(in Chinese)
参考文献 122
FU J J,ZHANG T F,XIA Q X.et al.Oxidation and corrosion behavior of nanolaminated max-phase Ti2AlC film synthesized by high-power impulse magnetron sputtering and annealing[J].Journal of Nanomaterials,2015,2015:1-12.
参考文献 123
ZHU M,WANG R,CHEN C,et al.Comparison of corrosion behavior of Ti3 SiC2 and Ti3AlC2 in NaCl solutions with Ti[J].Ceramics International,2017,43(7):5708-5714.
参考文献 124
文陈,许广兴,樊立伟,等.NaCl 溶液中20Cr9Ni5Co14不锈钢电化学腐蚀行为[J].东北大学学报(自然科学版),2015,36(6):819-822.WEN Chen,XU Guangxing,FAN Liwei,et al.Electrochemical corrosion behaviors of 20Cr9Ni5Co14 stainless steels in NaCl solution[J].Journal of Northeastern University(Natural Science),2015,36(6):819-822.(in Chinese)
参考文献 125
雒设计,赵庆,冉照辉,等.CO2 和 H2 S 对FV520B不锈钢在NaCl溶液中电化学腐蚀行为的影响[J].机械工程材料,2019,043(10):11-14.LUO Sheji,ZHAO Qing,RAN Zhaohui,et al.Effects of CO2 and H2 S on electrochemical corrosion behavior of FV520B stainless steel in NaCl Solution [J].Materials for Mechanical Engineering,2019,43(10):11-14.(in Chinese)
参考文献 126
王苹,梅炳初,雷零.若干MAX相化合物在 NaOH、H2 SO4 和HCl中的电化学性质[J].腐蚀科学与防护技术,2009,21(1):55-57.WANG Ping,MEI Bingchu,LEI Ling.Electrochemical behavior of several compounds of MAX phase in solutions of NaOH,H2 SO4 and HCl[J].Corrosion Science and Protection Technology,2009,21(1):55-57.(in Chinese)
参考文献 127
王瑞.Ti-Si/Al-C 312 系MAX相在NaCl及 B-Li 溶液中的腐蚀行为[D].哈尔滨:哈尔滨工程大学,2016.WANG Rui.Study on the corrosion behavior of 312 Ti-Si/Al-C MAX phase in NaCl and B-Li solution [ D].Hrabin:Hrabin Engineering Uneversity,2016.(in Chinese)
参考文献 128
ZHU M,WANG R,CHEN C,et al.Electrochemical study on the corrosion behavior of Ti3SiC2 in 3.5% NaCl solution[J].RSC Advances,2017,7(21):12534-12540.
目录contents

    摘要

    MAX 相薄膜材料是材料研究的热点之一。 综述了 MAX 相薄膜的制备技术,介绍了典型的促进 MAX 相薄膜低温成相的方法,分析讨论了低温沉积 MAX 相薄膜的影响因素和生长机理,指出 MAX 相薄膜的制备难点主要是在降低温度和减少杂质相的生成。 统计并对比分析了文献中 MAX 相薄膜材料的几项主要使用性能的数据,包括导电性、耐腐蚀性能、硬度和模量,指出 MAX 相薄膜材料的耐腐蚀性能数据还不够充分和系统,甚至存在一定的不一致性,对其耐腐蚀性能的行为和机理需要更多的研究。

    Abstract

    MAX phase thin film materials are one of the hotspots of materials research. The preparation technology of MAX phase film is reviewed, the typical methods to promote MAX phase film formation at low temperature in the literature are introduced, and the influencing factors and growth mechanism of low temperature deposition MAX phase film are analyzed and discussed. It is pointed out that the main difficulties in the preparation of MAX phase film are lower the temperature and reduce the generation of impurity phases. Statistics and comparative analysis of the several main performance data of MAX phase film materials in the literature, including electrical conductivity, corrosion resistance, hardness and modulus, point out that the corrosion resistance data of MAX phase film materials are not sufficient and systematic, even there is a certain inconsistency, and more research is needed on the behavior and mechanism of its corrosion resistance.

  • 0 前言

  • “MAX相” 材料这一概念首先在2000年由BARSOUM等[1] 提出,其通式为 “ Mn +1AXn ” ( 其中 n=1,2,···),M代表过渡金属元素,A代表第三或第四主族元素,X代表碳元素或氮元素,结构如图1所示,由MX片层与A原子层在c轴方向上交替堆垛组成[2-3]。其中,M-X之间的化学键主要以较强的共价键和较弱的离子键来结合,M-A之间的化学键主要以较弱的共价键和金属键来结合,M-M之间的化学键主要以金属键来结合,因此它兼具金属与陶瓷的性能,具有良好的导电性、导热性的同时,还具有低密度、高硬度和模量、抗氧化、耐腐蚀等性能,成为“金属与陶瓷间的桥梁” [4]。 MAX相材料在工业中有着良好的应用前景,可以应用于核裂变堆的结构材料[5-7]、MXene基复合电极材料[8-9]等。

  • 将三维块体材料薄膜化能调制材料的性能、功能及拓展材料的应用领域。人们也对MAX相薄膜材料进行了大量的研究,MAX相薄膜材料作为耐磨耐腐蚀涂层也广泛应用在电器元件、刀具涂层和燃料电池双极板的保护薄膜[10-12] 等领域。目前已经有了一些综述文献讨论了MAX相薄膜的制备方法[13-15]。从应用的角度看,MAX相薄膜的低温沉积工艺更受到人们的关注,但还缺少对MAX相薄膜低温成相特点、各项性能进行评述的文献。因此本文在综述MAX相薄膜的制备方式的同时,特别评述了其低温成相特点及影响因素。另外,本文也从MAX相材料最重要的几种物性(导电性、耐腐蚀性能、力学性能)出发,统计并分析了文献上各类MAX相材料的试验数据,同时对MAX相薄膜的研究方向和热点问题进行了展望。

  • 图1 典型的MAX相结构图

  • Fig.1 Typical MAX phase structure diagram [10]

  • 1 MAX相薄膜的制备方法

  • MAX相薄膜的制备主要分为物理气相沉积 (PVD)、化学气相沉积(CVD) 等,其中物理气相沉积包括溅射沉积、阴极电弧沉积和激光脉冲沉积。常规的溅射沉积包括三元磁控溅射和化合物靶磁控溅射,这是目前制备MAX相薄膜比较稳定可靠的技术,已经成功制备出了多种不同体系的MAX相薄膜,也是工业上运用最多的一种制备方式。非常规溅射包括反应溅射、高能脉冲磁控溅射等,相较于常规溅射,非常规溅射有一定的优点,例如沉积温度更低、沉积效率更高等。但是非常规溅射目前还存在一些关键问题,例如容易生成杂质、薄膜的质量不高等问题,同时制备的MAX相材料体系相对有限, 还需要更深入的研究。

  • 1.1 物理气相沉积

  • 1.1.1 常规溅射沉积

  • 三元磁控溅射使用分别对应M、A、X三种元素的元素靶作为靶材,是目前常用的MAX相薄膜制备手段,其优点在于能够通过控制单一靶材的功率或电流来控制该靶材的沉积速率,从而改变沉积薄膜中的成分比例,尽可能去接近MAX相成相所需的原子比例。 SONODA等[16-17] 利用三元直流-射频磁控溅射,在Si和石英基底上沉积Ti-Si-C系MAX相,通过在Ti靶和Si靶上施加固定的直流功率120W和射频功率50W,而改变C靶的直流功率 (200W、300W、400W)来控制样品中的C含量,结果表明只有当沉积薄膜中Ti ∶Si ∶C的原子比例接近于3 ∶1 ∶2时,Ti3 SiC2 MAX相才能够成相。目前该方法应用于多种MAX相薄膜的生产,包括Ti-Al-C系[18-19]、 Ti-Si-C系[20-21]、 Ti-Ge-C系[22-23]、 Cr-Al-C系[24]、V-Al-C系[25]等。

  • 在MAX相薄膜制备工艺中,以化合物作为靶材进行磁控溅射也是一种普遍的方法。化合物靶材通常为MAX相薄膜对应的块体材料,或者是Ti/Al合金靶与外加C源。 ABBAS等[11] 利用Ti/Al合金靶(3/1)结合ECR的技术,将C2H2 作为碳源,在不锈钢基底上制备了Ti2AlC MAX相。 LI等[26] 将不同摩尔比的Ti、Al、C粉末在800℃ 下烧结成混合靶,在Al2O3 基底上制备了Ti-Al-C系MAX相薄膜, 研究了薄膜与靶材之间原子比例的关系。

  • 目前的研究表明,化合物靶制备MAX相薄膜最大的问题在于沉积薄膜的化学成分(质量分数) 与靶材有较大的出入,目前主流的说法包括靶材中不同元素的粒子具有不同的能量、角分布以及不同的附着系数导致各元素溅射速率不同[27-28]。同时, 由于MAX相薄膜沉积必须在较高温度下(>700℃) 进行,而薄膜沉积过程中会出现由于温度过高导致的部分元素的蒸发,包括在Ti-Al-C系MAX相薄膜中Al元素的蒸发[12,29] 和Ti-Si-C系MAX相薄膜中Si元素的蒸发[30-31],这些都可能导致薄膜中的化学成分与靶材的化学成分有较大的偏差。 LI等[26] 研究发现,其制备的元素靶在室温下沉积时并不会造成薄膜与靶材之间的化学成分偏差,而在高温下沉积时则会造成严重的化学成分偏差,这点目前还没有得到大量文献的应证,但是也值得关注。

  • 1.1.2 非常规溅射沉积

  • 反应溅射制备MAX相薄膜最早是由JOELSSON等[32]在MgO基底上制备Ti2AlN薄膜证实,在其后,反应溅射多用来制备X为N元素的MAX相薄膜[33-34]。在最新的研究中,SU等[35] 在较低温度下( 480℃) 利用反应射频溅射在MgO和Al2O3 基底上成功制备了Cr2AlC薄膜,随着反应溅射温度的提高,容易在薄膜中形成AlCr2 杂质,从而影响Cr2AlC成相。相对于其他溅射方式,反应溅射的优势在于它能够在更低的基底温度下对MAX相薄膜进行沉积,但是由于溅射靶与反应气体之间容易形成化合物,从而影响溅射薄膜的质量,因此对于该技术制备MAX相薄膜的参数控制还需要进一步的研究。

  • 高能脉冲磁控溅射 ( High-power impulse magnetron sputtering,HiPIMS)是近年来物理气相沉积方法中一项重要的技术突破,是利用较高的脉冲峰值功率和较低的脉冲占空比来使得金属产生离化率的一种磁控溅射技术。 ALAMI等[36]利用HiPIMS技术,用Ti3 SiC2 混合靶成功制备了Ti-Si-C薄膜; FIELD等[37]分别采用直流磁控溅射和HiPIMS技术在Al2O3 上沉积了Cr2AlC MAX相,研究了两种技术对制备MAX相的差异; OUGIER等[38] 利用HiPIMS技术,在室温下使用Cr2AlC靶在Zr基底上沉积了非晶态Cr-Al-C薄膜,在550℃下退火4h后形成了Cr2AlC MAX相。此外,V2AlC [39]、Ti2AlN [40] 等MAX相也被证实能够利用HiPIMS技术来沉积。由于不同材料的电离度差异较大,不同的工艺参数例如工作压力、基材倾斜度、靶基距、占空比等对于薄膜成相也有一定的影响,所以目前来说HiPIMS技术还需要进一步探索完善。

  • 1.1.3 阴极电弧沉积

  • 阴极电弧沉积技术是利用弧光放电在阴极靶表面产生等离子体,利用等离子体进行镀膜的技术,该技术能产生高度电离的等离子体,使得等离子体具有很高的能量,从而能够降低沉积温度。同时,阴极电弧沉积技术还有沉积速率高、薄膜成分均匀等优点[41-42]。 ROSEN等[43]在900℃ 下利用阴极电弧沉积技术制备了Ti2AlC外延薄膜,证实了阴极电弧沉积技术适用于MAX相薄膜的制备。 MOCKUTE等[44]利用该技术在600℃ 下制备了(Cr,Mn)2AlC MAX相,发现阴极电弧沉积中的高能等离子通道可以提高Mn在Cr2AlC中的溶解度,同时相对于直流磁控溅射,降低了沉积温度。 WANG等[45]利用阴极电弧沉积/溅射复合技术,将Ti靶作为阴极电弧沉积源,Al靶作为磁控溅射源,利用N2 和Ar作为工作气体, 成功地制备了致密、高稳定性的Ti2AlN涂层。

  • 1.1.4 激光脉冲沉积

  • 脉冲激光沉积(Pulsed laser deposition, PLD)作为一项受到广泛关注的薄膜制备技术,因其方法简单、稳定可靠等优点广泛应用于多种薄膜材料的沉积。 PHANI等[46]使用PLD技术在Si(111)和440C不锈钢基片上沉积了Ti-Si-C薄膜,随后对薄膜的表征中发现这些薄膜主要以非晶态的形式存在,且结晶度, 但都没有观察到薄膜中存在MAX相。 LANGE等[47-48]使用PLD技术在300~900K的温度范围内制备Ti-Si-C MAX相,随着温度的逐渐增加也并未发现MAX相形成,同时他们还观察到由于二次溅射效应的影响,薄膜中的Si含量随着激光束能量密度的增加而降低。随后LANGE等也尝试利用PLD技术沉积了Cr2AlC MAX相,也都未取得成功。 HU等[49] 虽然称他们在100~300℃ 的温度范围内利用PLD技术成功制备了Ti3 SiC2 薄膜,但从他们给出的数据来看这一说法还有待推敲, EKLUND等[50]指出其可能是Si固溶在TiC晶格中C位置的一种TiC相,而非Ti3 SiC2 MAX相。值得一提的是,BISWAS等[51]利用PLD技术制备成功制备出了超薄Ti3AlC2 薄膜(2~80nm),薄膜在室温下具有高导电性,同时显示出较低的电阻温度系数和较高的光学透明度。目前来说PLD技术成功制备MAX相的研究还比较少,对于PLD技术的探索还在继续,未来随着工艺参数的进一步完善,PLD技术有可能在MAX相薄膜的制备中发挥重要的作用。

  • 1.2 化学气相沉积

  • 自1972年NICKL等[52] 利用CVD方法制备MAX相薄膜以来,该方法作为一种能够实现低成本、工业化的方法在MAX相薄膜的制备领域受到了广泛的关注。其后,众多研究者采用CVD方法成功制备MAX相薄膜[53-55]。 JACQUES和FAKIH等[56-58]采用反应化学气相沉积(RCVD)的方法,即H2/TiCl4(SiCl4)气相与SiC( TiC) 固相基底发生化学反应来制备Ti3 SiC2 MAX相薄膜。 JACQUES等[59]还对比了传统的RCVD和脉冲反应化学气相沉积(P-RCVD)对于制备Ti3 SiC2 薄膜的差异,发现施加脉冲促进了固-气反应,使得气相与基底接触后形成了细小的Ti3 SiC2 晶核。目前CVD技术制备MAX相薄膜的难点在于其对制备温度要求较高 (>1 000℃),且制备的薄膜难以获得纯相,当前多数研究是针对Ti-Si-C系MAX相薄膜进行的,在其他体系的MAX相薄膜制备中仍然缺乏研究。

  • 2 MAX相薄膜的成相影响因素

  • 笔者认为,影响MAX相薄膜成相的因素主要有两个,即薄膜制备过程中的成分变化和制备温度(或者后退火温度)。其中成分变化又受温度影响, 在MAX相薄膜制备中容易发生元素富集或蒸发。总的来说,MAX相薄膜的制备需要在多方面因素的共同作用,在目前的研究中,MAX相薄膜制备的主要限制因素在于薄膜的成相对温度有较高的要求, 如何降低MAX相薄膜制备的温度(或后退火温度) 成了目前研究的重点问题。

  • 2.1 成分对MAX相薄膜成相的影响

  • 对于任何一种多元薄膜材料而言,成分都是成相最主要的影响因素之一。 MAX相薄膜的成相首先要求制备过程中M、A、X三种成分的原子比要接近所制备的体系(例如211或312体系)。在此基础上,HOGBERG等[22,60]提出了一种高温下MAX相薄膜成相的模型。以Ti3 SiC2 材料为例,HOGBERG等认为,当成分接近所需比例时,Ti3 SiC2 并不是从一开始就直接成相,而是有一个孵育时间,一开始先形成一层连续生长的TiC层,等到Si原子在TiC层中达到一定的临界浓度后才开始形成Ti3 SiC2。作者通过控制Si通量的开始与中断证实了这一模型, 如图2所示。在沉积了过渡层的样品中,作者在厚度为100nm左右时打开了Si通量,而TiC过渡层依旧往外生长了大概20nm, 然后才开始形成Ti3 SiC2 相;在图2b中,这一效果更为显著,即使没有刻意去沉积一层过渡层,在Ti3 SiC2 成相之前还是观察到一层TiC层,印证了作者之前的猜想。 CHEN等[61] 将Ti-Si-C薄膜分别在800~1 250℃ 温度下进行热处理,结果表明在1 100℃ 以上的温度Ti3 SiC2 开始成相,作者认为可能是在该温度充分的热激活,有助于Si原子克服扩散障碍并迁移到持续生长的TiC表面,当Si达到临界浓度时,Ti3 SiC2 开始在TiC的表面台阶成核,这一现象与HOGBERG模型一致。

  • 图2 900℃下制备Ti-Si-C薄膜的TEM图谱[60]

  • Fig.2 TEM patterns of Ti-Si-C films prepared at 900℃ [60]

  • 陆境莲等[10]研究了不同C ∶Ti比例对薄膜形貌及成分的影响,发现不同比例的薄膜样品中,C原子以不同的结构形式存在,随着C ∶ Ti比例的不断增加,薄膜中生成大量TiC,反而抑制了MAX相的形成。 SONODA等[16-17]通过控制C靶的功率制备了不同含C量的Ti-Si-C薄膜来研究C含量对MAX相薄膜的影响,他们认为Ti3 SiC2 薄膜的成相主要取决于C含量。但实际上MAX相形成是一个相当复杂的过程,与三种元素之间的比例密不可分,例如LI等[26]通过合成不同比例的混合靶进行溅射沉积, MAHMOUDI等[62]研究不同比例下的Ti/Al合金靶及不同的比例的C2H2/Ar工作气氛对MAX相形成的影响,最后结果都显示不同比例下的薄膜退火后有不同的相组成。大量的研究表明,MAX相形成过程中与各元素的比例有关,即要求薄膜上的元素比例尽可能贴近MAX相“211” 或“312” 中的元素比例,同时也要严格控制制备和退火温度,防止A元素由于温度过高而蒸发,从而导致薄膜中的化学成分发生偏离。

  • 2.2 温度对MAX相薄膜成相的影响

  • 在实际制备MAX相薄膜过程中,所有制备方法离不开温度的影响。从MAX相薄膜实际应用的角度出发,降低MAX相薄膜的成相温度一直是研究人员讨论的热点话题,降低成相温度意味着MAX相薄膜可以针对更多的基材,拥有更广的应用前景。而随着制备温度或者退火温度的不断升高,有文献表明薄膜中的A元素会向表面扩散,在表面上富集并且逐渐蒸发[61]。 EMMERLICH等[30-31] 研究了Ti3 SiC2 薄膜在真空退火中的稳定性,发现Ti3 SiC2 在1 100~1 200℃ 下开始分解,Si通过区域边界沿基面扩散到自由表面,随后蒸发。同时Si向外扩散会被有氧环境加速,通过反应形成气态SiO。因此,作者认为,化学环境对Ti3 SiC2 的分解也很重要,A元素的活性是Ti3 SiC2 和其他MAX相分解的主要因素。另外在多种MAX相体系中出现了由于温度升高而导致A元素扩散的现象,包括Ti-Al-C [63-66]、Ti-Al-N [67]等。同时也有研究表明[68],A元素的蒸气压越低,MAX相分解为MX就能在更低的温度下进行,例如Ti2AlC和Ti2 SiC相比, Ti2AlC会更容易分解。

  • 前文介绍的制备方法中又可以分为两大类,即在高温下直接沉积MAX相与低温沉积非晶态薄膜+后续热处理。高温沉积MAX相薄膜是指使用较高的沉积温度,使得M-A-X三种元素在沉积过程中直接形成MAX相,这种方法的好处在于能够缓解结晶过程中的应力积聚和晶界偏析等因素,可以形成均匀致密的涂层。由于高温沉积MAX相薄膜对设备要求较高,低温沉积非晶态薄膜+后续热处理也被广泛应用在MAX相薄膜制备中。这种方法的好处在于,低温沉积能够减少沉积过程中A元素的蒸发[26]。无论是采用哪种制备方式,降低制备温度(或后退火温度)都是MAX相薄膜制备的热点问题。

  • HOGBERG等[22,60]利用三元直流磁控溅射技术研究了从室温到900℃下Ti-Si-C薄膜的成相特点, 发现在700℃ 以下时没有办法形成Ti-Si-C MAX相,这可能是因为700℃ 以下时没有足够的热激活使得Si原子在Ti-Si-C晶格中找到适合自己的位置。 SU等[29]使用反应射频磁控溅射在MgO(100) 基底上制备了纯相Ti2AlC薄膜,在600~710℃的沉积温度下,作者发现随着温度的升高,晶粒逐渐增大,而且Ti2AlC晶粒在基底平面以一个不确定的方向倾斜生长,BECKERS等[69] 根据动力学效应解释了这种倾斜生长,认为在较低的基底温度下,这样的生长方式有利于入射到表面的原子更好地适应表面环境。 ABBAS等[11]通过ECR结合磁控溅射的方法在750℃下成功制备了Ti2AlC MAX相。为了进一步降低MAX相材料的成相温度,有文献表明延长退火时间可以显著降低MAX相成相所需要的温度,OUGIER等[38] 利用HiPIMS在室温下沉积非晶态的Cr-Al-C薄膜后,研究了退火温度对薄膜成相的影响,通过对比不同的退火温度和退火时间,发现延长退火时间可以降低MAX相的合成温度。 WANG等[63]在Zr合金基底上制备了非晶态Ti-Al-C薄膜,通过低温(550℃)长时间(100h)退火的方式形成了高纯度的Ti2AlC薄膜。为了进一步降低制备MAX相薄膜的温度,也可以引入其他类型的能量来部分替代温度的作用,使得M-A-X元素达到成相所需的激活能,例如HiPIMS、反应溅射、提高衬底偏压辅助磁控溅射等,目前相关的研究还在进行中,对这方面的内容还需要更深入的研究对比。

  • 3 MAX相薄膜的物化性能

  • MAX相材料特殊的层状结构和键合组成,使得这种材料兼具金属与陶瓷的性能,表现出高硬度、耐腐蚀、高熔点等特性, 也正是因为这些特性使得MAX相材料受到人们的广泛关注, 本节内容对MAX相薄膜的几种最重要的性能———导电性、耐腐蚀性和力学性能———进行总结综述,同时对于薄膜与块体材料之间的性能也进行了一定程度的对比。

  • 3.1 导电性

  • MAX相材料的导电性一直备受关注,在之前的理论计算和实际测量研究中,MAX相材料都展现出与金属材料接近的导电性,这归因于MAX相材料中特殊的键合结构,使得其具有类似金属的特征。表1为几种不同的MAX相材料块体与薄膜的电阻率和力学性能。从表中数据的横向和纵向对比可以看出,总体而言,文献报导的MAX相材料电阻率约在10-5 Ω·cm量级,不如导电性良好的金属(如铜、银),但与一些金属材料(如Ti)相当,比石墨的电阻率低一个数量级。 MAX相薄膜材料的电阻率和硬度要比块体材料的略高,而薄膜材料的模量比块体材料的略低。此外,不同文献对块体材料的电阻率测量数据大致接近,但薄膜材料的电阻率数值呈现出一定的分散性,这主要是因为薄膜材料容易受到测量方式、制备条件、组成成分等的影响,从而造成数值的差异。主要的影响因素有:

  • (1) 测量温度。 HETTINGER等[70] 采用四探针的方式研究Ti2AlC、Cr2AlC、Nb2AlC和V2AlC四种MAX相材料的电阻率随温度变化的关系,发现电阻率与温度的关系非常密切,随着温度的下降呈线性下降趋势。在薄膜中,WILHELMSSON等[18] 也有类似的研究发现。

  • (2) 制备方法。由于制备方法的不同,MAX相薄膜成相所需的温度、相结构也有差异。 FIELD等[37]采用直流磁控溅射(DCMS) 和脉冲磁控溅射 (HiPIMS) 分别制备了Cr2AlC薄膜,测量了薄膜的电阻率,结果发现采用HiPIMS制备的薄膜电阻率要比DCMS制备的薄膜更低。由于制备方法的不同对所制备的MAX相薄膜材料性能的影响还在继续研究中。

  • (3) 杂质相。薄膜的相组成对于薄膜导电性有较大影响。与块体不同,MAX相薄膜电阻率之所以出现较大的差异,很大一部原因是MAX相薄膜很难达到纯MAX相,薄膜在制备过程中不可避免地会掺杂一些中间相。以Ti3 SiC2 为例,纯Ti3 SiC2 薄膜的电阻率约为25 μΩ·cm [60], 非常接近块体Ti3 SiC2 材料,但是由于薄膜沉积过程中还有TiC等杂相,使得其电阻率明显上升[10,16-17]

  • 表1 MAX相材料块体与薄膜的电阻率和力学性能统计

  • Table1 Statistics of resistivity and mechanical properties of Max phase materials

  • 注: 900℃下测量

  • 以Ti3 SiC2 为例,陆境莲等[10] 由磁控溅射结合热处理的方式,制备了几组不同热处理温度的Ti-Si-C薄膜,其XRD结果如图3所示。从图中可看出800℃ 热处理的Ti-Si-C薄膜只有TiC衍射峰,而1 000℃的薄膜有明显Ti3 SiC2 和TiC的衍射峰,同时测量了几组薄膜的电阻值,其数据如图4所示,可以看出800℃热处理的薄膜电阻率为1.46×10-4 Ω·m,而1 000℃热处理的薄膜电阻率为2.59×10-6 Ω·m,薄膜的电阻率降低了两个数量级。 SONODA等[16-17] 通过控制直流磁控溅射的功率制备了三种不同功率 (200W、 300W和400W) 的Ti-Si-C薄膜,其中200W的样品Ti3 SiC2 MAX相衍射峰比较多,300W和400W的薄膜中TiC等杂质相衍射峰较多,且通过测量薄膜电阻率发现,200W样品的电阻率最低。从上述论文可以看出,Ti3 SiC2 MAX相的导电性与薄膜的相组成有很大的关系。同时,由于MAX相薄膜的成相特点,制备或热处理过程中的温度对MAX相成相的影响非常大,控制制备温度,尽量减少杂相生成, 也是提高MAX相薄膜导电性的重要方法。

  • 图3 Ti-Si-C薄膜经过不同热处理温度后的XRD衍射图[10]

  • Fig.3 XRD diffraction patterns of Ti-Si-C films after different heat treatment temperatures [10]

  • 图4 Ti-Si-C薄膜经过不同热处理温度后的电阻值[10]

  • Fig.4 Resistance of Ti-Si-C films after different heat treatment temperatures [10]

  • 3.2 耐腐蚀性

  • 除了导电性之外,MAX相材料独特的键结构, 使得人们对该材料在耐腐蚀材料领域的应用也有很好的期待。从腐蚀的本质来看,腐蚀过程即将原子从一个完整晶格结构中抽离出来,其难易程度主要取决于以下两个因素:①热力学驱动力( 外在因素);②原子成键强弱(内在因素)。由于MAX相含有较强的M-X共价键相互作用,其耐腐蚀性能可能比一般金属材料更高。然而,相对于文献上一致认可的MAX相材料的良好导电性,MAX相薄膜材料的耐腐蚀性能却存在一定的不一致的结论。

  • JOVIC等[71]研究了十余种MAX相分别在1M NaOH、1M HCl、 1M H2 SO4 中的腐蚀反应, 包括Ti2AlC、 ( Ti, Nb)2AlC、 V2AlC、 V2GeC、 Cr2AlC、 Ti2AlN、Ti4AlN3、Ti3 SiC2 等。通过研究发现,Ti2AlC在1M NaOH和1M H2 SO4 溶液中均发生钝化,而在1M HCl中迅速溶解。 JOVIC等认为,影响MAX相稳定性的关键因素在于M元素,而不是A元素, 例如M元素为V的MAX相在以上三种溶液中都容易溶解,而M元素为Ti的MAX相在这些溶液中都更加稳定。然而,M元素相同时,也会由于A元素的不同而产生大的差异,例如Ti2AlC在HCl中会迅速溶解,而Ti2 SiC在HCl中要更加稳定一些。

  • XIE等[118]研究了MAX相在热浓HCl中的腐蚀现象,认为腐蚀主要由A元素与HCl的反应性决定,A元素为Al时的MAX相腐蚀严重,而A元素为Si的MAX相耐酸腐蚀性良好。此外,耐HCl腐蚀性还与MX层有关,MX层越厚,材料的耐腐蚀性越好。同时XIE等提出了一种MAX相材料腐蚀模型,如图5所示,以Ti3AlC2 和Ti2AlC为例,认为Al元素在与HCl发生反应后会在表面留下悬空的Ti原子,而悬空的Ti原子是不稳定的,容易被氧化成TiO2。此外,LI等[119]和TRAVAGLINI等[120]分别对Ti3AlC2 和Ti3 SiC2 在酸碱溶液中的腐蚀进行了研究,其结论也与上述结论类似。

  • 李凌等[121] 研究了Ti3AlC2、Ti3 SiC2 MAX相在熔融LiF-NaF-KF盐中的腐蚀行为,发现Ti3AlC2 中Al元素几乎全部溶解,而Ti3 SiC2 中Si元素只在表层发生溶解。 FU等[122] 研究了Ti2AlC MAX相薄膜在3.5%NaCl水溶液中的腐蚀行为,他们认为,由于MAX相的特殊原子排列,Al-C键相对较弱,高活性的Al原子可以形成高密度的氧化铝层,在化学侵蚀过程中能够形成Al2O3,使表面钝化,并防止进一步的腐蚀行为。 ZHU等[123] 对比了商业纯Ti (CP Ti) 与Ti3AlC2、Ti3 SiC2 MAX相在3.5%NaCl水溶液中的腐蚀行为,发现MAX相表面的腐蚀产物富含Al(Si)元素,ZHU等认为Al或Si原子扩散到阻挡层中,并与氧空位结合,导致钝化膜的产生,而Si/Al的不均匀扩散降低了钝化膜的形成效率,膜中的基质元素和原子扩散穿过阻挡层,导致钝化膜溶解,如图6所示。

  • 图5 Ti2AlC和Ti3AlC2 结构图与腐蚀模型[118]

  • Fig.5 Structure diagram and corrosion model of Ti2AlC and Ti3AlC2 [118]

  • 图6 Ti3 SiC2 或Ti3AlC2 和CP Ti在3.5%NaCl溶液中钝化的示意图[123]

  • Fig.6 Schematic diagram of Ti3 SiC2 or Ti3AlC2 and CP Ti passivation in 3.5%NaCl solution [123]

  • 笔者总结了几种MAX相在不同溶液中的腐蚀电流密度和自腐蚀电位,如表2所示。从表2中的数据可以看出,这几种MAX相材料都有较可观的耐腐蚀性能,例如在3.5%NaCl溶液中,Ti2AlC的自腐蚀电流密度达到了5.82×10-8 A·cm-2,而相同溶液中几种不锈钢的自腐蚀电流密度在10-6~10-7 A·cm-2[124-125],因此可以看出MAX相材料具有不错的耐腐蚀性能。

  • 在与MAX相腐蚀相关的文献中,部分观点认为M元素与腐蚀行为有较大关联,但是大部分作者认为MAX材料的腐蚀行为主要与A元素有关。由于A层与MX层之间的结合较弱,A层容易扩散到溶液中与其发生反应,主要表现为腐蚀过后表面上A元素的富集以及腐蚀过后MAX相材料中产生大量的MXn 结构。目前人们对MAX相材料腐蚀机理的研究还不够深入,对于一些MAX相材料耐腐蚀的数据也比较缺乏,以现有的数据很难对其进行比较分析。武汉理工大学王苹等[126] 通过热压的方法制备了若干种MAX相材料,对其在不同溶液中的耐腐蚀性进行了对比研究:在1mol NaCl溶液中,Ti2AlC和Ti2AlN极化曲线比较接近,腐蚀电势E corr 约为-0.699V和-0.697V,且都有钝化现象, 自腐蚀电流I corr 约为13 × 10-4 A·cm-2和1.55×10-4 A·cm-2;而在1mol H2 SO4 溶液中,Ti2AlC和Ti2AlN腐蚀电势E corr 约为-0.63V和-0.55V,自腐蚀电流I corr 约为2.49×10-5 A·cm-2和26.30×10-5 A·cm-2;在1mol HCl溶液中,Ti2AlC和Ti2AlN腐蚀电势E corr 相近,约为-0.699V,自腐蚀电流I corr 约为4.18×10-5 A·cm-2和27.00×10-5 A·cm-2

  • 表2 几种MAX相材料在不同溶液中的腐蚀电流密度和自腐蚀电位

  • Table2 I corr and E corrof several Max phase materials in different solutions

  • 3.3 力学性能

  • TANG等[79]测量了块体Ti2AlC材料和不同热处理温度下Ti-Al-C薄膜的模量和硬度,测量得到块体Ti2AlC材料的硬度和模量分别为4.3±1.1GPa和158.7±28.3GPa,在不同热处理温度下,800℃热处理的薄膜样品硬度最高,为17.2GPa,而900℃热处理的薄膜样品模量最大,为270.3GPa。笔者也对不同热处理温度下Ti-Al-C薄膜的硬度和模量进行了测试,其结果如图7所示,未热处理的薄膜硬度以及弹性模量仅为5GPa和83GPa,经过热处理后,薄膜硬度提升至11.7GPa,弹性模量也提升至115GPa。

  • 图7 不同热处理温度下Ti-Al-C薄膜材料的硬度和模量

  • Fig.7 Hardness and modulus of Ti-Al-C thin films at different heat treatment temperature

  • 表1 中还总结了这几种MAX相材料块体与薄膜的硬度和弹性模量,从表中可以看出薄膜材料的模量要比块体材料低,而硬度普遍比块体材料更高, 其原因主要是薄膜中的相组成和成分差异。以Ti3 SiC2 为例,在薄膜中C含量越多,薄膜中TiC相和石墨微晶越多,薄膜的硬度值越大[10,16-17],反之, 薄膜中Ti3 SiC2 相含量增加,薄膜硬度也会相应减小[62]

  • 4 结论与展望

  • MAX相薄膜材料兼具金属与陶瓷的性能,具有良好的导电性、导热性的同时,还具有低密度、高模量、抗氧化、耐腐蚀等性能,也正是由于这些性能, MAX相薄膜被广泛研究应用于工业领域,包括航天航空、核能核电等相关领域。目前,MAX相薄膜还有很多问题需要改进:

  • 降低MAX相薄膜制备或退火过程所需的温度。在商业和工业领域的应用中,降低MAX相薄膜的制备温度意味着能够适应更多的基底材料, 同时也能大幅降低MAX相薄膜制备的成本。在现有研究中,在制备过程中施加偏压和高频率脉冲,延长退火时间等手段都能够降低薄膜的制备温度,但是成效还不够明显,进一步降低MAX相薄膜成相温度是目前MAX相薄膜制备的重要课题之一。

  • MAX相薄膜制备过程中还会有很多杂质相产生,而薄膜性能又与相组成密切相关。在薄膜制备中MX相的产生很难避免,想要获得高性能的MAX相薄膜就需要尽可能制备出纯相薄膜。

  • 随着研究的不断深入,相信MAX相薄膜在以后的研究中能够取得突破性的进展,同时真正应用在商业和工业领域,为航天航空、汽车船舶、核能核电等领域发挥出重要的作用。

  • 参考文献

    • [1] BARSOUM M W.The Mn+1AXn phases:A new class of solids;Thermodynamically stable nanolaminates [J].Prog.Solid State Chem.,2000(28):201-281.

    • [2] MO Y,RULIS P,CHING W Y.Electronic structure and optical conductivities of 20 MAX-phase compounds[J].Physical Review B,2012,86(16):1098-1121.

    • [3] ARYAL S,SAKIDJA R,BARSOUM M W,et al.A genomic approach to the stability,elastic,and electronic properties of the MAX phases [J].Physica Status Solidi B-Basic Solid State Physics,2014,251(8):1480-1497.

    • [4] RADOVIC M,BARSOUM M W.MAX phases:Bridging the gap between metals and ceramics [J].American Ceramic Society Bulletin,2013,92(3):20-27.

    • [5] 张雅丁,莫丹,吕岩甲,等.基于专利分析的核燃料领域MAX相材料发展态势研究[C]//中国核科学技术进展报告(第五卷)———中国核学会2017年学术年会论文集第9册(核情报分卷、核技术经济与管理现代化分卷、核电子学与核探测技术分卷),2017:46-50.ZHANG Yading,MO Dan,LÜ Yanjia,et al.Study on development trend of MAX phase material in nuclear fuel field based on patent analysis[C]//Progress Report on China Nuclear Science & Technology(Vol.5).Volume 9 of proceedings of 2017 academic annual meeting of China Nuclear Society,2017:46-50.(in Chinese)

    • [6] 施立群,戚强.新型反应堆侯选结构材料及其抗辐照特性 [C]//中国核物理学会核靶专业组.第十二届全国核靶技术学术交流会会议论文摘要集.中国核物理学会核靶专业组:中国核物理学会,2013:29-30.SHI Liqun,QI Qiang.Novel reactor candidate structural materials and their radiation resistance characteristics [ C ]//Nuclear target professional group of Chinese Nuclear Physics Society.Abstracts of the 12th National Symposium on nuclear target technology.Chinese society of nuclear physics,2013:29-30.(in Chinese)

    • [7] 赵公澍,葛芳芳,程晓英,等.轰击离子能量对 V2AlC MAX 相涂层结构及力学性能的影响[J].中国表面工程,2019,32(3):80-87.ZHAO Gongshu,GE Fangfang,CHENG Xiaoying,et al.Effects of bombarding ions energy on structure and mechanical properties of V2AlC MAX-phase coatings[J].China Surface Engineering,2019,32(3):80-87.(in Chinese)

    • [8] 郑伟.高性能锂/钠离子电池MXene基负极材料的制备与性能研究[D].南京:东南大学,2019.ZHENG Wei.Preparation and properties of MXene-based composite anode materials for high performance lithium/sodium ion batteries [ D].Nanjing:Southeast University,2019.(in Chinese)

    • [9] 邹国栋.新型 MAX/MXene 基复合电极材料的构筑及电化学性能研究[D].秦皇岛:燕山大学,2019.ZOU Guodong.Architecture and elecerochemical properties of novel MAX/MXene-based composite electrode materials [ D].Qinhuangdao:Yanshan University,2019.(in Chinese)

    • [10] 陆境莲.燃料电池双极板表面制备MAX相薄膜的研究[D].深圳:深圳大学,2019.LU Jinglian.Preparation and characterization of MAX phase films for bipolar plates in PEMFC [ D ].Shenzhen:Shenzhen University,2019.(in Chinese)

    • [11] ABBAS N,QIN X,ALI S,et al.Direct deposition of extremely low Interface-contact-resistant Ti2AlC MAX-phase coating on stainless-steel by mid-frequency magnetron sputtering method [J].Journal of the European Ceramic Society,2020,40(8):3338-3342.

    • [12] ABBAS N,QIN X,ALI S,et al.Study of microstructural variation with annealing temperature of Ti-Al-C films coated on stainless steel substrates[J].International Journal of Hydrogen Energy,2020,45(4):3186-3192.

    • [13] 秦琴,张耀,干好,等.MAX 相的制备方法研究进展[J].兵器材料科学与工程,2020,300(3):148-152.QIN Qin,ZHANG Yao,GAN Hao,et al.Research progress in preparation of MAX phase[J].Ordnance Material Science and Engineering,2020,300(3):148-152.(in Chinese)

    • [14] 史沛然,法涛.MAX 相薄膜制备技术的研究进展[J].热加工工艺,2018.498(20):38-41.SHI Peiran,FA Tao.Research progress of preparation technology of MAX phase film[J].Hot Working Technology,2018,498(20):38-41.(in Chinese)

    • [15] 李子峰,刘国潭,傅宇东.MAX 相金属陶瓷制备技术的研究进展[J].热加工工艺,2021,50(6):26-29.LI Zifeng,LIU Guotan,FU Yudong.Research progress of preparation technology of MAX phases metal-ceramic materials [J].Hot Working Technology,2021,50(6):26-29.(in Chinese)

    • [16] SONODA T,NAKAO S,IKEYAMA M.Deposition and characterization of MAX-phase containing Ti-Si-C thin films by sputtering using elemental targets [J].Vacuum,2013,92:95-99.

    • [17] SONODA T,NAKAO S,IKEYAMA M.Preparation of MAXphase-containing Ti-Si-C thin films by magnetron sputtering using elemental targets [J].Japanese Journal of Applied Physics,2012,51(1):01AC06.

    • [18] WILHELMSSON O,PALMQUIST J P,NYBERG T,et al.Deposition of Ti2AlC and Ti3AlC2 epitaxial films by magnetron sputtering [J].Applied Physics Letters,2004,85(6):1066-1068.

    • [19] WILHELMSSON O,PALMQUIST J P,LEWIN E,et al.Deposition and characterization of ternary thin films within the TiAl-C system by DC magnetron sputtering[J].Journal of Crystal Growth,2006,291:290-300.

    • [20] PALMQUIST J P,LI S,PERSSON P O.et al.Mn + 1AXn phases in the Ti-Si-C system studied by thin-film synthesis and ab initio calculations [J].Physical Review B,2004,70(16):165401.

    • [21] PALMQUIST J P,JANSSON U,SEPPANEN T,et al.Magnetron sputtered epitaxial single-phase Ti3 SiC2 thin films [J].Applied Physics Letters,2002,81(5):835-837.

    • [22] HOGBERG H,HULTMAN L,EMMERLICH J,et al.Growth and characterization of MAX-phase thin films [J].Surface & Coatings Technology,2005,193:6-10.

    • [23] HOGBERG H,EKLUND P,EMMERLICH J,et al.Epitaxial Ti2GeC,Ti3GeC2,and Ti4GeC3 MAX-phase thin films grown by magnetron sputtering [J].Journal of Materials Research,2011,20(4):779-782.

    • [24] MERTENS R,SUN Z M,MUSIC D,et al.Effect of the composition on the structure of Cr ‐ Al ‐ C investigated by combinatorial thin film synthesis and ab initio calculations[J].Advanced Engineering Materials,2010,6(11):903-907.

    • [25] SCHNEIDER J M,MERTENS R,MUSIC D.Structure of V2AlC studied by theory and experiment [J].Journal of Applied Physics,2006,99(1):092102.

    • [26] LI Y M,ZHAO G,QIAN Y,et al.Deposition and characterization of phase-pure Ti2AlC and Ti3AlC2 coatings by DC magnetron sputtering with cost-effective targets[J].Vacuum,2018,153:62-69.

    • [27] BEHRISCH R,ECKSTEIN W.Sputtering by particle bombardment[M].Berlin:Springer-Verlag Berlin,2007.

    • [28] OHRING M.Materials science of thin films[ M].Amsterdam:Elsevier,2001.

    • [29] SU R,ZHANG H,O′ CONNOR D J,et al.Deposition and characterization of Ti2AlC MAX phase and Ti3AlC thin films by magnetron sputtering [J].Materials Letters,2016,179(15):194-197.

    • [30] EMMERLICH J,MUSIC D,EKLUND P,et al.Thermal stability of Ti3SiC2 thin films[J].Acta Materialia,2007,55(4):1479-1488.

    • [31] EKLUND P,VIROJANADARA C,EMMERLICH J,et al.Photoemission studies of Ti3SiC2 and nanocrystalline-TiC/amorphous-SiC nanocomposite thin films [J].Physical Review B,2006,74(4):35-41.

    • [32] JOELSSON T,FLINK A,BIRCH J,et al.Deposition of singlecrystal Ti2AlN thin films by reactive magnetron sputtering from a 2Ti:Al compound target[J].Journal of Applied Physics,2007,102(7):2259.

    • [33] PERSSON P O,KODAMBAKA S,PETROV I,et al.Epitaxial TiAlN(0001)thin film deposition by dual-target reactive magnetron sputtering [J].Acta Materialia,2007,55(13):4401-4407.

    • [34] ZHANG Z,JIN H,CHAI J,et al.Temperature-dependent microstructural evolution of Ti2AlN thin films deposited by reactive magnetron sputtering [J].Applied Surface Science,2016,368:88-96.

    • [35] SU R,ZHANG H,MENG X,et al.Synthesis of Cr2AlC thin films by reactive magnetron sputtering[J].Fusion Engineering & Design,2017,125:562-566.

    • [36] ALAMI J,EKLUND P,EMMERLICH J,et al.High-power impulse magnetron sputtering of Ti-Si-C thin films from a Ti3SiC2 compound target [J].Thin Solid Films,2006,515(4):1731-1736.

    • [37] FIELD M R,CARLSSON P,EKLUND P,et al.A combinatorial comparison of DC and high power impulse magnetron sputtered Cr2AlC [J].Surface & Coatings Technology,2014,259:746-750.

    • [38] OUGIER M,MICHAU A,SCHUSTER F,et al.Effects of HiPIMS discharges and annealing on Cr-Al-C thin films [J].Surface and Coatings Technology,2020,399:126144.

    • [39] JIANG Y,STANISLAV M,SCHNEIDER J M.Growth of V-Al-C thin films by direct current and high power impulse magnetron sputtering from a powder metallurgical composite target[J].Thin Solid Films,2013,538:1-6.

    • [40] ZHANG T F,WANG Q M,LEE J,et al.Nanocrystalline thin films synthesized from a Ti2AlN compound target by high power impulse magnetron sputtering technique[J].Surface & Coatings Technology,2012,212:199-206.

    • [41] 凌国伟,沈辉宇,周福堂.阴极电弧沉积技术及其发展[J].真空,1996,1:1-12.LING Guowei,SHEN Huiyu,ZHOU Futang.Cathodic arc plasma deposition as a coating technique and its development [J].Vacuum,1996,1:1-12.(in Chinese)

    • [42] 张而耕,吴雁.现代PVD表面工程技术及应用[M].北京:科学出版社,2013.ZHANG Ergeng,WU Yan.Modern PVD surface engineering technology and application[M].Beiijing:Science Press,2013.(in Chinese)

    • [43] ROSEN J,RYVES L,PERSSON P O A,et al.Deposition of epitaxial Ti2AlC thin films by pulsed cathodic arc[J].Journal of Applied Physics,2007,101(5):27.

    • [44] MOCKUTE A,PERSSON O,MAGNUS F.Synthesis and characterization of arc deposited magnetic(Cr,Mn)2AlC MAX phase films[J].Physica Status Solidi(RRL)-Rapid Research Letters,2014,8(5):420-423.

    • [45] WANG Z,LIU J,WANG L,et al.Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique[J].Applied Surface Science,2017,396:1435-1442.

    • [46] PHANI A R,KRZANOWSKI J E,NAINAPARAMPIL J J.Structural and mechanical properties of TiC and Ti-Si-C films deposited by pulsed laser deposition [J].Journal of Vacuum Science & Technology A Vacuum Surfaces & Films,2001,19(5):2252-2258.

    • [47] LANGE C,BARSOUM M W,SCHAAF P.Towards the synthesis of MAX-phase functional coatings by pulsed laser deposition [J].Applied Surface Science,2007,254(4):1232-1235.

    • [48] LANGE C,HOPFELD M,WILKE M,et al.Pulsed laser deposition from a pre-synthesized Cr2AlC MAX phase target with and without ion-beam assistance [J].Physica Status Solidi,2012,209(3):545-552.

    • [49] HU J J,BULTMAN J E,PATTON S,et al.Pulsed laser deposition and properties of Mn+1AXn phase formulated Ti3SiC2 thin films[J].Tribology Letters,2004,16(1):113-122.

    • [50] EKLUND P,PALMQUIST J P,WILHELMSSON O,et al.Comment on “ pulsed laser deposition and properties of Mn + 1AXn phase formulated Ti3SiC2 thin films ” [J].Tribology Letters,2004,17(4):977-978.

    • [51] BISWAS A,SENGUPTA A,RAJPUT U,et al.Growth,properties,and applications of pulsed laser deposited nanolaminate Ti3AlC2 thin films[J].Physical Review Applied,2020,13(4):044075.

    • [52] NICKL J J,SCHWEITZER K K,LUXENBERG P.Gasphasenabscheidung imsystem Ti-Si-C [J].Journal of The Less-Common Metals,1972,26(3):335-353.

    • [53] GOTO T,HIRAI T.Chemically vapor deposited Ti3SiC2 [J].Materials Research Bulletin,1987,22(9):1195-1201.

    • [54] RACAULT C,LANGLAIS F,NASLAIN R,et al.On the chemical vapour deposition of Ti3SiC2 from TiCl4-SiCl4-CH4-H2 gas mixtures[J].Journal of Materials Science,1994,29(15):3941-3948.

    • [55] PICKERING E,LACKEY W J,CRAIN S.CVD of Ti3SiC2 [J].Chemical Vapor Deposition,2000,6(6):289-295.

    • [56] JACQUES S,DI-MURRO H,BERTHET M,et al.Pulsed reactive chemical vapor deposition in the C-Ti-Si system from H2/TiCl4/SiCl4 [J].Thin Solid Films,2005,478(1-2):13-20.

    • [57] FAKIH H,JACQUES S,BERTHET M P,et al.The growth of Ti3SiC2 coatings onto SiC by reactive chemical vapor deposition using H2 and TiCl4 [J].Surface and Coatings Technology,2006,201(6):3748-3755.

    • [58] FAKIH H,JACQUES S,DEZELLUS O,et al.Phase equilibria and reactive chemical vapor deposition(RCVD)of Ti3SiC2[J].Journal of Phase Equilibria & Diffusion,2008,29(3):239-246.

    • [59] JACQUES S,FAKIH H,VIALA J C.Reactive chemical vapor deposition of Ti3SiC2 with and without pressure pulses:Effect on the ternary carbide texture [J].Thin Solid Films,2010,518(18):5071-5077.

    • [60] EMMERLICH J,HOGBERG H,SASVARI S,et al.Growth of Ti3SiC2 thin films by elemental target magnetron sputtering[J].Journal of Applied Physics,2004,96(9):4817-4826.

    • [61] CHEN Z S,LI H J,FU Q G,et al.Annealing effect on microstructure and mechanical properties of magnetron sputtering Ti-Si-C thin film[J].Materials Science & Technology,2013,29(8):975-979.

    • [62] MAHMOUDI Z,TABAIAN S H,REZAIE H R,et al.Synthesis of Ti2AlC & Ti3AlC2 MAX phases by Arc-PVD using Ti-Al target in C2H2/Ar gas mixture and subsequent annealing [J].Ceramics International,2019,46(4):4968-4976.

    • [63] WANG Z Y,LI W T,WANG C C,et al.Transforming the amorphous Ti-Al-C coatings to high-purity Ti2AlC MAX phase coatings by prolonged annealing at 550℃ [J].Materials Letters,2020,261:127160.

    • [64] NICOLAI J,FURGEAUD C,FONROSE B W,et al.Formation mechanisms of Ti2AlC MAX phase on SiC-4H using magnetron sputtering and post-annealing [J].Materials & Design,2018,144,209-213.

    • [65] FRODELIUS J,EKLUND P,BECKERS M,et al.Sputter deposition from a Ti2AlC target:Process characterization and conditions for growth of Ti2AlC[J].Thin Solid Films,2010,518(6):1621-1626.

    • [66] BARSOUM M W,GOLCZEWSKI J,SEIFERT H J,et al.Fabrication and electrical and thermal properties of Ti2InC,Hf2InC and(Ti,Hf)2InC[J].Journal of Alloys & Compounds,2002,340(1-2):173-179.

    • [67] BECKERS M,SCHELL N,MARTINS R M S,et al.Nucleation and growth of Ti2AlN thin films deposited by reactive magnetron sputtering onto MgO(111)[J].Journal of Applied Physics,2007,102(7):201-143.

    • [68] EKLUND P,BECKERS M,JANSSON U,et al.The Mn+1AXn phases:materials science and thin-film processing [J].Thin Solid Films,2010,518(8):1851-1878.

    • [69] BECKERS M,SCHELL N,MARTINS R M S,et al.Phase stability of epitaxially grown Ti2AlN thin films [J].Applied Physics Letters,2006,89:74101-74101.

    • [70] HETTINGER J D,LOFLAND S E,FINKEL P,et al.Electrical transport,thermal transport,and elastic properties of M2AlC(M =Ti,Cr,Nb,and V)[J].Physical Review B,2005,72(11):115120.

    • [71] JOVIC V D,JOVIC B M,GUPTA S,et al.Corrosion behavior of select MAX phases in NaOH,HCl and H2SO4[J].Corrosion Science,2006,48(12):4274-4282.

    • [72] BARSOUM M W,EL-RAGHY T,ALI M.Processing and characterization of Ti2AlC,Ti2AlN,and Ti2AlC0.5N0.5[J].Metallurgical and Materials Transactions A,2000,31(7):1857-1865.

    • [73] WANG X H,ZHOU Y C.Intermediate-temperature oxidation behavior of Ti2AlC in air [J].Journal of Materials Research,2002,17(11):2974-2981.

    • [74] SUN Z M.Progress in research and development on MAX phases:a family of layered ternary compounds[J].International Materials Reviews,2011,56(3):143-166.

    • [75] WANG J Y,ZHOU Y C.Dependence of elastic stiffness on electronic band structure of nanolaminate M2AlC(M = Ti,V,Nb,and Cr)ceramics[J].Physical Review B,2004,69(21):1681-1685.

    • [76] WANG X H,ZHOU Y C.Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics:a review[J].Journal of Materials Science & Technology,2010,26(5):385-416.

    • [77] SUN Z M,LI S,AHUJA R,et al.Calculated elastic properties of M2AlC [J].Solid State Communications,2004,129(9):589-592.

    • [78] COVER M F,WARSCHKOW O M,BILEK M M.et al.Elastic properties of Tin + 1AlCn and Tin + 1AlNn MAX phases [J].Advanced Engineering Materials,2008,10(10):935-938.

    • [79] TANG C,STUEBER M,JAENTSCH U,et al.Synthesis and characterization of Ti2AlC coatings by magnetron sputtering from three elemental targets and ex-situ annealing [J].Surface and Coatings Technology,2017,309:445-455.

    • [80] PSHYK A,COY E,MATEUSZ K,et al.Low-temperature growth of epitaxial Ti2AlC MAX phase thin films by low-rate layer-by-layer PVD [J].Materials Research Letters,2019,7(6):244-250.

    • [81] WANG X H,ZHOU Y C.Microstructure and properties of Ti3AlC2 prepared by the solid-liquid reaction synthesis and simultaneous in-situ hot pressing process[J].Acta Materialia,2002,50(12):3143-3151.

    • [82] SCABAROZI T,GANGULY A,HETTINGER J D,et al.Electronic and thermal properties of Ti3Al(C0.5,N0.5)2,Ti2Al(C0.5,N0.5)and Ti2AlN [J].Journal of Applied Physics,2008,104(7):27.

    • [83] TZENOV N V,BARSOUM M W.Synthesis and characterization of Ti3AlC2[J].Journal of the American Ceramic Society,2000,83(4):825-832.

    • [84] CHING W Y,MO Y,ARYAL S,et al.Intrinsic mechanical properties of 20 MAX ‐ Phase compounds[J].Journal of the American Ceramic Society,2013,96(7):2292-2297.

    • [85] GHEBOULI B,GHEBOULI M A,FATMI M,et al.Firstprinciples calculations of structural,electronic,elastic and thermal properties of phase M2SiC(M = Ti,V,Cr,Zr,Nb,Mo,Hf,Ta and W)[J].Transactions of Nonferrous Metals Society of China,2015,25(3):915-925.

    • [86] LI J F,SATO F,WATANABE R.Synthesis of Ti3SiC2 polycrystals by hot-isostatic pressing of the elemental powders [J].Journal of Materials Science Letters,1999,18(19):1595-1597.

    • [87] HOLM B,AHUJA R,JOHANSSON B.Ab initio calculations of the mechanical properties of Ti3SiC2 [J].Applied Physics Letters,2001,79(10):1450-1452.

    • [88] FINKEL P,BARSOUM M W,EL-RAGHY T.Low temperature dependencies of the elastic properties of Ti4AlN3,Ti3Al1.1C1.8,and Ti3SiC2[J].Journal of Applied Physics,2000,87(4):1701-1703.

    • [89] BARSOUM M W,EL-RAGHY T.Synthesis and characterization of a remarkable ceramic:Ti3SiC2[J].Journal of the American Ceramic Society,1996,79(7):1953-1956.

    • [90] KOOI B J,POPPEN R J,CARVALHO N J M,et al.Ti3SiC2:A damage tolerant ceramic studied with nano-indentations and transmission electron microscopy[J].Acta Materialia,2003,51(10):2859-2872.

    • [91] EL-RAGHY T,BARSOUM M W,ZAVALIANGOS A,et al.Processing and mechanical properties of Ti3SiC2:part II.Mechanical properties [J].Journal of the American Ceramic Society,1999,82:2855-2859.

    • [92] RADOVIC M,BARSOUM M W,EL-RAGHY T,et al.Tensile properties of Ti3SiC2 in the 25-1 300 ℃ temperature range[J].Acta Materialia,2000,48(2):453-459.

    • [93] EKLUND P,EMMERLICH J,HOGBERG H,et al.Structural,electrical,and mechanical properties of nc-TiC ∕ a-SiC nanocomposite thin films [J].Journal of Vacuum Science & Technology B Microelectronics & Nanometer Structures Processing Measurement & Phenomena,2005,28(6):2486-2495.

    • [94] BARSOUM M W,BRODKIN D,ELRAGHY T.Layered machinable ceramics for high temperature applications [J].Scripta Materialia,1997,36(5):535-541.

    • [95] FINKEL P,SEAMAN B,HARRELL K,et al.Electronic,thermal,and elastic properties of Ti3Si1-xGexC2 solid solutions [J].Physical Review B,2004,70(8):97-114.

    • [96] WILHELMSSON O,EKLUND P,HOGBERG H,et al.Structural,electrical and mechanical characterization of magnetron-sputtered V-Ge-C thin films [J].Acta Materialia,2008,56(11):2563-2569.

    • [97] BOUHEMADOU A.Calculated structural,electronic and elastic properties of M2GeC(M=Ti,V,Cr,Zr,Nb,Mo,Hf,Ta and W)[J].Applied Physics A,2009,96(4):959-967.

    • [98] YANG Z J,GUO Y D,LINGHU R F,ea al.First-principles calculation of the lattice compressibility,elastic anisotropy and thermodynamic stability of V2GeC [J].Chinese Physics B,2012,21(3):328-334.

    • [99] YI J X,CHEN P,LI D L,et al.Elastic and electronic properties of a new MAX compound(Cr0.5V0.5)2GeC from first-principles calculations [J].Solid State Communications,2010,150(1-2):49-53.

    • [100] HU C,HE L,LIU M,et al.In situ reaction synthesis and mechanical properties of V2AlC[J].Journal of the American Ceramic Society,2010,91(12):4029-4035.

    • [101] SIGUMONRONG D P,ZHANG J,ZHOU Y C,et al.Synthesis and elastic properties of V2AlC thin films by magnetron sputtering from elemental targets [J].Journal of Physics DApplied Physics,2009,42(18):185408-185415.

    • [102] BARSOUM M W.The Mn + 1AXn phases and their properties [M]//Ceramics science and technology.Berlin:Wiley ‐ VCH Verlag GmbH & Co.KGaA,2014.

    • [103] WANG Z,LI X,ZHOU J,et al.Microstructure evolution of VAl-C coatings synthesized from a V2AlC compound target after vacuum annealing treatment [J].Journal of Alloys and Compounds,2016,661,476-482.

    • [104] BARSOUM M W.MAX Phases:Properties of machinable ternary carbides and nitrides[ M].Berlin:Wiley-VCH Verlag GmbH & Co.KGaA,2013.

    • [105] TIAN W B,WANG P L,ZHANG G J,et al.Synthesis and thermal and electrical properties of bulk Cr2AlC [J].Scripta Materialia,2006,54(5):841-846.

    • [106] GRIESELER R,HAEHNLEIN B,STUBENRAUCH M,et al.Nanostructured plasma etched,magnetron sputtered nanolaminar Cr2AlC MAX phase thin films[J].Applied Surface Science,2014,292(Feb.15):997-1001.

    • [107] TIAN W B,WANG P L,ZHANG G J,et al.Mechanical properties of Cr2AlC ceramic [J].Journal of the American Ceramic Society,2007,90(5):1663-1666.

    • [108] LIU J,ZUO X,WANG Z,et al.Fabrication and mechanical properties of high purity of Cr2AlC coatings by adjustable Al contents[J].Journal of Alloys and Compounds,2018,753:11-17.

    • [109] NAVEED M,OBROSOV A,ZAK A,et al.Sputtering power effects on growth and mechanical properties of Cr2AlC MAX phase coatings [J].Metals-Open Access Metallurgy Journal,2016,6(11):265.

    • [110] LIN Z,ZHOU Y,LI M,et al.In-situ hot pressing/solid-liquid reaction synthesis of bulk Cr2AlC [J].Ztschrift fur Metallkunde,2005,96(3):291-296.

    • [111] SCHNEIDER J M,SIGUMONRONG D P,MUSIC D,et al.Elastic properties of Cr2AlC thin films probed by nanoindentation and ab initio molecular dynamics[J].Scripta Materialia,2007,57(12):1137-1140.

    • [112] DU Y L,SUN Z M,HASHIMOTO H,et al.Theoretical investigations on the elastic and thermodynamic properties of Ti2AlC0.5N0.5 solid solution[J].Physics Letters A,2009,374(1):78-82.

    • [113] LIN Z J,ZHUO M J,LI M S,et al.Synthesis and microstructure of layered-ternary Ti2AlN ceramic [J].Scripta Materialia,2007,56(12):1115-1118.

    • [114] SCABAROZI T H,ROCHE J,ROSENFELD A,et al.Synthesis and characterization of Nb2AlC thin films[J].Thin Solid Films,2009,517(9):2920-2923.

    • [115] SALAMA I,EL-RAGHY T,BARSOUM M W.Synthesis and mechanical properties of Nb2AlC and(Ti,Nb)2AlC [J].Journal of Alloys and Compounds,2002,347:271-278.

    • [116] ZHANG W,TRAVITZKY N,HU C,et al.Reactive hot pressing and properties of Nb2AlC[J].Journal of the American Ceramic Society,2010,92(10):2396-2399.

    • [117] SHANG L,BABEN M T,PRADEEP K G,et al.Phase formation of Nb2AlC investigated by combinatorial thin film synthesis and ab initio calculations[J].Journal of the European Ceramic Society,2016,37(1):35-41.

    • [118] XIE J,WANG XH,LI AJ,et al.Corrosion behavior of selected Mn+1AXn phases in hot concentrated HCl solution:Effect of a element and MX layer [J].Corrosion Science,2012,60:129-135.

    • [119] LI D,LIANG Y,LIU X,et al.Corrosion behavior of TiAlC in NaOH and H2SO4 [J].Journal of the European Ceramic Society,2010,30(15):3227-3234.

    • [120] TRAVAGLINI J,BARSOUM M W,JOVIC V,et al.The corrosion behavior of Ti3SiC2 in common acids and dilute NaOH [J].Corrosion Science,2003,45(6):1313-1327.

    • [121] 李凌,俞国军,周兴泰.Ti3 SiC2 、Ti3AlC2 在 LiF-NaF-KF 熔盐中的腐蚀行为研究[J].核技术,2014,37(6):1-6.LI Ling,YU Guojun,ZHOU Xingtai.Corrrosion behaviour of Ti3 SiC2 and Ti3AlC2 with LiF-NaF-KF molten salt[J].Nuclear Technioues,2014,37(6):1-6.(in Chinese)

    • [122] FU J J,ZHANG T F,XIA Q X.et al.Oxidation and corrosion behavior of nanolaminated max-phase Ti2AlC film synthesized by high-power impulse magnetron sputtering and annealing[J].Journal of Nanomaterials,2015,2015:1-12.

    • [123] ZHU M,WANG R,CHEN C,et al.Comparison of corrosion behavior of Ti3 SiC2 and Ti3AlC2 in NaCl solutions with Ti[J].Ceramics International,2017,43(7):5708-5714.

    • [124] 文陈,许广兴,樊立伟,等.NaCl 溶液中20Cr9Ni5Co14不锈钢电化学腐蚀行为[J].东北大学学报(自然科学版),2015,36(6):819-822.WEN Chen,XU Guangxing,FAN Liwei,et al.Electrochemical corrosion behaviors of 20Cr9Ni5Co14 stainless steels in NaCl solution[J].Journal of Northeastern University(Natural Science),2015,36(6):819-822.(in Chinese)

    • [125] 雒设计,赵庆,冉照辉,等.CO2 和 H2 S 对FV520B不锈钢在NaCl溶液中电化学腐蚀行为的影响[J].机械工程材料,2019,043(10):11-14.LUO Sheji,ZHAO Qing,RAN Zhaohui,et al.Effects of CO2 and H2 S on electrochemical corrosion behavior of FV520B stainless steel in NaCl Solution [J].Materials for Mechanical Engineering,2019,43(10):11-14.(in Chinese)

    • [126] 王苹,梅炳初,雷零.若干MAX相化合物在 NaOH、H2 SO4 和HCl中的电化学性质[J].腐蚀科学与防护技术,2009,21(1):55-57.WANG Ping,MEI Bingchu,LEI Ling.Electrochemical behavior of several compounds of MAX phase in solutions of NaOH,H2 SO4 and HCl[J].Corrosion Science and Protection Technology,2009,21(1):55-57.(in Chinese)

    • [127] 王瑞.Ti-Si/Al-C 312 系MAX相在NaCl及 B-Li 溶液中的腐蚀行为[D].哈尔滨:哈尔滨工程大学,2016.WANG Rui.Study on the corrosion behavior of 312 Ti-Si/Al-C MAX phase in NaCl and B-Li solution [ D].Hrabin:Hrabin Engineering Uneversity,2016.(in Chinese)

    • [128] ZHU M,WANG R,CHEN C,et al.Electrochemical study on the corrosion behavior of Ti3SiC2 in 3.5% NaCl solution[J].RSC Advances,2017,7(21):12534-12540.

  • 参考文献

    • [1] BARSOUM M W.The Mn+1AXn phases:A new class of solids;Thermodynamically stable nanolaminates [J].Prog.Solid State Chem.,2000(28):201-281.

    • [2] MO Y,RULIS P,CHING W Y.Electronic structure and optical conductivities of 20 MAX-phase compounds[J].Physical Review B,2012,86(16):1098-1121.

    • [3] ARYAL S,SAKIDJA R,BARSOUM M W,et al.A genomic approach to the stability,elastic,and electronic properties of the MAX phases [J].Physica Status Solidi B-Basic Solid State Physics,2014,251(8):1480-1497.

    • [4] RADOVIC M,BARSOUM M W.MAX phases:Bridging the gap between metals and ceramics [J].American Ceramic Society Bulletin,2013,92(3):20-27.

    • [5] 张雅丁,莫丹,吕岩甲,等.基于专利分析的核燃料领域MAX相材料发展态势研究[C]//中国核科学技术进展报告(第五卷)———中国核学会2017年学术年会论文集第9册(核情报分卷、核技术经济与管理现代化分卷、核电子学与核探测技术分卷),2017:46-50.ZHANG Yading,MO Dan,LÜ Yanjia,et al.Study on development trend of MAX phase material in nuclear fuel field based on patent analysis[C]//Progress Report on China Nuclear Science & Technology(Vol.5).Volume 9 of proceedings of 2017 academic annual meeting of China Nuclear Society,2017:46-50.(in Chinese)

    • [6] 施立群,戚强.新型反应堆侯选结构材料及其抗辐照特性 [C]//中国核物理学会核靶专业组.第十二届全国核靶技术学术交流会会议论文摘要集.中国核物理学会核靶专业组:中国核物理学会,2013:29-30.SHI Liqun,QI Qiang.Novel reactor candidate structural materials and their radiation resistance characteristics [ C ]//Nuclear target professional group of Chinese Nuclear Physics Society.Abstracts of the 12th National Symposium on nuclear target technology.Chinese society of nuclear physics,2013:29-30.(in Chinese)

    • [7] 赵公澍,葛芳芳,程晓英,等.轰击离子能量对 V2AlC MAX 相涂层结构及力学性能的影响[J].中国表面工程,2019,32(3):80-87.ZHAO Gongshu,GE Fangfang,CHENG Xiaoying,et al.Effects of bombarding ions energy on structure and mechanical properties of V2AlC MAX-phase coatings[J].China Surface Engineering,2019,32(3):80-87.(in Chinese)

    • [8] 郑伟.高性能锂/钠离子电池MXene基负极材料的制备与性能研究[D].南京:东南大学,2019.ZHENG Wei.Preparation and properties of MXene-based composite anode materials for high performance lithium/sodium ion batteries [ D].Nanjing:Southeast University,2019.(in Chinese)

    • [9] 邹国栋.新型 MAX/MXene 基复合电极材料的构筑及电化学性能研究[D].秦皇岛:燕山大学,2019.ZOU Guodong.Architecture and elecerochemical properties of novel MAX/MXene-based composite electrode materials [ D].Qinhuangdao:Yanshan University,2019.(in Chinese)

    • [10] 陆境莲.燃料电池双极板表面制备MAX相薄膜的研究[D].深圳:深圳大学,2019.LU Jinglian.Preparation and characterization of MAX phase films for bipolar plates in PEMFC [ D ].Shenzhen:Shenzhen University,2019.(in Chinese)

    • [11] ABBAS N,QIN X,ALI S,et al.Direct deposition of extremely low Interface-contact-resistant Ti2AlC MAX-phase coating on stainless-steel by mid-frequency magnetron sputtering method [J].Journal of the European Ceramic Society,2020,40(8):3338-3342.

    • [12] ABBAS N,QIN X,ALI S,et al.Study of microstructural variation with annealing temperature of Ti-Al-C films coated on stainless steel substrates[J].International Journal of Hydrogen Energy,2020,45(4):3186-3192.

    • [13] 秦琴,张耀,干好,等.MAX 相的制备方法研究进展[J].兵器材料科学与工程,2020,300(3):148-152.QIN Qin,ZHANG Yao,GAN Hao,et al.Research progress in preparation of MAX phase[J].Ordnance Material Science and Engineering,2020,300(3):148-152.(in Chinese)

    • [14] 史沛然,法涛.MAX 相薄膜制备技术的研究进展[J].热加工工艺,2018.498(20):38-41.SHI Peiran,FA Tao.Research progress of preparation technology of MAX phase film[J].Hot Working Technology,2018,498(20):38-41.(in Chinese)

    • [15] 李子峰,刘国潭,傅宇东.MAX 相金属陶瓷制备技术的研究进展[J].热加工工艺,2021,50(6):26-29.LI Zifeng,LIU Guotan,FU Yudong.Research progress of preparation technology of MAX phases metal-ceramic materials [J].Hot Working Technology,2021,50(6):26-29.(in Chinese)

    • [16] SONODA T,NAKAO S,IKEYAMA M.Deposition and characterization of MAX-phase containing Ti-Si-C thin films by sputtering using elemental targets [J].Vacuum,2013,92:95-99.

    • [17] SONODA T,NAKAO S,IKEYAMA M.Preparation of MAXphase-containing Ti-Si-C thin films by magnetron sputtering using elemental targets [J].Japanese Journal of Applied Physics,2012,51(1):01AC06.

    • [18] WILHELMSSON O,PALMQUIST J P,NYBERG T,et al.Deposition of Ti2AlC and Ti3AlC2 epitaxial films by magnetron sputtering [J].Applied Physics Letters,2004,85(6):1066-1068.

    • [19] WILHELMSSON O,PALMQUIST J P,LEWIN E,et al.Deposition and characterization of ternary thin films within the TiAl-C system by DC magnetron sputtering[J].Journal of Crystal Growth,2006,291:290-300.

    • [20] PALMQUIST J P,LI S,PERSSON P O.et al.Mn + 1AXn phases in the Ti-Si-C system studied by thin-film synthesis and ab initio calculations [J].Physical Review B,2004,70(16):165401.

    • [21] PALMQUIST J P,JANSSON U,SEPPANEN T,et al.Magnetron sputtered epitaxial single-phase Ti3 SiC2 thin films [J].Applied Physics Letters,2002,81(5):835-837.

    • [22] HOGBERG H,HULTMAN L,EMMERLICH J,et al.Growth and characterization of MAX-phase thin films [J].Surface & Coatings Technology,2005,193:6-10.

    • [23] HOGBERG H,EKLUND P,EMMERLICH J,et al.Epitaxial Ti2GeC,Ti3GeC2,and Ti4GeC3 MAX-phase thin films grown by magnetron sputtering [J].Journal of Materials Research,2011,20(4):779-782.

    • [24] MERTENS R,SUN Z M,MUSIC D,et al.Effect of the composition on the structure of Cr ‐ Al ‐ C investigated by combinatorial thin film synthesis and ab initio calculations[J].Advanced Engineering Materials,2010,6(11):903-907.

    • [25] SCHNEIDER J M,MERTENS R,MUSIC D.Structure of V2AlC studied by theory and experiment [J].Journal of Applied Physics,2006,99(1):092102.

    • [26] LI Y M,ZHAO G,QIAN Y,et al.Deposition and characterization of phase-pure Ti2AlC and Ti3AlC2 coatings by DC magnetron sputtering with cost-effective targets[J].Vacuum,2018,153:62-69.

    • [27] BEHRISCH R,ECKSTEIN W.Sputtering by particle bombardment[M].Berlin:Springer-Verlag Berlin,2007.

    • [28] OHRING M.Materials science of thin films[ M].Amsterdam:Elsevier,2001.

    • [29] SU R,ZHANG H,O′ CONNOR D J,et al.Deposition and characterization of Ti2AlC MAX phase and Ti3AlC thin films by magnetron sputtering [J].Materials Letters,2016,179(15):194-197.

    • [30] EMMERLICH J,MUSIC D,EKLUND P,et al.Thermal stability of Ti3SiC2 thin films[J].Acta Materialia,2007,55(4):1479-1488.

    • [31] EKLUND P,VIROJANADARA C,EMMERLICH J,et al.Photoemission studies of Ti3SiC2 and nanocrystalline-TiC/amorphous-SiC nanocomposite thin films [J].Physical Review B,2006,74(4):35-41.

    • [32] JOELSSON T,FLINK A,BIRCH J,et al.Deposition of singlecrystal Ti2AlN thin films by reactive magnetron sputtering from a 2Ti:Al compound target[J].Journal of Applied Physics,2007,102(7):2259.

    • [33] PERSSON P O,KODAMBAKA S,PETROV I,et al.Epitaxial TiAlN(0001)thin film deposition by dual-target reactive magnetron sputtering [J].Acta Materialia,2007,55(13):4401-4407.

    • [34] ZHANG Z,JIN H,CHAI J,et al.Temperature-dependent microstructural evolution of Ti2AlN thin films deposited by reactive magnetron sputtering [J].Applied Surface Science,2016,368:88-96.

    • [35] SU R,ZHANG H,MENG X,et al.Synthesis of Cr2AlC thin films by reactive magnetron sputtering[J].Fusion Engineering & Design,2017,125:562-566.

    • [36] ALAMI J,EKLUND P,EMMERLICH J,et al.High-power impulse magnetron sputtering of Ti-Si-C thin films from a Ti3SiC2 compound target [J].Thin Solid Films,2006,515(4):1731-1736.

    • [37] FIELD M R,CARLSSON P,EKLUND P,et al.A combinatorial comparison of DC and high power impulse magnetron sputtered Cr2AlC [J].Surface & Coatings Technology,2014,259:746-750.

    • [38] OUGIER M,MICHAU A,SCHUSTER F,et al.Effects of HiPIMS discharges and annealing on Cr-Al-C thin films [J].Surface and Coatings Technology,2020,399:126144.

    • [39] JIANG Y,STANISLAV M,SCHNEIDER J M.Growth of V-Al-C thin films by direct current and high power impulse magnetron sputtering from a powder metallurgical composite target[J].Thin Solid Films,2013,538:1-6.

    • [40] ZHANG T F,WANG Q M,LEE J,et al.Nanocrystalline thin films synthesized from a Ti2AlN compound target by high power impulse magnetron sputtering technique[J].Surface & Coatings Technology,2012,212:199-206.

    • [41] 凌国伟,沈辉宇,周福堂.阴极电弧沉积技术及其发展[J].真空,1996,1:1-12.LING Guowei,SHEN Huiyu,ZHOU Futang.Cathodic arc plasma deposition as a coating technique and its development [J].Vacuum,1996,1:1-12.(in Chinese)

    • [42] 张而耕,吴雁.现代PVD表面工程技术及应用[M].北京:科学出版社,2013.ZHANG Ergeng,WU Yan.Modern PVD surface engineering technology and application[M].Beiijing:Science Press,2013.(in Chinese)

    • [43] ROSEN J,RYVES L,PERSSON P O A,et al.Deposition of epitaxial Ti2AlC thin films by pulsed cathodic arc[J].Journal of Applied Physics,2007,101(5):27.

    • [44] MOCKUTE A,PERSSON O,MAGNUS F.Synthesis and characterization of arc deposited magnetic(Cr,Mn)2AlC MAX phase films[J].Physica Status Solidi(RRL)-Rapid Research Letters,2014,8(5):420-423.

    • [45] WANG Z,LIU J,WANG L,et al.Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique[J].Applied Surface Science,2017,396:1435-1442.

    • [46] PHANI A R,KRZANOWSKI J E,NAINAPARAMPIL J J.Structural and mechanical properties of TiC and Ti-Si-C films deposited by pulsed laser deposition [J].Journal of Vacuum Science & Technology A Vacuum Surfaces & Films,2001,19(5):2252-2258.

    • [47] LANGE C,BARSOUM M W,SCHAAF P.Towards the synthesis of MAX-phase functional coatings by pulsed laser deposition [J].Applied Surface Science,2007,254(4):1232-1235.

    • [48] LANGE C,HOPFELD M,WILKE M,et al.Pulsed laser deposition from a pre-synthesized Cr2AlC MAX phase target with and without ion-beam assistance [J].Physica Status Solidi,2012,209(3):545-552.

    • [49] HU J J,BULTMAN J E,PATTON S,et al.Pulsed laser deposition and properties of Mn+1AXn phase formulated Ti3SiC2 thin films[J].Tribology Letters,2004,16(1):113-122.

    • [50] EKLUND P,PALMQUIST J P,WILHELMSSON O,et al.Comment on “ pulsed laser deposition and properties of Mn + 1AXn phase formulated Ti3SiC2 thin films ” [J].Tribology Letters,2004,17(4):977-978.

    • [51] BISWAS A,SENGUPTA A,RAJPUT U,et al.Growth,properties,and applications of pulsed laser deposited nanolaminate Ti3AlC2 thin films[J].Physical Review Applied,2020,13(4):044075.

    • [52] NICKL J J,SCHWEITZER K K,LUXENBERG P.Gasphasenabscheidung imsystem Ti-Si-C [J].Journal of The Less-Common Metals,1972,26(3):335-353.

    • [53] GOTO T,HIRAI T.Chemically vapor deposited Ti3SiC2 [J].Materials Research Bulletin,1987,22(9):1195-1201.

    • [54] RACAULT C,LANGLAIS F,NASLAIN R,et al.On the chemical vapour deposition of Ti3SiC2 from TiCl4-SiCl4-CH4-H2 gas mixtures[J].Journal of Materials Science,1994,29(15):3941-3948.

    • [55] PICKERING E,LACKEY W J,CRAIN S.CVD of Ti3SiC2 [J].Chemical Vapor Deposition,2000,6(6):289-295.

    • [56] JACQUES S,DI-MURRO H,BERTHET M,et al.Pulsed reactive chemical vapor deposition in the C-Ti-Si system from H2/TiCl4/SiCl4 [J].Thin Solid Films,2005,478(1-2):13-20.

    • [57] FAKIH H,JACQUES S,BERTHET M P,et al.The growth of Ti3SiC2 coatings onto SiC by reactive chemical vapor deposition using H2 and TiCl4 [J].Surface and Coatings Technology,2006,201(6):3748-3755.

    • [58] FAKIH H,JACQUES S,DEZELLUS O,et al.Phase equilibria and reactive chemical vapor deposition(RCVD)of Ti3SiC2[J].Journal of Phase Equilibria & Diffusion,2008,29(3):239-246.

    • [59] JACQUES S,FAKIH H,VIALA J C.Reactive chemical vapor deposition of Ti3SiC2 with and without pressure pulses:Effect on the ternary carbide texture [J].Thin Solid Films,2010,518(18):5071-5077.

    • [60] EMMERLICH J,HOGBERG H,SASVARI S,et al.Growth of Ti3SiC2 thin films by elemental target magnetron sputtering[J].Journal of Applied Physics,2004,96(9):4817-4826.

    • [61] CHEN Z S,LI H J,FU Q G,et al.Annealing effect on microstructure and mechanical properties of magnetron sputtering Ti-Si-C thin film[J].Materials Science & Technology,2013,29(8):975-979.

    • [62] MAHMOUDI Z,TABAIAN S H,REZAIE H R,et al.Synthesis of Ti2AlC & Ti3AlC2 MAX phases by Arc-PVD using Ti-Al target in C2H2/Ar gas mixture and subsequent annealing [J].Ceramics International,2019,46(4):4968-4976.

    • [63] WANG Z Y,LI W T,WANG C C,et al.Transforming the amorphous Ti-Al-C coatings to high-purity Ti2AlC MAX phase coatings by prolonged annealing at 550℃ [J].Materials Letters,2020,261:127160.

    • [64] NICOLAI J,FURGEAUD C,FONROSE B W,et al.Formation mechanisms of Ti2AlC MAX phase on SiC-4H using magnetron sputtering and post-annealing [J].Materials & Design,2018,144,209-213.

    • [65] FRODELIUS J,EKLUND P,BECKERS M,et al.Sputter deposition from a Ti2AlC target:Process characterization and conditions for growth of Ti2AlC[J].Thin Solid Films,2010,518(6):1621-1626.

    • [66] BARSOUM M W,GOLCZEWSKI J,SEIFERT H J,et al.Fabrication and electrical and thermal properties of Ti2InC,Hf2InC and(Ti,Hf)2InC[J].Journal of Alloys & Compounds,2002,340(1-2):173-179.

    • [67] BECKERS M,SCHELL N,MARTINS R M S,et al.Nucleation and growth of Ti2AlN thin films deposited by reactive magnetron sputtering onto MgO(111)[J].Journal of Applied Physics,2007,102(7):201-143.

    • [68] EKLUND P,BECKERS M,JANSSON U,et al.The Mn+1AXn phases:materials science and thin-film processing [J].Thin Solid Films,2010,518(8):1851-1878.

    • [69] BECKERS M,SCHELL N,MARTINS R M S,et al.Phase stability of epitaxially grown Ti2AlN thin films [J].Applied Physics Letters,2006,89:74101-74101.

    • [70] HETTINGER J D,LOFLAND S E,FINKEL P,et al.Electrical transport,thermal transport,and elastic properties of M2AlC(M =Ti,Cr,Nb,and V)[J].Physical Review B,2005,72(11):115120.

    • [71] JOVIC V D,JOVIC B M,GUPTA S,et al.Corrosion behavior of select MAX phases in NaOH,HCl and H2SO4[J].Corrosion Science,2006,48(12):4274-4282.

    • [72] BARSOUM M W,EL-RAGHY T,ALI M.Processing and characterization of Ti2AlC,Ti2AlN,and Ti2AlC0.5N0.5[J].Metallurgical and Materials Transactions A,2000,31(7):1857-1865.

    • [73] WANG X H,ZHOU Y C.Intermediate-temperature oxidation behavior of Ti2AlC in air [J].Journal of Materials Research,2002,17(11):2974-2981.

    • [74] SUN Z M.Progress in research and development on MAX phases:a family of layered ternary compounds[J].International Materials Reviews,2011,56(3):143-166.

    • [75] WANG J Y,ZHOU Y C.Dependence of elastic stiffness on electronic band structure of nanolaminate M2AlC(M = Ti,V,Nb,and Cr)ceramics[J].Physical Review B,2004,69(21):1681-1685.

    • [76] WANG X H,ZHOU Y C.Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics:a review[J].Journal of Materials Science & Technology,2010,26(5):385-416.

    • [77] SUN Z M,LI S,AHUJA R,et al.Calculated elastic properties of M2AlC [J].Solid State Communications,2004,129(9):589-592.

    • [78] COVER M F,WARSCHKOW O M,BILEK M M.et al.Elastic properties of Tin + 1AlCn and Tin + 1AlNn MAX phases [J].Advanced Engineering Materials,2008,10(10):935-938.

    • [79] TANG C,STUEBER M,JAENTSCH U,et al.Synthesis and characterization of Ti2AlC coatings by magnetron sputtering from three elemental targets and ex-situ annealing [J].Surface and Coatings Technology,2017,309:445-455.

    • [80] PSHYK A,COY E,MATEUSZ K,et al.Low-temperature growth of epitaxial Ti2AlC MAX phase thin films by low-rate layer-by-layer PVD [J].Materials Research Letters,2019,7(6):244-250.

    • [81] WANG X H,ZHOU Y C.Microstructure and properties of Ti3AlC2 prepared by the solid-liquid reaction synthesis and simultaneous in-situ hot pressing process[J].Acta Materialia,2002,50(12):3143-3151.

    • [82] SCABAROZI T,GANGULY A,HETTINGER J D,et al.Electronic and thermal properties of Ti3Al(C0.5,N0.5)2,Ti2Al(C0.5,N0.5)and Ti2AlN [J].Journal of Applied Physics,2008,104(7):27.

    • [83] TZENOV N V,BARSOUM M W.Synthesis and characterization of Ti3AlC2[J].Journal of the American Ceramic Society,2000,83(4):825-832.

    • [84] CHING W Y,MO Y,ARYAL S,et al.Intrinsic mechanical properties of 20 MAX ‐ Phase compounds[J].Journal of the American Ceramic Society,2013,96(7):2292-2297.

    • [85] GHEBOULI B,GHEBOULI M A,FATMI M,et al.Firstprinciples calculations of structural,electronic,elastic and thermal properties of phase M2SiC(M = Ti,V,Cr,Zr,Nb,Mo,Hf,Ta and W)[J].Transactions of Nonferrous Metals Society of China,2015,25(3):915-925.

    • [86] LI J F,SATO F,WATANABE R.Synthesis of Ti3SiC2 polycrystals by hot-isostatic pressing of the elemental powders [J].Journal of Materials Science Letters,1999,18(19):1595-1597.

    • [87] HOLM B,AHUJA R,JOHANSSON B.Ab initio calculations of the mechanical properties of Ti3SiC2 [J].Applied Physics Letters,2001,79(10):1450-1452.

    • [88] FINKEL P,BARSOUM M W,EL-RAGHY T.Low temperature dependencies of the elastic properties of Ti4AlN3,Ti3Al1.1C1.8,and Ti3SiC2[J].Journal of Applied Physics,2000,87(4):1701-1703.

    • [89] BARSOUM M W,EL-RAGHY T.Synthesis and characterization of a remarkable ceramic:Ti3SiC2[J].Journal of the American Ceramic Society,1996,79(7):1953-1956.

    • [90] KOOI B J,POPPEN R J,CARVALHO N J M,et al.Ti3SiC2:A damage tolerant ceramic studied with nano-indentations and transmission electron microscopy[J].Acta Materialia,2003,51(10):2859-2872.

    • [91] EL-RAGHY T,BARSOUM M W,ZAVALIANGOS A,et al.Processing and mechanical properties of Ti3SiC2:part II.Mechanical properties [J].Journal of the American Ceramic Society,1999,82:2855-2859.

    • [92] RADOVIC M,BARSOUM M W,EL-RAGHY T,et al.Tensile properties of Ti3SiC2 in the 25-1 300 ℃ temperature range[J].Acta Materialia,2000,48(2):453-459.

    • [93] EKLUND P,EMMERLICH J,HOGBERG H,et al.Structural,electrical,and mechanical properties of nc-TiC ∕ a-SiC nanocomposite thin films [J].Journal of Vacuum Science & Technology B Microelectronics & Nanometer Structures Processing Measurement & Phenomena,2005,28(6):2486-2495.

    • [94] BARSOUM M W,BRODKIN D,ELRAGHY T.Layered machinable ceramics for high temperature applications [J].Scripta Materialia,1997,36(5):535-541.

    • [95] FINKEL P,SEAMAN B,HARRELL K,et al.Electronic,thermal,and elastic properties of Ti3Si1-xGexC2 solid solutions [J].Physical Review B,2004,70(8):97-114.

    • [96] WILHELMSSON O,EKLUND P,HOGBERG H,et al.Structural,electrical and mechanical characterization of magnetron-sputtered V-Ge-C thin films [J].Acta Materialia,2008,56(11):2563-2569.

    • [97] BOUHEMADOU A.Calculated structural,electronic and elastic properties of M2GeC(M=Ti,V,Cr,Zr,Nb,Mo,Hf,Ta and W)[J].Applied Physics A,2009,96(4):959-967.

    • [98] YANG Z J,GUO Y D,LINGHU R F,ea al.First-principles calculation of the lattice compressibility,elastic anisotropy and thermodynamic stability of V2GeC [J].Chinese Physics B,2012,21(3):328-334.

    • [99] YI J X,CHEN P,LI D L,et al.Elastic and electronic properties of a new MAX compound(Cr0.5V0.5)2GeC from first-principles calculations [J].Solid State Communications,2010,150(1-2):49-53.

    • [100] HU C,HE L,LIU M,et al.In situ reaction synthesis and mechanical properties of V2AlC[J].Journal of the American Ceramic Society,2010,91(12):4029-4035.

    • [101] SIGUMONRONG D P,ZHANG J,ZHOU Y C,et al.Synthesis and elastic properties of V2AlC thin films by magnetron sputtering from elemental targets [J].Journal of Physics DApplied Physics,2009,42(18):185408-185415.

    • [102] BARSOUM M W.The Mn + 1AXn phases and their properties [M]//Ceramics science and technology.Berlin:Wiley ‐ VCH Verlag GmbH & Co.KGaA,2014.

    • [103] WANG Z,LI X,ZHOU J,et al.Microstructure evolution of VAl-C coatings synthesized from a V2AlC compound target after vacuum annealing treatment [J].Journal of Alloys and Compounds,2016,661,476-482.

    • [104] BARSOUM M W.MAX Phases:Properties of machinable ternary carbides and nitrides[ M].Berlin:Wiley-VCH Verlag GmbH & Co.KGaA,2013.

    • [105] TIAN W B,WANG P L,ZHANG G J,et al.Synthesis and thermal and electrical properties of bulk Cr2AlC [J].Scripta Materialia,2006,54(5):841-846.

    • [106] GRIESELER R,HAEHNLEIN B,STUBENRAUCH M,et al.Nanostructured plasma etched,magnetron sputtered nanolaminar Cr2AlC MAX phase thin films[J].Applied Surface Science,2014,292(Feb.15):997-1001.

    • [107] TIAN W B,WANG P L,ZHANG G J,et al.Mechanical properties of Cr2AlC ceramic [J].Journal of the American Ceramic Society,2007,90(5):1663-1666.

    • [108] LIU J,ZUO X,WANG Z,et al.Fabrication and mechanical properties of high purity of Cr2AlC coatings by adjustable Al contents[J].Journal of Alloys and Compounds,2018,753:11-17.

    • [109] NAVEED M,OBROSOV A,ZAK A,et al.Sputtering power effects on growth and mechanical properties of Cr2AlC MAX phase coatings [J].Metals-Open Access Metallurgy Journal,2016,6(11):265.

    • [110] LIN Z,ZHOU Y,LI M,et al.In-situ hot pressing/solid-liquid reaction synthesis of bulk Cr2AlC [J].Ztschrift fur Metallkunde,2005,96(3):291-296.

    • [111] SCHNEIDER J M,SIGUMONRONG D P,MUSIC D,et al.Elastic properties of Cr2AlC thin films probed by nanoindentation and ab initio molecular dynamics[J].Scripta Materialia,2007,57(12):1137-1140.

    • [112] DU Y L,SUN Z M,HASHIMOTO H,et al.Theoretical investigations on the elastic and thermodynamic properties of Ti2AlC0.5N0.5 solid solution[J].Physics Letters A,2009,374(1):78-82.

    • [113] LIN Z J,ZHUO M J,LI M S,et al.Synthesis and microstructure of layered-ternary Ti2AlN ceramic [J].Scripta Materialia,2007,56(12):1115-1118.

    • [114] SCABAROZI T H,ROCHE J,ROSENFELD A,et al.Synthesis and characterization of Nb2AlC thin films[J].Thin Solid Films,2009,517(9):2920-2923.

    • [115] SALAMA I,EL-RAGHY T,BARSOUM M W.Synthesis and mechanical properties of Nb2AlC and(Ti,Nb)2AlC [J].Journal of Alloys and Compounds,2002,347:271-278.

    • [116] ZHANG W,TRAVITZKY N,HU C,et al.Reactive hot pressing and properties of Nb2AlC[J].Journal of the American Ceramic Society,2010,92(10):2396-2399.

    • [117] SHANG L,BABEN M T,PRADEEP K G,et al.Phase formation of Nb2AlC investigated by combinatorial thin film synthesis and ab initio calculations[J].Journal of the European Ceramic Society,2016,37(1):35-41.

    • [118] XIE J,WANG XH,LI AJ,et al.Corrosion behavior of selected Mn+1AXn phases in hot concentrated HCl solution:Effect of a element and MX layer [J].Corrosion Science,2012,60:129-135.

    • [119] LI D,LIANG Y,LIU X,et al.Corrosion behavior of TiAlC in NaOH and H2SO4 [J].Journal of the European Ceramic Society,2010,30(15):3227-3234.

    • [120] TRAVAGLINI J,BARSOUM M W,JOVIC V,et al.The corrosion behavior of Ti3SiC2 in common acids and dilute NaOH [J].Corrosion Science,2003,45(6):1313-1327.

    • [121] 李凌,俞国军,周兴泰.Ti3 SiC2 、Ti3AlC2 在 LiF-NaF-KF 熔盐中的腐蚀行为研究[J].核技术,2014,37(6):1-6.LI Ling,YU Guojun,ZHOU Xingtai.Corrrosion behaviour of Ti3 SiC2 and Ti3AlC2 with LiF-NaF-KF molten salt[J].Nuclear Technioues,2014,37(6):1-6.(in Chinese)

    • [122] FU J J,ZHANG T F,XIA Q X.et al.Oxidation and corrosion behavior of nanolaminated max-phase Ti2AlC film synthesized by high-power impulse magnetron sputtering and annealing[J].Journal of Nanomaterials,2015,2015:1-12.

    • [123] ZHU M,WANG R,CHEN C,et al.Comparison of corrosion behavior of Ti3 SiC2 and Ti3AlC2 in NaCl solutions with Ti[J].Ceramics International,2017,43(7):5708-5714.

    • [124] 文陈,许广兴,樊立伟,等.NaCl 溶液中20Cr9Ni5Co14不锈钢电化学腐蚀行为[J].东北大学学报(自然科学版),2015,36(6):819-822.WEN Chen,XU Guangxing,FAN Liwei,et al.Electrochemical corrosion behaviors of 20Cr9Ni5Co14 stainless steels in NaCl solution[J].Journal of Northeastern University(Natural Science),2015,36(6):819-822.(in Chinese)

    • [125] 雒设计,赵庆,冉照辉,等.CO2 和 H2 S 对FV520B不锈钢在NaCl溶液中电化学腐蚀行为的影响[J].机械工程材料,2019,043(10):11-14.LUO Sheji,ZHAO Qing,RAN Zhaohui,et al.Effects of CO2 and H2 S on electrochemical corrosion behavior of FV520B stainless steel in NaCl Solution [J].Materials for Mechanical Engineering,2019,43(10):11-14.(in Chinese)

    • [126] 王苹,梅炳初,雷零.若干MAX相化合物在 NaOH、H2 SO4 和HCl中的电化学性质[J].腐蚀科学与防护技术,2009,21(1):55-57.WANG Ping,MEI Bingchu,LEI Ling.Electrochemical behavior of several compounds of MAX phase in solutions of NaOH,H2 SO4 and HCl[J].Corrosion Science and Protection Technology,2009,21(1):55-57.(in Chinese)

    • [127] 王瑞.Ti-Si/Al-C 312 系MAX相在NaCl及 B-Li 溶液中的腐蚀行为[D].哈尔滨:哈尔滨工程大学,2016.WANG Rui.Study on the corrosion behavior of 312 Ti-Si/Al-C MAX phase in NaCl and B-Li solution [ D].Hrabin:Hrabin Engineering Uneversity,2016.(in Chinese)

    • [128] ZHU M,WANG R,CHEN C,et al.Electrochemical study on the corrosion behavior of Ti3SiC2 in 3.5% NaCl solution[J].RSC Advances,2017,7(21):12534-12540.

  • 手机扫一扫看