en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

付小静,女,1990年出生,博士研究生。主要研究方向为润滑材料、薄膜材料的减摩和耐磨性能。E-mail:1205454198@qq.com;

万勇(通信作者),男,1968年出生,博士,教授,博士研究生导师。主要研究方向为摩擦化学。E-mail:wanyong@qlu.edu.cn

中图分类号:TG174;TH117

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210612001

参考文献 1
SAWADA S.Effect of contact force on the friction coefficient of electroplated TiN films for automotive applications[J].Journal of the Japan Institute of Metals,2009,73:659-665.
参考文献 2
BOBZIN K.High-performance coatings for cutting tools [J].CIRP Journal of Manufacturing Science and Technology,2017,18:1-9.
参考文献 3
MA H,MIAO Q,ZHANG G,et al.The influence of multilayer structure on mechanical behavior of TiN/TiAlSiN multilayer coating[J].Ceramics International,2021,47:12583-12591.
参考文献 4
QIN Y,ZHAO H,LI C,et al.Effect of heat treatment on the microstructure and corrosion behaviors of reactive plasma sprayed TiCN coatings[J].Surface & Coatings Technology,2020,398:126086.
参考文献 5
汪鹏,许昌庆,蔡飞,等.多弧离子镀TiAlSiN梯度涂层制备及切削性能[J].中国表面工程,2019,32(2):34-43.WANG P,XU C Q,CAI F,et al.Preparation and cutting performance of TiAlSiN gradient coating by multi-arc ion plating [J].China Surface Engineering,2019,32(2):34-43.(in Chinese)
参考文献 6
谢宏.切削刀具PVD涂层技术的发展及应用[J].硬质合金,2002,19(1):1-4.XIE H.Development and application of PVD coating technology for cutting tool [J].Hard Alloys,2002,19(1):1-4.(in Chinese)
参考文献 7
DUDZINSKI D,DEVILLEZ A,MAOFKI A,et al.A review of developments towards dry and high speed machining of Inconel 718 alloy [J].International Journal of Machine Tools & Manufacture,2004,44:439-456.
参考文献 8
OLIVEIRA J C,MANAIA A,DIAS J P,et al.The structure and hardness of magnetron sputtered Ti-Al-N thin films with low N contents(<42 at.%)[J].Surface & Coatings Technology,2006,200:6583-6587.
参考文献 9
付志强,苗志玲,岳文,等.脉冲偏压占空比对电弧离子镀TiAlN涂层的影响 [J].稀有金属材料与工程,2018,47(11):3482-3486.FU Z Q,MIAO Z L,YUE W,et al.Effect of pulse bias duty ratios on arc ion plating TiAlN coatings[J].Rare Metal Materials and Engineering,2018,47(11):3482-3486.(in Chinese)
参考文献 10
ZAUNER L,ERTELTHALER P,WOJCIK T,et al.Reactive HiPIMS deposition of Ti-Al-N:influence of the deposition parameters on the cubic to hexagonal phase transition [J].Surface & Coatings Technology,2020,382:125007.
参考文献 11
曾琨,邹长伟,郑军,等.电弧离子镀TiAlN和 TiAlSiN 涂层的高温摩擦磨损行为[J].中国表面工程,2015,28(6):28-38.ZENG K,ZOU C W,ZHENG J,et al.High-temperature friction and wear behavior of TiAlN and TiAlSiN Coatings deposited by arc ion plating[J].China Surface Engineering,2015,28(6):28-38.(in Chinese)
参考文献 12
王泽勇,冯长杰,师超,等.微量Ag元素对TiAlN涂层摩擦学性能的影响[J].摩擦学学报,2020,40(5):634-646.WANG Z Y,FENG C J,SHI C,et al.Effect of trace Ag element on tribological properties of TiAlN coating [J].Tribology,2020,40(5):634-646.(in Chinese)
参考文献 13
郭武明,孙东,蒲吉斌,等.不同涂层在甘油环境下的摩擦学性能对比研究[J].润滑与密封,2019,44(10):121-124.GUO W M,SUN D,PU J B,et al.Tribological properties of different coating in glycerol environment [J].Lubrication Engineering,2019,44(10):121-124.(in Chinese)
参考文献 14
SHI Y,MINAMI I,GRAHN M,et al.Boundary and elastohydrodynamic lubrication studies of glycerol aqueous solutions as green lubricants[J].Tribology International,2014,69(1):39-45.
参考文献 15
KUZHAROV A A,LUK’YANOV B S,KUZHAROV A S,et al.Tribochemical transformations of glycerol[J].Journal of Friction & Wear,2016,37(4):337-345.
参考文献 16
BOUCHET MI D B,MATTA C,LE-MOGNEe T.Superlubricity mechanism of diamond-like carbon with glycerol.Coupling of experimental and simulation studies [J].Journal of Physics Conference Series 2007,89:012003.
参考文献 17
FU X J,CAO L,WAN Y,et al.Ultralow friction of PVD TiN coating in the presence of glycerol as a green lubricant [J].Ceramics International,2020,46:24302-24311.
参考文献 18
OLIVER W C,MCHARGUE C J,ZINKLE S J.Thin film characterization using a mechanical properties microprobe [J].Thin Solid Films,1987,153:185-196.
参考文献 19
BIN D,TAO Y,HU Z.The microstructure,mechanical and tribological properties of TiN coatings after Nb and C ion implantation [J].Applied Surface Science,2013,284:405-411.
参考文献 20
WANG S Q,CHEN K H,CHEN L,et al.Effect of Al and Si additions on microstructure and mechanical properties of TiN coatings[J].Journal of Central South University,2011,18(2):310-313.
参考文献 21
KUMAR D D,RANI R,KUMAR N,et al.Tribochemistry of TaN,TiAlN and TaAlN coatings under ambient atmosphere and high-vacuum sliding conditions [J].Applied Surface Science,2020,499:143989.
参考文献 22
HE C,ZHANG J,XIE L,et al.Microstructure,mechanical and corrosion properties of TiN/Ni nano-multilayered films[J].Rare Metals,2019,38:979-988.
参考文献 23
MUSIL J,KUNC F,ZEMAN H,et al.Relationships between hardness,Young ’ s modulus and elastic recovery in hard nanocomposite coatings [J].Surface & Coatings Technology,2002,154:304-313.
参考文献 24
LONG Y,BOUCHET MI D B,LUBRECHT T,et al.Superlubricity of glycerol by self-sustained chemical polishing [J].Scientific Reports,2019,9:1-13.
参考文献 25
JIN Z M,DOWSON D,FISHER J.Analysis of fluid film lubrication in artificial hip joint replacements with surfaces of high elastic modulus [J].Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine,1997,211(3):247-56.
参考文献 26
CHENG X,FENG Z,LI C,et al.Investigation of oxide film formation on 316L stainless steel in high-temperature aqueous environments[J].Electrochimic Acta,2011,56:5860-5865.
参考文献 27
GHOSE S K,WAYCHUNAS G A,TRAINOR T P,et al.Hydrated goethite(α-FeOOH)(100)interface structure:Ordered water and surface functional groups[J].Geochimica et Cosmochimica Acta,2010,74:1943-1953.
目录contents

    摘要

    TiAlN 涂层具有优异的力学性能,在刀具领域具有广泛的应用背景,然而优化制备参数以获得性能更为优异的 TiAlN 涂层仍需要做进一步的研究,同时与 TiAlN 涂层相适应的绿色润滑剂也是当前亟待解决的问题之一。 基于磁控溅射技术,研究 Al 靶溅射电流对 TiAlN 涂层结构和力学性能的影响,考察甘油润滑下 TiAlN 涂层的摩擦学性能,并利用 X 射线光电子能谱探究甘油的润滑机理。 结果表明:当溅射电流为 3 A 时得到的 TiAlN-3A 涂层具有最致密的晶状结构及最优的力学性能。 在甘油润滑下,TiAlN-3A 涂层的摩擦因数仅为 0. 007,其磨损率为 2. 62×10 -6 mm 3N -1m -1 。 XPS 分析表明,甘油在钢球与 TiAlN 涂层相对滑动过程中发生摩擦降解反应,在表面上生成新的产物 FeOOH。 FeOOH 的亲水性使得在接触区域表面吸附甘油分子及甘油降解产物形成流体润滑层,可提供优异的减摩和耐磨性能。

    Abstract

    TiAlN coating has found a wide application in the tool field as its excellent mechanical properties. However, more research is still needed to optimize the processing parameters to enhance mechanical properties of TiAlN coating. Moreover, it is urgent to develop green lubricants which are compatible with TiAlN coating. Based on magnetron sputtering technology, the effect of Al target sputtering current on the microstructure and mechanical properties of TiAlN coatings was studied, and the tribological properties of TiAlN coatings under glycerol lubrication conditions were evaluated. The action mechanism of glycerol on TiAlN coating was explored by using X-ray photoelectron spectroscopy. The results showed that TiAlN-3A coating obtained at 3 A has the densest crystalline structure and the best mechanical properties. The friction coefficient of TiAlN-3A coating was only 0. 007, and its wear rate was 2. 62 ×10 -6 mm 3N -1m -1 under lubrication of glycerol. XPS analysis indicated that the degradation reaction of glycerol occurred during the sliding of the steel ball against the TiAlN coating, and a new product FeOOH was formed on the surface. Due to the hydrophilicity of FeOOH, glycerol molecules and its degradation products were adsorbed on the surface of the contact area to form a fluid lubricant layer, providing excellent friction-reducing and wear resistant properties.

  • 0 前言

  • 以TiN为代表的二元金属硬质氮化物涂层因具有优异的力学性能、良好的耐磨性能及低摩擦因数, 在刀具、模具等领域得到广泛的应用[1-2],目前单一的二元涂层已不能满足行业需求,三元、四元涂层更具有发展及应用价值[3-5]。已有的研究表明,金属元素铝(Al)的掺杂可有效提高TiN涂层的硬度,同时促使涂层的晶格形成固溶体,改变TiN涂层中的晶体结构,使涂层具有更优异的力学性能、耐磨性能、化学和热稳定性能及摩擦磨损性能[6-7]。然而, TiAlN涂层的物理性能和微观机构取决于沉积工艺[8-10]。 OLIVEIRA等[8] 通过改变氮气流量调整TiAlN涂层中N/(Ti+Al+N)之比,发现随着氮气流量的增加,涂层的硬度从12.5GPa提高到27GPa。付志强等[9]改变了偏压占空比,使TiAlN涂层的表面缺陷密度和表面粗糙度发生变化,同时随着占空比的增加(<50%),TiAlN涂层的硬度和耐磨性得到显著的提高。

  • 目前对于TiAlN涂层的摩擦学性能的研究大部分停留在干摩擦条件下[ 11-12],对其在润滑条件下摩擦磨损性能的研究相对甚少。近年来,甘油作为一种绿色环境友好润滑剂引起了国内外科研者的广泛关注[ 13-16]。已有研究表明,包括类金刚石碳膜在内的一些材料在甘油润滑下表现出极低的摩擦因数[ 14-16],付小静等[ 17] 的研究也观测到TiN涂层在甘油润滑下表现出良好的摩擦学性能。基于此,本文通过改变磁控溅射技术的Al靶溅射电流制备了TiAlN涂层,探究溅射电流对TiAlN涂层微结构和力学性能的影响,重点考察了在甘油润滑下TiAlN涂层的摩擦磨损性能, 期待为开发适合TiAlN涂层的新型润滑材料提供借鉴。

  • 1 试验准备

  • 1.1 试验材料

  • 甘油,纯度≥95%,黏度为1 113m·Pas (24℃), 基底为25mm × 20mm × 3mm的AISI304不锈钢, Ra20nm,分别在石油醚、无水乙醇和去离子水超声清洗15min,氮气吹干后备用。

  • 1.2 TiAlN涂层的制备

  • 采用磁控溅射技术在AISI304不锈钢表面沉积TiAlN涂层。沉积过程中,使用Ti(纯度99.9%)靶和Al(纯度99.9%)靶,通过调控目标靶材的电流从而可以得到不同类型的涂层。首先将沉积室内压强抽至5mPa,通入80mL/min氩气使沉积腔内工作气压稳定在0.5Pa,设置偏压为-800V,通过Ar +刻蚀试样表面15min。保持工作气压不变,升温至300℃,调整氩气流量为60mL/min,设置偏压为-50V,打开Ti靶挡板,在试样表面先沉积Ti涂层15min。然后调整氩气流量为55mL/min,打开Al靶挡板,继续沉积TiAl涂层15min;最后,通入气体流量为25mL/min的氮气,同时氩气流量调整为55mL/min,选用不同沉积电流(1A,3A,7A),沉积TiAlN涂层4h。沉积结束后,关闭电源,保持腔压稳定,随炉冷却至70℃ 时打开放气阀, 取出试样。

  • 1.3 TiAlN涂层的表征

  • 使用连续刚度测量 ( CSM) 模式, 在配合Berkovich压头的MTS纳米压头G200系统上进行了纳米压痕测试。利用Oliver-Pharr法测量涂层的硬度和弹性模量[18]。纳米压痕试验是在19.6mN的负载下进行的,其最大压痕深度为100nm。为保证数值的可靠性,需至少在试件的不同位置做6次压痕测试,取其算术平均值。

  • 采用扫描电子显微镜 ( SEM, MERLIN Compact)对涂层的表面、截面形貌进行观察,利用SEM自带的能谱仪(EDS)对试样表面进行元素成分分析; 利用X射线衍射仪 ( XRD, 布鲁克D8advance)对TiAlN硬质薄膜的物相组成进行分析,扫描速率6( °)/min,扫面范围10°~90°,步长0.02°;利用X射线光电子能谱仪 ( XPS, Thermo Scientific K-Alpha)对TiAlN薄膜的物相进行确定以及定量表征;XPS测试是在12kV和10mA下以Al Kα 为X-射线源操作的。利用C 1s结合能 (284.8eV) 进行能量校准; 利用原子力显微镜 (AFM)测量TiAlN薄膜的表面粗糙度。

  • 利用UMT-3 (CETR, US)测试TiAlN涂层与基底之间的结合力。刀具压头锥面半径为0.2mm,锥面角度为120°,测试过程的滑动速度是0.1mm/s, 载荷的范围为0~30N,划痕长度为3mm。

  • 1.4 摩擦磨损性能测试及表征

  • 利用UMT-3 (CETR, US) 测试甘油润滑下的TiAlN涂层的摩擦磨损性能。摩擦磨损试验是在球-盘往复运动方式下进行的,上试球采用GCr15材质,直径为6mm,下试件为不锈钢基材及沉积TiAlN涂层的不锈钢。试验加载力为4N(摩擦力传感器的精度为0.25mN),对应最大的接触应力为1.03GPa,振幅和频率分别为6mm和2Hz,滑动时间为1h或3h。试验在室温20 ± 5℃下进行,相对湿度为70 ± 5%。试验测试前,上试球需要分别用无水乙醇和石油醚超声清洗5min,用滴管取50 μL甘油滴落在上试球和下试件接触区,所有摩擦测试均重复3次。利用表面轮廓仪 ( SJ-200, Mitutoyo, Japan)测量涂层的磨痕截面,根据式(1)计算出磨损率 W:

  • W=V/(S×L)
    (1)
  • 式中,V 为磨损体积,是通过对磨痕多个位置的横截面积进行积分,然后乘以行程得到的。 S 为滑动距离(mm),L 为垂直加载力(N)。

  • 通过SEM对涂层摩擦运动后的磨痕进行观察, 并利用EDS对磨痕内部进行元素成分分析,表面分析前用蒸馏水仔细冲洗试样。借助XPS对接触区进行分析,阐明甘油的润滑机理。

  • 2 结果与分析

  • 2.1 TiAlN涂层表征结果

  • 图1 是在不同沉积电流下得到TiAlN涂层样品表面的XRD谱图,可见TiAlN涂层呈典型的面心立方体结构。特征谱线对应TiAlN ( 111)、 ( 200)、 (220)、(311)四个晶面,其中(111)和(200)面衍射峰尖锐,说明TiAlN涂层结晶度高[19]。另外,沉积电流为1A时,涂层具有(111)面的择优取向;当沉积电流为3A时,涂层(111)面的衍射强度变弱,呈现(200)面的择优取向;当沉积电流继续增加到7A时,涂层的(200)面衍射强度变弱, 衍射峰向更高的衍射角方向移动,即(220) 面峰值强度增加。这种晶面取向随沉积电流的变化而改变可以用能量最小化理论来解释[20]。 Al元素的引入改变了TiN晶面的形成能,使其发生晶格畸变,增大了涂层内部应力,导致向高指数的晶面择优生长以降低系统总能量。值得指出的是,TiAlN-3A涂层的(200) 面对应的衍射峰明显高于另外两种TiAlN涂层,(200) 晶体取向为致密的晶面,表明TiAlN-3A涂层的结构更为致密[21]

  • 图1 TiAlN涂层的XRD光谱图

  • Fig.1 XRD image of TiAlN coatings

  • 表1 给出TiAlN涂层的EDS分析结果,可以看出,TiAlN-1A涂层中Al元素的含量最低, 仅占8.12%;随着Al靶溅射电流的增大,TiAlN涂层中的Al含量增加,当电流为7A时,TiAlN涂层中Al含量到达27.03%。

  • 表1 TiAlN涂层表面的EDS结果

  • Table1 EDS results of the TiAlN coating surface (w/%)

  • 利用SEM对TiAlN涂层横截面及表面形貌进行表征。如图2所示,TiAlN-3A涂层表面晶粒大小均匀,柱状组织最为致密。而TiAlN-7A涂层的晶粒相对松散, 结晶度较低。制备的TiAlN-1A, TiAlN-3A, TiAlN-7A涂层厚度分别为508nm、 758nm和772nm。

  • 图2 TiAlN涂层的横截面及表面形貌

  • Fig.2 Cross-section and surface morphology of TiAlN coatings

  • 2.2 TiAlN涂层的力学性能

  • TiAlN涂层的力学性能如表2中所示。结果表明, 在三种涂层中,TiAlN-3A涂层具有最高的硬度和弹性模量,分别对应为25.91GPa和305.0GPa。此外,H/E和H 3/E 2 值用来预测表面涂层在无润滑滑动下的抗失效性能[22-23]。 H/E值越大,应力分布范围越大,从而延缓了膜的失效。 H 3/E 2 值越高,表明涂层具有较高的韧性,提高了试样的抗机械失效能力,TiAlN-3A涂层的H/E和H 3/E 2 值均高于另外两种涂层,由此说明该涂层具有最强的韧性和抗机械失效能力。

  • 当涂层剥落时,声传感器检测到声信号,施加在剥落处的力称为临界载荷( LC)。一般认为涂层的变形和脱落至少有两个阶段,分别对应于LC1和LC2。定义LC1为涂层表面首次出现裂纹时的加载力,LC2为涂层整体剥离基体时的加载力。图3给出了TiAlN涂层的膜基结合力测试结果,不难看出, TiAlN-1A、TiAlN-3A和TiAlN-7A涂层的LC1分别为6N、 9.8N和7N, 完全脱落的LC2分别为11.7N、13.4N和8.3N。由此表明,TiAlN-3A具有最大的膜基结合力。

  • 表2 TiAlN涂层的力学性能

  • Table2 Mechanical properties of TiAlN coatings

  • 图3 三种TiAlN涂层的结合力测试结果

  • Fig.3 Adhesion test results of TiAlN coatings

  • 2.3 TiAlN的摩擦学性能

  • 图4a给出了负载为4N(最大接触应力为1.03GPa),甘油润滑下不锈钢基底及三种TiAlN涂层摩擦因数随时间变化的曲线。从图中可看出,TiAlN涂层的摩擦因数明显小于未沉积的不锈钢基底。对于不锈钢基底试样, 经磨合后, 摩擦因数保持在0.18左右,而TiAlN-1A的摩擦因数在0.028左右; TiAlN-7A的摩擦因数在0.01左右;TiAlN-3A涂层经过1 000s左右的磨合后,摩擦因数稳定在0.007左右,表现出超滑特性。通过计算对比甘油润滑下样品的磨损率(图4b)可知,TiAlN涂层的磨损率均明显小于未沉积的不锈钢样品,其中TiAlN-3A涂层的磨损率最小,仅为2.62×10-6 mm 3N-1m-1,比不锈钢的磨损率小2个数量级。

  • 图4 在甘油润滑下不锈钢样品和沉积TiAlN涂层的摩擦磨损结果

  • Fig.4 Friction and wear results of steel and TiAlN-coated samples lubricated by glycerol

  • 图5 在甘油润滑下不锈钢基底和三种TiAlN涂层磨痕的电子形貌图

  • Fig.5 Electronic morphology of wear scar of stainless steel substrate and TiAlN coating lubricated by glycerol

  • 图5 给出试样磨痕处的SEM图,在不锈钢磨痕处存在大量清晰可见的犁沟和划痕,磨痕宽度达到530 μm。而对于三种TiAlN涂层,只观察到轻微的磨痕,磨痕宽度均远小于未沉积涂层的不锈钢样品。另外,从涂层磨痕处的EDS结果(见表3) 可看出, 在磨痕内部仍可检测出Ti、N和Al三种元素,但均未检测到Fe元素,这进一步证明了在摩擦运动后TiAlN涂层并未被破坏。

  • 表3 在甘油润滑下TiAlN涂层磨痕内部对应图5白色框内的EDS结果

  • Table3 EDS results of TiAlN coating inside wear scar under glycerol lubrication corresponding to the white box in Fig.5 (w/%)

  • 为进一步评定甘油对TiAlN-3A涂层润滑性能的影响,对比了TiAlN-3A涂层在多种润滑介质的摩擦学特性。通过图6可以看出,样品在PAO6基础油润滑下,磨合期最长,且摩擦因数最大,稳定在0.13左右;在机油5W30和菜籽油润滑下,摩擦因数接近0.1;在橄榄油润滑下,摩擦因数在运动初期快速降至0.06,但随着时间的增加,摩擦因数呈缓慢上升趋势,最终达到0.1。与以上几种润滑介质相比,甘油润滑下TiAlN涂层的摩擦因数稳定在0.00 7左右,降低了近一个数量级。

  • 图6 不同润滑油下沉积TiAlN-3A涂层的样品摩擦因数随时间变化的对比曲线

  • Fig.6 Comparison curve of friction coefficient with time of TiAlN-3A coating samples deposited at different lubrication

  • 2.4 XPS分析

  • 上述摩擦试验结果表明,钢/TiAlN摩擦副在甘油中表现出的摩擦学性能明显优于钢/钢摩擦副。对于TiAlN-3A涂层,摩擦因数可低至0.007,磨损率仅为2.62 × 10-6mm 3N-1m-1 。为探讨TiAlN涂层在甘油润滑下获得超低摩擦因数的机理,对摩擦运动后的TiAlN-3A涂层磨痕内外进行了XPS测试,结果见图7。在Fe2p图谱中,磨痕内部可明显观测到Fe元素的存在,而在磨痕外部并未发现。甘油和TiAlN涂层中均不含有Fe元素,由此推测Fe元素可能来自于摩擦过程中对偶钢球的转移。该图谱在磨痕内结合能712.1eV处出现一个较强的峰,说明产生FeOOH。在O1s光谱中观察到一个结合能为531.1eV的强峰,这可归因于磨痕内部存在FeOOH或羰基(C=O)键[24]。在C1s光谱286.2eV处存在一个较低的强度(C=O)峰,但在涂层磨痕外并未观测到相同的峰,丙三醇分子本身也不存在C=O基团,因此有理由认为甘油在滑动过程中可能发生了摩擦化学降解。此外,在O1s光谱532.8eV处的峰可归因于甘油中存在的(C-O-)键,说明有甘油分子吸附在涂层表面。

  • 2.5 甘油对TiAlN涂层的润滑机理

  • 利用Hamrock-Dowson公式[25]计算在甘油润滑下钢/TiAlN摩擦副接触区形成的油膜最小厚度 hmin,并借助式(2)计算 λ,以此来确定该试验条件下的润滑状态:

  • λ=hminσ=hminσ12+σ22
    (2)
  • 式中,σ 表示摩擦副运动后的复合表面粗糙度,σ1σ2 分别表示摩擦副的表面粗糙度。在负载为4N时,甘油润滑下钢/TiAlN-3A摩擦体系 hminλ 分别为23.2nm和1.16,说明该体系处于混合润滑状态。

  • 图7 甘油润滑下TiAlN-3A涂层磨痕内外Fe2p、Al2p、C1s、N1s、Ti2p和O1s的XPS拟合谱图

  • Fig.7 XPS spectra of Fe2p, Al2p,C1s,N1s,Ti2p and O1s inside and outside the wear track of TiAlN-3A coating

  • XPS分析结果表明,甘油在钢球与TiAlN涂层相对滑动过程中发生摩擦降解反应,在表面上生成新的产物FeOOH。对于FeOOH薄膜的润滑作用的研究已有报道[24,26],一般认为在甘油润滑下,接触区表面FeOOH的生成过程可用化学方程式(3) 来描述[24] :

  • FexOy+C3H8O3FeOOH+Cs+H2O
    (3)
  • 在滑动过程中, 部分FeOOH可能转移到TiAlN涂层表面。 FeOOH本身具有亲水性,可进一步吸附未降解的甘油分子及甘油的降解产物,如水、二羟丙酮等[27],从而在接触区表面形成一层亲水流体层,可达到超低摩擦和磨损[24]。图8给出了甘油润滑下钢/TiAlN摩擦副接触区流体层形成的示意图。

  • 3 结论

  • 通过改变磁控溅射技术中Al靶的溅射电流,调控TiAlN涂层的微观结构和力学性能,研究了甘油润滑下TiAlN涂层的摩擦学性能及润滑机理,得到如下主要结论:

  • (1) Al靶的溅射电流不仅影响TiAlN涂层的晶粒大小、结晶度、Ti/Al原子比等微观结构,同时影响涂层的硬度、弹性模量等力学性能。

  • (2) 在甘油润滑下,TiAlN涂层表现出优异的摩擦学性能。在负载4N下,TiAlN-3A涂层表现超滑性能,摩擦因数仅为0.007,其磨损率为2.62 × 10-6 mm 3N-1m-1

  • (3) XPS分析结果表明,在滑动过程中甘油发生降解,在接触区表面产生FeOOH薄膜。由于其本身的亲水性,会进一步吸附甘油和主要的降解产物, 形成流体层,提供超低摩擦和磨损。

  • 图8 甘油润滑下钢/TiAlN摩擦副接触区流体层形成示意图

  • Fig.8 Schematic diagram of formation of fluid layer in the contact zone of Steel/TiAlN friction pair under glycerol lubrication

  • 参考文献

    • [1] SAWADA S.Effect of contact force on the friction coefficient of electroplated TiN films for automotive applications[J].Journal of the Japan Institute of Metals,2009,73:659-665.

    • [2] BOBZIN K.High-performance coatings for cutting tools [J].CIRP Journal of Manufacturing Science and Technology,2017,18:1-9.

    • [3] MA H,MIAO Q,ZHANG G,et al.The influence of multilayer structure on mechanical behavior of TiN/TiAlSiN multilayer coating[J].Ceramics International,2021,47:12583-12591.

    • [4] QIN Y,ZHAO H,LI C,et al.Effect of heat treatment on the microstructure and corrosion behaviors of reactive plasma sprayed TiCN coatings[J].Surface & Coatings Technology,2020,398:126086.

    • [5] 汪鹏,许昌庆,蔡飞,等.多弧离子镀TiAlSiN梯度涂层制备及切削性能[J].中国表面工程,2019,32(2):34-43.WANG P,XU C Q,CAI F,et al.Preparation and cutting performance of TiAlSiN gradient coating by multi-arc ion plating [J].China Surface Engineering,2019,32(2):34-43.(in Chinese)

    • [6] 谢宏.切削刀具PVD涂层技术的发展及应用[J].硬质合金,2002,19(1):1-4.XIE H.Development and application of PVD coating technology for cutting tool [J].Hard Alloys,2002,19(1):1-4.(in Chinese)

    • [7] DUDZINSKI D,DEVILLEZ A,MAOFKI A,et al.A review of developments towards dry and high speed machining of Inconel 718 alloy [J].International Journal of Machine Tools & Manufacture,2004,44:439-456.

    • [8] OLIVEIRA J C,MANAIA A,DIAS J P,et al.The structure and hardness of magnetron sputtered Ti-Al-N thin films with low N contents(<42 at.%)[J].Surface & Coatings Technology,2006,200:6583-6587.

    • [9] 付志强,苗志玲,岳文,等.脉冲偏压占空比对电弧离子镀TiAlN涂层的影响 [J].稀有金属材料与工程,2018,47(11):3482-3486.FU Z Q,MIAO Z L,YUE W,et al.Effect of pulse bias duty ratios on arc ion plating TiAlN coatings[J].Rare Metal Materials and Engineering,2018,47(11):3482-3486.(in Chinese)

    • [10] ZAUNER L,ERTELTHALER P,WOJCIK T,et al.Reactive HiPIMS deposition of Ti-Al-N:influence of the deposition parameters on the cubic to hexagonal phase transition [J].Surface & Coatings Technology,2020,382:125007.

    • [11] 曾琨,邹长伟,郑军,等.电弧离子镀TiAlN和 TiAlSiN 涂层的高温摩擦磨损行为[J].中国表面工程,2015,28(6):28-38.ZENG K,ZOU C W,ZHENG J,et al.High-temperature friction and wear behavior of TiAlN and TiAlSiN Coatings deposited by arc ion plating[J].China Surface Engineering,2015,28(6):28-38.(in Chinese)

    • [12] 王泽勇,冯长杰,师超,等.微量Ag元素对TiAlN涂层摩擦学性能的影响[J].摩擦学学报,2020,40(5):634-646.WANG Z Y,FENG C J,SHI C,et al.Effect of trace Ag element on tribological properties of TiAlN coating [J].Tribology,2020,40(5):634-646.(in Chinese)

    • [13] 郭武明,孙东,蒲吉斌,等.不同涂层在甘油环境下的摩擦学性能对比研究[J].润滑与密封,2019,44(10):121-124.GUO W M,SUN D,PU J B,et al.Tribological properties of different coating in glycerol environment [J].Lubrication Engineering,2019,44(10):121-124.(in Chinese)

    • [14] SHI Y,MINAMI I,GRAHN M,et al.Boundary and elastohydrodynamic lubrication studies of glycerol aqueous solutions as green lubricants[J].Tribology International,2014,69(1):39-45.

    • [15] KUZHAROV A A,LUK’YANOV B S,KUZHAROV A S,et al.Tribochemical transformations of glycerol[J].Journal of Friction & Wear,2016,37(4):337-345.

    • [16] BOUCHET MI D B,MATTA C,LE-MOGNEe T.Superlubricity mechanism of diamond-like carbon with glycerol.Coupling of experimental and simulation studies [J].Journal of Physics Conference Series 2007,89:012003.

    • [17] FU X J,CAO L,WAN Y,et al.Ultralow friction of PVD TiN coating in the presence of glycerol as a green lubricant [J].Ceramics International,2020,46:24302-24311.

    • [18] OLIVER W C,MCHARGUE C J,ZINKLE S J.Thin film characterization using a mechanical properties microprobe [J].Thin Solid Films,1987,153:185-196.

    • [19] BIN D,TAO Y,HU Z.The microstructure,mechanical and tribological properties of TiN coatings after Nb and C ion implantation [J].Applied Surface Science,2013,284:405-411.

    • [20] WANG S Q,CHEN K H,CHEN L,et al.Effect of Al and Si additions on microstructure and mechanical properties of TiN coatings[J].Journal of Central South University,2011,18(2):310-313.

    • [21] KUMAR D D,RANI R,KUMAR N,et al.Tribochemistry of TaN,TiAlN and TaAlN coatings under ambient atmosphere and high-vacuum sliding conditions [J].Applied Surface Science,2020,499:143989.

    • [22] HE C,ZHANG J,XIE L,et al.Microstructure,mechanical and corrosion properties of TiN/Ni nano-multilayered films[J].Rare Metals,2019,38:979-988.

    • [23] MUSIL J,KUNC F,ZEMAN H,et al.Relationships between hardness,Young ’ s modulus and elastic recovery in hard nanocomposite coatings [J].Surface & Coatings Technology,2002,154:304-313.

    • [24] LONG Y,BOUCHET MI D B,LUBRECHT T,et al.Superlubricity of glycerol by self-sustained chemical polishing [J].Scientific Reports,2019,9:1-13.

    • [25] JIN Z M,DOWSON D,FISHER J.Analysis of fluid film lubrication in artificial hip joint replacements with surfaces of high elastic modulus [J].Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine,1997,211(3):247-56.

    • [26] CHENG X,FENG Z,LI C,et al.Investigation of oxide film formation on 316L stainless steel in high-temperature aqueous environments[J].Electrochimic Acta,2011,56:5860-5865.

    • [27] GHOSE S K,WAYCHUNAS G A,TRAINOR T P,et al.Hydrated goethite(α-FeOOH)(100)interface structure:Ordered water and surface functional groups[J].Geochimica et Cosmochimica Acta,2010,74:1943-1953.

  • 参考文献

    • [1] SAWADA S.Effect of contact force on the friction coefficient of electroplated TiN films for automotive applications[J].Journal of the Japan Institute of Metals,2009,73:659-665.

    • [2] BOBZIN K.High-performance coatings for cutting tools [J].CIRP Journal of Manufacturing Science and Technology,2017,18:1-9.

    • [3] MA H,MIAO Q,ZHANG G,et al.The influence of multilayer structure on mechanical behavior of TiN/TiAlSiN multilayer coating[J].Ceramics International,2021,47:12583-12591.

    • [4] QIN Y,ZHAO H,LI C,et al.Effect of heat treatment on the microstructure and corrosion behaviors of reactive plasma sprayed TiCN coatings[J].Surface & Coatings Technology,2020,398:126086.

    • [5] 汪鹏,许昌庆,蔡飞,等.多弧离子镀TiAlSiN梯度涂层制备及切削性能[J].中国表面工程,2019,32(2):34-43.WANG P,XU C Q,CAI F,et al.Preparation and cutting performance of TiAlSiN gradient coating by multi-arc ion plating [J].China Surface Engineering,2019,32(2):34-43.(in Chinese)

    • [6] 谢宏.切削刀具PVD涂层技术的发展及应用[J].硬质合金,2002,19(1):1-4.XIE H.Development and application of PVD coating technology for cutting tool [J].Hard Alloys,2002,19(1):1-4.(in Chinese)

    • [7] DUDZINSKI D,DEVILLEZ A,MAOFKI A,et al.A review of developments towards dry and high speed machining of Inconel 718 alloy [J].International Journal of Machine Tools & Manufacture,2004,44:439-456.

    • [8] OLIVEIRA J C,MANAIA A,DIAS J P,et al.The structure and hardness of magnetron sputtered Ti-Al-N thin films with low N contents(<42 at.%)[J].Surface & Coatings Technology,2006,200:6583-6587.

    • [9] 付志强,苗志玲,岳文,等.脉冲偏压占空比对电弧离子镀TiAlN涂层的影响 [J].稀有金属材料与工程,2018,47(11):3482-3486.FU Z Q,MIAO Z L,YUE W,et al.Effect of pulse bias duty ratios on arc ion plating TiAlN coatings[J].Rare Metal Materials and Engineering,2018,47(11):3482-3486.(in Chinese)

    • [10] ZAUNER L,ERTELTHALER P,WOJCIK T,et al.Reactive HiPIMS deposition of Ti-Al-N:influence of the deposition parameters on the cubic to hexagonal phase transition [J].Surface & Coatings Technology,2020,382:125007.

    • [11] 曾琨,邹长伟,郑军,等.电弧离子镀TiAlN和 TiAlSiN 涂层的高温摩擦磨损行为[J].中国表面工程,2015,28(6):28-38.ZENG K,ZOU C W,ZHENG J,et al.High-temperature friction and wear behavior of TiAlN and TiAlSiN Coatings deposited by arc ion plating[J].China Surface Engineering,2015,28(6):28-38.(in Chinese)

    • [12] 王泽勇,冯长杰,师超,等.微量Ag元素对TiAlN涂层摩擦学性能的影响[J].摩擦学学报,2020,40(5):634-646.WANG Z Y,FENG C J,SHI C,et al.Effect of trace Ag element on tribological properties of TiAlN coating [J].Tribology,2020,40(5):634-646.(in Chinese)

    • [13] 郭武明,孙东,蒲吉斌,等.不同涂层在甘油环境下的摩擦学性能对比研究[J].润滑与密封,2019,44(10):121-124.GUO W M,SUN D,PU J B,et al.Tribological properties of different coating in glycerol environment [J].Lubrication Engineering,2019,44(10):121-124.(in Chinese)

    • [14] SHI Y,MINAMI I,GRAHN M,et al.Boundary and elastohydrodynamic lubrication studies of glycerol aqueous solutions as green lubricants[J].Tribology International,2014,69(1):39-45.

    • [15] KUZHAROV A A,LUK’YANOV B S,KUZHAROV A S,et al.Tribochemical transformations of glycerol[J].Journal of Friction & Wear,2016,37(4):337-345.

    • [16] BOUCHET MI D B,MATTA C,LE-MOGNEe T.Superlubricity mechanism of diamond-like carbon with glycerol.Coupling of experimental and simulation studies [J].Journal of Physics Conference Series 2007,89:012003.

    • [17] FU X J,CAO L,WAN Y,et al.Ultralow friction of PVD TiN coating in the presence of glycerol as a green lubricant [J].Ceramics International,2020,46:24302-24311.

    • [18] OLIVER W C,MCHARGUE C J,ZINKLE S J.Thin film characterization using a mechanical properties microprobe [J].Thin Solid Films,1987,153:185-196.

    • [19] BIN D,TAO Y,HU Z.The microstructure,mechanical and tribological properties of TiN coatings after Nb and C ion implantation [J].Applied Surface Science,2013,284:405-411.

    • [20] WANG S Q,CHEN K H,CHEN L,et al.Effect of Al and Si additions on microstructure and mechanical properties of TiN coatings[J].Journal of Central South University,2011,18(2):310-313.

    • [21] KUMAR D D,RANI R,KUMAR N,et al.Tribochemistry of TaN,TiAlN and TaAlN coatings under ambient atmosphere and high-vacuum sliding conditions [J].Applied Surface Science,2020,499:143989.

    • [22] HE C,ZHANG J,XIE L,et al.Microstructure,mechanical and corrosion properties of TiN/Ni nano-multilayered films[J].Rare Metals,2019,38:979-988.

    • [23] MUSIL J,KUNC F,ZEMAN H,et al.Relationships between hardness,Young ’ s modulus and elastic recovery in hard nanocomposite coatings [J].Surface & Coatings Technology,2002,154:304-313.

    • [24] LONG Y,BOUCHET MI D B,LUBRECHT T,et al.Superlubricity of glycerol by self-sustained chemical polishing [J].Scientific Reports,2019,9:1-13.

    • [25] JIN Z M,DOWSON D,FISHER J.Analysis of fluid film lubrication in artificial hip joint replacements with surfaces of high elastic modulus [J].Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine,1997,211(3):247-56.

    • [26] CHENG X,FENG Z,LI C,et al.Investigation of oxide film formation on 316L stainless steel in high-temperature aqueous environments[J].Electrochimic Acta,2011,56:5860-5865.

    • [27] GHOSE S K,WAYCHUNAS G A,TRAINOR T P,et al.Hydrated goethite(α-FeOOH)(100)interface structure:Ordered water and surface functional groups[J].Geochimica et Cosmochimica Acta,2010,74:1943-1953.

  • 手机扫一扫看