en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

于会珠,1989生,女,硕士。主要研究方向为超浸润界面设计与制备、纳米生物材料。E-mail:yuhz20188006@163.com;

李瑞乾(通信作者),1988生,男,讲师,博士,硕士研究生导师。主要研究方向为超浸润界面设计与制备、金属腐蚀与防护。E-mail:liruiqian2008@163.com

中图分类号:TG174;TB306

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210606001

参考文献 1
CAO W T,FENG W,JIANG Y Y,et al.Two-dimensional MXene-reinforced robust surface superhydrophobicity with self-cleaning and photothermal-actuating binary effects [J].Materials Horizons,2019,6:1057-1065.
参考文献 2
DěKANOVSKY L,ELASHNIKOV R,KUBIKOVÁ M,et al.Dual-action flexible antimicrobial material:Switchable self-cleaning,antifouling,and smart drug release [J].Advanced Functional Materials,2019,29:1901880.
参考文献 3
YANG Y,LI X J,ZHENG X,et al.3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation [J].Advanced Materials,2018,30:1704912.
参考文献 4
张东光,李陵汉,吴亚丽,等.超疏水/超亲油铜网表面的一步法制备及其油水分离应用[J].中国表面工程,2019,32(1):31-37.ZHANG D G,LI L H,WU Y L,et al.Preparation of superhydrophobic and superoleophilic surface on Cu mesh by one-step method and its application in oil-water separation[J].China Surface Engineering,2019,32(1):31-37.(in Chinese)
参考文献 5
ZANG D M,ZHU R W,ZHANG W,et al.Corrosion-resistant superhydrophobic coatings on Mg alloy surfaces inspired by lotus seedpod [J].Advanced Functional Materials,2017,27:1605446.
参考文献 6
李玉峰,高文博,史凌志,等.超疏水涂层的制备及其对 Mg-Li 合金的防腐性能[J].中国表面工程,2020,33(5):1-9.LI Y F,GAO W B,SHI L Z,et al.Preparation of superhydrophobic coating and its corrosion resistance to Mg-Li alloy[J].China Surface Engineering,2020,33(5):1-9.(in Chinese)
参考文献 7
YIN X X,MU P,WANG Q T,et al.Superhydrophobic ZIF-8-based dual-layer coating for enhanced corrosion protection of Mg alloy [J].ACS Applied Materials & Interfaces,2020,12:35453-35463.
参考文献 8
WANG L,GONG Q,ZHAN S H,et al.Robust anti-icing performance of a flexible superhydrophobic surface [J].Advanced Materials,2016,28:7729-7735.
参考文献 9
LI Q,GUO Z G.Fundamentals of icing and common strategies for designing biomimetic anti-icing surfaces [J].Journal of Materials Chemistry A,2018,6:13549-13581.
参考文献 10
TAN Y L,HU B R,CHU Z Y,et al.Bioinspired superhydrophobic papillae with tunable adhesive force and ultralarge liquid capacity for microdroplet manipulation [J].Advanced Functional Materials,2019,29:1900266.
参考文献 11
JIANG S J,HU Y L,WU H,et al.Three-dimensional multifunctional magnetically responsive liquid manipulator fabricated by femtosecond laser writing and soft transfer [J].Nano Letters,2020,20:7519-7529.
参考文献 12
ZHANG W L,WANG D H,SUN Z N,et al.Robust superhydrophobicity:mechanisms and strategies [J].Chemical Society Reviews,2021,50:4031-4061.
参考文献 13
CHEN Z,ZHU C,CAI M L,et al.Growth and morphology tuning of ordered nickel nanocones routed by one-step pulse electrodeposition [J].Applied Surface Science,2020,508:145291.
参考文献 14
ZHANG D G,LI L H,WU Y L,et al.One-step method for fabrication of bioinspired hierarchical superhydrophobic surface with robust stability[J].Applied Surface Science,2019,473:493-499.
参考文献 15
曾宪光,黄茜,彭静,等.电沉积法制备超疏水涂层的研究进展[J].腐蚀与防护,2020,41(10):1-6.ZENG X G,HUANG Q,PENG J,et al.Research progress of super-hydrophobic coating prepared by electro-deposition [J].Corrosion & Protection,2020,41(10):1-6.(in Chinese)
参考文献 16
JIANG S Z,GUO Z N,DENG Y,et al.Effect of pulse frequency on the one-step preparation of superhydrophobic surface by pulse electrodeposition[J].Applied Surface Science,2018,458:603-611.
参考文献 17
WANG S Y,HOU C,WU M X,et al,Effect of choline chloride on electrodeposited superhydrophobic nickel film and the corrosion protection application [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,614:126185.
参考文献 18
LV X Z,LIN H X.Facile fabrication of robust superhydrophobic/superoleophlic Cu coated stainless steel mesh for highly efficient oil/water separation [J].Separation and Purification Technology,2021,256:117512.
参考文献 19
LIU E Y,WANG L Y,YIN X L,et al.Fabrication of a robust superhydrophobic Ni coating with micro-nano dual-scale structures on 316L stainless steel [J].Advanced Engineering Materials,2021,23:2000913.
参考文献 20
HU C B,XIE X Y,ZHENG H,et al.Facile fabrication of superhydrophobic zinc coatings with corrosion resistance via an electrodeposition process[J].New Journal of Chemistry,2020,44:8890-8901.
参考文献 21
ZHANG J L,GU C D,TONG Y Y,et al.Electrodeposition of superhydrophobic Cu film on active substrate from deep eutectic solvent[J].Journal of the Electrochemical Society,2015,162(8):D313-D319.
参考文献 22
HOU Y Y,PENG Z J,LIANG J,et al.Facile preparation of petaliform-like superhydrophobic meshes via moisture etching for oil-water separation [J].Surface and Coatings Technology,2020,399:126124.
参考文献 23
HOU Y Y,LI R Q,LIANG J.Superhydrophilic nickel-coated meshes with controllable pore size prepared by electrodeposition from deep eutectic solvent for efficient oil/water separation[J].Separation and Purification Technology,2018,192:21-29.
参考文献 24
LI R Q,GAO Q H,DONG Q J,et al.Template-free electrodeposition of ultra-high adhesive superhydrophobic Zn/Zn stearate coating with ordered hierarchical structure from deep eutectic solvent [J].Surface and Coatings Technology,2020,403:126267.
参考文献 25
ZHANG B B,LI J R,ZHAO X,et al.Biomimetic one step fabrication of manganese stearate superhydrophobic surface as an efficient barrier against marine corrosion and chlorella vulgaris-induced biofouling [J].Chemical Engineering Journal,2016,306:441-451.
参考文献 26
LIU Y,XUE J Z,LUO D,et al.One-step fabrication of biomimetic superhydrophobic surface by electrodeposition on magnesium alloy and its corrosion inhibition [J].Journal of Colloid and Interface Science,2017,491:313-320.
参考文献 27
ZHANG B B,ZHU Q J,LI Y T,et al.Facile fluorine-free one step fabrication of superhydrophobic aluminum surface towards self-cleaning and marine anticorrosion[J].Chemical Engineering Journal,2018,352:625-633.
参考文献 28
WANG H,DONG S L,WANG Z L.One-step fabrication of superhydrophobic surface on beryllium copper alloys and corrosion protection application [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,556:291-298.
参考文献 29
FAN Y,HE Y,LUO P Y,et al.A facile electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on carbon steel [J].Applied Surface Science,2016,368:435-442.
参考文献 30
REZAYI T,ENTEZARI M H.Toward a durable superhydrophobic aluminum surface by etching and ZnO nanoparticle deposition [J].Journal of Colloid and Interface Science,2016,463:37-45.
参考文献 31
FENG L,ZHU Y,WANG J,et al.One-step hydrothermal process to fabricate superhydrophobic surface on magnesium alloy with enhanced corrosion resistance and self-cleaning performance [J].Applied Surface Science,2017,422:566-573.
参考文献 32
LI C C,MA R N,DU A,et al.One-step fabrication of bionic superhydrophobic coating on galvanised steel with excellent corrosion resistance[J].Journal of Alloy and Compounds,2019,786:272-283.
目录contents

    摘要

    表面粗糙度和表面自由能是影响材料超疏水特性的两个主要因素。 为了获得同时具有微纳分级结构和低表面能的超疏水金属镀层,在低共熔溶剂中采用先构筑微米尺度结构,再构筑低表面能纳米尺度结构的两步电沉积策略。 利用 SEM、EDS 和 FTIR 观察不同沉积时间(t = 0、0. 5、1 和 2 min)下沉积样品(分别命名为 Zn、Zn / Zn myristate-0. 5、Zn / Zn myristate-1 和 Zn / Zn myristate-2)的表面形貌和成分。 利用接触角测量仪和电化学工作站分析样品的超疏水性、耐腐蚀性、自清洁性及化学稳定性。 结果表明,Zn / Zn myristate 镀层表面呈现由微米尺度的纯锌多面体和纳米尺度的十四酸锌薄片构筑而成的微纳分级结构;随着沉积时间增加,十四酸锌纳米薄片逐渐长大、交联并形成网状结构。 得益于其特殊的表面微纳结构和表面组成,Zn / Zn myristate-2 镀层表现出优异的超疏水(CA = 156. 7±1. 5°、SA = 2. 5±0. 3°)、耐腐蚀和自清洁特性。 稳定性测试表明,Zn / Zn myristate-2 镀层在空气(12 周)和 3. 5 wt. %的 NaCl 溶液(6 d)中表现出优异的超疏水稳定性。

    Abstract

    Surface roughness and surface free energy are two of the most important influence factors of superhydrophobicity. To fabricate the superhydrophobic metal surface with micro / nanoscale hierarchical structures and low surface free energy, two-step electrodeposition method was employed to construct microscale and nanoscale structure with low surface free energy. The surface morphologies and composition of coatings with different deposition time (They were named Zn, Zn / Zn myristate-0. 5, Zn / Zn myristate -1 and Zn / Zn myristate-2 on the basis of the deposition time, respectively) were characterized by SEM, EDS and FTIR. The superhydrophobicity, corrosion resistance, self-cleaning effect and chemical stability of metal coatings were evaluated by contact angle measuring instrument and electrochemical workstation. The results show that Zn / Zn myristate surface has micro / nanoscale hierarchical structure, which is composed of microscale polyhedral Zn and nanoscale flake-like Zn myristate. As the deposition time increases, flake-like Zn myristate gradually grows and forms reticulate structures. The Zn / Zn myristate-2 coating shows excellent superhydrophobicity (CA= 156. 7 ± 1. 5°, SA = 2. 5 ± 0. 3°), corrosion resistance and self-clean due to its unique micro / nanoscale structures and low surface free energy. Stability test result shows Zn / Zn myristate-2 coating exhibits excellent chemical stability in air (12 weeks) and 3. 5 wt. % NaCl solusion (6 d).

  • 0 前言

  • 超疏水材料独特的界面浸润特性使其在自清洁[1-2]、油水分离[3-4]、金属防腐[5-7]、防结冰[8-9]、微液滴操控[10-11] 等领域展现出广阔应用前景。众所周知,表面微纳分级结构和表面自由能是影响材料超疏水性能的两个主要因素[12]。电沉积作为一种常用的表面处理技术,不仅具有设备及操作简单、沉积速率快、价格低廉、易于控制等优点,而且通过调节电沉积参数即可实现对镀层表面形貌和组成的多样化调控[13-17],在超疏水镀层表面微纳结构的调控与构筑方面表现出巨大潜力。电沉积制备超疏水金属镀层主要有两种方法:一是先通过一步或两步电沉积构筑粗糙金属表面,再浸泡修饰低表面能物质 (镀层由底部金属镀层和表面低表面能层组成);二是将低表面能物质直接加入电解液,通过一步电沉积得到具有低表面能的粗糙表面(镀层通常为低表面能物质构成的单一镀层)。两种方法相比,前者更易实现金属表面粗糙结构的调控与构筑,而后者更有利于提高低表面能物质的结合力。

  • 目前电沉积制备超疏水金属镀层通常是在水溶液或乙醇溶液中进行[18-20]。作为一类新型电沉积溶剂,低共熔溶剂具有电化学窗口宽、电导率高、溶解性好、无析氢、易获得纳米级沉积物以及绿色低廉等优点,在电化学沉积、纳米材料制备等领域表现出巨大潜力。此外,十四酸、硬脂酸等难溶于水的低表面能物质可直接溶于低共熔溶剂,并用于低表面能超疏水表面的沉积。文献调查表明,目前以低共熔溶剂为电解液制备超疏水金属镀层通常采用先沉积后修饰的方法[21-23],而直接电沉积低表面能金属镀层的研究鲜有报道。 LI等[24] 在低共熔溶剂中通过两步电沉积法得到由微米尺度的片状纯锌和纳米尺度的凹穴状硬脂酸锌构筑的超疏水金属镀层,得益于其表面独特的微纳分级结构和低表面能特性,该镀层表现出优异的超疏水性、高的黏附性(花瓣效应)和稳定的化学耐久性。该工作为构筑同时具有微纳分级结构和稳定低表面能的超疏水表面提供了思路。

  • 众所周知,不同的表面微纳分级结构会赋予材料不一样的超浸润特性,如荷叶和玫瑰花瓣表现出截然相反的黏附特性。基于以上分析,本文以胆碱基低共熔溶剂为电解液,采用先电沉积微米尺度金属镀层,后电沉积纳米尺度低表面能物质的策略构筑具有低黏附特性(荷叶效应)的超疏水金属表面,研究了沉积时间对金属镀层表面形貌和组成的影响,考察了表面形貌结构对镀层超疏水性和耐腐蚀性的影响,探讨了超疏水镀层的自清洁性和耐久性。

  • 1 试验与表征

  • 1.1 低共熔溶剂的配置及超疏水镀层的制备

  • 试验所用氯化胆碱、乙二醇、氯化锌、十四酸均为分析纯。电镀液1:将摩尔比为1 ∶2的氯化胆碱和乙二醇加入烧杯,并在70℃下搅拌得到透明的低共熔溶剂,再加入0.2mol/L的无水氯化锌搅拌至完全溶解。电镀液2:在电镀液1基础上再加入0.4mol/L的十四酸并搅拌至完全溶解。

  • 以锌片为阳极(40mm × 20mm),铜片为阴极 (40mm × 15mm)。电镀前铜片先用600、1000及1500目砂纸打磨,再经丙酮除油、稀盐酸活化、蒸馏水清洗后吹干备用。电镀采用两步恒流法:①首先在电镀液1中电镀得到微米尺度的纯锌镀层;②以上述微米尺度纯锌镀层为阴极,在电镀液2中通过调控沉积时间制备纳米尺度的十四酸锌,最终实现具有微纳分级结构和低表面能超疏水表面的构筑。电沉积参数如表1所示,所有电沉积均在70℃、 300r/min下进行。为了便于讨论,根据第二步沉积时间将样品分别命名为Zn,Zn/Zn myristate-0.5, Zn/Zn myristate-1及Zn/Zn myristate-2。

  • 1.2 样品表征

  • 通过扫描电子显微镜 ( FESEM, Carl Zeiss, Sigma500)、X射线能谱仪(EDS) 和傅里叶变换红外光谱仪(FTIR, Thermo Scientific, Nicolet iS50)对样品形貌、成分进行表征。通过接触角测量仪对样品超疏水性及耐久性进行表征。通过电化学工作站 (上海辰华,CHI660E) 对样品耐腐蚀性进行表征。动电位极化曲线(Tafel)测试参数如下:以3.5wt.%NaCl溶液为腐蚀介质, 分别以样品、铂片和Ag/AgCl电极作为电化学测试的工作电极、对电极和参比电极,扫描范围为-1.8~0.2V。为了结果的准确性,电化学腐蚀测试前静置60min,以获得稳定开路电位(OCP)。

  • 表1 镀层的电沉积参数

  • Table1 Electrodeposition parameters of the coatings

  • 2 结果与讨论

  • 2.1 镀层表面形貌和组分

  • 材料表面微纳分级结构和表面自由能是影响其超疏水性的两个关键因素。图1给出了纯Zn和三种Zn/Zn myristate镀层在低倍 ( × 3 000) 和高倍 (×10 000)下的表面形貌图。由图1a可知,纯Zn镀层表面由大量尺寸为1~3 μm的不规则多面体组成,定向排列的多面体交错堆积形成微米尺度的类金字塔状结构表面。对不同沉积时间下制备的Zn/Zn myristate镀层的表面形貌分析发现(图1b~1d), 当沉积时间较短时(0.5min),纯锌多面体表面沉积得到大量长度为20~40nm的颗粒状薄片;随着沉积时间的延长(1min),纳米薄片尺寸增加到100~200nm;当沉积2min后,纳米薄片尺寸达到200~300nm,大量薄片相互连接,在纯锌多面体表面形成一层均匀的网状褶皱结构。对上述样品表面元素组成及含量分析发现 ( 表2), 三种Zn/Zn myristate镀层碳氧比(C/O)约为5 ∶1~5.2 ∶1,与十四酸中C/O相吻合。此外,随着沉积时间增加,镀层中C、O含量增加,而Zn含量则显著降低。这说明纳米薄片的主要成分为低表面能的十四酸锌或十四酸。

  • 图1 不同沉积时间下锌基镀层的表面形貌

  • Fig.1 Morphologies of the Zn-based coatings deposited at different time

  • 表2 镀层的元素组成及含量

  • Table2 Elemental composition and content of the coating

  • 为了进一步考察表面纳米薄片的组成,图2给出了十四酸和Zn/Zn myristate-2镀层的傅里叶变换红外光谱图(FTIR)。高频区,十四酸FTIR光谱图中波数为2 955cm-1、2 917cm-1 和2 849cm-1 位置分别对应甲基(-CH3)和亚甲基(-CH2)基团的不对称伸缩振动峰和对称伸缩振动峰[25], 而Zn/Zn myristate-2镀层在波数为2 954cm-1、2 915cm-1 和2 847cm-1 处也出现了相应的吸收峰,这说明镀层表面有长链脂肪族基团生成。低频区,波数为1 704cm-1处出现的强吸收峰属于十四酸中羧基(-COOH)的振动峰,而在Zn/Zn myristate-2谱图中该吸收峰几乎消失,并在1 538cm-1 和1 489cm-1 处出现较强的羧酸根(-COO-)的不对称伸缩振动峰和对称伸缩振动峰[26],这说明镀层表面有大量十四酸盐存在, 即第二步电沉积中得到的纳米薄片成分主要为十四酸锌。 1 699cm-1 处小吸收峰的存在说明Zn/Znmyristate-2镀层表面有少量十四酸吸附。

  • 图2 十四酸和锌镀层红外光谱图

  • Fig.2 FTIR of myristic acid and Zn/Zn myristate-2

  • 2.2 电沉积过程

  • 基于SEM、EDS和FTIR数据综合分析,图3给出了Zn/Zn myristate镀层表面微纳分级结构的电沉积示意图。首先,在只含氯化锌的低共熔溶剂中,通过施加合适电流在铜片表面沉积得到多面体状纯锌,随着沉积的进行,多面体状纯锌镀层逐渐长大并相互堆积形成微米尺度的类金字塔状结构。第一步阴极反应为:

  • Zn2++2e-Zn
    (1)
  • 图3 微纳分级结构表面电沉积示意图

  • Fig.3 Electrodeposition schematics of coating with hierarchical structures

  • 随后,在氯化锌和十四酸摩尔比为1 ∶2的低共熔溶剂中,以上述微米尺度纯锌镀层为阴极并在其表面构筑纳米尺度结构的十四酸锌镀层。在电流作用下,阴极附近的Zn 2+与十四酸发生反应生成低表面能的十四酸锌并吸附、沉积在阴极表面。开始阶段(0.5min),纯锌多面体表面生成大量颗粒状的十四酸锌纳米薄片(20~40nm),随着沉积时间增加, 十四酸锌纳米薄片逐渐长大并相互交联,最终在纯锌多面体表面形成一层均匀的纳米尺度 ( 200~300nm)的网状褶皱结构。这与之前文献报道的纳米结构十四酸盐或硬脂酸盐的形成机理相符[24-26]。第二步阴极反应为:

  • Zn2++2CH3CH212COOHZnCH3CH212COO2+2H+
    (2)
  • 经过上述两步电沉积,成功制备得到由微米尺度纯锌多面体和纳米尺度十四酸锌网状褶皱构成的Zn/Zn myristate镀层。该镀层独特的微纳分级结构和低表面能组分为其获得优异的超疏水性提供了可能。

  • 2.3 镀层超疏水性和耐腐蚀性

  • 图4 给出了4种样品的静态接触角数据。由图可知,微米尺度类金字塔结构的纯锌镀层其接触角仅为103.6±2.8°。对于Zn myristate-0.5镀层,由于沉积时间较短,多面体表面十四酸锌纳米薄片尺寸较小,无法形成足够的微纳分级结构,其接触角变化不明显(118.5±2.1°);随着沉积时间进一步增加 (1min),镀层表面十四酸锌纳米薄片逐渐增多、增大,表面粗糙度显著增加,接触角增加到148.3 ± 2.0°,开始呈现超疏水特性;当十四酸锌纳米薄片进一步长大并在纯锌多面体表面形成一层均匀网状褶皱结构时(2min),其接触角达到156.7±1.5°,对应的滚动角为2.5±0.3°,Zn/Zn myristate-2镀层表现出优异的超疏水和低黏附性。很显然,纳米尺度十四酸锌的沉积可使镀层表面粗糙度增加、表面自由能降低,且随着沉积时间的增加,上述变化趋势愈加明显,对应镀层接触角也随之增大。

  • 图4 四种样品静态接触角

  • Fig.4 Static contact angles of specimens

  • 为了考察超疏水Zn/Zn myristate镀层的耐腐蚀性能,图5给出了四个样品在3.5wt.%的NaCl溶液中的Tafel曲线(表3)。由图可知,纯锌镀层的腐蚀电位(E corr)和腐蚀电流密度( j corr) 分别为-1.21V和6.94 × 10-5 A/cm 2。与纯锌镀层相比, Zn/Zn myristate镀层的腐蚀电位正移、腐蚀电流密度降低, 且随着沉积时间的增加,变化趋势愈加显著。腐蚀测试结果表明,通过在纯锌多面体表面构筑纳米尺度十四酸锌薄片,可显著提高Zn/Zn myristate镀层的耐腐蚀性能。由表3可知,得益于其优异的超疏水特性,Zn/Zn myristate-2镀层的腐蚀电流密度降低至纯锌镀层的1/17。 Zn/Zn myristate-2镀层优异的耐腐蚀性能与其表面微纳结构和表面组成密切相关:首先,腐蚀介质与镀层微纳分级结构之间存在大量空气,可有效降低两者之间的接触面积并阻碍腐蚀离子(Cl-)进入镀层[27];其次,空气层及镀层表面的十四酸锌中疏水长链作为物理屏障可阻碍电荷转移[28]

  • 图5 样品在3.5wt.%NaCl溶液中Tafel曲线

  • Fig.5 Tafel curves of specimens in 3.5wt.%NaCl solution

  • 表3 四种样品的电化学腐蚀参数

  • Table3 Electrochemical corrosion data of the coatings

  • 2.4 超疏水镀层自清洁性和稳定性

  • 为了探究所制备超疏水镀层的自清洁性,以超疏水性优异的Zn/Zn myristate-2为对象,考察了该镀层的自清洁效果(图6)。由图6a可以看出,Zn/Zn myristate-2镀层对亚甲基蓝溶液、3.5wt.%NaCl溶液、牛奶、茶水以及咖啡等溶液均表现出优异的超疏水效果。图6b~6d分别使用沙粒、灰烬和氧化铝粉末模拟灰尘洒在Zn/Zn myristate-2镀层表面,得益于超疏水镀层高的接触角(156.7±1.5°) 和低的滚动角(2.5 ± 0.3°),当水滴在镀层较高一端滴落时,会形成水珠并裹挟表面污染物迅速滚落。无论是沙粒、灰烬还是氧化铝粉末,水滴滚落后镀层表面均可看到一条干燥、清洁的水珠滚动路径,说明Zn/Zn myristate-2镀层具有良好的自清洁效应。

  • 图6 Zn/Zn myristate-2超疏水表面的自清洁性

  • Fig.6 Self-cleaning of Zn/Zn myristate-2coating

  • 将Zn/Zn myristate-2镀层放置在露空的室温环境中,每隔2周(14d)测一次接触角和滚动角。由图7a可以看出,12周后,Zn/Zn myristate-2镀层依然表现出优异的超疏水特性(接触角>150°,滚动角<10°),这说明该超疏水镀层在空气中具有较好的稳定性。将Zn/Zn myristate-2镀层浸泡在室温下3.5wt.%NaCl溶液中,每隔2d测一次接触角和滚动角(图7b)。很显然,在前6d,Zn/Zn myristate-2超疏水镀层的接触角和滚动角变化不大,依然表现出优异的超疏水特性,这说明Zn/Zn myristate-2镀层在3.5wt.%的NaCl溶液中具有优异的超疏水稳定性[29-31]。 6d后,由于腐蚀引起镀层表面结构和成分发生变化[31-32],镀层接触角显著降低,丧失超疏水性。

  • 图7 Zn/Zn myristate-2超疏水表面的稳定性

  • Fig.7 Stability of Zn/Zn myristate-2coating

  • 3 结论

  • (1) 通过两步电沉积成功制备得到由微米尺度多面体状纯锌和纳米尺度片状十四酸锌构筑的Zn/Zn myristate镀层。

  • (2) 得益于其表面特殊的微纳分级结构和低表面能组分,Zn/Zn myristate-2镀层表现出优异的超疏水(156.7±1.5°)和低黏附性(2.5±0.3°)。

  • (3) Zn/Zn myristate-2超疏水镀层表现出优异的耐腐蚀、自清洁和化学稳定性。

  • 参考文献

    • [1] CAO W T,FENG W,JIANG Y Y,et al.Two-dimensional MXene-reinforced robust surface superhydrophobicity with self-cleaning and photothermal-actuating binary effects [J].Materials Horizons,2019,6:1057-1065.

    • [2] DěKANOVSKY L,ELASHNIKOV R,KUBIKOVÁ M,et al.Dual-action flexible antimicrobial material:Switchable self-cleaning,antifouling,and smart drug release [J].Advanced Functional Materials,2019,29:1901880.

    • [3] YANG Y,LI X J,ZHENG X,et al.3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation [J].Advanced Materials,2018,30:1704912.

    • [4] 张东光,李陵汉,吴亚丽,等.超疏水/超亲油铜网表面的一步法制备及其油水分离应用[J].中国表面工程,2019,32(1):31-37.ZHANG D G,LI L H,WU Y L,et al.Preparation of superhydrophobic and superoleophilic surface on Cu mesh by one-step method and its application in oil-water separation[J].China Surface Engineering,2019,32(1):31-37.(in Chinese)

    • [5] ZANG D M,ZHU R W,ZHANG W,et al.Corrosion-resistant superhydrophobic coatings on Mg alloy surfaces inspired by lotus seedpod [J].Advanced Functional Materials,2017,27:1605446.

    • [6] 李玉峰,高文博,史凌志,等.超疏水涂层的制备及其对 Mg-Li 合金的防腐性能[J].中国表面工程,2020,33(5):1-9.LI Y F,GAO W B,SHI L Z,et al.Preparation of superhydrophobic coating and its corrosion resistance to Mg-Li alloy[J].China Surface Engineering,2020,33(5):1-9.(in Chinese)

    • [7] YIN X X,MU P,WANG Q T,et al.Superhydrophobic ZIF-8-based dual-layer coating for enhanced corrosion protection of Mg alloy [J].ACS Applied Materials & Interfaces,2020,12:35453-35463.

    • [8] WANG L,GONG Q,ZHAN S H,et al.Robust anti-icing performance of a flexible superhydrophobic surface [J].Advanced Materials,2016,28:7729-7735.

    • [9] LI Q,GUO Z G.Fundamentals of icing and common strategies for designing biomimetic anti-icing surfaces [J].Journal of Materials Chemistry A,2018,6:13549-13581.

    • [10] TAN Y L,HU B R,CHU Z Y,et al.Bioinspired superhydrophobic papillae with tunable adhesive force and ultralarge liquid capacity for microdroplet manipulation [J].Advanced Functional Materials,2019,29:1900266.

    • [11] JIANG S J,HU Y L,WU H,et al.Three-dimensional multifunctional magnetically responsive liquid manipulator fabricated by femtosecond laser writing and soft transfer [J].Nano Letters,2020,20:7519-7529.

    • [12] ZHANG W L,WANG D H,SUN Z N,et al.Robust superhydrophobicity:mechanisms and strategies [J].Chemical Society Reviews,2021,50:4031-4061.

    • [13] CHEN Z,ZHU C,CAI M L,et al.Growth and morphology tuning of ordered nickel nanocones routed by one-step pulse electrodeposition [J].Applied Surface Science,2020,508:145291.

    • [14] ZHANG D G,LI L H,WU Y L,et al.One-step method for fabrication of bioinspired hierarchical superhydrophobic surface with robust stability[J].Applied Surface Science,2019,473:493-499.

    • [15] 曾宪光,黄茜,彭静,等.电沉积法制备超疏水涂层的研究进展[J].腐蚀与防护,2020,41(10):1-6.ZENG X G,HUANG Q,PENG J,et al.Research progress of super-hydrophobic coating prepared by electro-deposition [J].Corrosion & Protection,2020,41(10):1-6.(in Chinese)

    • [16] JIANG S Z,GUO Z N,DENG Y,et al.Effect of pulse frequency on the one-step preparation of superhydrophobic surface by pulse electrodeposition[J].Applied Surface Science,2018,458:603-611.

    • [17] WANG S Y,HOU C,WU M X,et al,Effect of choline chloride on electrodeposited superhydrophobic nickel film and the corrosion protection application [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,614:126185.

    • [18] LV X Z,LIN H X.Facile fabrication of robust superhydrophobic/superoleophlic Cu coated stainless steel mesh for highly efficient oil/water separation [J].Separation and Purification Technology,2021,256:117512.

    • [19] LIU E Y,WANG L Y,YIN X L,et al.Fabrication of a robust superhydrophobic Ni coating with micro-nano dual-scale structures on 316L stainless steel [J].Advanced Engineering Materials,2021,23:2000913.

    • [20] HU C B,XIE X Y,ZHENG H,et al.Facile fabrication of superhydrophobic zinc coatings with corrosion resistance via an electrodeposition process[J].New Journal of Chemistry,2020,44:8890-8901.

    • [21] ZHANG J L,GU C D,TONG Y Y,et al.Electrodeposition of superhydrophobic Cu film on active substrate from deep eutectic solvent[J].Journal of the Electrochemical Society,2015,162(8):D313-D319.

    • [22] HOU Y Y,PENG Z J,LIANG J,et al.Facile preparation of petaliform-like superhydrophobic meshes via moisture etching for oil-water separation [J].Surface and Coatings Technology,2020,399:126124.

    • [23] HOU Y Y,LI R Q,LIANG J.Superhydrophilic nickel-coated meshes with controllable pore size prepared by electrodeposition from deep eutectic solvent for efficient oil/water separation[J].Separation and Purification Technology,2018,192:21-29.

    • [24] LI R Q,GAO Q H,DONG Q J,et al.Template-free electrodeposition of ultra-high adhesive superhydrophobic Zn/Zn stearate coating with ordered hierarchical structure from deep eutectic solvent [J].Surface and Coatings Technology,2020,403:126267.

    • [25] ZHANG B B,LI J R,ZHAO X,et al.Biomimetic one step fabrication of manganese stearate superhydrophobic surface as an efficient barrier against marine corrosion and chlorella vulgaris-induced biofouling [J].Chemical Engineering Journal,2016,306:441-451.

    • [26] LIU Y,XUE J Z,LUO D,et al.One-step fabrication of biomimetic superhydrophobic surface by electrodeposition on magnesium alloy and its corrosion inhibition [J].Journal of Colloid and Interface Science,2017,491:313-320.

    • [27] ZHANG B B,ZHU Q J,LI Y T,et al.Facile fluorine-free one step fabrication of superhydrophobic aluminum surface towards self-cleaning and marine anticorrosion[J].Chemical Engineering Journal,2018,352:625-633.

    • [28] WANG H,DONG S L,WANG Z L.One-step fabrication of superhydrophobic surface on beryllium copper alloys and corrosion protection application [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,556:291-298.

    • [29] FAN Y,HE Y,LUO P Y,et al.A facile electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on carbon steel [J].Applied Surface Science,2016,368:435-442.

    • [30] REZAYI T,ENTEZARI M H.Toward a durable superhydrophobic aluminum surface by etching and ZnO nanoparticle deposition [J].Journal of Colloid and Interface Science,2016,463:37-45.

    • [31] FENG L,ZHU Y,WANG J,et al.One-step hydrothermal process to fabricate superhydrophobic surface on magnesium alloy with enhanced corrosion resistance and self-cleaning performance [J].Applied Surface Science,2017,422:566-573.

    • [32] LI C C,MA R N,DU A,et al.One-step fabrication of bionic superhydrophobic coating on galvanised steel with excellent corrosion resistance[J].Journal of Alloy and Compounds,2019,786:272-283.

  • 参考文献

    • [1] CAO W T,FENG W,JIANG Y Y,et al.Two-dimensional MXene-reinforced robust surface superhydrophobicity with self-cleaning and photothermal-actuating binary effects [J].Materials Horizons,2019,6:1057-1065.

    • [2] DěKANOVSKY L,ELASHNIKOV R,KUBIKOVÁ M,et al.Dual-action flexible antimicrobial material:Switchable self-cleaning,antifouling,and smart drug release [J].Advanced Functional Materials,2019,29:1901880.

    • [3] YANG Y,LI X J,ZHENG X,et al.3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation [J].Advanced Materials,2018,30:1704912.

    • [4] 张东光,李陵汉,吴亚丽,等.超疏水/超亲油铜网表面的一步法制备及其油水分离应用[J].中国表面工程,2019,32(1):31-37.ZHANG D G,LI L H,WU Y L,et al.Preparation of superhydrophobic and superoleophilic surface on Cu mesh by one-step method and its application in oil-water separation[J].China Surface Engineering,2019,32(1):31-37.(in Chinese)

    • [5] ZANG D M,ZHU R W,ZHANG W,et al.Corrosion-resistant superhydrophobic coatings on Mg alloy surfaces inspired by lotus seedpod [J].Advanced Functional Materials,2017,27:1605446.

    • [6] 李玉峰,高文博,史凌志,等.超疏水涂层的制备及其对 Mg-Li 合金的防腐性能[J].中国表面工程,2020,33(5):1-9.LI Y F,GAO W B,SHI L Z,et al.Preparation of superhydrophobic coating and its corrosion resistance to Mg-Li alloy[J].China Surface Engineering,2020,33(5):1-9.(in Chinese)

    • [7] YIN X X,MU P,WANG Q T,et al.Superhydrophobic ZIF-8-based dual-layer coating for enhanced corrosion protection of Mg alloy [J].ACS Applied Materials & Interfaces,2020,12:35453-35463.

    • [8] WANG L,GONG Q,ZHAN S H,et al.Robust anti-icing performance of a flexible superhydrophobic surface [J].Advanced Materials,2016,28:7729-7735.

    • [9] LI Q,GUO Z G.Fundamentals of icing and common strategies for designing biomimetic anti-icing surfaces [J].Journal of Materials Chemistry A,2018,6:13549-13581.

    • [10] TAN Y L,HU B R,CHU Z Y,et al.Bioinspired superhydrophobic papillae with tunable adhesive force and ultralarge liquid capacity for microdroplet manipulation [J].Advanced Functional Materials,2019,29:1900266.

    • [11] JIANG S J,HU Y L,WU H,et al.Three-dimensional multifunctional magnetically responsive liquid manipulator fabricated by femtosecond laser writing and soft transfer [J].Nano Letters,2020,20:7519-7529.

    • [12] ZHANG W L,WANG D H,SUN Z N,et al.Robust superhydrophobicity:mechanisms and strategies [J].Chemical Society Reviews,2021,50:4031-4061.

    • [13] CHEN Z,ZHU C,CAI M L,et al.Growth and morphology tuning of ordered nickel nanocones routed by one-step pulse electrodeposition [J].Applied Surface Science,2020,508:145291.

    • [14] ZHANG D G,LI L H,WU Y L,et al.One-step method for fabrication of bioinspired hierarchical superhydrophobic surface with robust stability[J].Applied Surface Science,2019,473:493-499.

    • [15] 曾宪光,黄茜,彭静,等.电沉积法制备超疏水涂层的研究进展[J].腐蚀与防护,2020,41(10):1-6.ZENG X G,HUANG Q,PENG J,et al.Research progress of super-hydrophobic coating prepared by electro-deposition [J].Corrosion & Protection,2020,41(10):1-6.(in Chinese)

    • [16] JIANG S Z,GUO Z N,DENG Y,et al.Effect of pulse frequency on the one-step preparation of superhydrophobic surface by pulse electrodeposition[J].Applied Surface Science,2018,458:603-611.

    • [17] WANG S Y,HOU C,WU M X,et al,Effect of choline chloride on electrodeposited superhydrophobic nickel film and the corrosion protection application [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,614:126185.

    • [18] LV X Z,LIN H X.Facile fabrication of robust superhydrophobic/superoleophlic Cu coated stainless steel mesh for highly efficient oil/water separation [J].Separation and Purification Technology,2021,256:117512.

    • [19] LIU E Y,WANG L Y,YIN X L,et al.Fabrication of a robust superhydrophobic Ni coating with micro-nano dual-scale structures on 316L stainless steel [J].Advanced Engineering Materials,2021,23:2000913.

    • [20] HU C B,XIE X Y,ZHENG H,et al.Facile fabrication of superhydrophobic zinc coatings with corrosion resistance via an electrodeposition process[J].New Journal of Chemistry,2020,44:8890-8901.

    • [21] ZHANG J L,GU C D,TONG Y Y,et al.Electrodeposition of superhydrophobic Cu film on active substrate from deep eutectic solvent[J].Journal of the Electrochemical Society,2015,162(8):D313-D319.

    • [22] HOU Y Y,PENG Z J,LIANG J,et al.Facile preparation of petaliform-like superhydrophobic meshes via moisture etching for oil-water separation [J].Surface and Coatings Technology,2020,399:126124.

    • [23] HOU Y Y,LI R Q,LIANG J.Superhydrophilic nickel-coated meshes with controllable pore size prepared by electrodeposition from deep eutectic solvent for efficient oil/water separation[J].Separation and Purification Technology,2018,192:21-29.

    • [24] LI R Q,GAO Q H,DONG Q J,et al.Template-free electrodeposition of ultra-high adhesive superhydrophobic Zn/Zn stearate coating with ordered hierarchical structure from deep eutectic solvent [J].Surface and Coatings Technology,2020,403:126267.

    • [25] ZHANG B B,LI J R,ZHAO X,et al.Biomimetic one step fabrication of manganese stearate superhydrophobic surface as an efficient barrier against marine corrosion and chlorella vulgaris-induced biofouling [J].Chemical Engineering Journal,2016,306:441-451.

    • [26] LIU Y,XUE J Z,LUO D,et al.One-step fabrication of biomimetic superhydrophobic surface by electrodeposition on magnesium alloy and its corrosion inhibition [J].Journal of Colloid and Interface Science,2017,491:313-320.

    • [27] ZHANG B B,ZHU Q J,LI Y T,et al.Facile fluorine-free one step fabrication of superhydrophobic aluminum surface towards self-cleaning and marine anticorrosion[J].Chemical Engineering Journal,2018,352:625-633.

    • [28] WANG H,DONG S L,WANG Z L.One-step fabrication of superhydrophobic surface on beryllium copper alloys and corrosion protection application [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,556:291-298.

    • [29] FAN Y,HE Y,LUO P Y,et al.A facile electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on carbon steel [J].Applied Surface Science,2016,368:435-442.

    • [30] REZAYI T,ENTEZARI M H.Toward a durable superhydrophobic aluminum surface by etching and ZnO nanoparticle deposition [J].Journal of Colloid and Interface Science,2016,463:37-45.

    • [31] FENG L,ZHU Y,WANG J,et al.One-step hydrothermal process to fabricate superhydrophobic surface on magnesium alloy with enhanced corrosion resistance and self-cleaning performance [J].Applied Surface Science,2017,422:566-573.

    • [32] LI C C,MA R N,DU A,et al.One-step fabrication of bionic superhydrophobic coating on galvanised steel with excellent corrosion resistance[J].Journal of Alloy and Compounds,2019,786:272-283.

  • 手机扫一扫看