en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

罗大微,男,1998年出生,男,硕士研究生。主要研究方向为高熵合金自润滑薄膜。E-mail:luodawei@mail.nwpu.edu.cn;

周青(通信作者),男,1988年出生,博士,副教授,博士生导师。主要研究方向为金属材料力学与摩擦磨损。E-mail:zhouqing@nwpu.edu.cn

中图分类号:TG156;TB114

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210520002

参考文献 1
YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes [J].Advanced Engineering Materials,2004,6(5):299-303.
参考文献 2
MIRACLE D B,SENKOV O N.A critical review of high entropy alloys and related concepts [J].Acta Materialia,2017,122:448-511.
参考文献 3
TSAI M H,YEH J W.High-entropy alloys:A critical review [J].Materials Research Letters,2014,2(3):107-123.
参考文献 4
SENKOV O N,WILKS G B,SCOTT J M,et al.Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J].Intermetallics,2011,19(5):698-706.
参考文献 5
闫薛卉,张勇.高熵薄膜和成分梯度材料[J].表面技术,2019,48(6):98-106.YAN X H,ZHANG Y.High-entropy films and compositional gradient materials [J].Surface Technology,2019,48(6):98-106.(in Chinese)
参考文献 6
刘径舟,刘洪喜,邸英南,等.碳含量对激光熔覆CoCrFeMnNiCx高熵合金涂层摩擦磨损和耐蚀性能的影响 [J].中国表面工程,2020,33(6):118-127.LIU J Z,LIU H X,DI YN,et al.Effects of Carbon content on friction and wear behavior and corrosion resistance of laser cladding CoCrFeMnNiCx high entropy alloy coatings[J].China Surface Engineering,2020,33(6):118-127.(in Chinese)
参考文献 7
BHARDWAJ V,ZHOU Q,ZHANG F,et al.Effect of Al addition on the microstructure,mechanical and wear properties of TiZrNbHf refractory high entropy alloys [J].Tribology International,2021,160:107031.
参考文献 8
ZOU Y,MA H,SPOLENAK R.Ultrastrong ductile and stable high-entropy alloys at small scales[J].Nature Communications,2015,6:7748.
参考文献 9
LU C Y,NIU L L,CHEN N J,et al.Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys[J].Nature Communications,2016,7:13564.
参考文献 10
HSUEH H T,SHEN W J,TSAI M H,et al.Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films(AlCrSiTiZr)(100-x)N-x [J].Surface and Coatings Technology,2012,206(19-20):4106-4112.
参考文献 11
XIAO Y,ZOU Y,MA H,et al.Nanostructured NbMoTaW high entropy alloy thin films:High strength and enhanced fracture toughness[J].Scripta Materialia,2019,168:51-55.
参考文献 12
安邦,王亚强,张金钰,等.高熵合金薄膜制备、微观结构与性能的研究进展[J].表面技术,2021,50(2):74-90.AN B,WANG Y Q,ZHANG J Y,et al.Research progress in preparation,microstructure and properties of thin high-entropy alloy films[J].Surface Technology,2021,50(2):74-90.(in Chinese)
参考文献 13
POULIA A,GEORGATIS E,LEKATOU A,et al.Dry-sliding wear response of MoTaWNbV high entropy alloy[J].Advanced Engineering Materials,2017,19(2):1600535.
参考文献 14
李博雅,曹志强.金属基固体自润滑复合涂层及其制备技术研究进展[J].表面技术,2017,46(9):32-38.LI B Y,CAO Z Q.Metal-based solid self-lubricating composite coating and Its preparation technology[J].Surface Technology,2017,46(9):32-38.(in Chinese)
参考文献 15
ZHU S Y,CHENG J,QIAO Z H,et al.High temperature solid-lubricating materials:A review [J].Tribology International,2019,133:206-223.
参考文献 16
JU H B,XU J H.Microstructure and tribological properties of NbN-Ag composite films by reactive magnetron sputtering [J].Applied Surface Science,2015,355:878-883.
参考文献 17
MISRA A,HIRTH J P,HOAGLAND R G.Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites[J].Acta Materialia,2005,53(18):4817-4824.
参考文献 18
ZHOU Q,REN Y,DU Y,et al.Cracking and toughening mechanisms in nanoscale metallic multilayer films:A brief review [J].Applied Sciences-basel,2018,8(10):1821.
参考文献 19
FENG X B,ZHANG J Y,XIA Z R,et al.Stable nanocrystalline NbMoTaW high entropy alloy thin films with excellent mechanical and electrical properties [J].Materials Letters,2018,210:84-87.
参考文献 20
ZHAO D,LI S J,ZHAO X Q,et al.Preparation and vacuum tribological properties of composite coatings fabricated by effective introduction of soft metal Ag into spray-formed YSZ templates [J].Applied Surface Science,2020,518:146176.
参考文献 21
周青,王飞,谢继阳,等.Cu/Ru 金属纳米多层膜剪切带行为的研究[J].中国科技论文,2015,10(4):375.ZHOU Q,WANG F,XIE J Y,et al.Investigation of shear banding behavior of nanoscale Cu/Ru metallic multilayer films [J].China Sciencepaper,2015,10(4):375.(in Chinese)
参考文献 22
ZHOU Q,LI Y,WANG F,et al.Length-scale-dependent deformation mechanism of Cu/X(X = Ru,W)multilayer thin films[J].Materials Science and Engineering:A,2016,664:206-214.
参考文献 23
LU Y Y,KOTOKA R,LIGDA J P,et al.The microstructure and mechanical behavior of Mg/Ti multilayers as a function of individual layer thickness [J].Acta Materialia,2014,63:216-231.
参考文献 24
ZHOU Q,ZHANG S,WEI X Z,et al.Improving the crack resistance and fracture toughness of Cu/Ru multilayer thin films via tailoring the individual layer thickness[J].Journal of Alloys and Compounds,2018,742:45-53.
参考文献 25
CAO Z H,MA Y J,CAI Y P,et al.High strength dual-phase high entropy alloys with a tunable nanolayer thickness [J].Scripta Materialia,2019,173:149-153.
参考文献 26
ZHAO Y F,WANG Y Q,WU K,et al.Unique mechanical properties of Cu/(NbMoTaW)nanolaminates [J].Scripta Materialia,2018,154:154-158.
目录contents

    摘要

    为提高高熵合金薄膜 NbMoWTa 的耐磨减摩性能,采用磁控溅射技术在 Si 基体上制备具有不同调制波长的 NbMoWTa / Ag 纳米多层膜,利用 XRD、SEM 和 TEM 等对纳米多层膜进行表征,分析其硬度和摩擦学性能。 结果表明不同调制周期结构的纳米多层膜结晶性良好。 多层膜硬度随着单层膜厚度 (100~ 5 nm)的降低而增加(5. 62 ~ 8. 39 GPa),在单层膜厚度减小到 20 nm 时,其塑性变形机制由位错在界面处的堆积机制转变为位错穿越界面运动机制;在尺寸小于 10 nm 时,多层膜的硬度接近于高熵合金 NbMoWTa 单质膜 (10. 93 GPa),这可能由随着单层厚度的降低引起 NbMoWTa 膜与 Ag 膜之间界面由半共格向共格转变所引起。 同时,通过摩擦磨损试验获得纯 NbMoWTa 薄膜的摩擦因数为 0. 49,磨损率为 1. 75×10 -5 mm 3N -1m -1 ;单层膜厚度为 5 nm 的多层膜的摩擦因数为 0. 23,磨损率为 2. 19×10 -5 mm 3N -1m -1 。 在 NbMoWTa 中添加 50%的 Ag 制备而成的纳米多层膜有共格强化效应,保证了其高硬度高强度的同时,由多层设计实现了耐磨和自润滑的协同控制。

    Abstract

    In order to improve the wear resistance of high-entropy alloy film NbMoWTa and reduce its friction coefficient, NbMoWTa / Ag multilayer films with different modulation periods were deposited by magnetron sputtering on Si substrates. The characterization of nanomultilayers were systematically investigated by XRD, SEM and TEM. Its hardness and tribological properties were analyzed. The results showed that the multilayer films with different modulation periods have a high degree of crystalline. The hardness (5. 62- 8. 39 GPa) of multilayers increases with the decrease of the individual layer thickness ( 100-5 nm). The plastic deformation mechanism changes from dislocations piling up against an interface mechanism to dislocation interface crossing mechanism when the thickness of monolayer decreases to 20 nm. When the thickness of monolayer is less than 10 nm, the hardness of the multilayer film is close to the high-entropy alloy film NbMoWTa ( 10. 93 GPa). This may be caused by the transition from semi-coherent interface to coherent interface between NbMoWTa and Ag films with the decrease of individual layer thickness. Meanwhile, the experimental friction coefficient and wear rate of NbMoWTa film are 0. 49 and 1. 75×10 -5 mm 3N -1m -1 . The experimental friction coefficient and wear rate of the multilayer film with a layer thickness of 5 nm are 0. 23 and 2. 19×10 -5 mm 3N -1m -1 . The nanomultilayers prepared by adding 50% Ag in NbMoWTa ensures its high hardness and high strength, and realizes the coordinated control of wear resistance and selflubrication through the multilayer design.

  • 0 前言

  • 从青铜、铸铁到铝合金、镁合金、钛合金和非晶合金,再到2004年的高熵合金,时间的流逝伴随着材料体系向复杂化的发展,其中“熵”的增加对于指导材料的发展具有重要意义。高熵合金凭借其四大核心效应:高熵效应、迟滞扩散效应、鸡尾酒效应和晶格畸变效应[1-3] 而形成独特的晶体结构,就是这种独特的结构使得其具有高硬度[4]、高强度[5]、高耐磨性[6-7]、耐高温抗氧化性能[8]、抗辐照性能[9]、耐腐蚀性[10]以及高抗疲劳性能和断裂韧性[11] 等诸多优异性能,而这些独特的性能优势使其在航空航天、核能等高端装备领域具有重要潜在应用价值。

  • 作为一类二维材料,高熵合金薄膜不仅继承了块体高熵合金的高强度、高硬度、耐腐蚀等诸多性能优势,而且具有较低的表面粗糙度、优异的电磁性能等优点[12],故在表面防护领域有着重要的应用前景。然而,高熵合金硬度虽高,存在强塑性的倒置关系而具有较差的韧性,故在摩擦中往往具有较高的摩擦因数[13],使其耐磨性难有进一步提升。为了发展低摩擦、长寿命和高可靠的高熵合金材料,以高熵合金为基体的自润滑材料不仅可继承高熵合金的优异性能,而且同时拥有低摩擦特性,可发展成为满足当前航空、航天发展需求的新型长寿命耐磨材料。因而,开发自润滑复合薄膜是解决高熵合金摩擦学性能低下的有效途径[14]

  • 但是,耐磨和润滑两者又有一定的矛盾关系。固体润滑剂添加量低时,材料整体的强度硬度高,磨痕表面不能形成良好的润滑膜,摩擦因数大,对摩擦副磨损影响较大;固体润滑剂添加量较高时,材料牺牲了硬度强度,虽然摩擦因数较小,但本身的磨损率较高[15-16]。金属纳米多层膜凭借着大量的异质界面而拥有非常高的强度和硬度,可达到理论强度的1/3~1/2 [17-18]。这种材料制备方法可以在损失较少的硬度强度下,添加大量的润滑相,故可为实现润滑效果的同时保证材料的强度提供了可能。

  • 难熔高熵合金NbMoWTa薄膜具有超高硬度强度和良好的热稳定。 ZOU等[8] 的研究表明, NbMoWTa在1 100℃ 退火72h,晶粒度无明显变化,呈现良好的热稳定性;FENG等[19] 通过磁控溅射制备的NbMoWTa薄膜的硬度可达到16GPa。虽然NbMoWTa的高温力学性能优异,但脆性限制了其应用和发展。 Ag元素质地非常柔软,常常被添加到固体润滑材料中作为润滑相。 ZHAO等[20] 通过在YSZ中加入Ag润滑相,大幅度降低了磨损率。因此,本文期望通过磁控溅射的方法,对NbMoWTa和Ag进行交替沉积,制备成纳米多层膜结构,探究多层膜不同单层膜厚度对NbMoWTa/Ag多层膜的力学性能和摩擦性能的影响。目的在于保证NbMoWTa高硬度高强度的同时,通过高熵合金薄膜的多层设计实现耐磨与自润滑的协同调控。

  • 1 试验准备

  • 1.1 NbMoWTa/Ag多层膜的制备

  • 图1 是采用磁控溅射的方法在单晶硅基底上制备NbMoWTa/Ag纳米多层膜结构示意图,h 为单层膜厚度。制备方法:将单面抛光的单晶硅基片分别用丙酮和酒精超声清洗,经电吹风吹干后,放入超高真空磁控溅射设备基片台上;溅射气体为Ar(纯度为99.999%),溅射前腔体真空度抽到6.3×10-5 Pa以下,溅射气压为0.6Pa。高熵合金NbMoWTa(纯度99.99%) 靶材是由其粉末通过球磨热压制备而成的, 用直流脉冲电源连接, 金属Ag ( 纯度99.99%)靶材用射频电源连接。样品台以4r/min的速率自转,以保证薄膜的成分均匀性和每层的平整性,NbMoWTa和Ag的沉积速率分别为0.123nm/s和0.312nm/s。与单晶硅接触的第一层为NbMoWTa层,且多层膜最顶端是为NbMoWTa层。制备的一系列多层膜调制波长从5~200nm,薄膜整体厚度在1 800~1 900nm。按照相同制备方式,制备纯NbMoWTa薄膜和Ag薄膜进行对比。

  • 图1 NbMoWTa/Ag多层膜结构示意图

  • Fig.1 Structural diagram of NbMoWTa/Ag multilayers

  • 1.2 形貌结构与成分表征测试

  • 利用布鲁克D8X-射线衍射仪(Cu靶)进行纳米多层膜晶体结构分析,扫描角度为20°~60°。用Helios G4CX聚焦离子/电子双束电镜表征纳米多层膜的截面形貌和NbMoWTa单质膜的表面形貌以及元素分布。

  • 1.3 硬度测试

  • 纳米压痕试验根据加载方式的不同可以分为连续刚度法( CSM) 和准静态加载法( Oliver-Pharr)。传统的准静态加载法是通过测量最大压入深度处的卸载曲线斜率来计算材料的刚度,此方法单次试验只能得到一个硬度值,不利于研究纳米多层膜这种含有大量异质界面对纳米压入过程有影响的薄膜材料。而连续刚度法是在加载过程中可以连续计算材料接触刚度从而推导出硬度和弹性模量的方法。该方法通过高频率的简谐力叠加在载荷位移曲线上, 加载过程中电路控制简谐力产生振幅为1~2nm的交变位移,通过频率放大器测量压头测量其简谐效应,从而在压入过程中连续测量任意点的接触刚度, 可得到硬度等参数随压入深度变化的曲线。该技术可以通过一次加载提取出多层膜沿压入深度方向的硬度等参数,便于研究多层膜调制结构对力学性能的影响,因此选用连续刚度法对多层膜进行测量。

  • 采用MTS公司生产的Nano IndenterR-XP型纳米压痕仪进行纳米压痕试验, 纳米压入深度为200nm。硬度值取自压入深度为膜厚的1/7~1/10以保证所得的曲线平台能较为真实的反映薄膜材料的本征力学性能,避免尺寸效应和基底效应。测试时在样品上进行16次压入测试,每次压入间距50 μm以上以保证压入数据不受相邻压痕塑性变形的影响。在使用纳米压入进行硬度测试实验时,应变速率设定为0.05s-1

  • 1.4 摩擦学性能测试

  • 使用美国Rtec仪器公司生产的摩擦磨损试验机球-盘旋转模块在室温下进行摩擦学性能测试。取5mm×5mm的薄膜试样用热熔胶粘贴在直径为30mm的铁块上,通过球-盘旋转模块夹具以固定铁块于球盘中心,移动对磨副位置来调整磨痕直径。试验条件:直径6.25mm的Si3N4 球对磨珠,加载载荷0.5N,平台转速20r/min,试验时间20min,旋转半径1.5mm,通过三维光学轮廓仪进行磨损体积 (V)的测量,磨损率 w 用公式 w=V/FS 进行计算,F 为加载载荷,S 为总滑动距离。

  • 2 结果与讨论

  • 2.1 微观结构

  • 图2a为NbMoWTa膜和单质Ag膜的XRD图谱。从图中可以看出单质Ag薄膜的晶体结构为面心立方结构,最强峰为Ag(111) 衍射峰;NbMoWTa薄膜的晶体结构为体心立方结构,呈现NbMoWTa (110)衍射峰。图2b为NbMoWTa/Ag纳米多层膜的XRD图谱。当单层膜厚度为100nm时,金属纳米多层膜的异质界面结构主要取决于晶体结构和组元间的晶格错配度 ε,即

  • ε=αA-αB/αA-αB
    (1)
  • 式中,αA αB 分别为纳米多层膜 AB 的晶面间距。根据NbMoWTa和Ag的晶格常数计算可得 εNbMoWTa/Ag=1.51%。在层厚较大时,NbMoWTa/Ag界面结构为bcc/fcc结构,此时NbMoWTa/Ag多层膜界面属于半共格结构。

  • 图2 Ag、NbMoWTa和不同单层厚度NbMoWTa/Ag多层膜的XRD图谱

  • Fig.2 XRD patterns of Ag, NbMoWTa and the individual layer thickness of NbMoWTa/Ag multilayers

  • 随着单层膜厚度 h 的减小可明显看出,位于左侧的Ag(111) 峰和右侧的NbMoWTa(110) 峰逐渐接近,并在 h=10nm时趋于重合,而且在单层膜厚度位于50nm到10nm区间时, Ag ( 111) 和NbMoWTa(110)峰强减小,宽度增加,说明此时由于大量的异质界面对纳米多晶材料的结晶起到抑制作用,峰强度减小[21]

  • 然而,在单层膜厚度小于10nm后,从XRD图谱中可明显看出两个衍射峰变为了一个单峰,峰位位于Ag(111)与NbMoWTa(110)之间,说明在单层厚度为5nm时NbMoWTa/Ag多层膜的界面结构发生了相转变, 而且峰强较大, 即表现出良好的结晶性[22]

  • 对于晶格结构相似和晶格失配度较小的多层膜,共格界面形成的临界单层膜厚度可以通过以下公式计算[23] :

  • hc=bInhc/b+1/[8πε(1+ν)]
    (2)
  • 式中,hc 为形成共格界面的单层膜临界尺寸/nm;b 为柏氏矢量/nm;ε 为晶格失配比;ν 为泊松比。将 b=0.281nm,ε=0.015和 ν=0.33代入式( 2) 得 hc=1.5nm,此数值小于试验观察到的5nm。这可能是层错、弹性的各向异性等因素减小了形成共格界面所需的应变能。

  • 表1 为NbMoWTa膜的质量分数(化学成分)。由表1可知,通过磁控溅射制备的NbMoWTa膜几乎为等原子比,也同时说明通过粉末球磨热压制备的NbMoWTa靶材成分均匀。

  • 表1 NbMoWTa膜的质量分数(化学成分)

  • Table1 Composition of NbMoWTa film (at.%)

  • 图3a为NbMoWTa膜的表面形貌。从图中可明显看出,通过磁控溅射制备的NbMoWTa膜表面晶粒呈现出密集的针叶状。因为NbMoWTa/Ag多层膜的表面也是NbMoWTa层,且制备工艺相同,所以多层膜的表面扫描图像与NbMoWTa膜一致。图3b为NbMoWTa膜表面的EDS图像,可看出Nb、 Mo、W、Ta四种元素分布均十分均匀,表面制备的NbMoWTa高熵合金成膜质量很好。

  • 图3 NbMoWTa膜表面形貌图和NbMoWTa膜表面元素分布图

  • Fig.3 SEM images of NbMoWTa films sueface and corresponding EDS mapping images

  • 图4a为NbMoWTa/Ag多层膜单层膜厚度100nm的截面扫描图像,图像界面清晰,可从中看出明显的多层膜层状结构;图4b为单层膜厚度20nm的截面扫描图像,从图中可以看出一些层状结构,说明在20nm尺度下薄膜的层状形貌已难以通过扫描看出。图4c为单层膜厚度5nm的NbMoWTa/Ag多层膜,因为层厚太小,从中看不出平行于基底的多层膜层状结构; 相反形成了与NbMoWTa膜一致的垂直于基底的柱状晶结构,如图4d所示,说明柱状晶内部Ag层形成了和NbMoWTa层的共格结构[22],这与XRD中展示的在5nm多层膜处只呈现一个单一峰,且更加靠近于(110) 晶面表现一致。以上结构表征的结果说明了随着单层厚度的减小,NbMoWTa层和Ag层的界面从半共格向共格发生了转变。

  • 图4 NbMoWTa/Ag纳米多层膜和NbMoWTa膜截面形貌图

  • Fig.4 SEM images of the cross section in NbMoWTa films and NbMoWTa/Ag multilayers

  • 2.2 力学性能

  • 试验获得的NbMoWTa薄膜和不同单层膜厚度的NbMoWTa/Ag纳米多层膜的载荷位移曲线如图5所示。可以看出, 在压入相同的深度下NbMoWTa薄膜所需的载荷最大,说明其硬度最高。 NbMoWTa/Ag纳米多层膜随着单层膜厚度的减少,所需载荷和硬度逐渐上升。在单层膜厚度为5~10nm时,硬度上升量较大,根据前文结构表征的结果可以推测是共格强化引起的硬度突变。

  • 图5 NbMoWTa膜和NbMoWTa/Ag多层膜载荷-位移曲线图

  • Fig.5 Load-displacement curves of NbMoWTa films and NbMoWTa/Ag multilayers

  • 图6a为不同单层膜厚度的NbMoWTa/Ag纳米多层膜的硬度试验值,单质Ag硬度为1.43GPa, NbMoWTa硬度为10.93GPa,根据混合法则进行计算得到NbMoWTa/Ag纳米多层膜的平均硬度值H ROM=6.18GPa,如图6a虚线所示。从图6a可看出,当单层膜厚度在20~100nm区间时,多层膜的硬度随着单层膜厚度降低而增加,增长速度较为缓慢。为了探讨NbMoWTa/Ag纳米多层膜的强化机制,本文作出硬度 Hh-1/2 的变化图(如图6b),可知当单层膜厚度在20~100nm区间时,试验测得的增长速率与Hall-Petch强化机制增长速率十分契合。此时多层膜硬度的经验公式为

  • σ=σ0+kh-1/2
    (3)
  • 式中,σ 是屈服强度,σ0 是组元的平均屈服强度,k 是Hall-Petch关系的斜率。强度的斜率 k 的理论值可以通过较硬层的参数计算[17] :

  • k=0.18μb
    (4)
  • NbMoWTa为较硬组元,其剪切模量 μ 为155GPa, 柏式矢量大小 b 为0.281nm, 计算可得 k 值为5.56GPa nm 1/2 ,与其试验值十分接近,这说明Hall-Petch关系式在该尺度下适用于NbMoWTa/Ag多层膜体系。此时位错无法穿过界面,强化机制为位错在界面处的堆积,如图6c。

  • 当单层膜厚度小于20nm时,由于多层膜异质界面增多,晶粒尺寸减小,单层膜内位错密度太低, 无法产生位错堆积。此时Hall-Petch理论已不能解释该强化现象,塑性变形机制转变为位错穿越界面运动机制, 如图6d。在单层膜厚度为5nm时, NbMoWTa层和Ag层已经完全共格,此时多层膜变形机制为共格强化机制, Ag的晶格常数较大, NbMoWTa晶格常数较小,Ag层与NbMoWTa层界面处, Ag受到NbMoWTa对其向内的压应力,NbMoWTa受到Ag对其向外的拉应力。由于拉压应力场的交替变化导致位错难以穿过界面,造成了共格强化。共格强化机制解释了NbMoWTa/Ag在单层膜厚度小于5nm后硬度大幅度增加的现象[24]。在已报道的NbMoWTa/CoCrNi体系中, NbMoWTa层与CoCrNi层没有出现共格关系,因而当层厚小于10nm以下时出现了多层膜硬度减小的现象。此外,随着单层尺寸的减小两层元素的互混导致界面层非晶的形成和孪晶界的减少。位错滑到非晶处被吸收,避免界面位错堆积,最终造成多层膜材料硬度的减小[25]。在NbMoWTa/Cu多层膜体系中,单层膜厚度较小时出现的硬度平台符合界面强度模型( IBS),即位错弓出所需应力与界面阻碍的强度相当,此时位错穿过界面的力就等于界面强度也就是此时多层膜的强度[26]。从以上分析可知,NbMoWTa/Ag多层膜体系由于在小尺寸时发生了界面结构的转变,保持了其优异的力学性能。因而可以通过调控多层膜单层的厚度来最大程度地降低引入高体积分数Ag层( 50%) 所带来的硬度损失。

  • 图6 NbMoWTa/Ag多层膜与NbMoWTa/X多层膜硬度和h-1/2 的关系图及多层膜强化机制图

  • Fig.6 NbMoWTa/Ag and NbMoWTa/X multilayers hardness and h-1/2 relationship diagram, and multilayer enhancement mechanism diagram

  • 2.3 摩擦学性能

  • 图7a为NbMoWTa膜、Ag膜和单层膜厚度5nm的NbMoWTa/Ag多层膜的摩擦因数图(5nm单层膜厚度的NbMoWTa/Ag多层膜硬度在多层膜中硬度最高,所以做了单层膜厚度为5nm的NbMoWTa/Ag多层膜与NbMoWTa膜的摩擦试验)。从图中可看出,NbMoWTa膜的摩擦因数为0.49,NbMoWTa/Ag的摩擦因数为0.23,下降了53.1%。说明Ag元素的添加起到了良好的润滑效果;而Ag膜摩擦因数较高是由其大面积脱落,使对磨球与Si基底摩擦所导致。图7b为NbMoWTa膜与单层膜厚度为5nm的NbMoWTa/Ag多层膜磨损率图像(Ag膜已脱落,此处不测量其磨损率),在考虑测量误差后, 从图中看出, NbMoWTa膜的磨损率与膜厚度为5nm NbMoWTa/Ag多层膜的磨损率相当。这说明Ag元素的添加减少了摩擦因数,起到了良好的润滑效果,对对磨副起到良好的保护作用。图7c是通过三维光学测得其截面形貌,可明显看出Ag膜已经脱落,而NbMoWTa膜与NbMoWTa/Ag多层膜的磨损程度相当,这与其磨损率表现一致。

  • 图8a为NbMoWTa膜的磨痕形貌图。从图中可以看出明显的裂纹和严重的犁沟,说明难熔高熵合金NbMoWTa膜脆性较大,在摩擦过程中容易发生破碎,而且磨粒磨损较为严重,摩擦性能低下。图8b为NbMoWTa/Ag的磨痕形貌图,磨痕表面光滑, 有轻微的犁沟,通过能谱(图9)看出,Ag元素分布均匀,起到良好的润滑效果。图8c是Ag膜的磨痕图,可以看出较软的Ag膜在摩擦过程中直接大面积脱落。

  • 图7 NbMoWTa膜、Ag膜和NbMoWTa/Ag多层膜摩擦因数、磨损率及其剖面形貌图

  • Fig.7 Friction coefficient, wear rate and cross-section profiles of NbMoWTa, Ag and NbMoWTa/Ag films

  • 图8 NbMoWTa膜、Ag膜和NbMoWTa/Ag多层膜的磨痕SEM图

  • Fig.8 SEM micrographs of the worn surfaces of NbMoWTa, Ag and NbMoWTa/Ag films

  • 图9 NbMoWTa/Ag多层膜磨痕EDS图像

  • Fig.9 EDS mapping of the NbMoWTa/Ag film

  • 以上说明,常规固体润滑涂层(用基体相和润滑相充分混合制备而成)在添加10%的润滑相时, 材料强度显著降低,导致本身耐磨性不足,磨损率高[14-16]。制备交替堆叠的多层结构膜NbMoWTa/Ag时, 通过控制单层的厚度, 使较硬的基体相NbMoWTa层与较软的润滑相Ag层形成共格结构, 可以大幅度减轻润滑相带来的强度降低作用,提高材料的耐磨性。同时,在NbMoWTa层与Ag层交替磨损后,还有后续的“补给”,从而始终保持了Ag的润滑作用。

  • 3 结论

  • 采用磁控溅射技术在Si基体上制备了具有不同单层膜厚度的NbMoWTa/Ag纳米多层膜,并与NbMoWTa和Ag薄膜进行了对比。讨论了NbMoWTa/Ag纳米多层膜的结构、硬度和摩擦性能。主要结论如下:

  • (1) 不同调制周期结构的纳米多层膜结晶性良好,多层膜硬度随着单层膜厚度(5nm到100nm) 的降低而增加。

  • (2) 纳米多层膜的塑性变形机制在单层膜厚度100~20nm区间为位错在界面处的堆积机制,符合Hall-Petch关系;单层膜厚度小于20nm后强化机制转变为位错穿越界面运动机制;在尺寸小于10nm后多层膜的硬度接近于高熵合金NbMoWTa单质膜,这可能由随着单层膜的厚度降低引起NbMoWTa膜与Ag膜之间由半共格向共格转变所致。

  • (3) Ag元素添加后, 摩擦因数相比于NbMoWTa薄膜下降了53.1%,维持着几乎相同的磨损率,故起到了良好的自润滑效果。

  • 参考文献

    • [1] YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes [J].Advanced Engineering Materials,2004,6(5):299-303.

    • [2] MIRACLE D B,SENKOV O N.A critical review of high entropy alloys and related concepts [J].Acta Materialia,2017,122:448-511.

    • [3] TSAI M H,YEH J W.High-entropy alloys:A critical review [J].Materials Research Letters,2014,2(3):107-123.

    • [4] SENKOV O N,WILKS G B,SCOTT J M,et al.Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J].Intermetallics,2011,19(5):698-706.

    • [5] 闫薛卉,张勇.高熵薄膜和成分梯度材料[J].表面技术,2019,48(6):98-106.YAN X H,ZHANG Y.High-entropy films and compositional gradient materials [J].Surface Technology,2019,48(6):98-106.(in Chinese)

    • [6] 刘径舟,刘洪喜,邸英南,等.碳含量对激光熔覆CoCrFeMnNiCx高熵合金涂层摩擦磨损和耐蚀性能的影响 [J].中国表面工程,2020,33(6):118-127.LIU J Z,LIU H X,DI YN,et al.Effects of Carbon content on friction and wear behavior and corrosion resistance of laser cladding CoCrFeMnNiCx high entropy alloy coatings[J].China Surface Engineering,2020,33(6):118-127.(in Chinese)

    • [7] BHARDWAJ V,ZHOU Q,ZHANG F,et al.Effect of Al addition on the microstructure,mechanical and wear properties of TiZrNbHf refractory high entropy alloys [J].Tribology International,2021,160:107031.

    • [8] ZOU Y,MA H,SPOLENAK R.Ultrastrong ductile and stable high-entropy alloys at small scales[J].Nature Communications,2015,6:7748.

    • [9] LU C Y,NIU L L,CHEN N J,et al.Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys[J].Nature Communications,2016,7:13564.

    • [10] HSUEH H T,SHEN W J,TSAI M H,et al.Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films(AlCrSiTiZr)(100-x)N-x [J].Surface and Coatings Technology,2012,206(19-20):4106-4112.

    • [11] XIAO Y,ZOU Y,MA H,et al.Nanostructured NbMoTaW high entropy alloy thin films:High strength and enhanced fracture toughness[J].Scripta Materialia,2019,168:51-55.

    • [12] 安邦,王亚强,张金钰,等.高熵合金薄膜制备、微观结构与性能的研究进展[J].表面技术,2021,50(2):74-90.AN B,WANG Y Q,ZHANG J Y,et al.Research progress in preparation,microstructure and properties of thin high-entropy alloy films[J].Surface Technology,2021,50(2):74-90.(in Chinese)

    • [13] POULIA A,GEORGATIS E,LEKATOU A,et al.Dry-sliding wear response of MoTaWNbV high entropy alloy[J].Advanced Engineering Materials,2017,19(2):1600535.

    • [14] 李博雅,曹志强.金属基固体自润滑复合涂层及其制备技术研究进展[J].表面技术,2017,46(9):32-38.LI B Y,CAO Z Q.Metal-based solid self-lubricating composite coating and Its preparation technology[J].Surface Technology,2017,46(9):32-38.(in Chinese)

    • [15] ZHU S Y,CHENG J,QIAO Z H,et al.High temperature solid-lubricating materials:A review [J].Tribology International,2019,133:206-223.

    • [16] JU H B,XU J H.Microstructure and tribological properties of NbN-Ag composite films by reactive magnetron sputtering [J].Applied Surface Science,2015,355:878-883.

    • [17] MISRA A,HIRTH J P,HOAGLAND R G.Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites[J].Acta Materialia,2005,53(18):4817-4824.

    • [18] ZHOU Q,REN Y,DU Y,et al.Cracking and toughening mechanisms in nanoscale metallic multilayer films:A brief review [J].Applied Sciences-basel,2018,8(10):1821.

    • [19] FENG X B,ZHANG J Y,XIA Z R,et al.Stable nanocrystalline NbMoTaW high entropy alloy thin films with excellent mechanical and electrical properties [J].Materials Letters,2018,210:84-87.

    • [20] ZHAO D,LI S J,ZHAO X Q,et al.Preparation and vacuum tribological properties of composite coatings fabricated by effective introduction of soft metal Ag into spray-formed YSZ templates [J].Applied Surface Science,2020,518:146176.

    • [21] 周青,王飞,谢继阳,等.Cu/Ru 金属纳米多层膜剪切带行为的研究[J].中国科技论文,2015,10(4):375.ZHOU Q,WANG F,XIE J Y,et al.Investigation of shear banding behavior of nanoscale Cu/Ru metallic multilayer films [J].China Sciencepaper,2015,10(4):375.(in Chinese)

    • [22] ZHOU Q,LI Y,WANG F,et al.Length-scale-dependent deformation mechanism of Cu/X(X = Ru,W)multilayer thin films[J].Materials Science and Engineering:A,2016,664:206-214.

    • [23] LU Y Y,KOTOKA R,LIGDA J P,et al.The microstructure and mechanical behavior of Mg/Ti multilayers as a function of individual layer thickness [J].Acta Materialia,2014,63:216-231.

    • [24] ZHOU Q,ZHANG S,WEI X Z,et al.Improving the crack resistance and fracture toughness of Cu/Ru multilayer thin films via tailoring the individual layer thickness[J].Journal of Alloys and Compounds,2018,742:45-53.

    • [25] CAO Z H,MA Y J,CAI Y P,et al.High strength dual-phase high entropy alloys with a tunable nanolayer thickness [J].Scripta Materialia,2019,173:149-153.

    • [26] ZHAO Y F,WANG Y Q,WU K,et al.Unique mechanical properties of Cu/(NbMoTaW)nanolaminates [J].Scripta Materialia,2018,154:154-158.

  • 参考文献

    • [1] YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes [J].Advanced Engineering Materials,2004,6(5):299-303.

    • [2] MIRACLE D B,SENKOV O N.A critical review of high entropy alloys and related concepts [J].Acta Materialia,2017,122:448-511.

    • [3] TSAI M H,YEH J W.High-entropy alloys:A critical review [J].Materials Research Letters,2014,2(3):107-123.

    • [4] SENKOV O N,WILKS G B,SCOTT J M,et al.Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J].Intermetallics,2011,19(5):698-706.

    • [5] 闫薛卉,张勇.高熵薄膜和成分梯度材料[J].表面技术,2019,48(6):98-106.YAN X H,ZHANG Y.High-entropy films and compositional gradient materials [J].Surface Technology,2019,48(6):98-106.(in Chinese)

    • [6] 刘径舟,刘洪喜,邸英南,等.碳含量对激光熔覆CoCrFeMnNiCx高熵合金涂层摩擦磨损和耐蚀性能的影响 [J].中国表面工程,2020,33(6):118-127.LIU J Z,LIU H X,DI YN,et al.Effects of Carbon content on friction and wear behavior and corrosion resistance of laser cladding CoCrFeMnNiCx high entropy alloy coatings[J].China Surface Engineering,2020,33(6):118-127.(in Chinese)

    • [7] BHARDWAJ V,ZHOU Q,ZHANG F,et al.Effect of Al addition on the microstructure,mechanical and wear properties of TiZrNbHf refractory high entropy alloys [J].Tribology International,2021,160:107031.

    • [8] ZOU Y,MA H,SPOLENAK R.Ultrastrong ductile and stable high-entropy alloys at small scales[J].Nature Communications,2015,6:7748.

    • [9] LU C Y,NIU L L,CHEN N J,et al.Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys[J].Nature Communications,2016,7:13564.

    • [10] HSUEH H T,SHEN W J,TSAI M H,et al.Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films(AlCrSiTiZr)(100-x)N-x [J].Surface and Coatings Technology,2012,206(19-20):4106-4112.

    • [11] XIAO Y,ZOU Y,MA H,et al.Nanostructured NbMoTaW high entropy alloy thin films:High strength and enhanced fracture toughness[J].Scripta Materialia,2019,168:51-55.

    • [12] 安邦,王亚强,张金钰,等.高熵合金薄膜制备、微观结构与性能的研究进展[J].表面技术,2021,50(2):74-90.AN B,WANG Y Q,ZHANG J Y,et al.Research progress in preparation,microstructure and properties of thin high-entropy alloy films[J].Surface Technology,2021,50(2):74-90.(in Chinese)

    • [13] POULIA A,GEORGATIS E,LEKATOU A,et al.Dry-sliding wear response of MoTaWNbV high entropy alloy[J].Advanced Engineering Materials,2017,19(2):1600535.

    • [14] 李博雅,曹志强.金属基固体自润滑复合涂层及其制备技术研究进展[J].表面技术,2017,46(9):32-38.LI B Y,CAO Z Q.Metal-based solid self-lubricating composite coating and Its preparation technology[J].Surface Technology,2017,46(9):32-38.(in Chinese)

    • [15] ZHU S Y,CHENG J,QIAO Z H,et al.High temperature solid-lubricating materials:A review [J].Tribology International,2019,133:206-223.

    • [16] JU H B,XU J H.Microstructure and tribological properties of NbN-Ag composite films by reactive magnetron sputtering [J].Applied Surface Science,2015,355:878-883.

    • [17] MISRA A,HIRTH J P,HOAGLAND R G.Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites[J].Acta Materialia,2005,53(18):4817-4824.

    • [18] ZHOU Q,REN Y,DU Y,et al.Cracking and toughening mechanisms in nanoscale metallic multilayer films:A brief review [J].Applied Sciences-basel,2018,8(10):1821.

    • [19] FENG X B,ZHANG J Y,XIA Z R,et al.Stable nanocrystalline NbMoTaW high entropy alloy thin films with excellent mechanical and electrical properties [J].Materials Letters,2018,210:84-87.

    • [20] ZHAO D,LI S J,ZHAO X Q,et al.Preparation and vacuum tribological properties of composite coatings fabricated by effective introduction of soft metal Ag into spray-formed YSZ templates [J].Applied Surface Science,2020,518:146176.

    • [21] 周青,王飞,谢继阳,等.Cu/Ru 金属纳米多层膜剪切带行为的研究[J].中国科技论文,2015,10(4):375.ZHOU Q,WANG F,XIE J Y,et al.Investigation of shear banding behavior of nanoscale Cu/Ru metallic multilayer films [J].China Sciencepaper,2015,10(4):375.(in Chinese)

    • [22] ZHOU Q,LI Y,WANG F,et al.Length-scale-dependent deformation mechanism of Cu/X(X = Ru,W)multilayer thin films[J].Materials Science and Engineering:A,2016,664:206-214.

    • [23] LU Y Y,KOTOKA R,LIGDA J P,et al.The microstructure and mechanical behavior of Mg/Ti multilayers as a function of individual layer thickness [J].Acta Materialia,2014,63:216-231.

    • [24] ZHOU Q,ZHANG S,WEI X Z,et al.Improving the crack resistance and fracture toughness of Cu/Ru multilayer thin films via tailoring the individual layer thickness[J].Journal of Alloys and Compounds,2018,742:45-53.

    • [25] CAO Z H,MA Y J,CAI Y P,et al.High strength dual-phase high entropy alloys with a tunable nanolayer thickness [J].Scripta Materialia,2019,173:149-153.

    • [26] ZHAO Y F,WANG Y Q,WU K,et al.Unique mechanical properties of Cu/(NbMoTaW)nanolaminates [J].Scripta Materialia,2018,154:154-158.

  • 手机扫一扫看