en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

秦红玲,女,1978年出生,博士,教授,博士研究生导师。主要研究方向为摩擦学、表面工程、振动与噪声控制。E-mail:qhl@ctgu.edu.cn;

李响(通信作者),男,1979年出生,博士,副教授,硕士研究生导师。主要研究方向为多孔结构拓扑优化。E-mail:lixiangcfy@ctgu.edu.cn

中图分类号:TH117

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210713001

参考文献 1
温诗铸.润滑理论研究的进展与思考[J].摩擦学学报,2007(6):497-503.WEN Shizhu.Progress and reflection on lubrication theory research[J].Tribology,2007(6):497-503.(in Chinese)
参考文献 2
HAMILTON D B,WALOWIT J A,ALLEN C M.A theory of lubrication by microirregularities [J].Journal of Basic Engineering,1966,88(1):177-185.
参考文献 3
ETSION I.The effect of combined coning and waviness on the separating force in mechanical face seals [J].Journal of Mechanical Engineering Science,1980,22(2):59-64.
参考文献 4
CHEN H,ZHANG P,ZHANG L.et al.Continuous directional water transport on the peristome surface of Nepenthes alata[J].Nature,2016,532:85-89.
参考文献 5
ZHAO H,SUN Q,DENG X,et al.Earthworm-inspired rough polymer coatings with self-replenishing lubrication for adaptive friction-reduction and antifouling surfaces [J].Advanced Materials,2018,30(29):1802141.1-1802141.6.
参考文献 6
李云凯,王优强,菅光霄,等.仿生猪笼草结构的水润滑轴承摩擦学性能有限元分析研究[J].摩擦学学报,2021,41(3):344-356.LI Yunkai,WANG Youqiang,JIAN Guangxiao,et al.Finite element analysis of friction performance of water-lubricated bearing with bionic Nepenthes structure [J].Tribology,2021,41(3):344-356.(in Chinese)
参考文献 7
缪晨炜,郭智威,袁成清.仿生多尺度沟槽织构对表面摩擦性能的影响[J].中国表面工程,2019,32(1):22-30.MIAO Chenwei,GUO Zhiwei,YUAN Chengqing.Effect of bionic multi-scale grooves texture on surface friction properties [J].China Surface Engineering,2019,32(1):22-30.(in Chinese)
参考文献 8
GALDA L,SEP J,PRUCNAL S.The effect of dimples geometry in the sliding surface on the tribological properties under starved lubrucation conditions [J].Tribology International,2016,99:77-84.
参考文献 9
ATSUSHI K,HIIROKI M,AYAKO O,et al.Friction reduction of oil-impregnated sintered bearings by surface texturing [J].Journal of Tribology,2020,142(9):1-21.
参考文献 10
IBATAN T,UDDIN M S,CHOWDHURY M.Recent development on surface texturing in enhancing tribological performance of bearing sliders [J].Surface & Coatings Technology,2015,272:102-120.
参考文献 11
赵文杰,王立平,薛群基.织构化提高表面摩擦学性能的研究进展[J].摩擦学学报,2011,31(6):622-631.ZHAO Wenjie,WANG Liping,XUE Qunji.Research progress on improving surface tribological properties bytextuing [J].Tribology,2011,31(6):622-631.(in Chinese)
参考文献 12
轩福贞,朱明亮,王国彪.结构疲劳百年研究的回顾与展望 [J].机械工程学报,2021,57(6):26-51.XUAN Fuzhen,ZHU Mingliang,WANG Guobiao.Review and prospect of centennial research on structural fatigue[J].Journal of Mechanical Engineering,2021,57(6):26-51.(in Chinese)
参考文献 13
CAO X,LI Y,HE G.Fabrication of self-lubricating porous UHMWPE with excellent mechanical properties and friction performance via rotary sintering[J].Polymers,2020,12(6):1335.
参考文献 14
OYACHI Y,UTSUNOMIYA H,SAKAI T,et al.Effects of porous surface layer on lubrication evaluated by ring compression friction test[J].ISIJ International,2012,52(5):858-862.
参考文献 15
周海宇.关节软骨的生物摩擦学机理研究[D].上海:上海交通大学,2014.ZHOU Haiyu.Study on biological tribological mecha-nism of articular cartilage [ D ].Shanghai:Shanghai Jiao Tong University,2014.(in Chinese)
参考文献 16
CUI Y,GONG H,WANG Y,et al.A thermally insulating textile inspired by polar bear hair [J].Advanced Materials,2018,30(14):1706807.
参考文献 17
SHI S,SUN Z,HU X,et al.Flexural strength and ener-gy absorption of carbon-fiber-aluminum-honeycomb composite sandwich reinforced by aluminum grid [J].Thin-Walled Structures,2014,84:416-422.
参考文献 18
SHI S S,SUN Z,HU X Z,et al.Carbon-fiber and aluminum-honeycomb sandwich composites with and without Kevlar-fiber interfacial toughening [J].Composites Part A,2014,67:102-110.
参考文献 19
MENG Z,BAO H,WANG J,et al.Artificial ion channels regulating light-induced ionic currents in photoelectrical conversion systems[J].Advanced Materials,2014,26(15):2329-2334.
参考文献 20
陈银河.多孔玻璃海绵轻质结构的仿生研究[D].南京:南京航空航天大学,2017.CHEN Yinhe.Biomimetic study on lightweight structure of porous glass sponge [ D].Nanjing:Nanjing University of Aeronautics and Astronautics,2017.(in Chinese)
参考文献 21
CHEN P Y.MCKITTRICK J,MEYERS M A.Biological materials:Functional adaptations and bioinspired designs [J].Progress in Materials Science,2011,57(8):1492-1704.
参考文献 22
LEI Y P,WANG H,QIN Q H.Bio-inspired design of lightweight metal structure based on microstructure of fully ripe loofah[J].Recent Patents on Materials Science,2015,8(1):69-73.
参考文献 23
FENG L L,ZHANG P Y,LI J G,et al.Facile preparation,characterization,and formaldehyde elimination performance of MnOx/natural loofah composites[J].Environmental Progress & Sustainable Energy,2020,39(6):13437.
参考文献 24
闫凯.探索超滑和摩擦的起源[J].科学世界,2020(11):74-80.YAN Kai.Exploration of the origin of superslip and friction[J].Science World,2020(11):74-80.(in Chinese)
参考文献 25
沈继飞,王成焘,王野平.人类天然关节和人工关节润滑机理的探讨[J].上海交通大学学报,1986(6):103-117,135.SHEN Jifei,WANG Chentao,WANG Yeping.Discussion on lubrication mechanism of human natural and artificial joints[J].Journal of Shanghai Jiaotong University,1986(6):103-117,135.(in Chinese)
参考文献 26
MURAKAMI T,YARIMITSU S,SAKAI N,et al.Importance of adaptive multimode lubrication mechanism in natural synovial joints[J].Tribology International,2017,113:306-315.
参考文献 27
MCNARY S M,ATHANASIOU K A,REDDI A H.Engineering lubrication in articular cartilage[J].Tissue Engineering.Part B,Reviews,2012,18(2):88-100.
参考文献 28
王野平,王成焘.天然关节及人工关节的润滑机理探讨[J].生物医学工程学杂志,2001(4):603-607.WANG Yeping,WANG Chentao.Discussion on lubrication mechanism of human natural and artificial joints[J].Journal of Biomedical Engineering,2001(4):603-607.(in Chinese)
参考文献 29
YUAN H J,WEI Z J,YU X Z.Study on polyvinyl alcohol hydrogel materials for improving the performance of artificial articular cartilage [J].Advanced Materials Research,2013,2417:29-32..
参考文献 30
燕松山,杨威然,解芳,等.Sn-Ag-Cu/金属陶瓷自润滑轴承滚子高温滚阻特性研究[J].润滑与密封,2020,45(2):12-16.YAN Songshan,YANG Weiran,XIE Fang,et al.Study on high temperature roller resistance of Sn-Ag-Cu/cermet self-lubricating bearing[J].Lubrication Engineering,2020,45(2):12-16.(in Chinese)
参考文献 31
FU Xiao,QIU Yudong,ZHAO Yuanjin.The effect of phospholipid composite artificial hydrogel on the lubrication of articular cartilage [J].Science Bulletin,2021,66(5):409-410.
参考文献 32
MU B,CUI J,YANG B,et al.One-Pot Synthesis and tribological properties of oil-containing self-lubricating polyurethane materials [J].Macrommolecular Materials and Engineering,2020:2000509.
参考文献 33
WATANABE T.Porous sintered bearings [J].Journal of the Japan Society of Powder and Powder Metallurgy,2001,48(9):769-776.
参考文献 34
MO Jintao,GU Chaohua,PAN Xiaohong,et al.Experimental and numerical analysis of a self-circulating oil bearing system for gear pumps[J].Industrial Lubrication & Tribology,2018,70(1):115-125.
参考文献 35
张建忠,汪久根,马家驹,等.微载荷含油轴承摩擦性能研究Ⅱ.摩擦试验分析[J].摩擦学学报,2006(5):472-477.ZHANG Jianzhong,WANG Jiugeng,MA Jiaju,et al.Friction properties of oil-bearing bearing under micro load Ⅱ.Friction Test Analysis [J].Tribology,2006(5):472-477.(in Chinese)
参考文献 36
CAMERON A,MORGAN V T,STAINSBY A E.Criti-cal conditions for hydrodynamic lubrication of porous metal bearings [J].ARCHIVE Proceedings of the Insti-tution of Mechanical Engineers,1962(176):761-770.
参考文献 37
张国涛,尹延国.复层孔隙分布含油轴承的孔道渗流及润滑机制[J].中国科学:技术科学,2019,49(8):961-970.ZHANG Guotao,YIN Yanguo.Seepage and lubrication mechanism of oil-bearing with multi-layer pore distrib-ution[J].Science China Technical Sciences,2019,49(8):961-970.(in Chinese)
参考文献 38
阮洪伟,张韶华,王廷梅,等.多孔聚酰亚胺含油轴承保持架的磨损机理研究[J].空间控制技术与应用,2019,45(3):64-70.RUAN Hongwei,ZHANG Shaohua,WANG Tingmei,et al.Study on wear mechanism of porous polyimide oil-bearing cage [J].Space Control Technology and Application,2019,45(3):64-70.(in Chinese)
参考文献 39
屈重年,郭韶华,马世榜,等.新型铁基多孔含油材料滑块型滑动导轨的研究[J].机床与液压,2016,44(1):91-95,139.QU Chongnian,GUO Shaohua,MA Shibang,et al.Study on new type slider type of iron base multi-hole oil-bearing material [J].Machine Tool & Hydraulics,2016,44(1):91-95,139.(in Chinese)
参考文献 40
ZHANG R,LIN P,YANG W,et al.Simultaneous superior lubrication and high load bearing by the dynamic weak interaction of a lubricant with mechanically strong bilayer porous hydrogels [J].Polymer Chemistry,2017,8:7102-7107.
参考文献 41
王旭萍,宋佳,崔静洁.多孔材料的生物合成研究进展[J].生物加工过程,2019,17(6):597-603.WANG Xuping,SONG Jia,CUI Jingjie.Progress in biosynthesis of porous materials[J].Bioprocess Technology,2019,17(6):597-603.(in Chinese)
参考文献 42
李欣芳,蒋武锋,郝素菊,等.多孔金属材料的制备方法及应用研究[J].南方金属,2016(2):11-15,27.LI Xinfang,JIANG Wufeng,HAO Suju,et al.Preparation method and application of porous metal materials[J].Southern Metals,2016(2):11-15,27.(in Chinese)
参考文献 43
和峰,刘昌胜.添加成孔剂法制备孔径、气孔率可控的多孔玻璃陶瓷[J].无机材料学报,2004(6):1267-1276.HE Feng,LIU Changshen.Preparation of porous glass ceramics with controllable pore size and porosity by adding pore-forming agent[J].Journal of Inorganic Materials,2004(6):1287-1276.(in Chinese)
参考文献 44
LI Q,DUAN T,SHAO J,et al.Fabrication method for structured porous polydimethylsiloxane(PDMS)[J].Journal of Materials Science,2018,53(16):11873-11882.
参考文献 45
HUANG X,WU J,LU X,et al.Tribological properties of porous PEEK composites containing ionic liquid under dry friction condition[J].Lubricants,2017,5(2):19-30.
参考文献 46
JIA Z,YAN Y,WANG W.Preparation and tribological properties of PI oil-bearing material with controllable pore size [J].Industrial Lubrication and Tribology,2017,69(2):88-94.
参考文献 47
SA-NGUANRUKSA J,RUJIRAVANIT R,SUPAPHOL P,et al.Porous polyethylene membranes by template-leaching technique:preparation and characterization[J].Polymer Testing,2004,23(1):91-99.
参考文献 48
MA S,WANG Y,LIU C,et al.Preparation and characterization of nanoporous polyimide membrane by the template method as low-k dielectric material [J].Polymers for Advanced Technologies,2016,27(3):414-418.
参考文献 49
YANG C,JIANG P,QIN H L,et al.3D printing of porous polyimide for high-performance oil impregnated self-lubricating [J].Tribology International,2021(29):107009-17.
参考文献 50
李蓉蓉,尹延国,张国涛,等.以 TiH2 为造孔剂的球磨铁基含油材料孔隙表征及其摩擦学性能[J].润滑与密封,2020,45(7):75-80.LI Rongrong,YIN Yanguo,ZHANG Guotao,et al.Pore characterization and tribological properties of ball-milling oil-bearing iron-based materials using TiH2 as pore-forming agent [J].Lubrication Engineering,2020,45(7):75-80.(in Chinese)
参考文献 51
WANG Y,LIU Z.Tribological properties of high temperature self-lubrication metal ceramics with an interpenetrating network [J].Wear,2008,265(11):1720-1726.
参考文献 52
王砚军,刘佐民.微孔贯通型高温自润滑金属陶瓷的摩擦磨损性能研究[J].摩擦学学报,2006(4):348-352.WANG Yanjun,LIU Zuoming.Study on friction and wear properties of self-lubricating cermets with microporous connections at high temperature [J].Tribology,2006(4):348-352.(in Chinese)
参考文献 53
顾秀娟,王齐华,王金清.多孔氧化铝陶瓷储油材料的摩擦学性能研究[J].摩擦学学报,2004(2):123-127.GU Xiujuan,WANG Qihua,WANG Jinqing.Tribological properties of porous alumina ceramic oil storage materials [J].Tribology,2004(2):123-127.(in Chinese)
参考文献 54
LIU Z.Elevated temperature diffusion self-lubricating mechanisms of a novel cermet sinter with orderly micro-pores[J].Wear,2006,262(5):600-606.
参考文献 55
汪怀远,张帅,汪桂英,等.多孔PEEK自润滑材料的制备与摩擦磨损性能[J].高分子材料科学与工程,2012,28(9):137-140.WANG Huaiyuan,ZHANG Shuai,WANG Guiying,et al.Preparation and friction and wear properties of porous PEEK self-lubricating materials [J].Polymer Materials Science and Engineering,2012,28(9):137-140.(in Chinese)
参考文献 56
SHUTOV F.Cellular UHMW polyethylene produed by nonfoaming leaching technique:morphology and properties [J].Journal of Cellular Plastics,2016:163-176.
参考文献 57
阚小清,丁军,余超,等.仿生制备多孔 ZrC/C 复合陶瓷材料[J].材料导报,2018,32(10):1602-1605,1627.KAN Xiaoqing,DING Jun,YU Chao,et al.Bionic preparation of porous ZrC/C composite ceramics [J].Materials Review,2018,32(10):1602-1605,1627.(in Chinese)
参考文献 58
WANG T,WANG H,WANG T,et al.Significantly improving strength and oil-adsorption performance of regular porous polydimethylsiloxane via soft template approach[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2019,572:10-17.
参考文献 59
ZHANG L C,ZHANG Y F,CHEN P,et al.Paraffin Oil based soft-template approach to fabricate reusable porous PDMS sponge for effective oil/water separation[J].Langmuir:the ACS Journal of Surfaces and Colloids,2019,35(34):11123-11131.
参考文献 60
DEVILLE S.The lure of ice-templating:Recent trends and opportunities for porous materials[J].Scripta Materialia,2018,147:119-124.
参考文献 61
崔滢.仿生有序多孔材料的制备及其应用[D].杭州:浙江大学,2018.CUI Ying.Preparation and application of bionic ordered porous materials [ D ].Hangzhou:Zhejiang University,2018.(in Chinese)
参考文献 62
甘甜,林涛,全晓军.冰模板法制备仿生双孔径-定向孔隙毛细芯的结构和性能[J].机械工程材料,2020,44(4):57-61.GAN Tian,LIN Tao,QUAN Xiaojun.Structure and properties of bionic double aperture and directional pore capillary core prepared by ice template method [J].Materials for Mechanical Engineering,2020,44(4):57-61.(in Chinese)
参考文献 63
赵洪炯,鲁中良,曹继伟,等.定向多孔GH3536制备及其力学性能 [J].稀有金属材料与工程,2020,49(5):1694-1700.ZHAO Hongjiong,LU Zhongliang,CAO Jiwei,et al.Preparation and mechanical properties of directional porous GH3536[J].Rare Metal Materials and Engineering,2020,49(5):1694-1700.(in Chinese)
参考文献 64
杨建明,汤阳,顾海,等.3D 打印制备多孔结构的研究与应用现状[J].材料导报,2018,32(15):2672-2682.YANG Jiangming,TANG Yang,GU Hai,et al.Research and application of 3D printing for fabrication of porous structures[J].Materials Review,2018,32(15):2672-2682.(in Chinese)
参考文献 65
ZHANG B,PEI X,ZHOU C,et al.The biomimetic design and 3D printing of customized mechanical properties porous Ti6Al4V scaffold for load-bearing bone reconstruction [J].Materials & Design,2018,152:30-39.
参考文献 66
LIU A,SUN M,YANG X,et al.Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair:An investigation of osteogenic capability and mechanical evolution [J].Journal of Biomaterials Applications,2016,31(5):650-660.
参考文献 67
邓珍波,周长春,樊渝江,等.多孔钛骨组织工程支架设计及孔结构表征[J].稀有金属材料与工程,2016,45(9):2287-2292.DENG Zhenbo,ZHOU Changchun,FAN Yujiang,et al.Design and characterization of porous titanium bone tis-sue engineering scaffolds[J].Rare Metal Materials and Engineering,2016,45(9):2287-2292.(in Chinese)
参考文献 68
SENATOV F S,ZADOROZHNYY M Y,NIAZA K V,et al.Shape memory effect in 3D-printed scaffolds for self-fitting implants[J].European Polymer Journal,2017,93:222-231.
参考文献 69
SINDHU V,SOUNDARAPANDIAN S.Additive manufacturing fixture box for bone measurement [J].Procedia Engineering,2017,184:1-9.
参考文献 70
徐仰立,张冬云,胡松涛,等.结构尺寸对多孔Ti6Al4V力学性能的影响[J].稀有金属材料与工程,2020,49(5):1736-1742.XU Yangli,ZHANG Dongyun,HU Songtao,et al.Effect of structural size on mechanical properties of porous Ti6Al4V[J].Rare Metal Materials and Engineering2020,49(5):1736-1742.(in Chinese)
参考文献 71
HAN C J,LI Y,WANG Q,et al.Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants [J].Journal of the Mechanical Behavior of Biomedical Materials,2018,80:119-127.
参考文献 72
WANG X J,XU S Q,ZHOU S W,et al.Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants:A review [J].Biomaterials,2016,83:127-141.
参考文献 73
WANG C,HUANG W,ZHOU Y,et al.3D printing of bone tissue engineering scaffolds [J].Bioactive Materials,2020,5(1):82-91.
参考文献 74
BORGES R A,CHOUDHURY D,ZOU M.3D printed PCU/UHMWPE polymeric blend for artificial knee meniscus [J].Tribology International,2018,122:1-7.
参考文献 75
JIN Z P,MEI H,YAN Y K,et al.3D-printed controllable gradient pore superwetting structures for high temperature efficient oil-water separation[J].Journal of Materiomics,2021,7(1):8-18.
参考文献 76
TUBIO C R,AZUAJE J,ESCALANTE L,et al.3D printing of a heterogeneous copper-based catalyst[J].Journal of Catalysis,2016,334:110-115.
参考文献 77
DIAZ-MARTA A S,TUBIO C R,CARBAJALES C,et al.Three-dimensional printing in catalysis:Combining 3D heterogeneous copper and palldium catalysts for multicatalytic multicomponent reactions[J].Acs Catalysis,2017,8(1):392.
参考文献 78
VINET A,CAINE M.Development of traction features in sprint spikes using SLS nylon sole units [J].Procedia Engineering,2010,2(2):2769-2774.
参考文献 79
NAKAJIMA H,HYUN S K,OHASHI K,et al.Fabrication of porous copper by unidirectional solidification under hydrogen and its properties[J].Elsevier B.V.,2001,179(2):209-214.
参考文献 80
申芳华,李再久,杨天武,等.规则多孔铜基自润滑材料的干摩擦磨损性能[J].摩擦学学报,2012,32(2):150-156.SHEN Fanghua,LI Zaijiu,YANG Tianwu,et al.Dry friction and wear properties of regular porous copper base self-lubricating material[J].Tribology,2012,32(2):150-156.(in Chinese)
参考文献 81
WANG C,WANG Q,WANG T.Simple method for preparation of porous polyimide film with an ordered surface based on in situ self-assembly of polyamic acid and silica microspheres [J].Langmuir the Acs Journal of Surfaces & Colloids,2010,26(23):18357-18361.
参考文献 82
杨栋华,邵慧萍,郭志猛,等.凝胶注模工艺制备医用多孔 Ti-Co 合金的性能 [J].稀有金属材料与工程,2011,40(10):1822-1826.YANG Donghua,SHAO Huiping,GUO Zhimeng,et al.Preparation of porous Ti-Co alloy by gel injection molding process [J].Rare Metal Materials and Engineering,2011,40(10):1822-1826.(in Chinese)
参考文献 83
李宋,曲春辉,邵明超,等.多孔聚合物自润滑复合材料的摩擦学研究进展[J].高分子通报,2018(8):59-62.LI Song,QU Chunhui,SHAO Mingchao,et al.Tribological research progress of porous polymer self-lubricating composites [J].Polymer Science Bulletin,2018(8):59-62.(in Chinese)
参考文献 84
PRATT G C.A review of sintered metal bearings:Their production,propertie properties,and performancE[J].Powder Metallurgy,2014,12(24):356-385.
参考文献 85
TUNAY R F,KURBANOGLU C.Investigation of the tribological properties of Cu-based porous bearings [J].Industrial Lubrication and Tribology,2012,64(2):111-119.
参考文献 86
闫普选,朱鹏,黄丽坚,等.聚酰亚胺多孔含油材料的摩擦磨损性能研究[J].摩擦学学报,2008(3):272-276.YAN Puxuan,ZHU Peng,HUANG Lijian,et al.Tribological and wear properties of polyimide porous oil-bearing materials[J].Tribology,2008(3):272-276.(in Chinese)
参考文献 87
吴刚,张文光,王成焘.仿生多孔超高分子量聚乙烯的摩擦磨损性能研究[J].摩擦学学报,2007(6):539-543.WU Gang,ZhANG Wenguang,WANG Chentao.Friction and wear properties of bionic porous ultra-high molecular weight polyethylene[J].Tribology,2007(6):539-543.(in Chinese)
参考文献 88
吴刚,张文光,王成焘.多孔UHMWPE软骨材料润滑性能的Stribeck研究[J].润滑与密封,2007(4):58-60.WU G,ZHANG W G,WANG C T.A Stribeck study on the lubrication properties of porous UHMWPE cartilage materials [J].Lubrication Engineering,2007(4):58-60.(in Chinese)
参考文献 89
邱优香,王齐华,王超,等.多孔聚酰亚胺含油材料的储油性能及摩擦学行为研究[J].摩擦学学报,2012,32(6):538-543.QIU Youxiang,WANG Qihua,WANG Chao,et al.Oil storage properties and tribological behavior of porous polyimide oil-bearing materials[J].Tribology,2012 32(6):538-543.(in Chinese)
参考文献 90
XIONG D,GE S.Friction and wear properties of UHMWPE/Al2O3 ceramic under different lubricating conditions[J].Wear,2001,250(1-12):242-245.
参考文献 91
文鑫荣,覃俊华,韦长兴,等.Fe-Cu-C 含油轴承的摩擦性能研究[J].粉末冶金工业,2019,29(4):63-68.WEN Xinrong,QIN Junhua,WEI Changxing,et al.Study on friction performance of Fe-Cu-C oil-bearinj [J].Powder Metallurgy Industry,2019,29(4):63-68.(in Chinese)
参考文献 92
LI H,CAO J.The tribological properties of bearing alloys under oil lubrication[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2020,234(10):2042-2052.
参考文献 93
JIA W,YANG S,REN S,et al.Preparation and tribological behaviors of porous oil-containing polyimide/hollow mesoporous silica nanospheres composite films[J].Tribology International,2020,145:106184-91.
参考文献 94
贾卫红,马立民,任嗣利,等.多孔 PI/MSNT 复合含油润滑薄膜的设计制备及其摩擦学性能研究[J].摩擦学学报,2020,40(4):424-433.JIA Weihong,MA Liming,REN Sili,et al.Design and preparation of porous PI/MSNT composite oil-lubricated films and their tribological properties[J].Tribology:2020,40(4):424-433.(in Chinese)
参考文献 95
PU Y P,LU G S,LI X J,et al.Tribological property of polyimide porous materials [J].Transactions of Beijing of Technology:The English version,2006,15(4):483-487.
参考文献 96
汪怀远,林珊,张帅,等.仿生多孔润滑耐磨 CF/PTFE/PEEK 复合材料的设计及其摩擦学性能[J].材料工程,2014(6):45-50.WANG Huaiyuan,LIN Shang,ZHANG Shuai,et al.Design and tribological properties of bionic porous lubricated wear resistant CF/PTFE/PEEK composites [J].Journal of Materials Engineering,2014(6):45-50.(in Chinese)
参考文献 97
汪怀远,林珊,王宝辉,等.纳微多级孔 ACF/PTFE/PEEK 复合材料的制备及发汗式减摩耐磨性能[J].高分子材料科学与工程,2013,29(10):128-132.WANG Huaiyuan,LIN Shag,WANG Baohui,et al.Preparation and wear resistance of nanocrystalline multistage porous ACF/PTFE/PEEK composite [J].Polymer Materials Science and Engineering,2013,29(10):128-132.(in Chinese)
参考文献 98
ZHU Y,WANG G,WANG H,et al.Tribological properties of porous PPS/PTFE composite filled with mesopore titanium oxide whisker[J].Journal of Applied Polymer Science,2013,129(4):2321-2327.
参考文献 99
LI X,LING Y,ZHANG G,et al.Preparation and tribological properties of solid-liquid synergetic self-lubricating PTFE/SiO2/PAO6 composites[J].Composites Part B,2020,196:108133.
参考文献 100
ZHANG G,YIN Y,XU M,et al.Tribological properties and mechanism of the bilayer iron based powder metallurgy materials [J].Industrial Lubrication and Tribology,2018,70(9):1642-1648.
参考文献 101
刘振明,尹延国,张国涛,等.复层铁基粉末冶金材料的制备及其摩擦学性能分析[J].粉末冶金工业,2016,26(2):44-49.LIU Zhenming,YIN Yanguo,ZHANG Guotao,et al.Preparation and tribological properties of cladding iron based powder metallurgy materials[J].Powder Metallurgy Industry,2016,26(2):44-49.(in Chinese)
参考文献 102
ZHOU H,SHI X,IBRAHIM A M M,et al.Investigation of mechanical and tribological performance of Ti6Al4V-based self-lubricating composites with different microporous channel parameters [J].Journal of Materials Engineering and Performance,2020,29:3995-4008.
参考文献 103
SHIMIZU Y,SAKAKIBARA K,YASUDA S,et al.Lubrication characteristics of epoxy resin-based monolithic thin films with a well-defined porous morphology [J].Advanced Engineering Materials,2019,21(10):1900683.
参考文献 104
SAMYN P,BAETS P D,SCHOUKENS G.Influence of internal lubricants(PTFE and Silicon Oil)in short carbon fibre-reinforced polyimide composites on performance properties [J].Tribology Letters,2009,36(2):135-146.
参考文献 105
GUO L,QI H,ZHANG G,et al.Distinct tribological mechanisms of various oxide nanoparticles added in PEEK composite reinforced with carbon fibers[J].Composites Part A,2017,97:19-30.
参考文献 106
李溪滨,刘如铁,程时和,等.烧结材料中孔隙度对摩擦学特性的影响[J].润滑与密封,2002(1):34-35.LI Xibin,LIU Rutie,CHENG Shihe,et al.Effect of porosity on tribological properties of sintered materials[J].Lubrication Engineering,2002(1):34-35.(in Chinese)
参考文献 107
叶锦宗,李锦棒,周宁宁,等.成型工艺对多孔PI材料摩擦学及力学性能的影响[J].材料工程,2020,48(9):144-151.YE jinzong,LI Jinbang,ZHOU Ningning,et al.Effect of molding process on tribological and mechanical properties of porous PI materials [J].Journal of Materials Engineering,2020,48(9):144-151.(in Chinese)
参考文献 108
YABE T,TAKAJO T,KATO S,et al.Lubricant-supplying properties and durability of oil-impregnated polymers [J].Tribology Transactions,2000,43(3):453-458.
参考文献 109
闫普选,朱鹏,谷和平,等.热塑性聚酰亚胺多孔材料制备工艺的探讨[J].润滑与密封,2007(1):79-82,104.YAN Puxuan,ZHU Peng,GU Heping,et al.Study on the preparation process of thermoplastic polyimide porous materials [J].Lubrication Engineering,2007(1):79-82,104.(in Chinese)
参考文献 110
闫普选,王晓东,朱鹏,等.热塑性聚酰亚胺多孔材料制备及表征[J].轴承,2006(8):19-22.YAN Puxuan,WANG Xiaodong,ZHU Peng,et al.Preparation and characterization of thermoplastic polyimide porous materials [J].Bearing,2006(8):19-22.(in Chinese)
参考文献 111
WANG H X,XU W,ZHANG Y Y,et al.Simplified solution to one-dimensional consolidation with threshold gradient [J].Computers and Geotechnics,2021,131:103943.
参考文献 112
李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型 [J].水动力学研究与进展(A 辑),2003(4):419-426.LI Peichao,KONG Xiangyan,LU Detang.Mathem-atical model of fluid-solid coupling seepage in saturated porous media [J].Hydrodynamics Research and Progress(Series A),2003(4):419-426.(in Chinese)
参考文献 113
LIN J R.Performance characteristics of finite porous slider bearings:Brinkman model[J].Tribology International,2001,34(3):181-189.
参考文献 114
刘鸣,程方启,姜明.多孔质含油轴承的理论研究进展 [J].润滑与密封,2004(6):118-120.LIU Ming,CHENG Fangqi,JIANG Ming.Development of theoretical research on porous oil bearing [J].Lubrication Engineering,2004(6):118-120.(in Chinese)
参考文献 115
SAKIM A,NABHANI M,KHLIFI M E.Non-Newtonian effects on porous elastic journal bearings[J].Tribology International,2018,120:23-33.
参考文献 116
HANAWA N,KUNIYOSHI M,MIYATAKE M,et al.Static characteristics of a water-lubricated hydrostatic thrust bearing with a porous land region and a capillary restrictor [J].Precision Engineering,2017,50:293-307.
参考文献 117
张迪,王超,卿涛,等.空间用多孔聚合物轴承保持架材料研究进展[J].机械工程学报,2018,54(9):17-26.ZHANG Di,WANG Chao,QIN Tao,et al.Research progress of porous polymer bearing cage materials for space application [J].Journal of Mechanical Engineering,2018,54(9):17-26.(in Chinese)
参考文献 118
MARCHETTI M,MEURISSE M H,VERGNE P,et al.Analysis of oil supply phenomena by sintered porous reservoirs [J].Tribology Letters,2001,10(3):163-170.
参考文献 119
WANG J,ZHAO H,HUANG W,et al.Investigation of porous polyimide lubricant retainers to improve the performance of rolling bearings under conditions of starved lubrication [J].Wear,2017,380-381:52-58.
参考文献 120
ZHANG D,WANG T,WANG Q,et al.Selectively enhanced oil retention of porous polyimide bearing materials by direct chemical modification[J].Journal of Applied Polymer Science,2017,134(29):45106-12.
参考文献 121
SHAO M,LI S,DUAN C,et al.Cobweb-like structural stimuli-responsive composite with oil warehouse and transportation system for oil storage and recyclable smart-lubrication[J].ACS applied materials & interfaces,2018,10(48):41699-706.
目录contents

    摘要

    多孔储液材料因其优异的自润滑性能备受关注,特别是其孔隙结构参数与性能间对应关系的研究一直是学术界和工业界亟待解决的问题。 针对该类多孔储液材料,从来源、制备方法以及摩擦学特性等方面对其发展脉络及面临的问题进行梳理和分析,认为在仿生关节软骨制备适合工业应用的摩擦副方面,如何提取关键仿生特征参数是关键。 目前在进行服役可靠性、工况适应性分析时,多用孔隙率来表征多孔结构特征,在明晰孔隙形态参数(孔径,分布,贯通型等)与力学-物理性能、润滑状态之间的映射关系方面存在明显的不足,导致从优化孔隙形态参数入手实现多孔储液材料力学-物理性能与摩擦学性能的统一方面仍具挑战性。 3D 打印技术的快速发展有望解决当前多孔材料成形过程中孔隙形态参数不可精确控制的问题,并为其自润滑理论的发展提供有效试验手段。

    Abstract

    Porous liquid storage materials have attracted much attention because of their excellent self-lubricating properties. But the relationship between pore morphology parameters and product properties still remains an urgent problem to be solved in academia and industry. In order to solve this problem, the research development and problems faced by this kind of porous liquid storage materials are combed and analyzed from the aspects of bionic source, preparation methods and tribological characteristics. It is considered that how to extract the key bionic characteristic parameters is the key in the preparation of bionic articular cartilage friction pairs suitable for industrial application. Another thing is that porosity is often used to characterize the porous morphology structure in the analysis of service reliability and working condition adaptability at present. This results that the mapping relationship among pore structure parameters, such as pore size, distribution, penetration and so on, mechanical-physical properties and lubrication regime is still not very clear. Therefore, it remains challenge to realize the unity of mechanical physical properties and tribological properties by means of optimizing the pore morphology parameters of porous liquid storage materials. The rapid development of 3D print technology is expected to solve the problem that the pore shape parameters can not be accurately controlled in the current porous material forming process, and to provide an effective experimental means for the development of its self-lubricating theory.

  • 0 前言

  • 摩擦磨损普遍存在于人类的生产生活中,带来能量损失和接触表面的磨损。为了减少摩擦磨损造成的不必要损失,人们广泛采用润滑和表面工程等技术手段[1]。早在1966年,HAMILTON等[2] 便发现转轴端面密封的表面不规则凹坑可以产生额外的流体动压进而提高表面承载力。随后,ETSION及其团队[3]建立了用于预测具有表面织构的机械密封性能的数学模型,并发现织构孔径尺寸及孔径比的变化对织构性能有明显影响。近50年来,基于ETSION及其团队的研究成果,越来越多的学者意识到表面织构的润滑改善成效并投入其中,同时发现织构尺寸及形状对润滑性能改善作用具有强烈的系统和工况依赖性。在如何提高表面织构工况适应性方面,人们发现,猪笼草表面因存在特殊的梯度粗糙结构而具有了“超滑”特性[4];具有粗糙表皮的蚯蚓在潮湿环境下能在土壤中穿行自如而不粘附不受伤[5];本着师法自然的思想,李云凯等[6] 制备了一种仿生猪笼草结构的轴瓦表面,发现轴瓦布置有仿生猪笼草结构的水润滑轴承更适合应用于中速中载工况。缪晨炜等[7]参考蚯蚓头部多尺度沟槽织构, 在球墨铸铁和灰铸铁表面设计并激光加工多种梯度变化的沟槽织构,发现间距梯度沟槽织构相较于其它类型的多尺度沟槽织构,拥有最佳的表面性能。

  • 表面织构对润滑的改善作用,主要得益于“凹坑”结构对油膜形成、补充、稳定以及磨屑储存作用[8-10]。但由于“凹坑”结构深度有限,存在摩擦过程不稳定、润滑油易被甩出和凹坑易被磨屑填平等不足[11],从而使摩擦副材料处于“疲劳”状态,最终导致结构的失效[12]。如果在内部设计相互贯通的多孔结构则可有效的改善表面“凹坑”结构的不足, 原因在于这种三维贯通的孔隙结构可以存储更多的润滑介质,同时,润滑介质在小孔流道的虹吸和泵送作用下可实现储液自循环,非常适用于供油困难、不能二次添加润滑介质的场所[13-14]。这类多孔储液自润滑介质在服役过程的润滑状态主要取决于孔隙中的润滑介质在力、热等因素作用下的析出量。而其析出量又取决于固、液相材料的特性参数与孔隙结构形态参数(孔径、形状及分布等)。如何调控孔隙结构形态参数,从而得到兼具优异力学性能和润滑性能的多孔储液结构,实现结构和功能一体化设计则成为摆在学术界和工程界的一大难题。在这方面关节软骨给了我们很多启发,关于关节软骨的仿生研究近几年吸引了大批的研究者,也取得了很多标志性成果[15]。为了厘清多孔储液自润滑介质仿生制备领域的发展现状及目前面临的困难,本文从仿生来源、制备方法以及其摩擦学性能等方面进行综述,以期给领域里其他工作者以启发。

  • 1 自然界的多孔结构

  • 自然界里存在许多性能优异的多孔结构,为我们制备具有特定功能的工业用多孔产品提供了重要的启示。例如,北极熊毛发(图1a) 是一种中空结构,具有保温隔热作用,CUI等[16] 利用其进行保暖衣的设计。蜂窝结构(图1b)是一种由六边形整齐排列形成的多孔结构,该结构被广泛应用于仿生离子通道、超浸润材料表面和零部件的轻量化设计等方面[17-19]。玻璃海绵(图1c)是一种具有高韧性、高稳定性和高强度的八角网孔结构,对该结构的仿生应用主要在轻质夹心管和人造光纤的设计制备方面[20-21]。丝瓜络(图1d)是一种具有高孔隙率及优良隔热、吸附性能的多孔材料,该孔隙结构被广泛应用在结构轻量化、污染物吸附等领域[22-23]

  • 图1 自然界中的多孔结构

  • Fig.1 Porous structure in nature

  • 天然关节软骨间的摩擦因数在0.003左右,处于“超滑”状态(当摩擦因数低于0.01时,即可认为处于超滑状态[24])。正常活动时,其处于弹性润滑-混合润滑-边界润滑三者交替的变化状态,但其磨损微乎其微,寿命长达70年或更久[25]。天然关节软骨具有如此优异的润滑性能,重要的原因在于它是一种多孔储液结构(图2)。动物在运动时,负荷和速度的变化引起关节软骨对外负载的响应,使得存储在关节软骨内的润滑液析出至摩擦副表面, 使关节获得与运动强度相适应的润滑膜,随着运动的停止,负荷和速度消失,润滑液则回流到关节软骨的孔隙中,存储起来以备下次循环使用。这种根据工况进行自适应供油的润滑方式,不但增加了生物体的灵活性,还可延长其使用寿命[26-27]。王野平等[28]深入探讨了人工和生物关节软骨的润滑机理, 其中挤压膜润滑、渗出润滑及提升润滑是多孔储液结构所特有的。关节软骨具有的双相性、粘弹性及其固体基质相可渗透性的特点,使得其中的液相分子可在压力等的作用下持续的析出,形成液膜分子层,该液膜不仅可承担部分作用力还能起到减摩润滑的作用[29]

  • 图2 生物关节软骨摩擦系统

  • Fig.2 Tribological system of biological articularcartliage

  • 以关节软骨为仿生原型的多孔润滑技术被广泛应用在机械零部件和人工关节的设计制备中[30-32]。含油轴承便是最典型的案例,从20世纪初发明至今,对含油轴承的应用具有深厚的理论与实践基础[33-34]。张建忠等[35] 分析了微载荷下径向含油轴承的摩擦性能,研究表明稳定微载荷状态下,其瞬态摩擦因数随润滑剂、轴承转速、径向载荷和混合润滑状态等因素而变化。 CAMERON等[36] 和张国涛等[37]从理论分析角度出发,基于达西定律,分别建立了径向含油轴承系统和复层含油轴承系统渗流润滑模型,并分析了孔隙率、表面粗糙度等结构参数对油膜润滑性能的影响。张国涛等[37] 利用理论与试验结合的方法发现:随着综合表面均方根粗糙度的增大、表层厚度或表层渗透率的降低,其油膜润滑性能将变好。含油轴承保持架是在含油轴承的基础上发展起来的,阮洪伟等[38]发现含油轴承保持架的孔隙边缘处更易发生磨损现象,该处发生的剪切变形及产生的磨屑等都会导致摩擦因数的波动与磨损的加剧,进而对轴承的运转产生负面影响。机床设备中多孔含油滑动导轨则是多孔润滑技术在机械工业领域的另一应用[39]。在人工关节软骨仿生制备中, ZHANG等[40]研制了一种机械强度与摩擦学性能均优于无孔水凝胶的“表层多孔,基层致密”的双层多孔水凝胶材料,该材料在重载条件下,仍能保持较好的耐磨性能,这为开发新型仿生关节软骨材料提供了技术指导。关节软骨所具有的固体基质相和流体间质相的结构特点,为制备特定工况适应性的多孔储液自润滑材料提供了仿生对象。

  • 生物体的多孔结构是自然进化的结果,有着各自的特点及适用范围。北极熊毛发的主要作用是保温隔热,玻璃海绵、丝瓜络的孔隙结构主要用于运输与存储。机械系统的摩擦副(如轴承等) 是传递力和能量的载体,一方面需要较高的力学-物理性能, 另一方面需要优良的润滑或自润滑性能,如何得到结构和功能一体化的产品一直是工业界和学术界欲攻克的难点。兼具优异力学和摩擦学性能的生物关节软骨结构给了人们启发和思路。如何提取这种多孔结构关键特征参数并进行仿生,制备出适用于高速重载及航天航空等高精尖领域用的新型多孔储液自润滑材料将是今后研究的重点。

  • 2 仿生多孔材料的制备方法

  • 多孔储液自润滑介质的骨架材料不仅有高分子聚合物,也有金属和陶瓷等。为制备具有特定功能的多孔结构,先后发明了高温烧结、添加造孔剂、模板、沉积、铸造、3D打印等制备方法,这些方法有着各自的特点与适用范围[41-42]

  • 2.1 添加造孔剂法

  • 添加造孔剂法[43] 是指在基体材料中添加造孔剂,再通过高温、溶解等方法除去造孔剂,留下孔隙结构,通过此方法可以控制多孔试样的孔隙率,同时增加了试样的比表面积。造孔剂的选择一般以其制备成形过程中不与基体材料发生任何化学反应,且易通过理化手段去除为原则。高分子聚合物基常用的造孔剂有盐类颗粒[44-45]、发泡剂AC [46]、淀粉[47] 和聚苯乙烯纳米球(PS) [48] 等物质,LI等[44] 利用去离子水除去PDMS中的盐类颗粒, 制备了多孔PDMS材料(如图3)。 JIA等[46] 以发泡剂AC为造孔剂,利用其高温分解的特性,通过真空热模压成形技术制备了一种适用于轴承保持架的多孔PI材料。 YANG等[49]则以聚甲基丙烯酸甲酯微球( PMMA) 为造孔剂,利用其溶于甲苯的特点,通过直书写3D技术制备了多孔PI材料,这为多孔异形自润滑部件的成形提供了技术手段。

  • 图3 以盐粒为造孔剂制备PDMS流程图

  • Fig.3 Flow chart of PDMS preparation using salt particle as pore marking agent

  • 对多孔金属或多孔金属陶瓷材料的制备,则多选用氢化钛[50]、硬脂酸[51]、碳酸钙[52] 和石墨[53] 等作造孔剂材料。李蓉蓉等[50] 利用氢化钛为造孔剂制备了铁基含油轴承材料。顾秀娟等[53] 以石墨为造孔剂,利用模压-热烧结技术制备了一种新型减摩多孔氧化铝陶瓷材料。 LIU等[54] 利用TiH2 和CaCO3 为复合造孔剂,利用其高温分解的特性,通过高温烧结法制备了一种多孔金属陶瓷材料,并对其高温下自润滑机理进行了研究。研究表明:造孔剂的种类、形状和含量都会对试样的孔隙率、孔隙形状等产生影响,其中造孔剂含量与孔隙率呈正相关,而孔隙形状则与造孔剂形状相关,这都为制备性能优异的多孔结构提供了理论指导[47,55-56]。该方法制备的多孔结构的孔隙分布、孔径及形状主要取决于造孔剂种类以及分布,存在不可预测性,导致制备出的多孔结构存在各向异性,同时还存在造孔剂不能完全被除去的风险,从而影响多孔结构的力学-物理性能和摩擦学性能,进而影响其服役寿命和可靠性; 但是该法具有适用范围广、制备过程简便、成本低、可批量制造的优点。

  • 2.2 模板法

  • 模板法是利用价廉易得、形状易控制的物质作为模板,将其与基体物质混合后,通过各种理化手段去除模板,进而制备多孔材料的手段,包括碳模板法、冰模板法及软模板法在内的方法被广泛用于制备多孔材料。阚小清等[57] 利用碳化后的梧桐木作模板,制备了多孔ZrC/C复合陶瓷材料。 WANG等[58]和ZHANG等[59] 分别用聚乙二醇和石蜡油为模板,制备了用于油水分离的多孔PDMS材料,他们认为只有在合理控制模板质量分数的前提下,才能提高多孔PDMS材料的循环利用次数与使用效率。冰模板法因其环境友好性、制备工艺简单、经济效益高等优点被广泛用于金属、聚合物、陶瓷、碳材料及其复合材料孔隙结构的制备中[60]

  • 定向冰冻法[61]是一种特殊的冰模板法,其主要过程包括分散溶液的制备、水的成核与结晶、冰晶的去除和高温烧结成形等,该法利用温度梯度对多孔材料的孔结构方向进行有效地控制,进而制备取向性多孔材料, 如图4所示。甘甜等[62] 和赵洪烔等[63]利用该法分别制备了毛细芯管和定向多孔高温合金,发现浆料固相含量和冷冻温度是影响多孔材料性能的主要因素,其中浆料固相含量与孔壁厚度、抗压缩强度呈正相关关系,与孔隙率、孔径及渗透率呈负相关关系,冷冻温度则主要影响孔径大小。利用冰模板法可制备具有定向孔隙的多孔材料,在一定程度上实现了对孔隙结构生长方向的宏观控制,但其多用于直向型孔道的制备,对如何制备异形孔道的研究较少,与其他模板法相比,该法所用的冰晶模板更易被去除,极少存在模板不能被完全除去的情况。模板法是一种较成熟的制备多孔材料的手段,该法虽随着工艺手段的发展得到了不断的完善与改进,但其同样存在孔隙结构参数不能被精确控制的缺点。

  • 图4 定向冰冻法示意图

  • Fig.4 Schematic diagram of directional freezing method

  • 2.3 3D打印技术

  • 3 D打印技术是一种新型的增材制造技术,按照预定的轨迹和分层进行堆积成形。由于此方法利用数字成形手段,人们可根据实际需求制备任意形状、尺寸的多孔结构。技术发展至今,已可实现对孔隙结构形态宏微观的精确控制。常见的3D打印技术有电子束熔化法、选择性激光烧结法、熔融沉积成形法和选择性激光熔化技术等[64]

  • 目前,3D打印技术在生物医学领域的研究集中在生物骨组织工程方面,对孔隙率、孔径等的精确控制为负重骨组织的修复与重建提供了一定的技术基础[65]。基于此,研究人员对多孔骨、多孔组织支架的制备开展了一系列研究。 LIU等[66] 制备了孔径为280 μm、孔隙率超过50%、压缩强度在71MPa左右的Ca-Mg合金多孔仿生骨。邓珍波等[67] 研究发现多孔钛支架的最大抗压强度随着孔隙率的变大而逐渐降低,结构各异的支架结构表现出不同的力学性能。 SENATOV等[68] 和SINDHU等[69] 利用该法制备了能够承受人体自重3至4倍强度的PLA多孔支架或仿生骨。徐仰立等[70] 制备了不同单元结构尺寸的多孔阵列结构,研究发现多孔结构的抗压强度、弹性模量均与单元结构尺寸成反比,所制备多孔结构的抗压强度和弹性模量分别在126~199MPa、3.5~55.47GPa。为获得与骨组织弹性模量、屈服强度相匹配的多孔支架,HAN等[71] 从结构改性角度出发,通过改变孔径尺寸制备了呈梯度分布的多孔支架,这种空间结构的有序变化不仅优化了孔隙空间,更有利骨组织的生长。上述研究充分证明了3D打印技术在控制微孔形态成形精度方面的工程可行性及由此而带来的优越性。

  • WANG X J等[72]论述了3D打印技术制备的多孔金属植入体在生物工程中的应用现状,他认为对3D打印的多孔金属进行拓扑优化、后处理及表面改性是制备既满足力学性能,又满足生物兼容性等功能的复杂孔隙支架的必要手段, 如图5所示。 WANG C等[73]认为利用该法制备既满足生物相容性,又满足力学性能的复杂且精细化的支架结构是当下及以后的研究重点。 BORGES等[74]利用该技术制备了由超高分子量聚乙烯(UHMWPE)和聚碳酸酯-聚氨酯(PCU)混合材料构成的人工半月板,进一步证明了3D打印混合材料的可行性,并认为改进打印工艺技术和表面处理等方法是解决当前3D打印制件表面粗糙度高、摩擦因数大的重要方法。这些研究不仅指明了当前3D打印多孔结构在生物医学领域所面临的问题,还展望了今后的研究重点。

  • 图5 3D打印技术在生物医学领域的设计应用

  • Fig.5 Design and application of 3D printing technology in biomedic field

  • 3 D打印技术同样被广泛应用在机械工业、化学能源、服装设计等领域,YANG等[49]利用PMMA微球做造孔剂通过直书写3D打印技术制备了拉伸强度为84 MPa、热分解温度为475℃的多孔PI材料,研究发现该多孔PI材料的横向和纵向拉伸最大应力均低于纯PI材料,其中纵向拉伸最大应力降低了20 MPa。JIN等[75]则制备了一种在高温下仍能保持高油水分离效率、具有梯度孔隙结构的超疏水/超亲油性能陶瓷材料,这为制备耐高温油水分离材料提供了方法, 如图6 所示。 TUBIO等[76] 制备了一种高机械强度、高孔隙率、催化效率优异的多孔Cu/Al2O3 催化装置, 证明了利用该法制备金属/金属氧化物多相催化体系的可行性。 DIAZ-MARTA等[77] 则是制备了孔径在300 μm左右、高机械强度的多孔SiO2 单体催化装置。 VINET等[78]利用选择性激光熔化技术制备了具有多孔结构的跑鞋鞋底,研究表明该结构不仅实现了结构轻量化,还达到了吸声、减震、抗拉伸的作用。 3D打印技术不仅具有加工周期短、成本低的特点,还实现了对孔隙结构的精确有效控制,有望实现型性一体化成形,具有广泛的应用前景。

  • 图6 3D打印技术制备超疏水/超亲油GPCS部件示意图

  • Fig.6 Schematic diagram of super hydrophobic/super hydrophilic of GPSC components prepared by 3D printing technology

  • 制备多孔材料的方法还有许多,且都有各自适用的领域,例如定向凝固法[79]、液体金属渗透法[80] 等多用于多孔金属的制备中,而原位自组织法[81] 及凝胶注模工艺[82] 等则常见于多孔陶瓷和多孔聚合物材料的制备。这些方法的多样性为制备多孔材料提供了技术支持,但是包括添加造孔剂法、高温烧结法、模板法等在内的这些方法大都存在成形时孔隙尺寸、分布和贯通性等参数具有不确定性的问题。导致孔隙特征只能用孔隙率统计性表征,润滑状态分析或试验时很难明确相关性能的变化与微孔尺寸、分布等影响因素的对应关系,只能做趋势性的模糊描述,且试样间个体差异较大、相关性能检测及工况适应性试验可重复性差,从而易引发工程隐患。 3D打印技术可实现孔隙结构形态的精确控制,为多孔储液材料的结构-功能一体化成形提供了技术支持,有望从根本上解决因孔隙形态不可控而带来的系列问题,为多孔储液材料精确润滑状态分析模型的建立和求解提供试验支撑。

  • 3 仿生多孔储液材料的摩擦学性能

  • 多孔储液材料是一种固-液双相复合体,其润滑效果主要取决于孔隙中润滑介质的析出量,而析出量又受控于其固-液组成比、孔隙结构形态及工况环境等所致的接触变形程度。由于多孔表面的微孔喉道对润滑介质的“泵送”与“回收”作用,摩擦界面润滑膜分布呈现局域特性,进而导致宏观润滑膜不连续,不能用雷诺方程描述,当前阶段对其润滑状态的描述尚缺乏相应的理论基础。因此建立考虑析出液在摩擦界面非连续分布的润滑状态理论分析模型,研究影响多孔表面润滑状态转变的关键控制因素,进而实现多孔结构的优化设计,是一项非常有意义且极具挑战性的工作。目前,关于多孔储液材料摩擦学性能的研究主要集中在以下两个方面[83-84] : 一方面是研究影响多孔储液材料摩擦学性能的关键因素,如配对副材料、润滑介质、工况环境等,另一方面则是研究多孔储液材料自润滑机理,其中包括多孔储液介质渗流模型的建立与求解、润滑介质在孔隙内部的流动规律等问题。

  • 3.1 多孔储液材料摩擦学性能的影响因素

  • 3.1.1 工况环境

  • 使用多孔储液自润滑材料的最终目的是解决实际工程领域中面临的摩擦磨损问题。对于如何判断其工况适应性,研究者多从实际运行工况(转速、载荷、润滑介质、温度等) 入手,分析它们对其摩擦学性能的影响,进而得到服役性能最佳的多孔储液材料[85]。闫普选等[86] 在分析转速对多孔PI材料摩擦学性能的影响时发现:多孔PI试样在低速运转时,润滑油可稳定析出并形成润滑膜,转速过高则会导致润滑油的损失,最终引起摩擦因数的增大、材料的失效。顾秀娟等[53]和汪怀远等[55] 则分析了润滑介质的有无对多孔Al2O3 陶瓷材料和多孔聚醚醚酮 (PEEK)材料摩擦学性能的影响,他们认为,在干摩擦条件下,孔隙结构的存在增大了试样表面粗糙度, 导致多孔材料的摩擦学性能较差;而存在润滑介质时,由于存储在孔洞结构内的润滑介质可析出至摩擦副表面,形成润滑油膜,避免了摩擦副间的直接接触,进而有效改善了多孔试样的摩擦磨损情况。基于此,吴刚等[87-88]和邱优香等[89]则分析了润滑介质种类对多孔储液材料摩擦学性能的影响。前者分析了多孔超高分子量聚乙烯(UHMWPE)材料在干摩擦、牛血清润滑和水润滑条件下的摩擦学性能,研究发现:干摩擦条件下,多孔试样的磨损量比普通试样高66.9%;牛血清的生物相容性使其在牛血清润滑下的磨损量低于水润滑条件下的磨损量,比普通UHMWPE的磨损量低46.6%;多孔UHMWPE材料的拉伸强度和抗拉强度较普通UHMWPE材料下降了53%和35%。后者则发现:试样的含油率只与润滑油的密度相关,油保持率则与润滑油粘度呈正相关,浸油后多孔PI试样的摩擦因数均小于0.1,并提出多孔PI含油材料的纳米薄膜润滑模型。 XIONG等[90]在分析UHMWPE材料在干摩擦、盐水溶液、蒸馏水、等离子液体中的磨损机理问题时发现:干摩擦下UHMWPE的磨损率最高,等离子液体润滑下磨损率最低;干摩擦时,试样以黏着磨损为主,盐水中则以磨粒磨损为主。工况环境是影响多孔储液材料性能的重要因素之一,也是检验其工况适应性的重要手段,为分析多孔储液材料的摩擦学性能,对其进行不同工况条件下的相关检测试验是必不可少的。

  • 3.1.2 摩擦配对副材料

  • 对于多孔自润滑材料,要提升其摩擦学性能,则需提高孔隙率以提升其储油量,但孔隙率的增加会降低其力学-物理性能,因而存在力学-物理性能与摩擦学性能不能得兼的矛盾。为此,研究者多从摩擦配对副材料改性、改形角度出发,在缓解该矛盾的基础上,进一步制备满足各种工况的多孔材料。其中,材料改性主要通过加入添加剂或化学改性的方法提高多孔材料的力学强度、耐磨性、耐腐蚀性、耐热性以及韧性等,而结构改性大多是通过对多孔材料的孔隙形状和孔隙结构等进行优化设计,以达到提高力学-物理性能和摩擦学性能的目的。

  • 在对摩擦配对副材料改性方面,文鑫荣等[91] 在分析Fe-Cu-C含油轴承的摩擦性能时发现: Fe-2 2.0Cu-1.5C含油轴承的极限PV值最高, Fe-16.0Cu-1.5C含油轴承的摩擦因数最低,在Fe-22.0Cu-1.5C含油轴承中加入2.0%MoS2 后,含油轴承的摩擦性能得到了有效的改善,合理控制MoS2 含量可有效提高轴承的摩擦磨损性能。 LI等[92] 在分析CuPb24Sn含油轴承摩擦学性能时发现:软相物质铅(Pb)的加入提高了材料的抗磨损能力,而硬相物质铜则提高了材料的承载力,存在最佳添加量使含油轴承的力学-物理性能和耐磨性能俱佳。贾卫红等[93-94] 分别利用中空介孔SiO2 纳米球 (HMSN)、介孔SiO2 纳米管(MSNT)对多孔PI材料进行改性处理,结果表明,经HMSN或MSNT改性后的多孔PI材料,其含油量、油保持率及力学性能均得到了提高,且在高温、高负载等特殊工况下仍能表现出良好的析油、减摩耐磨性能。 PU等[95] 研究发现:聚四氟乙烯(PTFE)与二硫化钼(MoS2) 在改善多孔PI材料摩擦学性能时具有协同作用,通过加剧润滑转移现象的发生,进而使摩擦因数低于纯多孔PI材料。汪怀远等[96-97] 利用碳纤维和PTFE对多孔PEEK材料进行改性处理,研究发现碳纤维在整个运行过程中,不仅起着支撑骨架、提高力学性能的作用,还可与PTFE在降低摩擦磨损方面起着协同作用。 ZHU等[98] 在分析氧化钛晶须 ( TiO2) 和PTFE对多孔聚苯硫醚(PPS)材料性能的影响时发现介孔TiO2 晶须不仅增强了多孔PPS的力学性能, 其介孔结构还提高了多孔材料的孔隙连通性,加速了润滑介质的析出与润滑膜的形成,从而改善了多孔材料的摩擦磨损情况,在改善摩擦学性能方面与PTFE起着协同作用。 LI等[99] 用中空二氧化硅中的孔隙结构存储润滑油,通过将其填充到PTFE材料中,进而制备了一种具有固液协同润滑作用的摩擦副材料,研究发现该复合材料可实现超低摩擦,其摩擦因数为0.037,这为制备“超滑”材料奠定了基础,如图7所示。在摩擦配对副结构改性处理方面, ZHANG等[100]和刘振明等[101]提出“复层多孔结构” 的想法,并将此应用到金属含油轴承领域并制备了一种“基体致密,表层多孔”的复层含油轴承,研究发现与同孔隙率的单层含油轴承相比,其减摩耐磨性能与承载能力均提高了,复层含油轴承更适合在高载荷工况下运行。为进一步分析孔隙结构参数对多孔材料相关性能的影响,ZHOU等[102]设计了一种类似正弦函数的孔隙结构模型,研究发现在孔深为3.5mm、微孔间距为3mm、微孔直径为0.8mm时, 多孔材料具有最佳的力学性能和摩擦学性能。SHIMIZU等[103] 在对多孔环氧树脂薄膜的润滑性能进行分析时发现,薄膜厚度和孔径与摩擦因数呈负相关。综上,可以发现摩擦副材料的组成与结构同样是影响多孔储液材料摩擦学性能的重要因素,且存在最佳改性、改形参数使得多孔储液材料的性能最佳,这为制备用于更复杂工况的多孔储液材料提供了理论基础[104-105]。另外,聚合物基多孔材料的摩擦磨损及力学性能的研究对于推进我国的资源节约型经济和绿色经济具有巨大的推动作用,也必将成为今后研究的重点之一。

  • 图7 SiO2 +润滑油+PTFE复合材料摩擦抗磨机理图

  • Fig.7 Friction and wear resistance mechanism diagram of SiO2 +lubricating oil +PTFE composite material

  • 3.1.3 其他因素

  • 除工况条件及摩擦配对副材料外,影响多孔储液材料摩擦学性能的因素还有许多,如制备方法、工艺参数等。研究人员对此也进行了大量分析,并总结得出了相关切实可行的结论。李溪滨等[106] 研究发现:孔隙的存在使得多孔材料的力学性能(强度、硬度等)较普通材料的有所降低,且间接影响多孔材料的摩擦学性能,在干摩擦条件下,孔隙的存在对材料的摩擦学性能产生负面影响,而在油润滑条件下,孔隙的存在则有效改善了材料的摩擦磨损性能。 CAO等[13] 发现,与静态烧结法相比,旋转烧结法不仅能提高试样的成形效率, 还能使制备的多孔UHMWPE试样具有孔隙率高、力学性能好、摩擦因数低的优点,在油润滑条件下,其摩擦曲线能快速达到稳定状态,摩擦因数可降低50%,该法的最佳工艺参数为烧结温度180~190℃,烧结时间为10min, 负载量为3.6~3.8g。叶锦宗等[107]发现,利用烧结温度为350℃,保温时间为60min的冷压定容烧结工艺制备的多孔PI材料,其摩擦学性能和力学-物理性能均最优,且该材料的拉伸强度和冲击强度随孔洞的增大而降低。 YABE等[108] 比较分析了传统模压成形工艺和注射成形工艺对多孔油浸渍聚合物润滑性能和力学-物理性能的影响,研究表明,注射成形工艺制备的多孔油浸渍聚合物的力学-物理性能和润滑性能均优于普通模压成形工艺制备的多孔聚合物材料。闫普选等[109] 则是探讨了冷压烧结法中冷压压力、烧结温度和保温时间等工艺参数对多孔PI材料性能的影响,研究表明,孔隙率和含油率与冷压压力、烧结温度、保温时间呈负相关关系,其中冷压压力和烧结温度是主要影响因素;在此基础上,他将该法和外加造孔剂法结合,制备了多孔PI材料,研究发现,造孔剂的加入可有效扩大孔径,提高含油率,进而改善摩擦磨损性能,但对其拉伸强度产生了负面影响[110]。 JIA等[46] 在发现造孔剂含量与多孔PI试样的孔隙率、平均孔径和含油率呈正相关,与油保持率呈负相关的基础上,进一步认为存在最佳造孔剂含量,使得试样的摩擦学性能最佳。从以上研究可发现,制备方法与工艺参数对多孔储液材料摩擦学性能的影响是显著的,合理选择制备方法与工艺参数,是制备摩擦学性能与力学-物理性能俱佳、满足实际生产要求的多孔材料的前提之一。

  • 综上,孔隙结构的存在不仅影响材料的摩擦学性能还影响其整体的力学性能和微观接触性能,如何协调它们之间的关系,使之和谐统一是多孔储液自润滑材料在推广应用中遇到的一个亟待解决的问题。合理选择基体的材料、孔隙结构形态参数及成形工艺等是制备满足特定工况要求多孔储液材料的前提之一。同样,这为制备满足实际工况要求的含油轴承提供了理论依据,同时也为新型含油轴承的研发指明了方向。

  • 3.2 多孔储液材料的润滑机理

  • 多孔储液材料润滑机理的研究一直是学术界和工业界关注的重点之一,并为此进行了大量的探索分析,主要包括多孔储液介质渗流模型的建立与求解、润滑介质在孔隙内部的流动规律等。

  • 多孔储液材料是一种固-液两相介质,对其研究需从流-固耦合层面去分析。学术界对多孔介质渗流理论模型的建立最早源于对土力学中地下水、地下油气的研究。达西和TERZAGHI基于对土力学的研究先后提出了达西定律、有效应力原理和一维固结模型[111],为完善和研究多孔介质的渗流理论奠定了基础。随后BIOT在一维固结模型的基础上,首次提出了三维固结理论,当前对流固耦合的研究大多基于该理论展开,只是假设的应力应变本构关系不同[112]。另外,为描述流体在多孔基体内的流动现象,研究人员先后提出了Darcy模型、Slip-flow模型、Brinkman模型和格子玻尔兹曼(LBM)模型等分析方法,这些模型有着各自的优缺点与适用范围[113-114]。其中,Darcy模型忽略了液相黏度的剪切效应;Slip-flow模型考虑了Darcy模型的不足,但只适用于高密度孔, 无法解释流动的高渗透性; Brinkman模型则是在综合考虑了剪切效应和达西阻力后才被提出的,是分析流体在多孔材料中流动的常用方程;LBM模型则是一种介于微观流体分子动力学模型和宏观连续介质模型间的介观模拟方法,是一种既能体现流体的微观特性,又能体现其宏观特性的新型研究方法。但Darcy模型因其深厚的理论基础和形式简单的优点,在分析复杂流固耦合问题时更具优势。李培超等[112] 基于渗流力学理论联合Darcy模型和Biot理论,建立了饱和多孔介质流固耦合渗流模型,用于研究岩石、土壤等多孔隙介质的宏观力学和渗流性能。 SAKIM等[115] 基于Darcy模型和Winkler模型建立了液相在多孔介质中的流动模型,认为非牛顿流体及固相弹性变形是影响润滑性能的重要因素。 HANAWA等[116] 基于Darcy模型采用有限元法建立了多孔介质中润滑水的流动方程,分析了间隙、压力等因素对水润滑推力轴承承载能力的影响。目前,对多孔介质渗流模型的研究大多基于假设多孔介质各向异性、液相介质连续分布的情况而分析的,对各向同性、液相非连续的情况研究较少,而对这些问题的研究又恰好是学术界和工业界亟待解决的,故非常有必要考虑这些因素对多孔介质渗流理论的影响。另外,厘清孔隙结构参数与多孔介质渗流间的对应关系,同样是工作的重点之一。

  • 润滑介质在多孔结构中的渗流特性随固、液相材料参数、工况条件及固相孔隙结构形态参数而改变,呈现非线性规律,这为多孔介质渗流特性及摩擦表面润滑状态预测带来了不确定性,为此,研究人员对润滑介质的析出特性等开展了一系列基础性研究。其中,张迪等[117] 和MARCHETTI等[118] 认为轴承孔隙中的润滑介质在热膨胀效应、毛细管效应和泵吸效应(离心效应)三者的耦合作用下析出至摩擦副表面,如图8a所示。 WANG等[119] 和ZHANG等[120]认为热膨胀效应在润滑介质的析出过程中占主导地位,润滑介质回流到孔隙结构主要受毛细管效应的影响,如图8b所示。基于此,SHAO等[121]提出了“智能润滑”这一概念,所谓的“智能润滑”就是指运行时,孔隙中的润滑油在温度和载荷的作用下, 析出至表面,停止运行时,润滑油在毛细管力的作用下回流到孔隙结构中,如图9所示。这些研究成果很好地解释了多孔储液介质储液自循环的润滑现象。 JIA等[46]发现:孔径通过影响孔隙的毛细效应, 进而影响润滑油的析出效果,只有当离心力大于毛细现象产生的吸附力时,润滑油才会从孔隙中析出。可见,关于多孔储液材料中润滑油是如何析出至摩擦副表面的,学术界普遍认为主要在热膨胀、离心力和压力三者的耦合作用下实现的,其中热膨胀效应占据主导地位,这是因为润滑介质的热膨胀系数远大于固相材料的热膨胀系数,在相同温度的作用下, 润滑油的体积膨胀大于固相材料的体积膨胀,使得此时的孔隙体积满足不了润滑油膨胀后的体积,进而导致润滑油的析出。但析出液能否在摩擦界面形成润滑油膜,还取决于析出量,而析出量则受制于多孔介质的孔隙分布、孔隙形状、孔隙变形、热效应、润滑膜上下压力差、毛细效应、转速等因素。综上所述,影响多孔介质的析出特性关键参数是孔隙形态 (孔径、分布、贯通性) 和工况环境。如何明晰孔隙形态参数、工况与润滑状态的对应关系是解决多孔储液介质的工况适应性和可靠性的关键问题,但关于这方面的工作,学术界目前报道较少。

  • 图8 多孔储液材料润滑机理示意图

  • Fig.8 Schematic diagram of lubricating mechanism of porous reservoir material

  • 图9 多孔储液自润滑材料的智能润滑系统

  • Fig.9 Intelligent lubricating system for self-lubricating material with porous liquid storage

  • 4 结论与展望

  • 多孔储液自润滑材料可以实现智能润滑,当运转时孔隙中的润滑油析出至摩擦副表面,在摩擦副表面形成润滑油膜,从而提高材料的摩擦学性能,延长使用寿命;当运转停止时,这些润滑油又会回流到孔隙结构中,从而实现润滑油的循环使用,非常适合于供油困难、不适合二次添加润滑油的场合。虽然目前的研究取得了很多标志性成果,但仍有一些问题亟待深入研究:

  • (1) 生物骨组织结构是一种兼具力学性能与摩擦学性能的多孔自润滑储液结构,如何提取其关键特征参数对其进行仿生,进而制备出满足特定苛刻工况的关键零部件,是亟待解决的重点问题之一。

  • (2) 添加造孔剂法等方法在制备多孔储液材料方面有很多成功的案例,但其制备的试件孔隙特征存在着不确定性,存在个体差异,使得工况适应性分析时无法明确相关性能的变化与孔隙形态参数(孔径,分布,贯通性等) 间的对应关系,只能做趋势性模糊描述。如何明晰孔隙形态参数、工况与润滑状态、力学-物理性能的对应关系,建立更精确的润滑分析模型是提高多孔储液自润滑介质的工况适应性和可靠性亟待解决的另一个重要问题。

  • (3) 在如何平衡多孔储液自润滑材料摩擦学性能和物理-力学性能方面,从结构改性方面入手,根据工况设计各种结构参数或梯度的多孔材料是一个很有应用前景的解决方案。

  • 参考文献

    • [1] 温诗铸.润滑理论研究的进展与思考[J].摩擦学学报,2007(6):497-503.WEN Shizhu.Progress and reflection on lubrication theory research[J].Tribology,2007(6):497-503.(in Chinese)

    • [2] HAMILTON D B,WALOWIT J A,ALLEN C M.A theory of lubrication by microirregularities [J].Journal of Basic Engineering,1966,88(1):177-185.

    • [3] ETSION I.The effect of combined coning and waviness on the separating force in mechanical face seals [J].Journal of Mechanical Engineering Science,1980,22(2):59-64.

    • [4] CHEN H,ZHANG P,ZHANG L.et al.Continuous directional water transport on the peristome surface of Nepenthes alata[J].Nature,2016,532:85-89.

    • [5] ZHAO H,SUN Q,DENG X,et al.Earthworm-inspired rough polymer coatings with self-replenishing lubrication for adaptive friction-reduction and antifouling surfaces [J].Advanced Materials,2018,30(29):1802141.1-1802141.6.

    • [6] 李云凯,王优强,菅光霄,等.仿生猪笼草结构的水润滑轴承摩擦学性能有限元分析研究[J].摩擦学学报,2021,41(3):344-356.LI Yunkai,WANG Youqiang,JIAN Guangxiao,et al.Finite element analysis of friction performance of water-lubricated bearing with bionic Nepenthes structure [J].Tribology,2021,41(3):344-356.(in Chinese)

    • [7] 缪晨炜,郭智威,袁成清.仿生多尺度沟槽织构对表面摩擦性能的影响[J].中国表面工程,2019,32(1):22-30.MIAO Chenwei,GUO Zhiwei,YUAN Chengqing.Effect of bionic multi-scale grooves texture on surface friction properties [J].China Surface Engineering,2019,32(1):22-30.(in Chinese)

    • [8] GALDA L,SEP J,PRUCNAL S.The effect of dimples geometry in the sliding surface on the tribological properties under starved lubrucation conditions [J].Tribology International,2016,99:77-84.

    • [9] ATSUSHI K,HIIROKI M,AYAKO O,et al.Friction reduction of oil-impregnated sintered bearings by surface texturing [J].Journal of Tribology,2020,142(9):1-21.

    • [10] IBATAN T,UDDIN M S,CHOWDHURY M.Recent development on surface texturing in enhancing tribological performance of bearing sliders [J].Surface & Coatings Technology,2015,272:102-120.

    • [11] 赵文杰,王立平,薛群基.织构化提高表面摩擦学性能的研究进展[J].摩擦学学报,2011,31(6):622-631.ZHAO Wenjie,WANG Liping,XUE Qunji.Research progress on improving surface tribological properties bytextuing [J].Tribology,2011,31(6):622-631.(in Chinese)

    • [12] 轩福贞,朱明亮,王国彪.结构疲劳百年研究的回顾与展望 [J].机械工程学报,2021,57(6):26-51.XUAN Fuzhen,ZHU Mingliang,WANG Guobiao.Review and prospect of centennial research on structural fatigue[J].Journal of Mechanical Engineering,2021,57(6):26-51.(in Chinese)

    • [13] CAO X,LI Y,HE G.Fabrication of self-lubricating porous UHMWPE with excellent mechanical properties and friction performance via rotary sintering[J].Polymers,2020,12(6):1335.

    • [14] OYACHI Y,UTSUNOMIYA H,SAKAI T,et al.Effects of porous surface layer on lubrication evaluated by ring compression friction test[J].ISIJ International,2012,52(5):858-862.

    • [15] 周海宇.关节软骨的生物摩擦学机理研究[D].上海:上海交通大学,2014.ZHOU Haiyu.Study on biological tribological mecha-nism of articular cartilage [ D ].Shanghai:Shanghai Jiao Tong University,2014.(in Chinese)

    • [16] CUI Y,GONG H,WANG Y,et al.A thermally insulating textile inspired by polar bear hair [J].Advanced Materials,2018,30(14):1706807.

    • [17] SHI S,SUN Z,HU X,et al.Flexural strength and ener-gy absorption of carbon-fiber-aluminum-honeycomb composite sandwich reinforced by aluminum grid [J].Thin-Walled Structures,2014,84:416-422.

    • [18] SHI S S,SUN Z,HU X Z,et al.Carbon-fiber and aluminum-honeycomb sandwich composites with and without Kevlar-fiber interfacial toughening [J].Composites Part A,2014,67:102-110.

    • [19] MENG Z,BAO H,WANG J,et al.Artificial ion channels regulating light-induced ionic currents in photoelectrical conversion systems[J].Advanced Materials,2014,26(15):2329-2334.

    • [20] 陈银河.多孔玻璃海绵轻质结构的仿生研究[D].南京:南京航空航天大学,2017.CHEN Yinhe.Biomimetic study on lightweight structure of porous glass sponge [ D].Nanjing:Nanjing University of Aeronautics and Astronautics,2017.(in Chinese)

    • [21] CHEN P Y.MCKITTRICK J,MEYERS M A.Biological materials:Functional adaptations and bioinspired designs [J].Progress in Materials Science,2011,57(8):1492-1704.

    • [22] LEI Y P,WANG H,QIN Q H.Bio-inspired design of lightweight metal structure based on microstructure of fully ripe loofah[J].Recent Patents on Materials Science,2015,8(1):69-73.

    • [23] FENG L L,ZHANG P Y,LI J G,et al.Facile preparation,characterization,and formaldehyde elimination performance of MnOx/natural loofah composites[J].Environmental Progress & Sustainable Energy,2020,39(6):13437.

    • [24] 闫凯.探索超滑和摩擦的起源[J].科学世界,2020(11):74-80.YAN Kai.Exploration of the origin of superslip and friction[J].Science World,2020(11):74-80.(in Chinese)

    • [25] 沈继飞,王成焘,王野平.人类天然关节和人工关节润滑机理的探讨[J].上海交通大学学报,1986(6):103-117,135.SHEN Jifei,WANG Chentao,WANG Yeping.Discussion on lubrication mechanism of human natural and artificial joints[J].Journal of Shanghai Jiaotong University,1986(6):103-117,135.(in Chinese)

    • [26] MURAKAMI T,YARIMITSU S,SAKAI N,et al.Importance of adaptive multimode lubrication mechanism in natural synovial joints[J].Tribology International,2017,113:306-315.

    • [27] MCNARY S M,ATHANASIOU K A,REDDI A H.Engineering lubrication in articular cartilage[J].Tissue Engineering.Part B,Reviews,2012,18(2):88-100.

    • [28] 王野平,王成焘.天然关节及人工关节的润滑机理探讨[J].生物医学工程学杂志,2001(4):603-607.WANG Yeping,WANG Chentao.Discussion on lubrication mechanism of human natural and artificial joints[J].Journal of Biomedical Engineering,2001(4):603-607.(in Chinese)

    • [29] YUAN H J,WEI Z J,YU X Z.Study on polyvinyl alcohol hydrogel materials for improving the performance of artificial articular cartilage [J].Advanced Materials Research,2013,2417:29-32..

    • [30] 燕松山,杨威然,解芳,等.Sn-Ag-Cu/金属陶瓷自润滑轴承滚子高温滚阻特性研究[J].润滑与密封,2020,45(2):12-16.YAN Songshan,YANG Weiran,XIE Fang,et al.Study on high temperature roller resistance of Sn-Ag-Cu/cermet self-lubricating bearing[J].Lubrication Engineering,2020,45(2):12-16.(in Chinese)

    • [31] FU Xiao,QIU Yudong,ZHAO Yuanjin.The effect of phospholipid composite artificial hydrogel on the lubrication of articular cartilage [J].Science Bulletin,2021,66(5):409-410.

    • [32] MU B,CUI J,YANG B,et al.One-Pot Synthesis and tribological properties of oil-containing self-lubricating polyurethane materials [J].Macrommolecular Materials and Engineering,2020:2000509.

    • [33] WATANABE T.Porous sintered bearings [J].Journal of the Japan Society of Powder and Powder Metallurgy,2001,48(9):769-776.

    • [34] MO Jintao,GU Chaohua,PAN Xiaohong,et al.Experimental and numerical analysis of a self-circulating oil bearing system for gear pumps[J].Industrial Lubrication & Tribology,2018,70(1):115-125.

    • [35] 张建忠,汪久根,马家驹,等.微载荷含油轴承摩擦性能研究Ⅱ.摩擦试验分析[J].摩擦学学报,2006(5):472-477.ZHANG Jianzhong,WANG Jiugeng,MA Jiaju,et al.Friction properties of oil-bearing bearing under micro load Ⅱ.Friction Test Analysis [J].Tribology,2006(5):472-477.(in Chinese)

    • [36] CAMERON A,MORGAN V T,STAINSBY A E.Criti-cal conditions for hydrodynamic lubrication of porous metal bearings [J].ARCHIVE Proceedings of the Insti-tution of Mechanical Engineers,1962(176):761-770.

    • [37] 张国涛,尹延国.复层孔隙分布含油轴承的孔道渗流及润滑机制[J].中国科学:技术科学,2019,49(8):961-970.ZHANG Guotao,YIN Yanguo.Seepage and lubrication mechanism of oil-bearing with multi-layer pore distrib-ution[J].Science China Technical Sciences,2019,49(8):961-970.(in Chinese)

    • [38] 阮洪伟,张韶华,王廷梅,等.多孔聚酰亚胺含油轴承保持架的磨损机理研究[J].空间控制技术与应用,2019,45(3):64-70.RUAN Hongwei,ZHANG Shaohua,WANG Tingmei,et al.Study on wear mechanism of porous polyimide oil-bearing cage [J].Space Control Technology and Application,2019,45(3):64-70.(in Chinese)

    • [39] 屈重年,郭韶华,马世榜,等.新型铁基多孔含油材料滑块型滑动导轨的研究[J].机床与液压,2016,44(1):91-95,139.QU Chongnian,GUO Shaohua,MA Shibang,et al.Study on new type slider type of iron base multi-hole oil-bearing material [J].Machine Tool & Hydraulics,2016,44(1):91-95,139.(in Chinese)

    • [40] ZHANG R,LIN P,YANG W,et al.Simultaneous superior lubrication and high load bearing by the dynamic weak interaction of a lubricant with mechanically strong bilayer porous hydrogels [J].Polymer Chemistry,2017,8:7102-7107.

    • [41] 王旭萍,宋佳,崔静洁.多孔材料的生物合成研究进展[J].生物加工过程,2019,17(6):597-603.WANG Xuping,SONG Jia,CUI Jingjie.Progress in biosynthesis of porous materials[J].Bioprocess Technology,2019,17(6):597-603.(in Chinese)

    • [42] 李欣芳,蒋武锋,郝素菊,等.多孔金属材料的制备方法及应用研究[J].南方金属,2016(2):11-15,27.LI Xinfang,JIANG Wufeng,HAO Suju,et al.Preparation method and application of porous metal materials[J].Southern Metals,2016(2):11-15,27.(in Chinese)

    • [43] 和峰,刘昌胜.添加成孔剂法制备孔径、气孔率可控的多孔玻璃陶瓷[J].无机材料学报,2004(6):1267-1276.HE Feng,LIU Changshen.Preparation of porous glass ceramics with controllable pore size and porosity by adding pore-forming agent[J].Journal of Inorganic Materials,2004(6):1287-1276.(in Chinese)

    • [44] LI Q,DUAN T,SHAO J,et al.Fabrication method for structured porous polydimethylsiloxane(PDMS)[J].Journal of Materials Science,2018,53(16):11873-11882.

    • [45] HUANG X,WU J,LU X,et al.Tribological properties of porous PEEK composites containing ionic liquid under dry friction condition[J].Lubricants,2017,5(2):19-30.

    • [46] JIA Z,YAN Y,WANG W.Preparation and tribological properties of PI oil-bearing material with controllable pore size [J].Industrial Lubrication and Tribology,2017,69(2):88-94.

    • [47] SA-NGUANRUKSA J,RUJIRAVANIT R,SUPAPHOL P,et al.Porous polyethylene membranes by template-leaching technique:preparation and characterization[J].Polymer Testing,2004,23(1):91-99.

    • [48] MA S,WANG Y,LIU C,et al.Preparation and characterization of nanoporous polyimide membrane by the template method as low-k dielectric material [J].Polymers for Advanced Technologies,2016,27(3):414-418.

    • [49] YANG C,JIANG P,QIN H L,et al.3D printing of porous polyimide for high-performance oil impregnated self-lubricating [J].Tribology International,2021(29):107009-17.

    • [50] 李蓉蓉,尹延国,张国涛,等.以 TiH2 为造孔剂的球磨铁基含油材料孔隙表征及其摩擦学性能[J].润滑与密封,2020,45(7):75-80.LI Rongrong,YIN Yanguo,ZHANG Guotao,et al.Pore characterization and tribological properties of ball-milling oil-bearing iron-based materials using TiH2 as pore-forming agent [J].Lubrication Engineering,2020,45(7):75-80.(in Chinese)

    • [51] WANG Y,LIU Z.Tribological properties of high temperature self-lubrication metal ceramics with an interpenetrating network [J].Wear,2008,265(11):1720-1726.

    • [52] 王砚军,刘佐民.微孔贯通型高温自润滑金属陶瓷的摩擦磨损性能研究[J].摩擦学学报,2006(4):348-352.WANG Yanjun,LIU Zuoming.Study on friction and wear properties of self-lubricating cermets with microporous connections at high temperature [J].Tribology,2006(4):348-352.(in Chinese)

    • [53] 顾秀娟,王齐华,王金清.多孔氧化铝陶瓷储油材料的摩擦学性能研究[J].摩擦学学报,2004(2):123-127.GU Xiujuan,WANG Qihua,WANG Jinqing.Tribological properties of porous alumina ceramic oil storage materials [J].Tribology,2004(2):123-127.(in Chinese)

    • [54] LIU Z.Elevated temperature diffusion self-lubricating mechanisms of a novel cermet sinter with orderly micro-pores[J].Wear,2006,262(5):600-606.

    • [55] 汪怀远,张帅,汪桂英,等.多孔PEEK自润滑材料的制备与摩擦磨损性能[J].高分子材料科学与工程,2012,28(9):137-140.WANG Huaiyuan,ZHANG Shuai,WANG Guiying,et al.Preparation and friction and wear properties of porous PEEK self-lubricating materials [J].Polymer Materials Science and Engineering,2012,28(9):137-140.(in Chinese)

    • [56] SHUTOV F.Cellular UHMW polyethylene produed by nonfoaming leaching technique:morphology and properties [J].Journal of Cellular Plastics,2016:163-176.

    • [57] 阚小清,丁军,余超,等.仿生制备多孔 ZrC/C 复合陶瓷材料[J].材料导报,2018,32(10):1602-1605,1627.KAN Xiaoqing,DING Jun,YU Chao,et al.Bionic preparation of porous ZrC/C composite ceramics [J].Materials Review,2018,32(10):1602-1605,1627.(in Chinese)

    • [58] WANG T,WANG H,WANG T,et al.Significantly improving strength and oil-adsorption performance of regular porous polydimethylsiloxane via soft template approach[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2019,572:10-17.

    • [59] ZHANG L C,ZHANG Y F,CHEN P,et al.Paraffin Oil based soft-template approach to fabricate reusable porous PDMS sponge for effective oil/water separation[J].Langmuir:the ACS Journal of Surfaces and Colloids,2019,35(34):11123-11131.

    • [60] DEVILLE S.The lure of ice-templating:Recent trends and opportunities for porous materials[J].Scripta Materialia,2018,147:119-124.

    • [61] 崔滢.仿生有序多孔材料的制备及其应用[D].杭州:浙江大学,2018.CUI Ying.Preparation and application of bionic ordered porous materials [ D ].Hangzhou:Zhejiang University,2018.(in Chinese)

    • [62] 甘甜,林涛,全晓军.冰模板法制备仿生双孔径-定向孔隙毛细芯的结构和性能[J].机械工程材料,2020,44(4):57-61.GAN Tian,LIN Tao,QUAN Xiaojun.Structure and properties of bionic double aperture and directional pore capillary core prepared by ice template method [J].Materials for Mechanical Engineering,2020,44(4):57-61.(in Chinese)

    • [63] 赵洪炯,鲁中良,曹继伟,等.定向多孔GH3536制备及其力学性能 [J].稀有金属材料与工程,2020,49(5):1694-1700.ZHAO Hongjiong,LU Zhongliang,CAO Jiwei,et al.Preparation and mechanical properties of directional porous GH3536[J].Rare Metal Materials and Engineering,2020,49(5):1694-1700.(in Chinese)

    • [64] 杨建明,汤阳,顾海,等.3D 打印制备多孔结构的研究与应用现状[J].材料导报,2018,32(15):2672-2682.YANG Jiangming,TANG Yang,GU Hai,et al.Research and application of 3D printing for fabrication of porous structures[J].Materials Review,2018,32(15):2672-2682.(in Chinese)

    • [65] ZHANG B,PEI X,ZHOU C,et al.The biomimetic design and 3D printing of customized mechanical properties porous Ti6Al4V scaffold for load-bearing bone reconstruction [J].Materials & Design,2018,152:30-39.

    • [66] LIU A,SUN M,YANG X,et al.Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair:An investigation of osteogenic capability and mechanical evolution [J].Journal of Biomaterials Applications,2016,31(5):650-660.

    • [67] 邓珍波,周长春,樊渝江,等.多孔钛骨组织工程支架设计及孔结构表征[J].稀有金属材料与工程,2016,45(9):2287-2292.DENG Zhenbo,ZHOU Changchun,FAN Yujiang,et al.Design and characterization of porous titanium bone tis-sue engineering scaffolds[J].Rare Metal Materials and Engineering,2016,45(9):2287-2292.(in Chinese)

    • [68] SENATOV F S,ZADOROZHNYY M Y,NIAZA K V,et al.Shape memory effect in 3D-printed scaffolds for self-fitting implants[J].European Polymer Journal,2017,93:222-231.

    • [69] SINDHU V,SOUNDARAPANDIAN S.Additive manufacturing fixture box for bone measurement [J].Procedia Engineering,2017,184:1-9.

    • [70] 徐仰立,张冬云,胡松涛,等.结构尺寸对多孔Ti6Al4V力学性能的影响[J].稀有金属材料与工程,2020,49(5):1736-1742.XU Yangli,ZHANG Dongyun,HU Songtao,et al.Effect of structural size on mechanical properties of porous Ti6Al4V[J].Rare Metal Materials and Engineering2020,49(5):1736-1742.(in Chinese)

    • [71] HAN C J,LI Y,WANG Q,et al.Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants [J].Journal of the Mechanical Behavior of Biomedical Materials,2018,80:119-127.

    • [72] WANG X J,XU S Q,ZHOU S W,et al.Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants:A review [J].Biomaterials,2016,83:127-141.

    • [73] WANG C,HUANG W,ZHOU Y,et al.3D printing of bone tissue engineering scaffolds [J].Bioactive Materials,2020,5(1):82-91.

    • [74] BORGES R A,CHOUDHURY D,ZOU M.3D printed PCU/UHMWPE polymeric blend for artificial knee meniscus [J].Tribology International,2018,122:1-7.

    • [75] JIN Z P,MEI H,YAN Y K,et al.3D-printed controllable gradient pore superwetting structures for high temperature efficient oil-water separation[J].Journal of Materiomics,2021,7(1):8-18.

    • [76] TUBIO C R,AZUAJE J,ESCALANTE L,et al.3D printing of a heterogeneous copper-based catalyst[J].Journal of Catalysis,2016,334:110-115.

    • [77] DIAZ-MARTA A S,TUBIO C R,CARBAJALES C,et al.Three-dimensional printing in catalysis:Combining 3D heterogeneous copper and palldium catalysts for multicatalytic multicomponent reactions[J].Acs Catalysis,2017,8(1):392.

    • [78] VINET A,CAINE M.Development of traction features in sprint spikes using SLS nylon sole units [J].Procedia Engineering,2010,2(2):2769-2774.

    • [79] NAKAJIMA H,HYUN S K,OHASHI K,et al.Fabrication of porous copper by unidirectional solidification under hydrogen and its properties[J].Elsevier B.V.,2001,179(2):209-214.

    • [80] 申芳华,李再久,杨天武,等.规则多孔铜基自润滑材料的干摩擦磨损性能[J].摩擦学学报,2012,32(2):150-156.SHEN Fanghua,LI Zaijiu,YANG Tianwu,et al.Dry friction and wear properties of regular porous copper base self-lubricating material[J].Tribology,2012,32(2):150-156.(in Chinese)

    • [81] WANG C,WANG Q,WANG T.Simple method for preparation of porous polyimide film with an ordered surface based on in situ self-assembly of polyamic acid and silica microspheres [J].Langmuir the Acs Journal of Surfaces & Colloids,2010,26(23):18357-18361.

    • [82] 杨栋华,邵慧萍,郭志猛,等.凝胶注模工艺制备医用多孔 Ti-Co 合金的性能 [J].稀有金属材料与工程,2011,40(10):1822-1826.YANG Donghua,SHAO Huiping,GUO Zhimeng,et al.Preparation of porous Ti-Co alloy by gel injection molding process [J].Rare Metal Materials and Engineering,2011,40(10):1822-1826.(in Chinese)

    • [83] 李宋,曲春辉,邵明超,等.多孔聚合物自润滑复合材料的摩擦学研究进展[J].高分子通报,2018(8):59-62.LI Song,QU Chunhui,SHAO Mingchao,et al.Tribological research progress of porous polymer self-lubricating composites [J].Polymer Science Bulletin,2018(8):59-62.(in Chinese)

    • [84] PRATT G C.A review of sintered metal bearings:Their production,propertie properties,and performancE[J].Powder Metallurgy,2014,12(24):356-385.

    • [85] TUNAY R F,KURBANOGLU C.Investigation of the tribological properties of Cu-based porous bearings [J].Industrial Lubrication and Tribology,2012,64(2):111-119.

    • [86] 闫普选,朱鹏,黄丽坚,等.聚酰亚胺多孔含油材料的摩擦磨损性能研究[J].摩擦学学报,2008(3):272-276.YAN Puxuan,ZHU Peng,HUANG Lijian,et al.Tribological and wear properties of polyimide porous oil-bearing materials[J].Tribology,2008(3):272-276.(in Chinese)

    • [87] 吴刚,张文光,王成焘.仿生多孔超高分子量聚乙烯的摩擦磨损性能研究[J].摩擦学学报,2007(6):539-543.WU Gang,ZhANG Wenguang,WANG Chentao.Friction and wear properties of bionic porous ultra-high molecular weight polyethylene[J].Tribology,2007(6):539-543.(in Chinese)

    • [88] 吴刚,张文光,王成焘.多孔UHMWPE软骨材料润滑性能的Stribeck研究[J].润滑与密封,2007(4):58-60.WU G,ZHANG W G,WANG C T.A Stribeck study on the lubrication properties of porous UHMWPE cartilage materials [J].Lubrication Engineering,2007(4):58-60.(in Chinese)

    • [89] 邱优香,王齐华,王超,等.多孔聚酰亚胺含油材料的储油性能及摩擦学行为研究[J].摩擦学学报,2012,32(6):538-543.QIU Youxiang,WANG Qihua,WANG Chao,et al.Oil storage properties and tribological behavior of porous polyimide oil-bearing materials[J].Tribology,2012 32(6):538-543.(in Chinese)

    • [90] XIONG D,GE S.Friction and wear properties of UHMWPE/Al2O3 ceramic under different lubricating conditions[J].Wear,2001,250(1-12):242-245.

    • [91] 文鑫荣,覃俊华,韦长兴,等.Fe-Cu-C 含油轴承的摩擦性能研究[J].粉末冶金工业,2019,29(4):63-68.WEN Xinrong,QIN Junhua,WEI Changxing,et al.Study on friction performance of Fe-Cu-C oil-bearinj [J].Powder Metallurgy Industry,2019,29(4):63-68.(in Chinese)

    • [92] LI H,CAO J.The tribological properties of bearing alloys under oil lubrication[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2020,234(10):2042-2052.

    • [93] JIA W,YANG S,REN S,et al.Preparation and tribological behaviors of porous oil-containing polyimide/hollow mesoporous silica nanospheres composite films[J].Tribology International,2020,145:106184-91.

    • [94] 贾卫红,马立民,任嗣利,等.多孔 PI/MSNT 复合含油润滑薄膜的设计制备及其摩擦学性能研究[J].摩擦学学报,2020,40(4):424-433.JIA Weihong,MA Liming,REN Sili,et al.Design and preparation of porous PI/MSNT composite oil-lubricated films and their tribological properties[J].Tribology:2020,40(4):424-433.(in Chinese)

    • [95] PU Y P,LU G S,LI X J,et al.Tribological property of polyimide porous materials [J].Transactions of Beijing of Technology:The English version,2006,15(4):483-487.

    • [96] 汪怀远,林珊,张帅,等.仿生多孔润滑耐磨 CF/PTFE/PEEK 复合材料的设计及其摩擦学性能[J].材料工程,2014(6):45-50.WANG Huaiyuan,LIN Shang,ZHANG Shuai,et al.Design and tribological properties of bionic porous lubricated wear resistant CF/PTFE/PEEK composites [J].Journal of Materials Engineering,2014(6):45-50.(in Chinese)

    • [97] 汪怀远,林珊,王宝辉,等.纳微多级孔 ACF/PTFE/PEEK 复合材料的制备及发汗式减摩耐磨性能[J].高分子材料科学与工程,2013,29(10):128-132.WANG Huaiyuan,LIN Shag,WANG Baohui,et al.Preparation and wear resistance of nanocrystalline multistage porous ACF/PTFE/PEEK composite [J].Polymer Materials Science and Engineering,2013,29(10):128-132.(in Chinese)

    • [98] ZHU Y,WANG G,WANG H,et al.Tribological properties of porous PPS/PTFE composite filled with mesopore titanium oxide whisker[J].Journal of Applied Polymer Science,2013,129(4):2321-2327.

    • [99] LI X,LING Y,ZHANG G,et al.Preparation and tribological properties of solid-liquid synergetic self-lubricating PTFE/SiO2/PAO6 composites[J].Composites Part B,2020,196:108133.

    • [100] ZHANG G,YIN Y,XU M,et al.Tribological properties and mechanism of the bilayer iron based powder metallurgy materials [J].Industrial Lubrication and Tribology,2018,70(9):1642-1648.

    • [101] 刘振明,尹延国,张国涛,等.复层铁基粉末冶金材料的制备及其摩擦学性能分析[J].粉末冶金工业,2016,26(2):44-49.LIU Zhenming,YIN Yanguo,ZHANG Guotao,et al.Preparation and tribological properties of cladding iron based powder metallurgy materials[J].Powder Metallurgy Industry,2016,26(2):44-49.(in Chinese)

    • [102] ZHOU H,SHI X,IBRAHIM A M M,et al.Investigation of mechanical and tribological performance of Ti6Al4V-based self-lubricating composites with different microporous channel parameters [J].Journal of Materials Engineering and Performance,2020,29:3995-4008.

    • [103] SHIMIZU Y,SAKAKIBARA K,YASUDA S,et al.Lubrication characteristics of epoxy resin-based monolithic thin films with a well-defined porous morphology [J].Advanced Engineering Materials,2019,21(10):1900683.

    • [104] SAMYN P,BAETS P D,SCHOUKENS G.Influence of internal lubricants(PTFE and Silicon Oil)in short carbon fibre-reinforced polyimide composites on performance properties [J].Tribology Letters,2009,36(2):135-146.

    • [105] GUO L,QI H,ZHANG G,et al.Distinct tribological mechanisms of various oxide nanoparticles added in PEEK composite reinforced with carbon fibers[J].Composites Part A,2017,97:19-30.

    • [106] 李溪滨,刘如铁,程时和,等.烧结材料中孔隙度对摩擦学特性的影响[J].润滑与密封,2002(1):34-35.LI Xibin,LIU Rutie,CHENG Shihe,et al.Effect of porosity on tribological properties of sintered materials[J].Lubrication Engineering,2002(1):34-35.(in Chinese)

    • [107] 叶锦宗,李锦棒,周宁宁,等.成型工艺对多孔PI材料摩擦学及力学性能的影响[J].材料工程,2020,48(9):144-151.YE jinzong,LI Jinbang,ZHOU Ningning,et al.Effect of molding process on tribological and mechanical properties of porous PI materials [J].Journal of Materials Engineering,2020,48(9):144-151.(in Chinese)

    • [108] YABE T,TAKAJO T,KATO S,et al.Lubricant-supplying properties and durability of oil-impregnated polymers [J].Tribology Transactions,2000,43(3):453-458.

    • [109] 闫普选,朱鹏,谷和平,等.热塑性聚酰亚胺多孔材料制备工艺的探讨[J].润滑与密封,2007(1):79-82,104.YAN Puxuan,ZHU Peng,GU Heping,et al.Study on the preparation process of thermoplastic polyimide porous materials [J].Lubrication Engineering,2007(1):79-82,104.(in Chinese)

    • [110] 闫普选,王晓东,朱鹏,等.热塑性聚酰亚胺多孔材料制备及表征[J].轴承,2006(8):19-22.YAN Puxuan,WANG Xiaodong,ZHU Peng,et al.Preparation and characterization of thermoplastic polyimide porous materials [J].Bearing,2006(8):19-22.(in Chinese)

    • [111] WANG H X,XU W,ZHANG Y Y,et al.Simplified solution to one-dimensional consolidation with threshold gradient [J].Computers and Geotechnics,2021,131:103943.

    • [112] 李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型 [J].水动力学研究与进展(A 辑),2003(4):419-426.LI Peichao,KONG Xiangyan,LU Detang.Mathem-atical model of fluid-solid coupling seepage in saturated porous media [J].Hydrodynamics Research and Progress(Series A),2003(4):419-426.(in Chinese)

    • [113] LIN J R.Performance characteristics of finite porous slider bearings:Brinkman model[J].Tribology International,2001,34(3):181-189.

    • [114] 刘鸣,程方启,姜明.多孔质含油轴承的理论研究进展 [J].润滑与密封,2004(6):118-120.LIU Ming,CHENG Fangqi,JIANG Ming.Development of theoretical research on porous oil bearing [J].Lubrication Engineering,2004(6):118-120.(in Chinese)

    • [115] SAKIM A,NABHANI M,KHLIFI M E.Non-Newtonian effects on porous elastic journal bearings[J].Tribology International,2018,120:23-33.

    • [116] HANAWA N,KUNIYOSHI M,MIYATAKE M,et al.Static characteristics of a water-lubricated hydrostatic thrust bearing with a porous land region and a capillary restrictor [J].Precision Engineering,2017,50:293-307.

    • [117] 张迪,王超,卿涛,等.空间用多孔聚合物轴承保持架材料研究进展[J].机械工程学报,2018,54(9):17-26.ZHANG Di,WANG Chao,QIN Tao,et al.Research progress of porous polymer bearing cage materials for space application [J].Journal of Mechanical Engineering,2018,54(9):17-26.(in Chinese)

    • [118] MARCHETTI M,MEURISSE M H,VERGNE P,et al.Analysis of oil supply phenomena by sintered porous reservoirs [J].Tribology Letters,2001,10(3):163-170.

    • [119] WANG J,ZHAO H,HUANG W,et al.Investigation of porous polyimide lubricant retainers to improve the performance of rolling bearings under conditions of starved lubrication [J].Wear,2017,380-381:52-58.

    • [120] ZHANG D,WANG T,WANG Q,et al.Selectively enhanced oil retention of porous polyimide bearing materials by direct chemical modification[J].Journal of Applied Polymer Science,2017,134(29):45106-12.

    • [121] SHAO M,LI S,DUAN C,et al.Cobweb-like structural stimuli-responsive composite with oil warehouse and transportation system for oil storage and recyclable smart-lubrication[J].ACS applied materials & interfaces,2018,10(48):41699-706.

  • 参考文献

    • [1] 温诗铸.润滑理论研究的进展与思考[J].摩擦学学报,2007(6):497-503.WEN Shizhu.Progress and reflection on lubrication theory research[J].Tribology,2007(6):497-503.(in Chinese)

    • [2] HAMILTON D B,WALOWIT J A,ALLEN C M.A theory of lubrication by microirregularities [J].Journal of Basic Engineering,1966,88(1):177-185.

    • [3] ETSION I.The effect of combined coning and waviness on the separating force in mechanical face seals [J].Journal of Mechanical Engineering Science,1980,22(2):59-64.

    • [4] CHEN H,ZHANG P,ZHANG L.et al.Continuous directional water transport on the peristome surface of Nepenthes alata[J].Nature,2016,532:85-89.

    • [5] ZHAO H,SUN Q,DENG X,et al.Earthworm-inspired rough polymer coatings with self-replenishing lubrication for adaptive friction-reduction and antifouling surfaces [J].Advanced Materials,2018,30(29):1802141.1-1802141.6.

    • [6] 李云凯,王优强,菅光霄,等.仿生猪笼草结构的水润滑轴承摩擦学性能有限元分析研究[J].摩擦学学报,2021,41(3):344-356.LI Yunkai,WANG Youqiang,JIAN Guangxiao,et al.Finite element analysis of friction performance of water-lubricated bearing with bionic Nepenthes structure [J].Tribology,2021,41(3):344-356.(in Chinese)

    • [7] 缪晨炜,郭智威,袁成清.仿生多尺度沟槽织构对表面摩擦性能的影响[J].中国表面工程,2019,32(1):22-30.MIAO Chenwei,GUO Zhiwei,YUAN Chengqing.Effect of bionic multi-scale grooves texture on surface friction properties [J].China Surface Engineering,2019,32(1):22-30.(in Chinese)

    • [8] GALDA L,SEP J,PRUCNAL S.The effect of dimples geometry in the sliding surface on the tribological properties under starved lubrucation conditions [J].Tribology International,2016,99:77-84.

    • [9] ATSUSHI K,HIIROKI M,AYAKO O,et al.Friction reduction of oil-impregnated sintered bearings by surface texturing [J].Journal of Tribology,2020,142(9):1-21.

    • [10] IBATAN T,UDDIN M S,CHOWDHURY M.Recent development on surface texturing in enhancing tribological performance of bearing sliders [J].Surface & Coatings Technology,2015,272:102-120.

    • [11] 赵文杰,王立平,薛群基.织构化提高表面摩擦学性能的研究进展[J].摩擦学学报,2011,31(6):622-631.ZHAO Wenjie,WANG Liping,XUE Qunji.Research progress on improving surface tribological properties bytextuing [J].Tribology,2011,31(6):622-631.(in Chinese)

    • [12] 轩福贞,朱明亮,王国彪.结构疲劳百年研究的回顾与展望 [J].机械工程学报,2021,57(6):26-51.XUAN Fuzhen,ZHU Mingliang,WANG Guobiao.Review and prospect of centennial research on structural fatigue[J].Journal of Mechanical Engineering,2021,57(6):26-51.(in Chinese)

    • [13] CAO X,LI Y,HE G.Fabrication of self-lubricating porous UHMWPE with excellent mechanical properties and friction performance via rotary sintering[J].Polymers,2020,12(6):1335.

    • [14] OYACHI Y,UTSUNOMIYA H,SAKAI T,et al.Effects of porous surface layer on lubrication evaluated by ring compression friction test[J].ISIJ International,2012,52(5):858-862.

    • [15] 周海宇.关节软骨的生物摩擦学机理研究[D].上海:上海交通大学,2014.ZHOU Haiyu.Study on biological tribological mecha-nism of articular cartilage [ D ].Shanghai:Shanghai Jiao Tong University,2014.(in Chinese)

    • [16] CUI Y,GONG H,WANG Y,et al.A thermally insulating textile inspired by polar bear hair [J].Advanced Materials,2018,30(14):1706807.

    • [17] SHI S,SUN Z,HU X,et al.Flexural strength and ener-gy absorption of carbon-fiber-aluminum-honeycomb composite sandwich reinforced by aluminum grid [J].Thin-Walled Structures,2014,84:416-422.

    • [18] SHI S S,SUN Z,HU X Z,et al.Carbon-fiber and aluminum-honeycomb sandwich composites with and without Kevlar-fiber interfacial toughening [J].Composites Part A,2014,67:102-110.

    • [19] MENG Z,BAO H,WANG J,et al.Artificial ion channels regulating light-induced ionic currents in photoelectrical conversion systems[J].Advanced Materials,2014,26(15):2329-2334.

    • [20] 陈银河.多孔玻璃海绵轻质结构的仿生研究[D].南京:南京航空航天大学,2017.CHEN Yinhe.Biomimetic study on lightweight structure of porous glass sponge [ D].Nanjing:Nanjing University of Aeronautics and Astronautics,2017.(in Chinese)

    • [21] CHEN P Y.MCKITTRICK J,MEYERS M A.Biological materials:Functional adaptations and bioinspired designs [J].Progress in Materials Science,2011,57(8):1492-1704.

    • [22] LEI Y P,WANG H,QIN Q H.Bio-inspired design of lightweight metal structure based on microstructure of fully ripe loofah[J].Recent Patents on Materials Science,2015,8(1):69-73.

    • [23] FENG L L,ZHANG P Y,LI J G,et al.Facile preparation,characterization,and formaldehyde elimination performance of MnOx/natural loofah composites[J].Environmental Progress & Sustainable Energy,2020,39(6):13437.

    • [24] 闫凯.探索超滑和摩擦的起源[J].科学世界,2020(11):74-80.YAN Kai.Exploration of the origin of superslip and friction[J].Science World,2020(11):74-80.(in Chinese)

    • [25] 沈继飞,王成焘,王野平.人类天然关节和人工关节润滑机理的探讨[J].上海交通大学学报,1986(6):103-117,135.SHEN Jifei,WANG Chentao,WANG Yeping.Discussion on lubrication mechanism of human natural and artificial joints[J].Journal of Shanghai Jiaotong University,1986(6):103-117,135.(in Chinese)

    • [26] MURAKAMI T,YARIMITSU S,SAKAI N,et al.Importance of adaptive multimode lubrication mechanism in natural synovial joints[J].Tribology International,2017,113:306-315.

    • [27] MCNARY S M,ATHANASIOU K A,REDDI A H.Engineering lubrication in articular cartilage[J].Tissue Engineering.Part B,Reviews,2012,18(2):88-100.

    • [28] 王野平,王成焘.天然关节及人工关节的润滑机理探讨[J].生物医学工程学杂志,2001(4):603-607.WANG Yeping,WANG Chentao.Discussion on lubrication mechanism of human natural and artificial joints[J].Journal of Biomedical Engineering,2001(4):603-607.(in Chinese)

    • [29] YUAN H J,WEI Z J,YU X Z.Study on polyvinyl alcohol hydrogel materials for improving the performance of artificial articular cartilage [J].Advanced Materials Research,2013,2417:29-32..

    • [30] 燕松山,杨威然,解芳,等.Sn-Ag-Cu/金属陶瓷自润滑轴承滚子高温滚阻特性研究[J].润滑与密封,2020,45(2):12-16.YAN Songshan,YANG Weiran,XIE Fang,et al.Study on high temperature roller resistance of Sn-Ag-Cu/cermet self-lubricating bearing[J].Lubrication Engineering,2020,45(2):12-16.(in Chinese)

    • [31] FU Xiao,QIU Yudong,ZHAO Yuanjin.The effect of phospholipid composite artificial hydrogel on the lubrication of articular cartilage [J].Science Bulletin,2021,66(5):409-410.

    • [32] MU B,CUI J,YANG B,et al.One-Pot Synthesis and tribological properties of oil-containing self-lubricating polyurethane materials [J].Macrommolecular Materials and Engineering,2020:2000509.

    • [33] WATANABE T.Porous sintered bearings [J].Journal of the Japan Society of Powder and Powder Metallurgy,2001,48(9):769-776.

    • [34] MO Jintao,GU Chaohua,PAN Xiaohong,et al.Experimental and numerical analysis of a self-circulating oil bearing system for gear pumps[J].Industrial Lubrication & Tribology,2018,70(1):115-125.

    • [35] 张建忠,汪久根,马家驹,等.微载荷含油轴承摩擦性能研究Ⅱ.摩擦试验分析[J].摩擦学学报,2006(5):472-477.ZHANG Jianzhong,WANG Jiugeng,MA Jiaju,et al.Friction properties of oil-bearing bearing under micro load Ⅱ.Friction Test Analysis [J].Tribology,2006(5):472-477.(in Chinese)

    • [36] CAMERON A,MORGAN V T,STAINSBY A E.Criti-cal conditions for hydrodynamic lubrication of porous metal bearings [J].ARCHIVE Proceedings of the Insti-tution of Mechanical Engineers,1962(176):761-770.

    • [37] 张国涛,尹延国.复层孔隙分布含油轴承的孔道渗流及润滑机制[J].中国科学:技术科学,2019,49(8):961-970.ZHANG Guotao,YIN Yanguo.Seepage and lubrication mechanism of oil-bearing with multi-layer pore distrib-ution[J].Science China Technical Sciences,2019,49(8):961-970.(in Chinese)

    • [38] 阮洪伟,张韶华,王廷梅,等.多孔聚酰亚胺含油轴承保持架的磨损机理研究[J].空间控制技术与应用,2019,45(3):64-70.RUAN Hongwei,ZHANG Shaohua,WANG Tingmei,et al.Study on wear mechanism of porous polyimide oil-bearing cage [J].Space Control Technology and Application,2019,45(3):64-70.(in Chinese)

    • [39] 屈重年,郭韶华,马世榜,等.新型铁基多孔含油材料滑块型滑动导轨的研究[J].机床与液压,2016,44(1):91-95,139.QU Chongnian,GUO Shaohua,MA Shibang,et al.Study on new type slider type of iron base multi-hole oil-bearing material [J].Machine Tool & Hydraulics,2016,44(1):91-95,139.(in Chinese)

    • [40] ZHANG R,LIN P,YANG W,et al.Simultaneous superior lubrication and high load bearing by the dynamic weak interaction of a lubricant with mechanically strong bilayer porous hydrogels [J].Polymer Chemistry,2017,8:7102-7107.

    • [41] 王旭萍,宋佳,崔静洁.多孔材料的生物合成研究进展[J].生物加工过程,2019,17(6):597-603.WANG Xuping,SONG Jia,CUI Jingjie.Progress in biosynthesis of porous materials[J].Bioprocess Technology,2019,17(6):597-603.(in Chinese)

    • [42] 李欣芳,蒋武锋,郝素菊,等.多孔金属材料的制备方法及应用研究[J].南方金属,2016(2):11-15,27.LI Xinfang,JIANG Wufeng,HAO Suju,et al.Preparation method and application of porous metal materials[J].Southern Metals,2016(2):11-15,27.(in Chinese)

    • [43] 和峰,刘昌胜.添加成孔剂法制备孔径、气孔率可控的多孔玻璃陶瓷[J].无机材料学报,2004(6):1267-1276.HE Feng,LIU Changshen.Preparation of porous glass ceramics with controllable pore size and porosity by adding pore-forming agent[J].Journal of Inorganic Materials,2004(6):1287-1276.(in Chinese)

    • [44] LI Q,DUAN T,SHAO J,et al.Fabrication method for structured porous polydimethylsiloxane(PDMS)[J].Journal of Materials Science,2018,53(16):11873-11882.

    • [45] HUANG X,WU J,LU X,et al.Tribological properties of porous PEEK composites containing ionic liquid under dry friction condition[J].Lubricants,2017,5(2):19-30.

    • [46] JIA Z,YAN Y,WANG W.Preparation and tribological properties of PI oil-bearing material with controllable pore size [J].Industrial Lubrication and Tribology,2017,69(2):88-94.

    • [47] SA-NGUANRUKSA J,RUJIRAVANIT R,SUPAPHOL P,et al.Porous polyethylene membranes by template-leaching technique:preparation and characterization[J].Polymer Testing,2004,23(1):91-99.

    • [48] MA S,WANG Y,LIU C,et al.Preparation and characterization of nanoporous polyimide membrane by the template method as low-k dielectric material [J].Polymers for Advanced Technologies,2016,27(3):414-418.

    • [49] YANG C,JIANG P,QIN H L,et al.3D printing of porous polyimide for high-performance oil impregnated self-lubricating [J].Tribology International,2021(29):107009-17.

    • [50] 李蓉蓉,尹延国,张国涛,等.以 TiH2 为造孔剂的球磨铁基含油材料孔隙表征及其摩擦学性能[J].润滑与密封,2020,45(7):75-80.LI Rongrong,YIN Yanguo,ZHANG Guotao,et al.Pore characterization and tribological properties of ball-milling oil-bearing iron-based materials using TiH2 as pore-forming agent [J].Lubrication Engineering,2020,45(7):75-80.(in Chinese)

    • [51] WANG Y,LIU Z.Tribological properties of high temperature self-lubrication metal ceramics with an interpenetrating network [J].Wear,2008,265(11):1720-1726.

    • [52] 王砚军,刘佐民.微孔贯通型高温自润滑金属陶瓷的摩擦磨损性能研究[J].摩擦学学报,2006(4):348-352.WANG Yanjun,LIU Zuoming.Study on friction and wear properties of self-lubricating cermets with microporous connections at high temperature [J].Tribology,2006(4):348-352.(in Chinese)

    • [53] 顾秀娟,王齐华,王金清.多孔氧化铝陶瓷储油材料的摩擦学性能研究[J].摩擦学学报,2004(2):123-127.GU Xiujuan,WANG Qihua,WANG Jinqing.Tribological properties of porous alumina ceramic oil storage materials [J].Tribology,2004(2):123-127.(in Chinese)

    • [54] LIU Z.Elevated temperature diffusion self-lubricating mechanisms of a novel cermet sinter with orderly micro-pores[J].Wear,2006,262(5):600-606.

    • [55] 汪怀远,张帅,汪桂英,等.多孔PEEK自润滑材料的制备与摩擦磨损性能[J].高分子材料科学与工程,2012,28(9):137-140.WANG Huaiyuan,ZHANG Shuai,WANG Guiying,et al.Preparation and friction and wear properties of porous PEEK self-lubricating materials [J].Polymer Materials Science and Engineering,2012,28(9):137-140.(in Chinese)

    • [56] SHUTOV F.Cellular UHMW polyethylene produed by nonfoaming leaching technique:morphology and properties [J].Journal of Cellular Plastics,2016:163-176.

    • [57] 阚小清,丁军,余超,等.仿生制备多孔 ZrC/C 复合陶瓷材料[J].材料导报,2018,32(10):1602-1605,1627.KAN Xiaoqing,DING Jun,YU Chao,et al.Bionic preparation of porous ZrC/C composite ceramics [J].Materials Review,2018,32(10):1602-1605,1627.(in Chinese)

    • [58] WANG T,WANG H,WANG T,et al.Significantly improving strength and oil-adsorption performance of regular porous polydimethylsiloxane via soft template approach[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2019,572:10-17.

    • [59] ZHANG L C,ZHANG Y F,CHEN P,et al.Paraffin Oil based soft-template approach to fabricate reusable porous PDMS sponge for effective oil/water separation[J].Langmuir:the ACS Journal of Surfaces and Colloids,2019,35(34):11123-11131.

    • [60] DEVILLE S.The lure of ice-templating:Recent trends and opportunities for porous materials[J].Scripta Materialia,2018,147:119-124.

    • [61] 崔滢.仿生有序多孔材料的制备及其应用[D].杭州:浙江大学,2018.CUI Ying.Preparation and application of bionic ordered porous materials [ D ].Hangzhou:Zhejiang University,2018.(in Chinese)

    • [62] 甘甜,林涛,全晓军.冰模板法制备仿生双孔径-定向孔隙毛细芯的结构和性能[J].机械工程材料,2020,44(4):57-61.GAN Tian,LIN Tao,QUAN Xiaojun.Structure and properties of bionic double aperture and directional pore capillary core prepared by ice template method [J].Materials for Mechanical Engineering,2020,44(4):57-61.(in Chinese)

    • [63] 赵洪炯,鲁中良,曹继伟,等.定向多孔GH3536制备及其力学性能 [J].稀有金属材料与工程,2020,49(5):1694-1700.ZHAO Hongjiong,LU Zhongliang,CAO Jiwei,et al.Preparation and mechanical properties of directional porous GH3536[J].Rare Metal Materials and Engineering,2020,49(5):1694-1700.(in Chinese)

    • [64] 杨建明,汤阳,顾海,等.3D 打印制备多孔结构的研究与应用现状[J].材料导报,2018,32(15):2672-2682.YANG Jiangming,TANG Yang,GU Hai,et al.Research and application of 3D printing for fabrication of porous structures[J].Materials Review,2018,32(15):2672-2682.(in Chinese)

    • [65] ZHANG B,PEI X,ZHOU C,et al.The biomimetic design and 3D printing of customized mechanical properties porous Ti6Al4V scaffold for load-bearing bone reconstruction [J].Materials & Design,2018,152:30-39.

    • [66] LIU A,SUN M,YANG X,et al.Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair:An investigation of osteogenic capability and mechanical evolution [J].Journal of Biomaterials Applications,2016,31(5):650-660.

    • [67] 邓珍波,周长春,樊渝江,等.多孔钛骨组织工程支架设计及孔结构表征[J].稀有金属材料与工程,2016,45(9):2287-2292.DENG Zhenbo,ZHOU Changchun,FAN Yujiang,et al.Design and characterization of porous titanium bone tis-sue engineering scaffolds[J].Rare Metal Materials and Engineering,2016,45(9):2287-2292.(in Chinese)

    • [68] SENATOV F S,ZADOROZHNYY M Y,NIAZA K V,et al.Shape memory effect in 3D-printed scaffolds for self-fitting implants[J].European Polymer Journal,2017,93:222-231.

    • [69] SINDHU V,SOUNDARAPANDIAN S.Additive manufacturing fixture box for bone measurement [J].Procedia Engineering,2017,184:1-9.

    • [70] 徐仰立,张冬云,胡松涛,等.结构尺寸对多孔Ti6Al4V力学性能的影响[J].稀有金属材料与工程,2020,49(5):1736-1742.XU Yangli,ZHANG Dongyun,HU Songtao,et al.Effect of structural size on mechanical properties of porous Ti6Al4V[J].Rare Metal Materials and Engineering2020,49(5):1736-1742.(in Chinese)

    • [71] HAN C J,LI Y,WANG Q,et al.Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants [J].Journal of the Mechanical Behavior of Biomedical Materials,2018,80:119-127.

    • [72] WANG X J,XU S Q,ZHOU S W,et al.Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants:A review [J].Biomaterials,2016,83:127-141.

    • [73] WANG C,HUANG W,ZHOU Y,et al.3D printing of bone tissue engineering scaffolds [J].Bioactive Materials,2020,5(1):82-91.

    • [74] BORGES R A,CHOUDHURY D,ZOU M.3D printed PCU/UHMWPE polymeric blend for artificial knee meniscus [J].Tribology International,2018,122:1-7.

    • [75] JIN Z P,MEI H,YAN Y K,et al.3D-printed controllable gradient pore superwetting structures for high temperature efficient oil-water separation[J].Journal of Materiomics,2021,7(1):8-18.

    • [76] TUBIO C R,AZUAJE J,ESCALANTE L,et al.3D printing of a heterogeneous copper-based catalyst[J].Journal of Catalysis,2016,334:110-115.

    • [77] DIAZ-MARTA A S,TUBIO C R,CARBAJALES C,et al.Three-dimensional printing in catalysis:Combining 3D heterogeneous copper and palldium catalysts for multicatalytic multicomponent reactions[J].Acs Catalysis,2017,8(1):392.

    • [78] VINET A,CAINE M.Development of traction features in sprint spikes using SLS nylon sole units [J].Procedia Engineering,2010,2(2):2769-2774.

    • [79] NAKAJIMA H,HYUN S K,OHASHI K,et al.Fabrication of porous copper by unidirectional solidification under hydrogen and its properties[J].Elsevier B.V.,2001,179(2):209-214.

    • [80] 申芳华,李再久,杨天武,等.规则多孔铜基自润滑材料的干摩擦磨损性能[J].摩擦学学报,2012,32(2):150-156.SHEN Fanghua,LI Zaijiu,YANG Tianwu,et al.Dry friction and wear properties of regular porous copper base self-lubricating material[J].Tribology,2012,32(2):150-156.(in Chinese)

    • [81] WANG C,WANG Q,WANG T.Simple method for preparation of porous polyimide film with an ordered surface based on in situ self-assembly of polyamic acid and silica microspheres [J].Langmuir the Acs Journal of Surfaces & Colloids,2010,26(23):18357-18361.

    • [82] 杨栋华,邵慧萍,郭志猛,等.凝胶注模工艺制备医用多孔 Ti-Co 合金的性能 [J].稀有金属材料与工程,2011,40(10):1822-1826.YANG Donghua,SHAO Huiping,GUO Zhimeng,et al.Preparation of porous Ti-Co alloy by gel injection molding process [J].Rare Metal Materials and Engineering,2011,40(10):1822-1826.(in Chinese)

    • [83] 李宋,曲春辉,邵明超,等.多孔聚合物自润滑复合材料的摩擦学研究进展[J].高分子通报,2018(8):59-62.LI Song,QU Chunhui,SHAO Mingchao,et al.Tribological research progress of porous polymer self-lubricating composites [J].Polymer Science Bulletin,2018(8):59-62.(in Chinese)

    • [84] PRATT G C.A review of sintered metal bearings:Their production,propertie properties,and performancE[J].Powder Metallurgy,2014,12(24):356-385.

    • [85] TUNAY R F,KURBANOGLU C.Investigation of the tribological properties of Cu-based porous bearings [J].Industrial Lubrication and Tribology,2012,64(2):111-119.

    • [86] 闫普选,朱鹏,黄丽坚,等.聚酰亚胺多孔含油材料的摩擦磨损性能研究[J].摩擦学学报,2008(3):272-276.YAN Puxuan,ZHU Peng,HUANG Lijian,et al.Tribological and wear properties of polyimide porous oil-bearing materials[J].Tribology,2008(3):272-276.(in Chinese)

    • [87] 吴刚,张文光,王成焘.仿生多孔超高分子量聚乙烯的摩擦磨损性能研究[J].摩擦学学报,2007(6):539-543.WU Gang,ZhANG Wenguang,WANG Chentao.Friction and wear properties of bionic porous ultra-high molecular weight polyethylene[J].Tribology,2007(6):539-543.(in Chinese)

    • [88] 吴刚,张文光,王成焘.多孔UHMWPE软骨材料润滑性能的Stribeck研究[J].润滑与密封,2007(4):58-60.WU G,ZHANG W G,WANG C T.A Stribeck study on the lubrication properties of porous UHMWPE cartilage materials [J].Lubrication Engineering,2007(4):58-60.(in Chinese)

    • [89] 邱优香,王齐华,王超,等.多孔聚酰亚胺含油材料的储油性能及摩擦学行为研究[J].摩擦学学报,2012,32(6):538-543.QIU Youxiang,WANG Qihua,WANG Chao,et al.Oil storage properties and tribological behavior of porous polyimide oil-bearing materials[J].Tribology,2012 32(6):538-543.(in Chinese)

    • [90] XIONG D,GE S.Friction and wear properties of UHMWPE/Al2O3 ceramic under different lubricating conditions[J].Wear,2001,250(1-12):242-245.

    • [91] 文鑫荣,覃俊华,韦长兴,等.Fe-Cu-C 含油轴承的摩擦性能研究[J].粉末冶金工业,2019,29(4):63-68.WEN Xinrong,QIN Junhua,WEI Changxing,et al.Study on friction performance of Fe-Cu-C oil-bearinj [J].Powder Metallurgy Industry,2019,29(4):63-68.(in Chinese)

    • [92] LI H,CAO J.The tribological properties of bearing alloys under oil lubrication[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2020,234(10):2042-2052.

    • [93] JIA W,YANG S,REN S,et al.Preparation and tribological behaviors of porous oil-containing polyimide/hollow mesoporous silica nanospheres composite films[J].Tribology International,2020,145:106184-91.

    • [94] 贾卫红,马立民,任嗣利,等.多孔 PI/MSNT 复合含油润滑薄膜的设计制备及其摩擦学性能研究[J].摩擦学学报,2020,40(4):424-433.JIA Weihong,MA Liming,REN Sili,et al.Design and preparation of porous PI/MSNT composite oil-lubricated films and their tribological properties[J].Tribology:2020,40(4):424-433.(in Chinese)

    • [95] PU Y P,LU G S,LI X J,et al.Tribological property of polyimide porous materials [J].Transactions of Beijing of Technology:The English version,2006,15(4):483-487.

    • [96] 汪怀远,林珊,张帅,等.仿生多孔润滑耐磨 CF/PTFE/PEEK 复合材料的设计及其摩擦学性能[J].材料工程,2014(6):45-50.WANG Huaiyuan,LIN Shang,ZHANG Shuai,et al.Design and tribological properties of bionic porous lubricated wear resistant CF/PTFE/PEEK composites [J].Journal of Materials Engineering,2014(6):45-50.(in Chinese)

    • [97] 汪怀远,林珊,王宝辉,等.纳微多级孔 ACF/PTFE/PEEK 复合材料的制备及发汗式减摩耐磨性能[J].高分子材料科学与工程,2013,29(10):128-132.WANG Huaiyuan,LIN Shag,WANG Baohui,et al.Preparation and wear resistance of nanocrystalline multistage porous ACF/PTFE/PEEK composite [J].Polymer Materials Science and Engineering,2013,29(10):128-132.(in Chinese)

    • [98] ZHU Y,WANG G,WANG H,et al.Tribological properties of porous PPS/PTFE composite filled with mesopore titanium oxide whisker[J].Journal of Applied Polymer Science,2013,129(4):2321-2327.

    • [99] LI X,LING Y,ZHANG G,et al.Preparation and tribological properties of solid-liquid synergetic self-lubricating PTFE/SiO2/PAO6 composites[J].Composites Part B,2020,196:108133.

    • [100] ZHANG G,YIN Y,XU M,et al.Tribological properties and mechanism of the bilayer iron based powder metallurgy materials [J].Industrial Lubrication and Tribology,2018,70(9):1642-1648.

    • [101] 刘振明,尹延国,张国涛,等.复层铁基粉末冶金材料的制备及其摩擦学性能分析[J].粉末冶金工业,2016,26(2):44-49.LIU Zhenming,YIN Yanguo,ZHANG Guotao,et al.Preparation and tribological properties of cladding iron based powder metallurgy materials[J].Powder Metallurgy Industry,2016,26(2):44-49.(in Chinese)

    • [102] ZHOU H,SHI X,IBRAHIM A M M,et al.Investigation of mechanical and tribological performance of Ti6Al4V-based self-lubricating composites with different microporous channel parameters [J].Journal of Materials Engineering and Performance,2020,29:3995-4008.

    • [103] SHIMIZU Y,SAKAKIBARA K,YASUDA S,et al.Lubrication characteristics of epoxy resin-based monolithic thin films with a well-defined porous morphology [J].Advanced Engineering Materials,2019,21(10):1900683.

    • [104] SAMYN P,BAETS P D,SCHOUKENS G.Influence of internal lubricants(PTFE and Silicon Oil)in short carbon fibre-reinforced polyimide composites on performance properties [J].Tribology Letters,2009,36(2):135-146.

    • [105] GUO L,QI H,ZHANG G,et al.Distinct tribological mechanisms of various oxide nanoparticles added in PEEK composite reinforced with carbon fibers[J].Composites Part A,2017,97:19-30.

    • [106] 李溪滨,刘如铁,程时和,等.烧结材料中孔隙度对摩擦学特性的影响[J].润滑与密封,2002(1):34-35.LI Xibin,LIU Rutie,CHENG Shihe,et al.Effect of porosity on tribological properties of sintered materials[J].Lubrication Engineering,2002(1):34-35.(in Chinese)

    • [107] 叶锦宗,李锦棒,周宁宁,等.成型工艺对多孔PI材料摩擦学及力学性能的影响[J].材料工程,2020,48(9):144-151.YE jinzong,LI Jinbang,ZHOU Ningning,et al.Effect of molding process on tribological and mechanical properties of porous PI materials [J].Journal of Materials Engineering,2020,48(9):144-151.(in Chinese)

    • [108] YABE T,TAKAJO T,KATO S,et al.Lubricant-supplying properties and durability of oil-impregnated polymers [J].Tribology Transactions,2000,43(3):453-458.

    • [109] 闫普选,朱鹏,谷和平,等.热塑性聚酰亚胺多孔材料制备工艺的探讨[J].润滑与密封,2007(1):79-82,104.YAN Puxuan,ZHU Peng,GU Heping,et al.Study on the preparation process of thermoplastic polyimide porous materials [J].Lubrication Engineering,2007(1):79-82,104.(in Chinese)

    • [110] 闫普选,王晓东,朱鹏,等.热塑性聚酰亚胺多孔材料制备及表征[J].轴承,2006(8):19-22.YAN Puxuan,WANG Xiaodong,ZHU Peng,et al.Preparation and characterization of thermoplastic polyimide porous materials [J].Bearing,2006(8):19-22.(in Chinese)

    • [111] WANG H X,XU W,ZHANG Y Y,et al.Simplified solution to one-dimensional consolidation with threshold gradient [J].Computers and Geotechnics,2021,131:103943.

    • [112] 李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型 [J].水动力学研究与进展(A 辑),2003(4):419-426.LI Peichao,KONG Xiangyan,LU Detang.Mathem-atical model of fluid-solid coupling seepage in saturated porous media [J].Hydrodynamics Research and Progress(Series A),2003(4):419-426.(in Chinese)

    • [113] LIN J R.Performance characteristics of finite porous slider bearings:Brinkman model[J].Tribology International,2001,34(3):181-189.

    • [114] 刘鸣,程方启,姜明.多孔质含油轴承的理论研究进展 [J].润滑与密封,2004(6):118-120.LIU Ming,CHENG Fangqi,JIANG Ming.Development of theoretical research on porous oil bearing [J].Lubrication Engineering,2004(6):118-120.(in Chinese)

    • [115] SAKIM A,NABHANI M,KHLIFI M E.Non-Newtonian effects on porous elastic journal bearings[J].Tribology International,2018,120:23-33.

    • [116] HANAWA N,KUNIYOSHI M,MIYATAKE M,et al.Static characteristics of a water-lubricated hydrostatic thrust bearing with a porous land region and a capillary restrictor [J].Precision Engineering,2017,50:293-307.

    • [117] 张迪,王超,卿涛,等.空间用多孔聚合物轴承保持架材料研究进展[J].机械工程学报,2018,54(9):17-26.ZHANG Di,WANG Chao,QIN Tao,et al.Research progress of porous polymer bearing cage materials for space application [J].Journal of Mechanical Engineering,2018,54(9):17-26.(in Chinese)

    • [118] MARCHETTI M,MEURISSE M H,VERGNE P,et al.Analysis of oil supply phenomena by sintered porous reservoirs [J].Tribology Letters,2001,10(3):163-170.

    • [119] WANG J,ZHAO H,HUANG W,et al.Investigation of porous polyimide lubricant retainers to improve the performance of rolling bearings under conditions of starved lubrication [J].Wear,2017,380-381:52-58.

    • [120] ZHANG D,WANG T,WANG Q,et al.Selectively enhanced oil retention of porous polyimide bearing materials by direct chemical modification[J].Journal of Applied Polymer Science,2017,134(29):45106-12.

    • [121] SHAO M,LI S,DUAN C,et al.Cobweb-like structural stimuli-responsive composite with oil warehouse and transportation system for oil storage and recyclable smart-lubrication[J].ACS applied materials & interfaces,2018,10(48):41699-706.

  • 手机扫一扫看