en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

钟嘉彬,男,1997年出生,硕士研究生。主要研究方向为准晶防粘耐磨涂层。E-mail:gabino9759@163.com;

陈永君(通信作者),女,1986年出生,博士,副教授,硕士研究生导师。主要研究方向为准晶合金设计及功能涂层改性。E-mail:chenyongjun-net@163.com

中图分类号:TG156;TB114

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210530002

参考文献 1
SHECHTMAN D G,BLECH I A,GRATIAS D.Metallic phase with long-range orientational order and no translational symmetry [J].Physical Review Letters,1984,53(20):1951-1953.
参考文献 2
董闯.准晶材料[M].北京:国防工业出版社,1998:5-6.DONG Chuang.Quasicrystalline material[M].Beijing:National Defense Industry Press,1998:5-6.(in Chinese)
参考文献 3
DUBOIS J M.New prospects from potential applications of quasicrystalline materials[J].Materials Science & Engineering A,2000,294:4-9.
参考文献 4
RABSON D A.Toward theories of friction and adhesion on quasicrystals[J].Progress in Surface Science,2012,87(9-12):253-271.
参考文献 5
BRUNET P,ZHANG L M,SORDELET D J,et al.Comparative study of microstructural and tribological properties of sintered,bulk icosahedral samples[J].Materials Science & Engineering A,2000,294-296:74-78.
参考文献 6
TANABE T,KAMEOKA S,TSAI A P.Evolution of microstructure induced by calcination in leached Al-Cu-Fe quasicrystal and its effects on catalytic activity [J].Journal of Materials Science,2011,46(7):2242-2250.
参考文献 7
KAMEOKA S,TANABE T,SATOH F,et al.Activation of Al-Cu-Fe quasicrystalline surface:fabrication of a fine nanocomposite layer with high catalytic performance[J].Science and Technology of Advanced Materials,2014,15(1):014801.
参考文献 8
KAMEOKA S,TANABE T,TSAI A P.High performance catalysts prepared from Al-Cu-Fe icosahedral quasicrystal [J].Recent Patents on Materials Science,2015,8(2):155-165.
参考文献 9
张涛,员文杰,宫志利.一种适用于发动机的AlcPdaXb合金粉机油添加剂及其制备方法:CN101570709 [ P].2009-11-04.ZHANG Tao,YUAN WenJie,GONG Zhili.AlcPdaXb alloy powder engine oil additive applicable to engine and preparation method thereof:CN101570709[P].2009-11-04.(in Chinese)
参考文献 10
TAKAGIWA Y,KIMURA K.Metallic-covalent bonding conversion and thermoelectric properties of Al-based icosahedral quasicrystals and approximants [J].Science & Technology of Advanced Materials,2014,15(4):044802.
参考文献 11
TAKEUCHI T.Very large thermal rectification in bulk composites consisting partly of icosahedral quasicrystals [J].Science & Technology of Advanced Materials,2014,15(6):064801.
参考文献 12
陈永君,滕琳琳,白妍,等一种用于不锈钢表面的 Al aCubFecXd 合金研磨抛光膏:CN111205774A[ P ].2020-05-29.CHEN Yongjun,TENG Linlin,BAI Yan,et al.AlaCubFecXd alloy grinding and polishing paste for stainless steel surfaces:CN111205774A[P].2020-05-29.(in Chinese)
参考文献 13
陈永君,滕琳琳,白妍,等.一种用于不锈钢表面的 Ti aZrbNi c 合金研磨抛光膏:CN111171728A[ P ].2020-05-19.CHEN Yongjun,TENG Linlin,BAI Yan,et al.TiaZrbNic alloy grinding and polishing paste for stainless steel surface:CN111171728A[P].2020-05-19.
参考文献 14
辛先峰,董闯,庞厂,等.涂层和薄膜态准晶材料的研究现状及展望[J].表面技术,2020,49(5):19-25.XIN Xianfeng,DONG Chuang,PANG Chang,et al.State-of-the-art and prospects of quasicrystalline coatings and thin films [J].Surface Technology,2020,49(5):19-25.(in Chinese)
参考文献 15
USHAKOV A V,KARPOV I V,FEDOROV L Y,et al.Synthesis of quasicrysalline powders and coatings by vacuum arc plasma evaporation [J].Physics of the Solid State,2020,61(12):2547-2552.
参考文献 16
KANJILAL A,TIWARI U,CHATTERJEE R.Preparation of Al-Cu-Fe thin films by vapor deposition technique from a single source [J].Materials Research Bulletin,2002,37(2):343-351.
参考文献 17
YADAV T P,SINGH D,SHAHI R R,et al.Synthesis of quasicrystalline film of Al-Ga-Pd-Mn alloy [J].Thin Solid Films,2013,534:265-269.
参考文献 18
POLISHCHUK S,USTINOV A,TELYCHKO V,et al.Fabrication of thick,crack-free quasicrystalline Al-Cu-Fe coatings by electron-beam deposition[J].Surface and Coatings Technology,2016,291:406-412.
参考文献 19
ČEKADA M,PANJAN P,JUŔIC D,et al.Deposition and characterisation of Al-Cu-Fe thin films [J].Thin Solid Films,2004,459(1-2):267-270.
参考文献 20
LU M,CHIEN C L.Al65Cu20Fe15 in amorphous,crystalline and quasicrystalline states [J].Hyperfine Interactions,1992,71(1):1525-1529.
参考文献 21
MOSKALEWICZ T,DUBIEL B,WENDLER B.AlCuFe(Cr)and AlCoFeCr coatings for improvement of elevated temperature oxidation resistance of a near-α titanium alloy [J].Materials Characterization,2013,83:161-169.
参考文献 22
OLSSON S,BROITMAN E,GARBRECHT M,et al.Mechanical and tribological properties of AlCuFe quasicrystal and Al(Si)CuFe approximant thin films [J].Journal of Materials Research,2015,31(2):232-240.
参考文献 23
PHILLIPS B S,ZABINSKI J S.Frictional characteristics of quasicrystals at high temperatures[J].Tribology Letters,2003,15(1):57-64.
参考文献 24
傅迎庆,周锋,张立志,等.爆炸喷涂 Al-Cu-Cr 准晶涂层的组织及硬度研究[J].材料热处理学报,2007,28(S1):193-197.FU Yingqing,ZHOU Feng,ZHANG Lizhi,et al.Microstructure and hardness properties of detonation spraying Al-Cu-Cr quasicrystalline coatings[J].Transactions of Materials and Heat Treatment,2007,28(S1):193-197.(in Chinese)
参考文献 25
GOMES R,FEITOSA F R,SOUTO C,et al.Crack detection in high-velocity oxygen-fuel-sprayed Al59.2Cu25.5Fe12.3B3 quasicrystalline coatings using piezoelectric active sensors [J].Journal of Materials Engineering and Performance,2019,28(9):5649-5660.
参考文献 26
FEITOSA F R P,GOMES R M,SILVA M M R,et al.Effect of oxygen/fuel ratio on the microstructure and properties of HVOF-sprayed Al59Cu25.5Fe12.5B3 quasicrystalline coatings [J].Surface and Coatings Technology,2018,353:171-178.
参考文献 27
FU Y Q,PENG T X,YANG D M,et al.HVOF sprayed Al-Cu-Cr quasicrystalline coatings from coarse feedstock powders[J].Surface and Coatings Technology,2014,252:29-34.
参考文献 28
LEPESHEV A A,KARPOV I V,USHAKOV A V.Formation of the structure and physicomechanical properties of a quasicrystalline Al-Cu-Fe alloy upon plasma spraying [J].Physics of the Solid State,2017,59(3):438-442.
参考文献 29
LEPESHEV A A,BAYUKOV O A,ROZHKOVA E A,et al.Modification of the phase composition and structure of the quasicrystalline Al-Cu-Fe alloy prepared by plasma spraying[J].Physics of the Solid State,2015,57(2):255-259.
参考文献 30
LEPESHEV A,SORDELET D J,ROZHKOVA E,et al.Modification of structure and physico-mechanical properties of Al-Cu-Fe quasicrystal alloy at plasma spraying [J].Journal of Cluster Science,2011,22(2):289-294.
参考文献 31
FATOBA O S,AKINLABI S A,AKINLABI E T.Effects of Fe addition on the microstructure and corrosion properties of quasicrystalline Al-Cu-Fe coatings [ C ]//2018 IEEE 9th International Conference on Mechanical and Intelligent Manufacturing Technologies(ICMIMT).IEEE,2018:74-79.
参考文献 32
FATOBA O S,AKINLABI S A,AKINLABI E T,et al.Microstructural analysis,micro-hardness and wear resistance properties of quasicrystalline Al-Cu-Fe coatings on Ti-6Al-4V alloy[J].Materials Research Express,2018,5(6):066538.
参考文献 33
FU Y Q,KANG N,LIAO H,et al.An investigation on selective laser melting of Al-Cu-Fe-Cr quasicrystal:From single layer to multilayers[J].Intermetallics,2017,86:51-58.
参考文献 34
LANGSDORF A,RITTER F,ASSMUS W.Determination of the prmiary solidification area of the icosahedral phases in the ternary phases diagram of Zn-Mg-Y[J].Philosophical Magazine Letters,1997,75(6):381-388.
参考文献 35
SHECHTMAN D,BLECH I A.The microstructure of rapidly solidified Al6Mn [J].Metallurgical Transactions A,1985,16(6):1005-1012.
参考文献 36
BRADLEY A J,GOLDSCHMIDT H J.An X-ray study of slowly cooled iron-copper-aluminium alloys-Part I.Alloys rich in iron and copper[J].J Inst Met,1939,65:389-401.
参考文献 37
TSAI A P,INOUE A,MASUMOTO T.Preparation of a new Al-Cu-Fe quasicrystal with large grain sizes by rapid solidification [J].Journal of Materials Science Letters,1987,6(12):1403-1405.
参考文献 38
FAUDOT F,QUIVY A,CALVAYRAC Y,et al.About the Al-Cu-Fe icosahedral phase formation [J].Materials Science and Engineering:A,1991,133:383-387.
参考文献 39
DONG C,BOISSIEU M,DUBOIS J M,et al.Real-time study of the growth of Al-Cu-Fe quasicrystals [J].Journal of Materials Science Letters,1989,8(7):827-830.
参考文献 40
DUBOIS J M.Properties-and applications of quasicrystals and complex metallic alloys[J].Chemical Society Reviews,2012,41(20):6767-6777.
参考文献 41
蔡斐,周春根,宫声凯,等.喷涂粉末对 Al-Cu-Fe 准晶涂层组织结构的影响[J].北京航空航天大学学报,2005,31(8):908-912.CAI Fei,ZHOU Chungen,GONG Shengkai,et al.Effects of spraying powder composition and particle size on microstructures of Al-Cu-Fe quasicrystalline coatings [J].Journal of Beijing University of Aeronautics and Astronautics,2005,31(8):908-912.(in Chinese)
参考文献 42
HUTTUNEN-SAARIVIRTA E.Microstructure,fabrication and properties of quasicrystalline Al-Cu-Fe alloys:A review [J].Journal of Alloys and Compounds,2004,363(1-2):154-178.
参考文献 43
HOLLAND-MORITZ D,SCHROERS J,GRUSHKO B,et al.Dependence of phase selection and micro structure of quasicrystal-forming Al-Cu-Fe alloys on the processing and solidification conditions[J].Materials Science and Engineering:A,1997,226:976-980.
参考文献 44
LITYŃSKA-DOBRZYŃ SKA L,DUTKIEWICZ J,STAN-GŁOWIŃ SKA K,et al.Characterization of rapidly solidified Al65Cu20Fe15 alloy in form of powder or ribbon[J].Acta Physica Polonica,A,2014,126(2):512-515.
参考文献 45
HOLLAND-MORITZ D,SCHROERS J,HERLACH D M,et al.Undercooling and solidification behaviour of melts of the quasicrystal-forming alloysAl-Cu-Fe and Al-Cu-Co [J].Acta Materialia,1998,46(5):1601-1615.
参考文献 46
赵东山,沈宁福,郭新勇,等.Al-Cu-Fe 系初生准晶相凝固过程的热力学分析[J].中国有色金属学报,2004,14(2):162-167.ZHAO Donghshan,SHEN Ningfu,GUO Xinyong,et al.Thermodynamic analyses on solidification process of primary Al-Cu-Fe icosahedral quasicrystal phase [J].Chinese Journal of Nonferrous Metals,2004,14(2):162-167.(in Chinese)
参考文献 47
FLEURY E,LEE S M,KIM W T,et al.Effects of air plasma spraying parameters on the Al-Cu-Fe quasicrystalline coating layer [J].Journal of Non-Crystalline Solids,2000,278(1-3):194-204.
参考文献 48
傅迎庆,任仲兴,梁志强,等.基体热导率对超音速火焰喷涂 Al-Cu-Cr 准晶涂层相组成的影响[J].大连海事大学学报,2008,34(1):112-115.FU Yingqing,REN Zhongxing,LIANG Zhiqiang,et al.Influence of substrate thermal conductivity on the phase composition of high velocity oxy-fuel sprayed Al-Cu-Cr quasicrystalline coatings [J].Journal of Dalian Maritime University,2008,34(1):112-115.(in Chinese)
参考文献 49
USTINOV A I,MOVCHAN B A,POLISHCHUK S S.Formation of nanoquasicrystalline Al-Cu-Fe coatings at electron beam physical vapour deposition [J].Scripta Materialia,2003,50(4):533-537.
参考文献 50
傅迎庆,高阳.衬底温度对等离子喷涂 Al-Cu-Cr 涂层相组成的影响[J].中国机械工程,2007,18(8):991-993.FU Yingqing,GAO Yang.Influence of substrate temperature on phase composition of plasma-sprayed Al-Cu-Cr quasicrystalline coatings[J].China Mechanical Engineering,2007,18(8):991-993.(in Chinese)
参考文献 51
MILMAN Y V,LOTSKO D V,DUB S N,et al.Mechanical properties of quasicrystalline Al-Cu-Fe coatings with submicron-sized grains [J].Surface & Coatings Technology,2007,201(12):5937-5943.
参考文献 52
XIAO M,LIU X Q,ZENG S,et al.Effects of particle size on the microstructure and mechanical properties of HVAF-sprayed al-based quasicrystalline coatings[J].Journal of Thermal Spray Technology,2021,30(5):1380-1392.
参考文献 53
DING Y,NORTHWOOD D O,ALPAS A T.Fabrication by magnetron sputtering of Al-Cu-Fe quasicrystalline films for tribological applications [J].Surface and Coatings Technology 1997,96(2-3):140-170.
参考文献 54
ČEKADA M,PANJAN P,DOLINŠEK J,et al.Diffusion during annealing of Al/Cu/Fe thin films[J].Thin Solid Films,2007,515(18):7135-7139.
参考文献 55
PARSAMEHR H,CHEN T S,WANG D S,et al.Thermal spray coating of Al-Cu-Fe quasicrystals:Dynamic observations and surface properties[J].Materialia,2019,8:100432.
参考文献 56
PARSAMEHR H,YANG C L,LIU W T,et al.Direct observation of growth and stability of Al-Cu-Fe quasicrystal thin films[J].Acta Materialia,2019,174:1-8.
参考文献 57
PARSAMEHR H,CHANG S Y,LAI C H.Mechanical and surface properties of Aluminum-Copper-Iron quasicrystal thin films [J].Journal of Alloys and Compounds,2018,732:952-957.
参考文献 58
LEE K,CHEN Y,DAI W,et al.Design of quasicrystal alloys with favorable tribological performance in view of microstructure and mechanical properties[J].Materials & Design,2020,193:108735.
参考文献 59
张秦梁,梁秀兵,张志彬,等.铝基非晶纳米晶复合涂层的喷涂工艺[J].中国表面工程,2015,28(6):104-110.ZHANG Qinliang,LIANG Xiubing,ZHANG Zhibin,et al.Spraying process of Al-based amorphous and nanocrystalline composite coatings [J].China Surface Engineering,2015,28(6):104-110.(in Chinese)
参考文献 60
LEPESHEV A A,ROZHKOVA E A,KARPOV I V,et al.Physical,mechanical,and tribological properties of quasicrystalline Al-Cu-Fe coatings prepared by plasma spraying [J].Physics of the Solid State,2013,55(12):2531-2536.
参考文献 61
JAFARI R,MENINI R,FARZANEH M.Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings [J].Applied Surface Science,2010,257(5):1540-1543.
参考文献 62
MORA J,GARC Í A P,MUELAS R,et al.Hard quasicrystalline coatings deposited by hvof thermal spray to reduce ice accretion in aero-structures components[J].Coatings,2020,10(3):1-23.
参考文献 63
EDUOK U,SZPUNAR J.Bioinspired and hydrophobic alkyl-silanized protective polymer coating for Mg alloy[J].Progress in Natural Science:Materials International,2018,28(3):354-362.
参考文献 64
LATTHE S S,IMAI H,GANESAN V,et al.Porous superhydrophobic silica films by sol-gel process[J].Microporous and Mesoporous Materials,2010,130(1-3):115-121.
参考文献 65
ZHAO N,XU J,XIE Q D,et al.Fabrication of biomimetic superhydrophobic coating with a micro-nano-binary structure[J].Macromolecular Rapid Communications,2005,26(13):1075-1080.
参考文献 66
YANG Z,LIU X P,TIAN Y L.Hybrid laser ablation and chemical modification for fast fabrication of bio-inspired superhydrophobic surface with excellent self-cleaning,stability and corrosion resistance[J].Journal of Bionic Engineering,2019,16(1):13-26.
参考文献 67
BALDACCHINI T,CAREY J E,ZHOU M,et al.Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser [J].Langmuir the Acs Journal of Surfaces and Colloids,2006,22(11):4917-4919.
参考文献 68
郭永刚,张鑫,耿铁,等.超疏水表面耐久性能的研究进展 [J].中国表面工程,2018,31(5):63-72.GUO Yonggang,ZHANG Xin,GENG Tie,et al.Research progress on durability of superhydrophobic surfaces [J].China Surface Engineering,2018,31(5):63-72.(in Chinese)
参考文献 69
刘永明,施建宇,鹿芹芹,等.基于杨氏方程的固体表面能计算研究进展[J].材料导报,2013,27(11):123-129.LIU Yongming,SHI Jianyu,LU Qinqin,et al.Research progress on calculation of solid surface tension based on young’ s equation[J].Materials Reports,2013,27(11):123-129.(in Chinese)
参考文献 70
蔡明伟,曲寿江,魏先顺,等.喷涂工艺对超音速火焰喷涂 Al-Cu-Fe-Si 准晶合金涂层性能的影响[J].表面技术,2016,45(2):73-78.CAI Mingwei,QU Shoujiang,WEI Xianshun,et al.Effect of spraying technology on the properties of AC-HVAF sprayed Al-Cu-Fe-Si quasicrystalline alloy coating[J].Surface Technology,2016,45(2):73-78.(in Chinese)
参考文献 71
陈泰盛,吕明生,刘武汉,等.疏水性合金膜及其制造方法:TW I555855 B[P].2016-11-01.CHEN Taisheng,LÜ Mingsheng,LIU Wuhan,et al.Hydrophobic alloy film and manufacturing method thereof:TW I555855 B[P].2016-11-01.(in Chinese)
参考文献 72
齐育红,张占平,黑祖昆,等.Al65Cu20Cr15准晶颗粒/Al 基复合材料的摩擦学性能[J].摩擦学学报,1998,18(2):34-40.QI Yuhong,ZHANG Zhanping,HEI Zukun,et al.Tribological properties of Al65Cu20Cr15 quasicrystalline particles/Al matrix composite alloys [J].Tribology,1998,18(2):34-40.(in Chinese)
参考文献 73
SORDELET D J,BESSER M F,LOGSDON J L.Abrasive wear behavior of Al-Cu-Fe quasicrystalline composite coatings [J].Materials Science & Engineering A,1998,255(1-2):54-65.
参考文献 74
罗军明,袁永瑞,邓莉萍.Al62.8Cu25Fe12Y0.2 稀土准晶涂层的制备及耐磨性研究 [J].新技术新工艺,2006(1):115-117.LUO Junming,YUAN Yongrui,DENG Liping.Investigation on preparetion and wear resistance of Al62.8Cu25Fe12Y0.2 quasicrystal coating with rare earth[J].New Technology & New Process,2006(1):115-117.(in Chinese)
参考文献 75
DELIMA B A S G,GOMES R M,DELIMA S J G,et al.Self-lubricating,low-friction,wear-resistant Al-based quasicrystalline coatings[J].Science and Technology of Advanced Materials,2016,17(1):71-79.
参考文献 76
DUBOIS J M,BELIN-FERR E.Friction and solid-solid adhesion on complex metallic alloys [J].Science & Technology of Advanced Materials,2014,15(3):034804.
参考文献 77
FEHRENBACHER L,ZABINSKI J S,PHILLIPS B S,et al.Microstructure development and tribological behavior in alcufe quasicrystalline thin films[J].Tribology Letters,2004,17(3):435-443.
参考文献 78
SALES M,MERSTALLINGER A,USTINOV A I,et al.Effect of the addition of crystalline β-phase in Al-Cu-Fe quasicrystalline coatings on their tribological properties [J].Surface and Coatings Technology,2007,201(14):6206-6211.
参考文献 79
LEE K,DAI W,NAUGLE D,et al.Effects of microstructure of quasicrystal alloys on their mechanical and tribological performance[J].Journal of Tribology,2018,140(5):051605.
参考文献 80
丁亚茹,张顺,高思为,等.镁合金AZ91D激光熔覆 Al65Cu20Fe15 涂层的耐腐蚀性[J].热加工工艺,2016,45(14):168-170.DING Yaru,ZHANG Shun,GAO Siwei,et al.Corrosion resistance of laser cladding Al65Cu20Fe15 coating on AZ91D Mg alloy[J].Hot Working Technology,2016,45(14):168-170.(in Chinese)
参考文献 81
WOLF W,KOGA G Y,SCHULZ R,et al.Wear and corrosion performance of Al-Cu-Fe-(Cr)quasicrystalline coatings produced by HVOF[J].Journal of Thermal Spray Technology,2020,29(5):1195-1207.
参考文献 82
RYABTSEV S I,POLONSKYY V A,SUKHOVA O V.Effect of scandium on the structure and corrosion properties of vapor-deposited nanostructured quasicrystalline Al-Cu-Fe films [J].Powder Metallurgy and Metal Ceramics,2020,58(9-10):567-575.
参考文献 83
RYABTSEV S I,POLONSKYY V A,SUKHOVA O V,et al.Structure,Electrical and corrosion properties of quasicrystalline Al-Cu-Fe-Sc Thin Films [J].Journal of Nano and Electronic Physics,2019,11(5):1-5.
参考文献 84
RYABTSEV S I,POLONSKYI V A,SUKHOVA O V.Structure and corrosion of quasicrystalline cast alloys and Al-Cu-Fe film coatings[J].Materials Science,2020,56(2):263-272.
参考文献 85
吕威闫,王晓明,常青,等.微合金化对铝基非晶合金涂层耐蚀性能的影响[J].中国表面工程,2019,32(6):73-80.LV Weiyan,WANG Xiaoming,CHANG Qing,et al.Effects of microalloying on corrosion resistance of Al-based amorphous coating[J].China Surface Engineering,2019,32(6):73-80.(in Chinese)
参考文献 86
于洋,周根春,孔娟.TC9 合金基体上 Al-Cu-Fe-Cr 准晶涂层抗氧化性能的研究[J].钛工业进展,2003,20(3):22-24.YU Yang,ZHOU Chungen,KONG Juan,et al.Study on oxidation resistance of Al-Cu-Fe-Cr quasicrystalline coating on TC9 alloy substrate[J].Titanium Industry Progress,2003,20(3):22-24.(in Chinese)
参考文献 87
JAMSHIDIL C L A,RODBARI R J,NASCIMENTO L.Al62 Cu25 Fe12 and quasicrystalline phases and their influence on oxidation[J].Orbital the Electronic Journal of Chemistry,2017,9(1):27-35.
参考文献 88
DUBOIS J M,KANG S S,MASSIANI Y.Application of quasicrystalline alloys to surface coating of soft metals [J].Journal of Non-Crystalline Solids,1993,153-154:443-445.
参考文献 89
JANOT C.The properties and applications of quasicrystals[J].Europhysics News,1996,27(2):60-64.
参考文献 90
王全胜,李和章,李佳彬,等.等离子喷涂AlCuCoSi准晶热障涂层性能研究[J].热喷涂技术,2009,1(1):30-33.WANG Quansheng,LI Hezhang,LI Jiabin,et al.Study on properties of AlCuCoSi quasicrystal TBCs by APS[J].Thermal Spray Technology,2009,1(1):30-33.(in Chinese)
参考文献 91
WOLF W,SCHULZ R,SAVOIE S,et al.Structural,mechanical and thermal characterization of an Al-Co-Fe-Cr alloy for wear and thermal barrier coating applications[J].Surface and Coatings Technology,2017,319:241-248.
参考文献 92
DEMANGE V,MILANDRI A,DE WEERD M,et al.Optical conductivity of Al-Cr-Fe approximant compounds [J].Physical Review B,2002,65(14):144205.
参考文献 93
EISENHAMMER T,HAUGENEDER A,MAHR A.High-temperature optical properties and stability of selective absorbers based on quasicrystalline AlCuFe[J].Solar Energy Materials and Solar Cells,1998,54(1-4):379-386.
目录contents

    摘要

    准晶材料固有脆性限制其作为结构性材料的应用,广泛用于表面薄膜/ 涂层,而得到高纯度准晶相与控制准晶相变仍是应用难点。 围绕 Al 基准晶在表面薄膜/ 涂层应用方面,介绍真空蒸镀、溅射镀膜、热喷涂、激光熔覆等常用制备工艺,总结各工艺的特点。 分析准晶薄膜/ 涂层的成分、冷却速度、热处理对准晶相变的影响,合理的制备工艺和适当的后续热处理对薄膜/ 涂层中形成高纯度准晶有显著提升。 讨论相变对薄膜/ 涂层的力学性能、疏水性、摩擦性、耐腐蚀性和抗氧化性的影响,分析准晶薄膜/ 涂层在减磨耐磨涂层、热障涂层、太阳能选择性吸收薄膜等领域的应用前景。 综述了近 30 年准晶薄膜/ 涂层的制备技术及改性研究的重要结果和研究现状,提出了准晶薄膜/ 涂层应用方面存在的问题并进行了展望。

    Abstract

    The inherent brittleness of quasicrystal materials limit their application as structural materials, so they are widely used in surface films/ coatings. However, it is still difficult to obtain high purity quasicrystal phase and control the transformation. In terms of Al-based quasicrystal on surface film/ coating applications, the common techniques for the preparation such as vacuum vapor deposition, sputtering coating, thermal spraying, and laser cladding were introduced, and the characteristics of each techniques were summarized. The effects of the composition, cooling rate, and heat treatment on the phase transition of quasicrystal films/ coatings were analyzed. Reasonable preparation process and appropriate subsequent heat treatment can significantly improve the formation of high purity quasicrystals in the film/ coating. The effects of phase transformation on the mechanical properties, hydrophobicity, tribability, corrosion resistance and oxidation resistance of the films/ coatings were discussed. The application prospects of quasicrystal films/ coatings in the fields of wear reduction and wear resistance, thermal barrier coatings and solar selective absorption films were analyzed. The important results and research status of preparation technology and modification of quasicrystal films/ coatings in recent 30 years were reviewed. The existing problems in application of quasicrystal films/ coatings and prospects in the future were put forward.

  • 0 前言

  • 1984年以色列科学家SHECHTMAN等[1] 在急冷Al-Mn合金中首次发现了一种具有五次对称的单晶电子衍射图谱,该结构具有二十面体对称性,且有明锐的衍射斑点,具有长程有序的特点,但衍射斑点的排列并不具备周期性,人们将这种具有长程准周期平移序和非晶体学旋转对称性的固态有序相称为准晶[2]。准晶同超导体、C60巴基球一起被列为20世纪80年代凝聚态科学领域三大突破,至今仍然被认为是材料科学领域的科学前沿。

  • 准晶特殊的原子排列结构使其具有低表面能[3]、低摩擦因数[4]、耐磨损[5]、弥散强化、高硬度、耐腐蚀、高电阻等特性,具备广大的应用前景。但准晶的固有脆性限制了其作为结构材料方面的应用, 目前准晶材料主要应用于表面薄膜/涂层和复合材料强化,如法国Sitram公司研发的准晶不粘锅专利和瑞典的Sandivik公司研发的新型马氏体时效钢, 另外在催化[6-8]、润滑[9]、热电[10-11]、金属研磨[12-13] 等应用领域也有一定的拓展应用。准晶表面膜层方面的研究不少,但仍存在问题,如膜基结合不牢、涂层孔隙率高、结构成分难以精准控制、摩擦、腐蚀等机理还有待深入研究等。

  • 本文重点综述近30年来准晶薄膜/涂层的制备技术及改性研究的重要结果和研究现状,并指出准晶薄膜/涂层应用方面存在的问题及未来的研究趋势。

  • 1 准晶薄膜/涂层的制备技术

  • 薄膜和涂层通常以厚度区分,一般薄膜的厚度在几微米以内,而涂层的厚度在数十微米以上[14]。薄膜主要以原子、离子、分子和粒子集团等原子尺度的粒子形态在基体上凝聚、成核、长大,最终成膜,成膜技术主要有真空蒸镀和溅射镀膜。涂层主要指以宏观尺度的熔化液滴或细小固体颗粒在外力作用下于基体材料表面凝聚、沉积或烧结而成的覆盖层,主要制备技术有热喷涂和激光熔覆。薄膜和涂层的性能因制备技术的不同而存在很大的差异,同时受制备工艺和后续热处理等等影响。

  • 1.1 薄膜的制备工艺

  • 真空蒸镀通过在真空容器中把欲镀金属、合金或化合物加热熔化,使其呈分子或原子状态逸出,沉积到被镀材料表面而形成固态薄膜,按加热方式分类可分间接加热和电子束加热两种。间接加热蒸发制备的薄膜质量好、效率高;电子束蒸发适合制备高熔点薄膜材料和高纯薄膜材料,但真空蒸镀难以控制薄膜成分,膜基结合力小,在沉积金属合金薄膜时,组成元素的相对蒸汽压十分关键,Al元素的相对蒸汽压值小,容易优先蒸发汽化,对于以铝为组成元素之一的金属合金,起始合金应以其他组成元素富集,以补偿铝的优先汽化。 USHAKOV等[15] 用真空电弧等离子体蒸发法制备Al-Cu-Fe准晶薄膜,在沉积过程中,由于Al元素的蒸发速度高导致Al元素的损耗快,起始材料的化学成分和相组成发生变化,薄膜中的准晶相几近于无。 KANJILAL等[16] 利用富集Fe元素的Al40Cu5Fe55 母合金分别用间接加热法和电子束加热法制备组分为Al62.9Cu24.6Fe12.5 和Al63.1Cu24.5Fe12.4 的非晶态薄膜,经过700℃ 退火1h后两组薄膜都转变为准晶态薄膜,室温下电阻率提高了近10倍。 YADAV等[17] 利用闪蒸法在玻璃衬底上沉积Al-Ga-Pd-Mn薄膜,沉积的薄膜为非晶态,准晶i相晶粒细小,在300℃下退火120h后, 薄膜完全转变为准晶薄膜。 POLISHCHUK等[18] 发现由于残余应力的影响,电子束物理气相沉积制备的Al-Cu-Fe准晶涂层不超过临界厚度,其内部裂纹可以得到有效抑制。

  • 溅射镀膜是利用气体放电产生气体电离,正离子在电场作用下高速轰击阴极靶体,使靶材发生溅射,靶材表面的原子脱离原晶格而逸出,转移到基体表面沉积成薄膜。磁控溅射是较为常用的一种镀膜方式,相对其他溅射技术镀膜速率更高,可以精准控制薄膜成分,膜基结合力强,可在大面积连续基板上制取均匀的膜层,但沉积效率低,薄膜质量得不到保证。 ČEKADA等[19]利用三级溅射交替沉积Al/Cu/Fe薄膜,在惰气保护下进行退火处理,成功制备Al-Cu-Fe准晶薄膜。 LU等[20] 利用磁控溅射在液氮冷却的基体上制取A165Cu20Fe25准晶薄膜,直接沉积的薄膜为非晶态薄膜,在经过600℃ 退火后完全转变为准晶态薄膜。 MOSKALEWICZ等[21] 在钛合金上通过非反应性磁控溅射镀Al-Cu-Fe、Al-Cu-Fe-Cr和Al-Co-Fe-Cr多组分薄膜,镀层均为非晶态镀层, 经过适当的热处理后转变为准晶态和晶态镀层。 OLSSON等[22] 在Al2O3 和Si基体上利用磁控溅射制备了Al/Cu/Fe多层薄膜,经过退火后分别形成了准晶相和准晶近似相。 PHILLIPS等[23] 利用非平衡磁控溅射沉积10 μm的Al-Cu-Fe薄膜,在经过500℃、32h的退火处理后转变成准晶薄膜。成膜后的后续热处理是形成准晶薄膜的关键因素,热处理的时间和温度都对薄膜的组织有巨大的影响。

  • 1.2 涂层的制备技术

  • 热喷涂是将喷涂材料加热为熔融状态,通过高速气流将熔融状态下的喷涂材料雾化喷射在金属工件表面上,形成具有特殊性能的涂层。热喷涂可以满足准晶合金系较高冷却速度的需求,主要制备手段有爆炸喷涂、超音速火焰喷涂和等离子喷涂等。其中爆炸喷涂制备的涂层质量好,膜基结合力强,但生产成本高;超音速火焰喷涂制备的涂层质量较好,涂层致密度高,但气体消耗量大,粉末熔融程度相对较低;等离子喷涂温度高、喷涂材料范围广泛,工艺相对简单,但涂层的微小孔洞和裂纹较多。傅迎庆等[24]采用爆炸喷涂制备Al-Cu-Cr准晶涂层,涂层中出现了两种新相:一种是具有体心立方结构的晶体相 α-A169Cu18Cr13,另一种是Al3O2 相。 GOMES等[25]使用超音速火焰喷涂制备Al59.2Cu25.5Fe12.3B3 准晶涂层,发现涂层中的裂纹与氧燃料比有关,使用轻微氧化火焰制备的涂层裂纹密度更高。 FEITOSA等[26]提出当氧燃料比为0.98时,制备的Al-Cu-Fe-B准晶涂层质量最好,硬度为700HV,孔隙率为1.5%。 FU等[27]分别用超音速火焰喷涂和等离子喷涂制备Al-Cu-Cr准晶涂层,发现随着功率的增大,两种方法制备的涂层准晶i相含量都会减少,相比之下超音速火焰喷涂制备的涂层更致密。 LEPESHEV等[28-30] 用等离子喷涂制备Al-Cu-Fe准晶涂层,发现涂层二十面准晶体含量与基体温度有关,喷涂态涂层中主要是二十面体准晶 ψ 相和立方 β 相,随着基体温度的升高准晶 ψ 相的比例增加,当基体温度为700℃时准晶 ψ 相含量达到峰值,高达80%。

  • 激光熔覆通过在基材表面添加熔覆材料,并利用高能密度的激光束使之与基材表面薄层一起熔凝,在基层表面形成冶金结合的添料熔覆层。激光重熔能改善涂层的孔洞和裂纹,可控性好,精准控制涂层成分。 FATOBA等[31-32] 采用3D打印在钛合金表面构筑Al-Cu-Fe准晶涂层,结果表明通过改性激光工艺可得到无裂纹的Ti-6Al-4V/Al-Cu-5Fe涂层,其耐磨性是基体的2.8倍,极化电阻是基体的1 538.3倍。 FU等[33] 用选择性激光熔覆( SLM) 制备Al-Cu-Fe-Cr准晶涂层,研究不同涂层厚度下的微观结构,发现随着涂层厚度的增加,颗粒熔融充分时孔隙率减小,但当厚度增加到一定程度时,涂层反而出现了大孔洞及裂纹。

  • 2 准晶薄膜/涂层相变的影响因素

  • 2.1 组成成分

  • 准晶相有严格的成分范围,微量成分的偏移会导致准晶相向其他类似相和晶体相转变[34-35]。 BRADLEY等[36] 首次揭示了较为完整的Al-Cu-Fe三元相图,但其中 ψ 相结构未定,表1中总结了一部分重要的相。 TSAI等[37] 在1987年首次报道了稳定的二十面体i相,如图1所示,该相的衍射斑点图具有五次对称的特点。后来人们发现TSAI报道的i相与BRADLEY揭示的三元相图中的 ψ 相成分范围相近。 FAUDOT等[38] 系统地研究了 ψ 相和 ω 相附近的成分范围,发现 ψ 相就是TSAI报道的i相。 BRADLEY在缓慢冷却中观察到成分为Al65Cu22.5Fe12.5 的 ψ 相,它是由 β 相和液相发生包晶反应得到的。 DONG等[39]在 θ-Al13Fe4(Cu)相和液相的包晶反应中观察到二十面体Al65Cu20Fe15 相。自此,二十面体准晶相由 β 相+液相通过包晶反应生成这一说法得到认可。经大量学者研究,Al-Cu-Fe三元相图逐渐完善[40],如图2所示。

  • 表1 Al-Cu-Fe体系中最重要的二元相和三元相及其结构[42]

  • Table1 Most important binary and ternary phases and their structures in the Al-Cu-Fe system [42]

  • 图1 二十面体准晶的电子衍射图及晶体学特征

  • Fig.1 Electron diffraction patterns of quasicrystalline and the sketch of icosahedral structure

  • 图2 Al-Cu-Fe在700℃的等温截面图

  • Fig.2 Isothermal section of the Al-Cu-Fe phase diagram at T=700℃

  • 在制备准晶涂层的过程中,不同工艺会导致准晶成分出现不同程度的损耗,如当热喷涂燃料热焓值过高时,低熔点合金组元Al元素的蒸发或氧化损失加剧,容易导致涂层内Al元素含量下降,涂层成分偏离准晶相的成分范围,继而发生复杂相变,使涂层近似相含量增加,准晶相含量减少[24,41]

  • 2.2 冷却速度

  • 冷却速度是准晶相形核的重要影响因素,冷却速率越高,过冷度越大。在高冷却速率下,准晶相能直接从熔体中形成[43-44];在中低冷却速率下,比起一般晶体相和准晶类似相,准晶相的过冷度要小的多[45],准晶相由包晶反应生成。赵东山等[46] 计算了Al-Cu-Fe准晶i相和准晶近似相的自由能,对比了两者的成相驱动力,当温度高于938K时,形成准晶i相的驱动力大于形成准晶近似相的驱动力,当温度低于938K时,则相反。采用热导率较低的基体沉积涂层和适当升高基体温度,有利于提高准晶i相的含量[47-48]。 USTINOV等[49] 使用单枪电子束沉积法在不同的基体温度下沉积Al-Cu-Fe准晶薄膜, XRD结果表明随着基体温度的提高,薄膜中的准晶峰更显著。傅迎庆等[48,50] 研究热喷涂中基体热导率和基体温度对涂层准晶相的影响,发现随着基体热导率的减小和基体温度的升高,涂层准晶近似相的衍射强度减小,准晶相衍射强度增大。

  • MILMAN等[51]在电子束沉积的Al-Cu-Fe准晶涂层中发现,涂层与基体之间形成了 β 相组织,涂层中间是二十面体准晶i相和单斜 λ-Al13Fe4 相双相结构,只有涂层表层为准晶i相结构,这是因为随着涂层逐渐沉积,热量不断积累,后续沉积的涂层温度冷却更慢。

  • XIAO等[52]利用气体雾化法制备Al-Cu-Fe-Cr准晶粉末,并利用高速空气燃料火焰热喷涂制备涂层。图3为不同粒度粉末和不同粒度粉末所制涂层的XRD,研究发现在喷雾造粒的过程中,随着粉末粒度的增大,粉末的冷却速度降低,β 相含量增加,准晶相含量减少。 P1的粉末粒度最小,在喷涂中Al元素烧损最严重,且和其他粉末所制涂层的主相 β 相不同,P1粉末制备的C1涂层中主相变为 τ 相。

  • 图3 不同粒度粉末和不同粒度粉末制备涂层XRD:(a)不同中位径(D50)的Al65Cu20Fe10Cr5 粉末的XRD:P1D50 =9.48 μm, P2D50=22.48 μm,P3D50=38.47 μm,P4D50=29.65 μm,(b)图(a)的局部放大图,(c)不同中位径粉末所制涂层的XRD: C1涂层所用粉末为P1,C2涂层所用粉末为P2,C3涂层所用粉末为P3,C4涂层所用粉末为P4,(d)图(c)的局部放大图

  • Fig.3 XRD of different particle size powders and coatings prepared from different particle size powders: (a) XRD of different median diameter(D50) Al65Cu20Fe10Cr5 powders: P1D50=9.48 μm, P2D50=22.48 μm, P3D50=38.47 μm, P4D50=29.65 μm, (b) Partial enlargement of figure (a), (c) XRD of coatings made from different median diameter powders: Powder used in the C1coating is P1, Powder used in the C2coating is P2, Powder used by the C3coating is P3, Powder used in the C4coating is P4, (d) Partial enlargement of figure (c)

  • 2.3 热处理

  • 后续的热处理会对涂层的相变产生重要影响, 不同的退火温度和退火时间会对涂层中的相变产生影响。

  • DING等[53] 用磁控溅射制备Al-Cu-Fe薄膜, 观察发现初始薄膜的界面结构为Al-Cu-Fe非晶结构,在750℃ 退火2h后薄膜转变为准晶结构。 ČEKADA等[54] 分别在基体上依次沉积Al/Cu/Fe三层金属层,研究了热处理过程中的界面元素扩散。元素扩散行为分为三个阶段( 如图4) :第一阶段,退火温度为300℃ 时,Al向Cu层扩散形成 γ-Al4Cu9 相,薄膜呈AlCu/Fe双层结构;第二阶段,退火温度为500℃ 时,Al继续向下扩散均匀分布在整个薄膜中,与Fe层形成AlFe层,AlCu层与Fe层间有一层薄薄的过渡层,薄膜中只观察到β-Al(Cu,Fe) 相,薄膜呈AlCu/AlCuFe/AlFe三层结构;第三阶段,退火温度在600℃ 以上时,中间的过渡层向两边延伸,γ 相和 β 相转变为准晶i相, 薄膜形成均匀的Al-Cu-Fe层, 形成二十面体准晶i相。

  • 图4 从沉积三层到完全均匀单层退火过程中的演化模型

  • Fig.4 Model of evolution during annealing, from as-deposited trilayer to a completely homogenized single layer stage

  • PARSAMEHR等[55-56] 利用热喷涂制备Al-Cu-Fe准晶涂层,利用XRD进一步研究涂层准晶相的热稳定性(如图5所示)。初始阶段时,β 相为主导相;当温度升至490~650℃ 时,β 相含量减少,准晶 ψ 相含量不断提高,并在650℃时,准晶 ψ 相为主导相;当温度升至800~870℃ 时,准晶 ψ 相转变为 β 相。

  • 图5 Al-Cu-Fe相演化的XRD

  • Fig.5 Phase evolution for Al-Cu-Fe from in-situ XRD

  • PARSAMEHR等[57]对Al-Cu-Fe准晶薄膜采取了两步退火法热处理,先在570℃ 下退火3h,然后在800℃下分别进行5、10、15h不同时长的退火处理,发现将试样的退火时间从5h延长至15h后,试样中的 β 相和 ω 相转变为二十面体准晶i相,ω 相完全消失,准晶i相含量从24.8%提高至84.3%,这表明准晶i相在退火15h后达到了热平衡,且准晶i相的热稳定性高于 β 相和 ω 相。

  • 3 性能

  • 3.1 力学性能

  • MILMAN等[51]对比了不同的相对Al-Cu-Fe准晶涂层硬度和弹性模量的影响,结果表明,无论是弹性模量还是纳米硬度,准晶i相都优于 β 相,涂层硬度和准晶i相含量成正比关系[58],比起经400℃ × 8h固溶处理的涂层,经400℃ ×8h固溶+200℃ × 16h时效热处理的涂层中有更多的 β 相转变为准晶i相,涂层硬度也显著更高,达到了752.8HV。张秦梁等[59] 优化了高速电弧喷涂Al-Ni-Mm-Co准晶涂层(其中Mm为镧系混合稀土元素,质量分别为48%~52%Ce, 25%~28%La,14%~17%Nd和4%~6%Pr)的工艺参数,涂层出现明显的纳米准晶相,涂层表面组织结构致密,孔隙率仅为1.13%,硬度可达392HV0.1。 LEPESHEV等[60] 研究了Al-Cu-Fe准晶涂层的力学性能,发现涂层硬度随着二十面准晶 ψ 相含量增加而增加,当 ψ 相含量达到80%时,涂层显微硬度达到了900~1 000HV。

  • 3.2 疏水性

  • 薄膜/涂层的疏水性取决于其表面结构和表面能,其中表面结构是主导因素[61-68],同时低表面能也会提升膜层的疏水性[69]

  • 蔡明伟等[70]用超音速火焰喷涂制备Al-Cu-Fe-Si准晶涂层,对比准晶涂层和45号钢基体的接触角,测量结果发现准晶涂层的接触角最大为95°,而45号钢的接触角仅为79°。准晶涂层显著提高了基体的疏水性,此外不同喷涂工艺参数制备的准晶涂层接触角也存在差异。陈泰盛[71] 用等离子喷涂制备Al-Cu-Fe准晶涂层,疏水性试验结果表明,未经退火处理的涂层疏水角为109.1℃,如图6a所示。经800℃ 退火1h以上的涂层疏水角提高到135℃,如图6b所示。相比未退火的涂层经退火处理的涂层准晶i相含量显著增加,两者都在涂层表面观察到10~200nm的纳米级粒子,表面形成了微纳米结构。

  • 图6 退火前后Al-Cu-Fe准晶涂层水接触角

  • Fig.6 Water contact angle of Al-Cu-Fe quasicrystal coating before and after annealing

  • PARSAMEHR等[57]对Al-Cu-Fe准晶薄膜采用两步退火法,并对比不同退火时长的涂层,结果表明随着退火时间的延长,准晶相的含量提高,薄膜的接触角增大,退火15h的薄膜接触角达到了121℃, 大于聚四氟乙烯的涂层的108.9℃ [61],证明了准晶具有低表面能的特性。

  • 3.3 摩擦磨损性能

  • 准晶键合性质与金属对磨偶件的键合性质差异显著,当二者组成摩擦副时,具有良好的摩擦相容性,在磨损过程中不易与金属对磨偶件产生黏着,加上准晶具有较高的硬度(HV0.05>700) 和较低的塑性,能显著提升复合材料的摩擦磨损性能,但过高的准晶含量反而会适得其反[72],因为准晶的耐磨性很大程度上取决于其硬度和脆性。热喷涂制备的准晶涂层具有较高的室温硬度,但其固有脆性影响了涂层的磨损性能。在Al-Cu-Fe准晶涂层中添加少量的Fe-Al相会使涂层硬度有所降低,但可以使涂层磨损模式从脆性断裂向塑性流动转变[73]。因此兼顾硬度和塑性,可以使准晶涂层具有良好的耐磨性。

  • 罗军明等[74] 利用低压等离子喷涂制备Al62.8Cu25Fe12Y0.2 稀土准晶涂层,并同钛合金对比耐磨性,研究表明稀土准晶涂层具有优异的室温干滑动磨损耐磨性,且随着磨损时间的延长,稀土准晶涂层的磨损失重相比于钛合金试样的磨损失重增加要缓慢的多,涂层具有良好的耐磨性。 DELIMA等[75] 用超音速火焰喷涂在钢基体上制备Al59B3Cu25.5 Fe12.5/Al4Cu9 复合涂层,并进行划痕试验,结果表明,准晶涂层明显变形,但准晶涂层并未被穿透,涂层表现出良好的自润滑能力。一是因为燃料煤油中分离出来的C提高了涂层的自润滑性能,减小了涂层的磨损,二是因为涂层中间的Al4Cu9 层有效的平衡了Al59B3Cu25.5Fe12.5 准晶涂层和钢基体之间的应力[76]。 FEHRENBACHER等[77] 等利用磁控溅射制备Al-Cu-Fe准晶涂层,研究准晶含量和摩擦因数之间的关系,发现涂层在无退火、450℃ 下退火2h、 500℃下退火1h后摩擦因数分别为0.45、0.23、 0.17,检测结果表明在450℃ 下退火后涂层中形成了准晶近似相,在500℃退火后,涂层中各相向二十面体准晶相转变,摩擦因数的降低与准晶相的含量提高有关。

  • SALES等[78] 分别研究了Al-Fe-Cu涂层单相 (准晶 ψ 相)涂层和双相(准晶 ψ 相+立方 β 相)涂层的摩擦磨损性能,两组涂层的摩擦因数在0.2~0.3范围内波动,相差不大,双相涂层的磨损率明显小于单相涂层。观察发现双相涂层上的磨痕轨迹是光滑的,没有脆性断裂或黏着磨损的迹象(图7a), 最大磨损深度仅为4 μm。通过剖面(图8a)分析可知,在摩擦试验中,双相涂层仅上部被磨损,而单相涂层磨痕出现了转移膜(图7c),发生了黏着磨损, 最大磨损深度达到了23 μm,同时磨痕周围出现了脆性裂纹(图8b)。这与KYUNGJUN [79]提出的 β 相比准晶相更软,能够提高涂层的断裂韧性,减少脆性裂纹拓展的观点一致。在考虑涂层硬度的同时兼顾一定的韧性能够获得更好的耐磨性。

  • 图7 涂层磨损轨迹扫描电镜图和摩擦试验后的磨损轨迹图

  • Fig.7 SEM micrographs of wear tracks on coatings and profiles of the track on coatings after the friction test

  • 3.4 耐蚀性

  • 准晶涂层的耐蚀性与准晶相含量和涂层的致密度有关,准晶相含量及涂层致密度越高,涂层耐蚀性越好。

  • 丁亚茹等[80] 在镁合金AZ91D的表面熔覆Al65Cu20Fe15 涂层并进行腐蚀试验。结果表明与镁合金基体相比,准晶涂层耐蚀性反而下降。原因是熔覆层内存在较多杂相导致形成电偶加速了腐蚀,同时涂层金相组织呈网状分布,且密度及均匀程度不一致,腐蚀液从致密度低的区域首先侵入, 加速熔覆层的腐蚀。 WOLF等[81] 研究超音速火焰喷涂Al-Cu-Fe和Al-Cu-Fe-Cr涂层的耐蚀性,两组涂层在无氯的酸性和碱性的介质中具有良好的耐蚀性,自腐蚀电流密度为 μA/cm 2,含Cr涂层的自腐蚀电位要高于不含Cr的涂层。 RYABTSEV等[82-84]研究了Al-Cu-Fe和Al-Cu-Fe-Sc准晶涂层的耐蚀性,结果表明Al-Cu-Fe涂层耐蚀性高于准晶铸态合金;Sc元素的加入显著提高了Al-Cu-Fe体系在Cl-离子环境下的耐蚀性。吕威闫等[85] 在研究微合金化调控铝基准晶合金成分中发现,在Al86Ni6Y4.5Co2La1.5 体系中添加原子分数0.5%的Mo、Cr元素后,不仅准晶涂层的点蚀电位提高,涂层的自腐蚀电流密度减小,而且容抗弧显著增大 (如图9所示),钝化膜的稳定性相较与其他涂层更高,耐蚀性更好。

  • 图8 摩擦试验后接触面积的扫描电镜显微图

  • Fig.8 SEM micrograph of the contact area after the friction test

  • 图9 4种合金样品的Nyquist图

  • Fig.9 Nyquist plots of four alloy samples

  • 3.5 抗氧化性

  • 准晶薄膜/涂层的抗氧化性主要归功于Al的氧化,在表面形成了一层致密的Al2O3 薄膜。于洋等[86]研究了Al-Cu-Fe-Cr准晶涂层在高温下的抗氧化性能,静态氧化试验的恒温氧化增重曲线表明,准晶涂层有效提高了基体在高温下的抗氧化性,涂层表面形成一层薄薄的氧化层。 MOSKALEWICZ等[21]研究了Al-Cu-Fe、Al-Cu-Fe-Cr、Al-Co-Fe-Cr多组分薄膜对钛合金抗氧化性的影响,750℃、300h的静态氧化试验结果表明,钛合金表面出现了氧化皮剥落现象,表面沉积了准晶薄膜的钛合金无剥落现象。高温下Al-Co-Fe-Cr准晶薄膜的抗氧化性效果最显著,在其薄膜表面发现 α-Al2O3 晶粒密集排布在薄膜表面,而Al-Cu-Fe、Al-Cu-Fe-Cr薄膜形成的 α-Al2O3 晶粒呈鳞片状分布于薄膜表面。 KHARAT等[87]研究Al-Cu-Fe准晶薄膜和Al-Ni-Co准晶薄膜的氧化行为发现亲氧元素Al扩散到薄膜表面优先和氧气反应生成金属氧化物,在薄膜表面形成一层致密的Al2O3 层,薄膜的抗氧化性得到显著提升。

  • 4 Al基准晶薄膜/涂层的应用前景

  • 4.1 减磨耐磨涂层

  • 准晶的低表面能和良好的摩擦性能是减磨耐磨涂层的关键[88],如Al-Pd-Mn准晶的不粘性可以与不粘性最好的材料聚四氟乙烯( Teflon) 相媲美,法国Sitram公司研发的Al-Cu-Fe-Cr准晶不粘锅,代替了之前的特氟龙( Teflon) 不粘锅,相比于聚四氟乙烯,准晶不粘锅的效果更好,使用寿命更长。低摩擦因数和高硬度的准晶涂层也可用于汽车发动机的气缸套和活塞涂层[89]。 DUBOIS等[40] 利用准晶的摩擦特性在碳化钨刀片上制备了多层准晶薄膜,使其寿命提高了25%。

  • 4.2 热障涂层

  • 虽然准晶体系大多由金属元素组成,但其特殊的微观结构导致准晶有别于其他金属原子的电子传输过程,相比普通金属材料,准晶的热导率更低,比不锈钢低一个数量级,比普通铝合金低两个数量级, 与目前常用的热障涂层材料ZrO2 相近。准晶的低热导率和接近金属的热膨胀系数,使准晶在热障涂层方面有很好的应用潜力。如图10所示,小型涡轮叶片的表面覆盖一层Al-Co-Fe-Cr准晶复合材料涂层后, 完全可以满足700℃ 高温的工作环境需求[40]。王全胜等[90] 在ZL109基体上制备Al-Cu-Co-Si准晶涂层,热障试验结果表明涂层具有良好的抗热冲击性,涂层的热导率比其纯金属组元的热导率低近两个数量级,与常规YSZ热障涂层的热导率相近。 WOLF等[91] 利用超音速火焰喷涂在钢基体上制备Al71Co13Fe8Cr8 准晶涂层,结果表明涂层由十面体的准晶近似密排六方相Al5Co2 和单斜相Al13Co4 组成,涂层的显微硬度接近500HV,摩擦因数优异(0.05左右),达到了良好的隔热效果(比基体碳钢温度降低了30%)。

  • 图10 小型涡轮叶片

  • Fig.10 Small turbine blade

  • 4.3 太阳能工业薄膜

  • 太阳能工业薄膜材料不仅要求材料能够吸受短波、反射长波, 而且还要有良好的热稳定性。 DEMANGE等[92]研究了Al-Cr-Fe体系中几种金属间化合物在宽频率范围内的导光性,发现准晶在低频处没有Drude峰,这与传统金属形成明显的对比, 且Al-Cu-Fe准晶在低频段对红外线的吸收率高,反射系数 R 低至0.6。 EISENHAMMER等[93]以Cu为基体,设计绝缘层/准晶薄膜/绝缘层多层结构,并制备Al2O3/Al-Cu-Fe(薄膜厚度约为10nm)/Al2O3 多层结构薄膜,测试发现材料的选择、薄膜的厚度和不同薄膜材料的组合影响薄膜对太阳光的吸收率和反射率。这些薄膜具有高的热吸收率 αs、低的热发射率 εh 和足够高的热稳定性,与目前使用的Ti-N-O薄膜相比还具有抗高温氧化、耐腐蚀和与基体结合力好的优点。

  • 5 结论与展望

  • 准晶独特的力学性能备受表面学家的关注,关于Al基准晶薄膜/涂层开发了以Al-Cu-Fe和Al-Co-Ni为主的三元合金体系,掺杂的Cr、Si、B、Sc等元素提高了三元体系的综合性能。结合已有报道,准晶薄膜/涂层研究的主要问题如下:

  • (1) 现有的常规真空蒸镀、溅射镀膜、热喷涂、激光熔覆等制备技术,在制备准晶薄膜/涂层过程中存在着技术局限性。 Al元素熔点低,高温下易于蒸发,造成准晶成分偏离理论值,降低了准晶相纯度。因此,能够研发出输出能量既低,减少Al元素消耗, 又能保证质量的制备工艺是现阶段亟待解决的问题。

  • (2) 准晶薄膜/涂层的相变和界面结构难于控制。提高工艺重复性,精准控制涂层相结构、提高界面结合力并调控制备高质量涂层是发展准晶应用重点需要解决的关键问题。

  • (3) 经济性与工艺性的矛盾。预期获得高纯度准晶薄膜/涂层不可避免地需要长时间退火,经济成本提高。协调薄膜/涂层性能与经济性也是限制准晶应用的客观现实问题。

  • 为了推动Al准晶薄膜/涂层的应用,可考虑以下几个方面的研究工作:① 薄膜/涂层制备工艺的叠加,采用复合工艺,发挥各工艺的优势,做到精准调控;② 添加少量陶瓷微颗粒,弥补准晶疏松多孔缺陷,或在薄膜/涂层表面进行封孔处理,提高表面致密性;③ 结合表面构筑微纳米结构,增强涂层综合性能,降低热处理成本。

  • 参考文献

    • [1] SHECHTMAN D G,BLECH I A,GRATIAS D.Metallic phase with long-range orientational order and no translational symmetry [J].Physical Review Letters,1984,53(20):1951-1953.

    • [2] 董闯.准晶材料[M].北京:国防工业出版社,1998:5-6.DONG Chuang.Quasicrystalline material[M].Beijing:National Defense Industry Press,1998:5-6.(in Chinese)

    • [3] DUBOIS J M.New prospects from potential applications of quasicrystalline materials[J].Materials Science & Engineering A,2000,294:4-9.

    • [4] RABSON D A.Toward theories of friction and adhesion on quasicrystals[J].Progress in Surface Science,2012,87(9-12):253-271.

    • [5] BRUNET P,ZHANG L M,SORDELET D J,et al.Comparative study of microstructural and tribological properties of sintered,bulk icosahedral samples[J].Materials Science & Engineering A,2000,294-296:74-78.

    • [6] TANABE T,KAMEOKA S,TSAI A P.Evolution of microstructure induced by calcination in leached Al-Cu-Fe quasicrystal and its effects on catalytic activity [J].Journal of Materials Science,2011,46(7):2242-2250.

    • [7] KAMEOKA S,TANABE T,SATOH F,et al.Activation of Al-Cu-Fe quasicrystalline surface:fabrication of a fine nanocomposite layer with high catalytic performance[J].Science and Technology of Advanced Materials,2014,15(1):014801.

    • [8] KAMEOKA S,TANABE T,TSAI A P.High performance catalysts prepared from Al-Cu-Fe icosahedral quasicrystal [J].Recent Patents on Materials Science,2015,8(2):155-165.

    • [9] 张涛,员文杰,宫志利.一种适用于发动机的AlcPdaXb合金粉机油添加剂及其制备方法:CN101570709 [ P].2009-11-04.ZHANG Tao,YUAN WenJie,GONG Zhili.AlcPdaXb alloy powder engine oil additive applicable to engine and preparation method thereof:CN101570709[P].2009-11-04.(in Chinese)

    • [10] TAKAGIWA Y,KIMURA K.Metallic-covalent bonding conversion and thermoelectric properties of Al-based icosahedral quasicrystals and approximants [J].Science & Technology of Advanced Materials,2014,15(4):044802.

    • [11] TAKEUCHI T.Very large thermal rectification in bulk composites consisting partly of icosahedral quasicrystals [J].Science & Technology of Advanced Materials,2014,15(6):064801.

    • [12] 陈永君,滕琳琳,白妍,等一种用于不锈钢表面的 Al aCubFecXd 合金研磨抛光膏:CN111205774A[ P ].2020-05-29.CHEN Yongjun,TENG Linlin,BAI Yan,et al.AlaCubFecXd alloy grinding and polishing paste for stainless steel surfaces:CN111205774A[P].2020-05-29.(in Chinese)

    • [13] 陈永君,滕琳琳,白妍,等.一种用于不锈钢表面的 Ti aZrbNi c 合金研磨抛光膏:CN111171728A[ P ].2020-05-19.CHEN Yongjun,TENG Linlin,BAI Yan,et al.TiaZrbNic alloy grinding and polishing paste for stainless steel surface:CN111171728A[P].2020-05-19.

    • [14] 辛先峰,董闯,庞厂,等.涂层和薄膜态准晶材料的研究现状及展望[J].表面技术,2020,49(5):19-25.XIN Xianfeng,DONG Chuang,PANG Chang,et al.State-of-the-art and prospects of quasicrystalline coatings and thin films [J].Surface Technology,2020,49(5):19-25.(in Chinese)

    • [15] USHAKOV A V,KARPOV I V,FEDOROV L Y,et al.Synthesis of quasicrysalline powders and coatings by vacuum arc plasma evaporation [J].Physics of the Solid State,2020,61(12):2547-2552.

    • [16] KANJILAL A,TIWARI U,CHATTERJEE R.Preparation of Al-Cu-Fe thin films by vapor deposition technique from a single source [J].Materials Research Bulletin,2002,37(2):343-351.

    • [17] YADAV T P,SINGH D,SHAHI R R,et al.Synthesis of quasicrystalline film of Al-Ga-Pd-Mn alloy [J].Thin Solid Films,2013,534:265-269.

    • [18] POLISHCHUK S,USTINOV A,TELYCHKO V,et al.Fabrication of thick,crack-free quasicrystalline Al-Cu-Fe coatings by electron-beam deposition[J].Surface and Coatings Technology,2016,291:406-412.

    • [19] ČEKADA M,PANJAN P,JUŔIC D,et al.Deposition and characterisation of Al-Cu-Fe thin films [J].Thin Solid Films,2004,459(1-2):267-270.

    • [20] LU M,CHIEN C L.Al65Cu20Fe15 in amorphous,crystalline and quasicrystalline states [J].Hyperfine Interactions,1992,71(1):1525-1529.

    • [21] MOSKALEWICZ T,DUBIEL B,WENDLER B.AlCuFe(Cr)and AlCoFeCr coatings for improvement of elevated temperature oxidation resistance of a near-α titanium alloy [J].Materials Characterization,2013,83:161-169.

    • [22] OLSSON S,BROITMAN E,GARBRECHT M,et al.Mechanical and tribological properties of AlCuFe quasicrystal and Al(Si)CuFe approximant thin films [J].Journal of Materials Research,2015,31(2):232-240.

    • [23] PHILLIPS B S,ZABINSKI J S.Frictional characteristics of quasicrystals at high temperatures[J].Tribology Letters,2003,15(1):57-64.

    • [24] 傅迎庆,周锋,张立志,等.爆炸喷涂 Al-Cu-Cr 准晶涂层的组织及硬度研究[J].材料热处理学报,2007,28(S1):193-197.FU Yingqing,ZHOU Feng,ZHANG Lizhi,et al.Microstructure and hardness properties of detonation spraying Al-Cu-Cr quasicrystalline coatings[J].Transactions of Materials and Heat Treatment,2007,28(S1):193-197.(in Chinese)

    • [25] GOMES R,FEITOSA F R,SOUTO C,et al.Crack detection in high-velocity oxygen-fuel-sprayed Al59.2Cu25.5Fe12.3B3 quasicrystalline coatings using piezoelectric active sensors [J].Journal of Materials Engineering and Performance,2019,28(9):5649-5660.

    • [26] FEITOSA F R P,GOMES R M,SILVA M M R,et al.Effect of oxygen/fuel ratio on the microstructure and properties of HVOF-sprayed Al59Cu25.5Fe12.5B3 quasicrystalline coatings [J].Surface and Coatings Technology,2018,353:171-178.

    • [27] FU Y Q,PENG T X,YANG D M,et al.HVOF sprayed Al-Cu-Cr quasicrystalline coatings from coarse feedstock powders[J].Surface and Coatings Technology,2014,252:29-34.

    • [28] LEPESHEV A A,KARPOV I V,USHAKOV A V.Formation of the structure and physicomechanical properties of a quasicrystalline Al-Cu-Fe alloy upon plasma spraying [J].Physics of the Solid State,2017,59(3):438-442.

    • [29] LEPESHEV A A,BAYUKOV O A,ROZHKOVA E A,et al.Modification of the phase composition and structure of the quasicrystalline Al-Cu-Fe alloy prepared by plasma spraying[J].Physics of the Solid State,2015,57(2):255-259.

    • [30] LEPESHEV A,SORDELET D J,ROZHKOVA E,et al.Modification of structure and physico-mechanical properties of Al-Cu-Fe quasicrystal alloy at plasma spraying [J].Journal of Cluster Science,2011,22(2):289-294.

    • [31] FATOBA O S,AKINLABI S A,AKINLABI E T.Effects of Fe addition on the microstructure and corrosion properties of quasicrystalline Al-Cu-Fe coatings [ C ]//2018 IEEE 9th International Conference on Mechanical and Intelligent Manufacturing Technologies(ICMIMT).IEEE,2018:74-79.

    • [32] FATOBA O S,AKINLABI S A,AKINLABI E T,et al.Microstructural analysis,micro-hardness and wear resistance properties of quasicrystalline Al-Cu-Fe coatings on Ti-6Al-4V alloy[J].Materials Research Express,2018,5(6):066538.

    • [33] FU Y Q,KANG N,LIAO H,et al.An investigation on selective laser melting of Al-Cu-Fe-Cr quasicrystal:From single layer to multilayers[J].Intermetallics,2017,86:51-58.

    • [34] LANGSDORF A,RITTER F,ASSMUS W.Determination of the prmiary solidification area of the icosahedral phases in the ternary phases diagram of Zn-Mg-Y[J].Philosophical Magazine Letters,1997,75(6):381-388.

    • [35] SHECHTMAN D,BLECH I A.The microstructure of rapidly solidified Al6Mn [J].Metallurgical Transactions A,1985,16(6):1005-1012.

    • [36] BRADLEY A J,GOLDSCHMIDT H J.An X-ray study of slowly cooled iron-copper-aluminium alloys-Part I.Alloys rich in iron and copper[J].J Inst Met,1939,65:389-401.

    • [37] TSAI A P,INOUE A,MASUMOTO T.Preparation of a new Al-Cu-Fe quasicrystal with large grain sizes by rapid solidification [J].Journal of Materials Science Letters,1987,6(12):1403-1405.

    • [38] FAUDOT F,QUIVY A,CALVAYRAC Y,et al.About the Al-Cu-Fe icosahedral phase formation [J].Materials Science and Engineering:A,1991,133:383-387.

    • [39] DONG C,BOISSIEU M,DUBOIS J M,et al.Real-time study of the growth of Al-Cu-Fe quasicrystals [J].Journal of Materials Science Letters,1989,8(7):827-830.

    • [40] DUBOIS J M.Properties-and applications of quasicrystals and complex metallic alloys[J].Chemical Society Reviews,2012,41(20):6767-6777.

    • [41] 蔡斐,周春根,宫声凯,等.喷涂粉末对 Al-Cu-Fe 准晶涂层组织结构的影响[J].北京航空航天大学学报,2005,31(8):908-912.CAI Fei,ZHOU Chungen,GONG Shengkai,et al.Effects of spraying powder composition and particle size on microstructures of Al-Cu-Fe quasicrystalline coatings [J].Journal of Beijing University of Aeronautics and Astronautics,2005,31(8):908-912.(in Chinese)

    • [42] HUTTUNEN-SAARIVIRTA E.Microstructure,fabrication and properties of quasicrystalline Al-Cu-Fe alloys:A review [J].Journal of Alloys and Compounds,2004,363(1-2):154-178.

    • [43] HOLLAND-MORITZ D,SCHROERS J,GRUSHKO B,et al.Dependence of phase selection and micro structure of quasicrystal-forming Al-Cu-Fe alloys on the processing and solidification conditions[J].Materials Science and Engineering:A,1997,226:976-980.

    • [44] LITYŃSKA-DOBRZYŃ SKA L,DUTKIEWICZ J,STAN-GŁOWIŃ SKA K,et al.Characterization of rapidly solidified Al65Cu20Fe15 alloy in form of powder or ribbon[J].Acta Physica Polonica,A,2014,126(2):512-515.

    • [45] HOLLAND-MORITZ D,SCHROERS J,HERLACH D M,et al.Undercooling and solidification behaviour of melts of the quasicrystal-forming alloysAl-Cu-Fe and Al-Cu-Co [J].Acta Materialia,1998,46(5):1601-1615.

    • [46] 赵东山,沈宁福,郭新勇,等.Al-Cu-Fe 系初生准晶相凝固过程的热力学分析[J].中国有色金属学报,2004,14(2):162-167.ZHAO Donghshan,SHEN Ningfu,GUO Xinyong,et al.Thermodynamic analyses on solidification process of primary Al-Cu-Fe icosahedral quasicrystal phase [J].Chinese Journal of Nonferrous Metals,2004,14(2):162-167.(in Chinese)

    • [47] FLEURY E,LEE S M,KIM W T,et al.Effects of air plasma spraying parameters on the Al-Cu-Fe quasicrystalline coating layer [J].Journal of Non-Crystalline Solids,2000,278(1-3):194-204.

    • [48] 傅迎庆,任仲兴,梁志强,等.基体热导率对超音速火焰喷涂 Al-Cu-Cr 准晶涂层相组成的影响[J].大连海事大学学报,2008,34(1):112-115.FU Yingqing,REN Zhongxing,LIANG Zhiqiang,et al.Influence of substrate thermal conductivity on the phase composition of high velocity oxy-fuel sprayed Al-Cu-Cr quasicrystalline coatings [J].Journal of Dalian Maritime University,2008,34(1):112-115.(in Chinese)

    • [49] USTINOV A I,MOVCHAN B A,POLISHCHUK S S.Formation of nanoquasicrystalline Al-Cu-Fe coatings at electron beam physical vapour deposition [J].Scripta Materialia,2003,50(4):533-537.

    • [50] 傅迎庆,高阳.衬底温度对等离子喷涂 Al-Cu-Cr 涂层相组成的影响[J].中国机械工程,2007,18(8):991-993.FU Yingqing,GAO Yang.Influence of substrate temperature on phase composition of plasma-sprayed Al-Cu-Cr quasicrystalline coatings[J].China Mechanical Engineering,2007,18(8):991-993.(in Chinese)

    • [51] MILMAN Y V,LOTSKO D V,DUB S N,et al.Mechanical properties of quasicrystalline Al-Cu-Fe coatings with submicron-sized grains [J].Surface & Coatings Technology,2007,201(12):5937-5943.

    • [52] XIAO M,LIU X Q,ZENG S,et al.Effects of particle size on the microstructure and mechanical properties of HVAF-sprayed al-based quasicrystalline coatings[J].Journal of Thermal Spray Technology,2021,30(5):1380-1392.

    • [53] DING Y,NORTHWOOD D O,ALPAS A T.Fabrication by magnetron sputtering of Al-Cu-Fe quasicrystalline films for tribological applications [J].Surface and Coatings Technology 1997,96(2-3):140-170.

    • [54] ČEKADA M,PANJAN P,DOLINŠEK J,et al.Diffusion during annealing of Al/Cu/Fe thin films[J].Thin Solid Films,2007,515(18):7135-7139.

    • [55] PARSAMEHR H,CHEN T S,WANG D S,et al.Thermal spray coating of Al-Cu-Fe quasicrystals:Dynamic observations and surface properties[J].Materialia,2019,8:100432.

    • [56] PARSAMEHR H,YANG C L,LIU W T,et al.Direct observation of growth and stability of Al-Cu-Fe quasicrystal thin films[J].Acta Materialia,2019,174:1-8.

    • [57] PARSAMEHR H,CHANG S Y,LAI C H.Mechanical and surface properties of Aluminum-Copper-Iron quasicrystal thin films [J].Journal of Alloys and Compounds,2018,732:952-957.

    • [58] LEE K,CHEN Y,DAI W,et al.Design of quasicrystal alloys with favorable tribological performance in view of microstructure and mechanical properties[J].Materials & Design,2020,193:108735.

    • [59] 张秦梁,梁秀兵,张志彬,等.铝基非晶纳米晶复合涂层的喷涂工艺[J].中国表面工程,2015,28(6):104-110.ZHANG Qinliang,LIANG Xiubing,ZHANG Zhibin,et al.Spraying process of Al-based amorphous and nanocrystalline composite coatings [J].China Surface Engineering,2015,28(6):104-110.(in Chinese)

    • [60] LEPESHEV A A,ROZHKOVA E A,KARPOV I V,et al.Physical,mechanical,and tribological properties of quasicrystalline Al-Cu-Fe coatings prepared by plasma spraying [J].Physics of the Solid State,2013,55(12):2531-2536.

    • [61] JAFARI R,MENINI R,FARZANEH M.Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings [J].Applied Surface Science,2010,257(5):1540-1543.

    • [62] MORA J,GARC Í A P,MUELAS R,et al.Hard quasicrystalline coatings deposited by hvof thermal spray to reduce ice accretion in aero-structures components[J].Coatings,2020,10(3):1-23.

    • [63] EDUOK U,SZPUNAR J.Bioinspired and hydrophobic alkyl-silanized protective polymer coating for Mg alloy[J].Progress in Natural Science:Materials International,2018,28(3):354-362.

    • [64] LATTHE S S,IMAI H,GANESAN V,et al.Porous superhydrophobic silica films by sol-gel process[J].Microporous and Mesoporous Materials,2010,130(1-3):115-121.

    • [65] ZHAO N,XU J,XIE Q D,et al.Fabrication of biomimetic superhydrophobic coating with a micro-nano-binary structure[J].Macromolecular Rapid Communications,2005,26(13):1075-1080.

    • [66] YANG Z,LIU X P,TIAN Y L.Hybrid laser ablation and chemical modification for fast fabrication of bio-inspired superhydrophobic surface with excellent self-cleaning,stability and corrosion resistance[J].Journal of Bionic Engineering,2019,16(1):13-26.

    • [67] BALDACCHINI T,CAREY J E,ZHOU M,et al.Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser [J].Langmuir the Acs Journal of Surfaces and Colloids,2006,22(11):4917-4919.

    • [68] 郭永刚,张鑫,耿铁,等.超疏水表面耐久性能的研究进展 [J].中国表面工程,2018,31(5):63-72.GUO Yonggang,ZHANG Xin,GENG Tie,et al.Research progress on durability of superhydrophobic surfaces [J].China Surface Engineering,2018,31(5):63-72.(in Chinese)

    • [69] 刘永明,施建宇,鹿芹芹,等.基于杨氏方程的固体表面能计算研究进展[J].材料导报,2013,27(11):123-129.LIU Yongming,SHI Jianyu,LU Qinqin,et al.Research progress on calculation of solid surface tension based on young’ s equation[J].Materials Reports,2013,27(11):123-129.(in Chinese)

    • [70] 蔡明伟,曲寿江,魏先顺,等.喷涂工艺对超音速火焰喷涂 Al-Cu-Fe-Si 准晶合金涂层性能的影响[J].表面技术,2016,45(2):73-78.CAI Mingwei,QU Shoujiang,WEI Xianshun,et al.Effect of spraying technology on the properties of AC-HVAF sprayed Al-Cu-Fe-Si quasicrystalline alloy coating[J].Surface Technology,2016,45(2):73-78.(in Chinese)

    • [71] 陈泰盛,吕明生,刘武汉,等.疏水性合金膜及其制造方法:TW I555855 B[P].2016-11-01.CHEN Taisheng,LÜ Mingsheng,LIU Wuhan,et al.Hydrophobic alloy film and manufacturing method thereof:TW I555855 B[P].2016-11-01.(in Chinese)

    • [72] 齐育红,张占平,黑祖昆,等.Al65Cu20Cr15准晶颗粒/Al 基复合材料的摩擦学性能[J].摩擦学学报,1998,18(2):34-40.QI Yuhong,ZHANG Zhanping,HEI Zukun,et al.Tribological properties of Al65Cu20Cr15 quasicrystalline particles/Al matrix composite alloys [J].Tribology,1998,18(2):34-40.(in Chinese)

    • [73] SORDELET D J,BESSER M F,LOGSDON J L.Abrasive wear behavior of Al-Cu-Fe quasicrystalline composite coatings [J].Materials Science & Engineering A,1998,255(1-2):54-65.

    • [74] 罗军明,袁永瑞,邓莉萍.Al62.8Cu25Fe12Y0.2 稀土准晶涂层的制备及耐磨性研究 [J].新技术新工艺,2006(1):115-117.LUO Junming,YUAN Yongrui,DENG Liping.Investigation on preparetion and wear resistance of Al62.8Cu25Fe12Y0.2 quasicrystal coating with rare earth[J].New Technology & New Process,2006(1):115-117.(in Chinese)

    • [75] DELIMA B A S G,GOMES R M,DELIMA S J G,et al.Self-lubricating,low-friction,wear-resistant Al-based quasicrystalline coatings[J].Science and Technology of Advanced Materials,2016,17(1):71-79.

    • [76] DUBOIS J M,BELIN-FERR E.Friction and solid-solid adhesion on complex metallic alloys [J].Science & Technology of Advanced Materials,2014,15(3):034804.

    • [77] FEHRENBACHER L,ZABINSKI J S,PHILLIPS B S,et al.Microstructure development and tribological behavior in alcufe quasicrystalline thin films[J].Tribology Letters,2004,17(3):435-443.

    • [78] SALES M,MERSTALLINGER A,USTINOV A I,et al.Effect of the addition of crystalline β-phase in Al-Cu-Fe quasicrystalline coatings on their tribological properties [J].Surface and Coatings Technology,2007,201(14):6206-6211.

    • [79] LEE K,DAI W,NAUGLE D,et al.Effects of microstructure of quasicrystal alloys on their mechanical and tribological performance[J].Journal of Tribology,2018,140(5):051605.

    • [80] 丁亚茹,张顺,高思为,等.镁合金AZ91D激光熔覆 Al65Cu20Fe15 涂层的耐腐蚀性[J].热加工工艺,2016,45(14):168-170.DING Yaru,ZHANG Shun,GAO Siwei,et al.Corrosion resistance of laser cladding Al65Cu20Fe15 coating on AZ91D Mg alloy[J].Hot Working Technology,2016,45(14):168-170.(in Chinese)

    • [81] WOLF W,KOGA G Y,SCHULZ R,et al.Wear and corrosion performance of Al-Cu-Fe-(Cr)quasicrystalline coatings produced by HVOF[J].Journal of Thermal Spray Technology,2020,29(5):1195-1207.

    • [82] RYABTSEV S I,POLONSKYY V A,SUKHOVA O V.Effect of scandium on the structure and corrosion properties of vapor-deposited nanostructured quasicrystalline Al-Cu-Fe films [J].Powder Metallurgy and Metal Ceramics,2020,58(9-10):567-575.

    • [83] RYABTSEV S I,POLONSKYY V A,SUKHOVA O V,et al.Structure,Electrical and corrosion properties of quasicrystalline Al-Cu-Fe-Sc Thin Films [J].Journal of Nano and Electronic Physics,2019,11(5):1-5.

    • [84] RYABTSEV S I,POLONSKYI V A,SUKHOVA O V.Structure and corrosion of quasicrystalline cast alloys and Al-Cu-Fe film coatings[J].Materials Science,2020,56(2):263-272.

    • [85] 吕威闫,王晓明,常青,等.微合金化对铝基非晶合金涂层耐蚀性能的影响[J].中国表面工程,2019,32(6):73-80.LV Weiyan,WANG Xiaoming,CHANG Qing,et al.Effects of microalloying on corrosion resistance of Al-based amorphous coating[J].China Surface Engineering,2019,32(6):73-80.(in Chinese)

    • [86] 于洋,周根春,孔娟.TC9 合金基体上 Al-Cu-Fe-Cr 准晶涂层抗氧化性能的研究[J].钛工业进展,2003,20(3):22-24.YU Yang,ZHOU Chungen,KONG Juan,et al.Study on oxidation resistance of Al-Cu-Fe-Cr quasicrystalline coating on TC9 alloy substrate[J].Titanium Industry Progress,2003,20(3):22-24.(in Chinese)

    • [87] JAMSHIDIL C L A,RODBARI R J,NASCIMENTO L.Al62 Cu25 Fe12 and quasicrystalline phases and their influence on oxidation[J].Orbital the Electronic Journal of Chemistry,2017,9(1):27-35.

    • [88] DUBOIS J M,KANG S S,MASSIANI Y.Application of quasicrystalline alloys to surface coating of soft metals [J].Journal of Non-Crystalline Solids,1993,153-154:443-445.

    • [89] JANOT C.The properties and applications of quasicrystals[J].Europhysics News,1996,27(2):60-64.

    • [90] 王全胜,李和章,李佳彬,等.等离子喷涂AlCuCoSi准晶热障涂层性能研究[J].热喷涂技术,2009,1(1):30-33.WANG Quansheng,LI Hezhang,LI Jiabin,et al.Study on properties of AlCuCoSi quasicrystal TBCs by APS[J].Thermal Spray Technology,2009,1(1):30-33.(in Chinese)

    • [91] WOLF W,SCHULZ R,SAVOIE S,et al.Structural,mechanical and thermal characterization of an Al-Co-Fe-Cr alloy for wear and thermal barrier coating applications[J].Surface and Coatings Technology,2017,319:241-248.

    • [92] DEMANGE V,MILANDRI A,DE WEERD M,et al.Optical conductivity of Al-Cr-Fe approximant compounds [J].Physical Review B,2002,65(14):144205.

    • [93] EISENHAMMER T,HAUGENEDER A,MAHR A.High-temperature optical properties and stability of selective absorbers based on quasicrystalline AlCuFe[J].Solar Energy Materials and Solar Cells,1998,54(1-4):379-386.

  • 参考文献

    • [1] SHECHTMAN D G,BLECH I A,GRATIAS D.Metallic phase with long-range orientational order and no translational symmetry [J].Physical Review Letters,1984,53(20):1951-1953.

    • [2] 董闯.准晶材料[M].北京:国防工业出版社,1998:5-6.DONG Chuang.Quasicrystalline material[M].Beijing:National Defense Industry Press,1998:5-6.(in Chinese)

    • [3] DUBOIS J M.New prospects from potential applications of quasicrystalline materials[J].Materials Science & Engineering A,2000,294:4-9.

    • [4] RABSON D A.Toward theories of friction and adhesion on quasicrystals[J].Progress in Surface Science,2012,87(9-12):253-271.

    • [5] BRUNET P,ZHANG L M,SORDELET D J,et al.Comparative study of microstructural and tribological properties of sintered,bulk icosahedral samples[J].Materials Science & Engineering A,2000,294-296:74-78.

    • [6] TANABE T,KAMEOKA S,TSAI A P.Evolution of microstructure induced by calcination in leached Al-Cu-Fe quasicrystal and its effects on catalytic activity [J].Journal of Materials Science,2011,46(7):2242-2250.

    • [7] KAMEOKA S,TANABE T,SATOH F,et al.Activation of Al-Cu-Fe quasicrystalline surface:fabrication of a fine nanocomposite layer with high catalytic performance[J].Science and Technology of Advanced Materials,2014,15(1):014801.

    • [8] KAMEOKA S,TANABE T,TSAI A P.High performance catalysts prepared from Al-Cu-Fe icosahedral quasicrystal [J].Recent Patents on Materials Science,2015,8(2):155-165.

    • [9] 张涛,员文杰,宫志利.一种适用于发动机的AlcPdaXb合金粉机油添加剂及其制备方法:CN101570709 [ P].2009-11-04.ZHANG Tao,YUAN WenJie,GONG Zhili.AlcPdaXb alloy powder engine oil additive applicable to engine and preparation method thereof:CN101570709[P].2009-11-04.(in Chinese)

    • [10] TAKAGIWA Y,KIMURA K.Metallic-covalent bonding conversion and thermoelectric properties of Al-based icosahedral quasicrystals and approximants [J].Science & Technology of Advanced Materials,2014,15(4):044802.

    • [11] TAKEUCHI T.Very large thermal rectification in bulk composites consisting partly of icosahedral quasicrystals [J].Science & Technology of Advanced Materials,2014,15(6):064801.

    • [12] 陈永君,滕琳琳,白妍,等一种用于不锈钢表面的 Al aCubFecXd 合金研磨抛光膏:CN111205774A[ P ].2020-05-29.CHEN Yongjun,TENG Linlin,BAI Yan,et al.AlaCubFecXd alloy grinding and polishing paste for stainless steel surfaces:CN111205774A[P].2020-05-29.(in Chinese)

    • [13] 陈永君,滕琳琳,白妍,等.一种用于不锈钢表面的 Ti aZrbNi c 合金研磨抛光膏:CN111171728A[ P ].2020-05-19.CHEN Yongjun,TENG Linlin,BAI Yan,et al.TiaZrbNic alloy grinding and polishing paste for stainless steel surface:CN111171728A[P].2020-05-19.

    • [14] 辛先峰,董闯,庞厂,等.涂层和薄膜态准晶材料的研究现状及展望[J].表面技术,2020,49(5):19-25.XIN Xianfeng,DONG Chuang,PANG Chang,et al.State-of-the-art and prospects of quasicrystalline coatings and thin films [J].Surface Technology,2020,49(5):19-25.(in Chinese)

    • [15] USHAKOV A V,KARPOV I V,FEDOROV L Y,et al.Synthesis of quasicrysalline powders and coatings by vacuum arc plasma evaporation [J].Physics of the Solid State,2020,61(12):2547-2552.

    • [16] KANJILAL A,TIWARI U,CHATTERJEE R.Preparation of Al-Cu-Fe thin films by vapor deposition technique from a single source [J].Materials Research Bulletin,2002,37(2):343-351.

    • [17] YADAV T P,SINGH D,SHAHI R R,et al.Synthesis of quasicrystalline film of Al-Ga-Pd-Mn alloy [J].Thin Solid Films,2013,534:265-269.

    • [18] POLISHCHUK S,USTINOV A,TELYCHKO V,et al.Fabrication of thick,crack-free quasicrystalline Al-Cu-Fe coatings by electron-beam deposition[J].Surface and Coatings Technology,2016,291:406-412.

    • [19] ČEKADA M,PANJAN P,JUŔIC D,et al.Deposition and characterisation of Al-Cu-Fe thin films [J].Thin Solid Films,2004,459(1-2):267-270.

    • [20] LU M,CHIEN C L.Al65Cu20Fe15 in amorphous,crystalline and quasicrystalline states [J].Hyperfine Interactions,1992,71(1):1525-1529.

    • [21] MOSKALEWICZ T,DUBIEL B,WENDLER B.AlCuFe(Cr)and AlCoFeCr coatings for improvement of elevated temperature oxidation resistance of a near-α titanium alloy [J].Materials Characterization,2013,83:161-169.

    • [22] OLSSON S,BROITMAN E,GARBRECHT M,et al.Mechanical and tribological properties of AlCuFe quasicrystal and Al(Si)CuFe approximant thin films [J].Journal of Materials Research,2015,31(2):232-240.

    • [23] PHILLIPS B S,ZABINSKI J S.Frictional characteristics of quasicrystals at high temperatures[J].Tribology Letters,2003,15(1):57-64.

    • [24] 傅迎庆,周锋,张立志,等.爆炸喷涂 Al-Cu-Cr 准晶涂层的组织及硬度研究[J].材料热处理学报,2007,28(S1):193-197.FU Yingqing,ZHOU Feng,ZHANG Lizhi,et al.Microstructure and hardness properties of detonation spraying Al-Cu-Cr quasicrystalline coatings[J].Transactions of Materials and Heat Treatment,2007,28(S1):193-197.(in Chinese)

    • [25] GOMES R,FEITOSA F R,SOUTO C,et al.Crack detection in high-velocity oxygen-fuel-sprayed Al59.2Cu25.5Fe12.3B3 quasicrystalline coatings using piezoelectric active sensors [J].Journal of Materials Engineering and Performance,2019,28(9):5649-5660.

    • [26] FEITOSA F R P,GOMES R M,SILVA M M R,et al.Effect of oxygen/fuel ratio on the microstructure and properties of HVOF-sprayed Al59Cu25.5Fe12.5B3 quasicrystalline coatings [J].Surface and Coatings Technology,2018,353:171-178.

    • [27] FU Y Q,PENG T X,YANG D M,et al.HVOF sprayed Al-Cu-Cr quasicrystalline coatings from coarse feedstock powders[J].Surface and Coatings Technology,2014,252:29-34.

    • [28] LEPESHEV A A,KARPOV I V,USHAKOV A V.Formation of the structure and physicomechanical properties of a quasicrystalline Al-Cu-Fe alloy upon plasma spraying [J].Physics of the Solid State,2017,59(3):438-442.

    • [29] LEPESHEV A A,BAYUKOV O A,ROZHKOVA E A,et al.Modification of the phase composition and structure of the quasicrystalline Al-Cu-Fe alloy prepared by plasma spraying[J].Physics of the Solid State,2015,57(2):255-259.

    • [30] LEPESHEV A,SORDELET D J,ROZHKOVA E,et al.Modification of structure and physico-mechanical properties of Al-Cu-Fe quasicrystal alloy at plasma spraying [J].Journal of Cluster Science,2011,22(2):289-294.

    • [31] FATOBA O S,AKINLABI S A,AKINLABI E T.Effects of Fe addition on the microstructure and corrosion properties of quasicrystalline Al-Cu-Fe coatings [ C ]//2018 IEEE 9th International Conference on Mechanical and Intelligent Manufacturing Technologies(ICMIMT).IEEE,2018:74-79.

    • [32] FATOBA O S,AKINLABI S A,AKINLABI E T,et al.Microstructural analysis,micro-hardness and wear resistance properties of quasicrystalline Al-Cu-Fe coatings on Ti-6Al-4V alloy[J].Materials Research Express,2018,5(6):066538.

    • [33] FU Y Q,KANG N,LIAO H,et al.An investigation on selective laser melting of Al-Cu-Fe-Cr quasicrystal:From single layer to multilayers[J].Intermetallics,2017,86:51-58.

    • [34] LANGSDORF A,RITTER F,ASSMUS W.Determination of the prmiary solidification area of the icosahedral phases in the ternary phases diagram of Zn-Mg-Y[J].Philosophical Magazine Letters,1997,75(6):381-388.

    • [35] SHECHTMAN D,BLECH I A.The microstructure of rapidly solidified Al6Mn [J].Metallurgical Transactions A,1985,16(6):1005-1012.

    • [36] BRADLEY A J,GOLDSCHMIDT H J.An X-ray study of slowly cooled iron-copper-aluminium alloys-Part I.Alloys rich in iron and copper[J].J Inst Met,1939,65:389-401.

    • [37] TSAI A P,INOUE A,MASUMOTO T.Preparation of a new Al-Cu-Fe quasicrystal with large grain sizes by rapid solidification [J].Journal of Materials Science Letters,1987,6(12):1403-1405.

    • [38] FAUDOT F,QUIVY A,CALVAYRAC Y,et al.About the Al-Cu-Fe icosahedral phase formation [J].Materials Science and Engineering:A,1991,133:383-387.

    • [39] DONG C,BOISSIEU M,DUBOIS J M,et al.Real-time study of the growth of Al-Cu-Fe quasicrystals [J].Journal of Materials Science Letters,1989,8(7):827-830.

    • [40] DUBOIS J M.Properties-and applications of quasicrystals and complex metallic alloys[J].Chemical Society Reviews,2012,41(20):6767-6777.

    • [41] 蔡斐,周春根,宫声凯,等.喷涂粉末对 Al-Cu-Fe 准晶涂层组织结构的影响[J].北京航空航天大学学报,2005,31(8):908-912.CAI Fei,ZHOU Chungen,GONG Shengkai,et al.Effects of spraying powder composition and particle size on microstructures of Al-Cu-Fe quasicrystalline coatings [J].Journal of Beijing University of Aeronautics and Astronautics,2005,31(8):908-912.(in Chinese)

    • [42] HUTTUNEN-SAARIVIRTA E.Microstructure,fabrication and properties of quasicrystalline Al-Cu-Fe alloys:A review [J].Journal of Alloys and Compounds,2004,363(1-2):154-178.

    • [43] HOLLAND-MORITZ D,SCHROERS J,GRUSHKO B,et al.Dependence of phase selection and micro structure of quasicrystal-forming Al-Cu-Fe alloys on the processing and solidification conditions[J].Materials Science and Engineering:A,1997,226:976-980.

    • [44] LITYŃSKA-DOBRZYŃ SKA L,DUTKIEWICZ J,STAN-GŁOWIŃ SKA K,et al.Characterization of rapidly solidified Al65Cu20Fe15 alloy in form of powder or ribbon[J].Acta Physica Polonica,A,2014,126(2):512-515.

    • [45] HOLLAND-MORITZ D,SCHROERS J,HERLACH D M,et al.Undercooling and solidification behaviour of melts of the quasicrystal-forming alloysAl-Cu-Fe and Al-Cu-Co [J].Acta Materialia,1998,46(5):1601-1615.

    • [46] 赵东山,沈宁福,郭新勇,等.Al-Cu-Fe 系初生准晶相凝固过程的热力学分析[J].中国有色金属学报,2004,14(2):162-167.ZHAO Donghshan,SHEN Ningfu,GUO Xinyong,et al.Thermodynamic analyses on solidification process of primary Al-Cu-Fe icosahedral quasicrystal phase [J].Chinese Journal of Nonferrous Metals,2004,14(2):162-167.(in Chinese)

    • [47] FLEURY E,LEE S M,KIM W T,et al.Effects of air plasma spraying parameters on the Al-Cu-Fe quasicrystalline coating layer [J].Journal of Non-Crystalline Solids,2000,278(1-3):194-204.

    • [48] 傅迎庆,任仲兴,梁志强,等.基体热导率对超音速火焰喷涂 Al-Cu-Cr 准晶涂层相组成的影响[J].大连海事大学学报,2008,34(1):112-115.FU Yingqing,REN Zhongxing,LIANG Zhiqiang,et al.Influence of substrate thermal conductivity on the phase composition of high velocity oxy-fuel sprayed Al-Cu-Cr quasicrystalline coatings [J].Journal of Dalian Maritime University,2008,34(1):112-115.(in Chinese)

    • [49] USTINOV A I,MOVCHAN B A,POLISHCHUK S S.Formation of nanoquasicrystalline Al-Cu-Fe coatings at electron beam physical vapour deposition [J].Scripta Materialia,2003,50(4):533-537.

    • [50] 傅迎庆,高阳.衬底温度对等离子喷涂 Al-Cu-Cr 涂层相组成的影响[J].中国机械工程,2007,18(8):991-993.FU Yingqing,GAO Yang.Influence of substrate temperature on phase composition of plasma-sprayed Al-Cu-Cr quasicrystalline coatings[J].China Mechanical Engineering,2007,18(8):991-993.(in Chinese)

    • [51] MILMAN Y V,LOTSKO D V,DUB S N,et al.Mechanical properties of quasicrystalline Al-Cu-Fe coatings with submicron-sized grains [J].Surface & Coatings Technology,2007,201(12):5937-5943.

    • [52] XIAO M,LIU X Q,ZENG S,et al.Effects of particle size on the microstructure and mechanical properties of HVAF-sprayed al-based quasicrystalline coatings[J].Journal of Thermal Spray Technology,2021,30(5):1380-1392.

    • [53] DING Y,NORTHWOOD D O,ALPAS A T.Fabrication by magnetron sputtering of Al-Cu-Fe quasicrystalline films for tribological applications [J].Surface and Coatings Technology 1997,96(2-3):140-170.

    • [54] ČEKADA M,PANJAN P,DOLINŠEK J,et al.Diffusion during annealing of Al/Cu/Fe thin films[J].Thin Solid Films,2007,515(18):7135-7139.

    • [55] PARSAMEHR H,CHEN T S,WANG D S,et al.Thermal spray coating of Al-Cu-Fe quasicrystals:Dynamic observations and surface properties[J].Materialia,2019,8:100432.

    • [56] PARSAMEHR H,YANG C L,LIU W T,et al.Direct observation of growth and stability of Al-Cu-Fe quasicrystal thin films[J].Acta Materialia,2019,174:1-8.

    • [57] PARSAMEHR H,CHANG S Y,LAI C H.Mechanical and surface properties of Aluminum-Copper-Iron quasicrystal thin films [J].Journal of Alloys and Compounds,2018,732:952-957.

    • [58] LEE K,CHEN Y,DAI W,et al.Design of quasicrystal alloys with favorable tribological performance in view of microstructure and mechanical properties[J].Materials & Design,2020,193:108735.

    • [59] 张秦梁,梁秀兵,张志彬,等.铝基非晶纳米晶复合涂层的喷涂工艺[J].中国表面工程,2015,28(6):104-110.ZHANG Qinliang,LIANG Xiubing,ZHANG Zhibin,et al.Spraying process of Al-based amorphous and nanocrystalline composite coatings [J].China Surface Engineering,2015,28(6):104-110.(in Chinese)

    • [60] LEPESHEV A A,ROZHKOVA E A,KARPOV I V,et al.Physical,mechanical,and tribological properties of quasicrystalline Al-Cu-Fe coatings prepared by plasma spraying [J].Physics of the Solid State,2013,55(12):2531-2536.

    • [61] JAFARI R,MENINI R,FARZANEH M.Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings [J].Applied Surface Science,2010,257(5):1540-1543.

    • [62] MORA J,GARC Í A P,MUELAS R,et al.Hard quasicrystalline coatings deposited by hvof thermal spray to reduce ice accretion in aero-structures components[J].Coatings,2020,10(3):1-23.

    • [63] EDUOK U,SZPUNAR J.Bioinspired and hydrophobic alkyl-silanized protective polymer coating for Mg alloy[J].Progress in Natural Science:Materials International,2018,28(3):354-362.

    • [64] LATTHE S S,IMAI H,GANESAN V,et al.Porous superhydrophobic silica films by sol-gel process[J].Microporous and Mesoporous Materials,2010,130(1-3):115-121.

    • [65] ZHAO N,XU J,XIE Q D,et al.Fabrication of biomimetic superhydrophobic coating with a micro-nano-binary structure[J].Macromolecular Rapid Communications,2005,26(13):1075-1080.

    • [66] YANG Z,LIU X P,TIAN Y L.Hybrid laser ablation and chemical modification for fast fabrication of bio-inspired superhydrophobic surface with excellent self-cleaning,stability and corrosion resistance[J].Journal of Bionic Engineering,2019,16(1):13-26.

    • [67] BALDACCHINI T,CAREY J E,ZHOU M,et al.Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser [J].Langmuir the Acs Journal of Surfaces and Colloids,2006,22(11):4917-4919.

    • [68] 郭永刚,张鑫,耿铁,等.超疏水表面耐久性能的研究进展 [J].中国表面工程,2018,31(5):63-72.GUO Yonggang,ZHANG Xin,GENG Tie,et al.Research progress on durability of superhydrophobic surfaces [J].China Surface Engineering,2018,31(5):63-72.(in Chinese)

    • [69] 刘永明,施建宇,鹿芹芹,等.基于杨氏方程的固体表面能计算研究进展[J].材料导报,2013,27(11):123-129.LIU Yongming,SHI Jianyu,LU Qinqin,et al.Research progress on calculation of solid surface tension based on young’ s equation[J].Materials Reports,2013,27(11):123-129.(in Chinese)

    • [70] 蔡明伟,曲寿江,魏先顺,等.喷涂工艺对超音速火焰喷涂 Al-Cu-Fe-Si 准晶合金涂层性能的影响[J].表面技术,2016,45(2):73-78.CAI Mingwei,QU Shoujiang,WEI Xianshun,et al.Effect of spraying technology on the properties of AC-HVAF sprayed Al-Cu-Fe-Si quasicrystalline alloy coating[J].Surface Technology,2016,45(2):73-78.(in Chinese)

    • [71] 陈泰盛,吕明生,刘武汉,等.疏水性合金膜及其制造方法:TW I555855 B[P].2016-11-01.CHEN Taisheng,LÜ Mingsheng,LIU Wuhan,et al.Hydrophobic alloy film and manufacturing method thereof:TW I555855 B[P].2016-11-01.(in Chinese)

    • [72] 齐育红,张占平,黑祖昆,等.Al65Cu20Cr15准晶颗粒/Al 基复合材料的摩擦学性能[J].摩擦学学报,1998,18(2):34-40.QI Yuhong,ZHANG Zhanping,HEI Zukun,et al.Tribological properties of Al65Cu20Cr15 quasicrystalline particles/Al matrix composite alloys [J].Tribology,1998,18(2):34-40.(in Chinese)

    • [73] SORDELET D J,BESSER M F,LOGSDON J L.Abrasive wear behavior of Al-Cu-Fe quasicrystalline composite coatings [J].Materials Science & Engineering A,1998,255(1-2):54-65.

    • [74] 罗军明,袁永瑞,邓莉萍.Al62.8Cu25Fe12Y0.2 稀土准晶涂层的制备及耐磨性研究 [J].新技术新工艺,2006(1):115-117.LUO Junming,YUAN Yongrui,DENG Liping.Investigation on preparetion and wear resistance of Al62.8Cu25Fe12Y0.2 quasicrystal coating with rare earth[J].New Technology & New Process,2006(1):115-117.(in Chinese)

    • [75] DELIMA B A S G,GOMES R M,DELIMA S J G,et al.Self-lubricating,low-friction,wear-resistant Al-based quasicrystalline coatings[J].Science and Technology of Advanced Materials,2016,17(1):71-79.

    • [76] DUBOIS J M,BELIN-FERR E.Friction and solid-solid adhesion on complex metallic alloys [J].Science & Technology of Advanced Materials,2014,15(3):034804.

    • [77] FEHRENBACHER L,ZABINSKI J S,PHILLIPS B S,et al.Microstructure development and tribological behavior in alcufe quasicrystalline thin films[J].Tribology Letters,2004,17(3):435-443.

    • [78] SALES M,MERSTALLINGER A,USTINOV A I,et al.Effect of the addition of crystalline β-phase in Al-Cu-Fe quasicrystalline coatings on their tribological properties [J].Surface and Coatings Technology,2007,201(14):6206-6211.

    • [79] LEE K,DAI W,NAUGLE D,et al.Effects of microstructure of quasicrystal alloys on their mechanical and tribological performance[J].Journal of Tribology,2018,140(5):051605.

    • [80] 丁亚茹,张顺,高思为,等.镁合金AZ91D激光熔覆 Al65Cu20Fe15 涂层的耐腐蚀性[J].热加工工艺,2016,45(14):168-170.DING Yaru,ZHANG Shun,GAO Siwei,et al.Corrosion resistance of laser cladding Al65Cu20Fe15 coating on AZ91D Mg alloy[J].Hot Working Technology,2016,45(14):168-170.(in Chinese)

    • [81] WOLF W,KOGA G Y,SCHULZ R,et al.Wear and corrosion performance of Al-Cu-Fe-(Cr)quasicrystalline coatings produced by HVOF[J].Journal of Thermal Spray Technology,2020,29(5):1195-1207.

    • [82] RYABTSEV S I,POLONSKYY V A,SUKHOVA O V.Effect of scandium on the structure and corrosion properties of vapor-deposited nanostructured quasicrystalline Al-Cu-Fe films [J].Powder Metallurgy and Metal Ceramics,2020,58(9-10):567-575.

    • [83] RYABTSEV S I,POLONSKYY V A,SUKHOVA O V,et al.Structure,Electrical and corrosion properties of quasicrystalline Al-Cu-Fe-Sc Thin Films [J].Journal of Nano and Electronic Physics,2019,11(5):1-5.

    • [84] RYABTSEV S I,POLONSKYI V A,SUKHOVA O V.Structure and corrosion of quasicrystalline cast alloys and Al-Cu-Fe film coatings[J].Materials Science,2020,56(2):263-272.

    • [85] 吕威闫,王晓明,常青,等.微合金化对铝基非晶合金涂层耐蚀性能的影响[J].中国表面工程,2019,32(6):73-80.LV Weiyan,WANG Xiaoming,CHANG Qing,et al.Effects of microalloying on corrosion resistance of Al-based amorphous coating[J].China Surface Engineering,2019,32(6):73-80.(in Chinese)

    • [86] 于洋,周根春,孔娟.TC9 合金基体上 Al-Cu-Fe-Cr 准晶涂层抗氧化性能的研究[J].钛工业进展,2003,20(3):22-24.YU Yang,ZHOU Chungen,KONG Juan,et al.Study on oxidation resistance of Al-Cu-Fe-Cr quasicrystalline coating on TC9 alloy substrate[J].Titanium Industry Progress,2003,20(3):22-24.(in Chinese)

    • [87] JAMSHIDIL C L A,RODBARI R J,NASCIMENTO L.Al62 Cu25 Fe12 and quasicrystalline phases and their influence on oxidation[J].Orbital the Electronic Journal of Chemistry,2017,9(1):27-35.

    • [88] DUBOIS J M,KANG S S,MASSIANI Y.Application of quasicrystalline alloys to surface coating of soft metals [J].Journal of Non-Crystalline Solids,1993,153-154:443-445.

    • [89] JANOT C.The properties and applications of quasicrystals[J].Europhysics News,1996,27(2):60-64.

    • [90] 王全胜,李和章,李佳彬,等.等离子喷涂AlCuCoSi准晶热障涂层性能研究[J].热喷涂技术,2009,1(1):30-33.WANG Quansheng,LI Hezhang,LI Jiabin,et al.Study on properties of AlCuCoSi quasicrystal TBCs by APS[J].Thermal Spray Technology,2009,1(1):30-33.(in Chinese)

    • [91] WOLF W,SCHULZ R,SAVOIE S,et al.Structural,mechanical and thermal characterization of an Al-Co-Fe-Cr alloy for wear and thermal barrier coating applications[J].Surface and Coatings Technology,2017,319:241-248.

    • [92] DEMANGE V,MILANDRI A,DE WEERD M,et al.Optical conductivity of Al-Cr-Fe approximant compounds [J].Physical Review B,2002,65(14):144205.

    • [93] EISENHAMMER T,HAUGENEDER A,MAHR A.High-temperature optical properties and stability of selective absorbers based on quasicrystalline AlCuFe[J].Solar Energy Materials and Solar Cells,1998,54(1-4):379-386.

  • 手机扫一扫看