en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

罗朋,男,1998年出生,硕士研究生。主要研究方向为高功率磁控溅射放电及镀膜技术。E-mail:lp1256568693@163.com;

巩春志(通信作者),1979年出生,博士,副研究员,硕士研究生导师。主要研究方向为真空薄膜制备技术。E-mail:chunzhigong@163.com

中图分类号:TG174

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210526001

参考文献 1
ZHANG Weiran,LIAW P K,ZHANG Yong.Science and technology in high-entropy alloys [J].Science China Materials,2018,61(1):2-22.
参考文献 2
周鹏远,刘洪喜,张晓伟,等.轻质高熵合金的研究进展 [J].中国表面工程,2021,34(2):13-24.ZHOU Pengyuan,LIU Hongxi,ZHANG Xiaowei,et al.Research progress of light weight high entropy alloy[J].China Surface Engineering,2021,34(2):13-24.(in Chinese)
参考文献 3
YEH Jienwei,LIN Sujien,CHIN Tsungshune,et al.Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements [J].Metallurgical and Materials Transactions A,2004,35(8):2533-2536.
参考文献 4
TONG Chungjin,CHEN Yuliang,YEH Jienwei,et al.Microstructure characterization of Al xCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J].Metallurgical and Materials Transactions A,2005,36(4):881-893.
参考文献 5
李工,张翼飞,马一墨,等.多主元合金的研究进展[J].燕山大学学报,2020,44(4):331-339.LI Gong,ZHANG Yifei,Ma Yimo,et al.Research progress of multi-principal element alloys [J].Journal of Yanshan University,2020,44(4):331-339.(in Chinese)
参考文献 6
CHUN N G,GUO Sheng,LUAN Junhua,et al.Entropy-driven phase stability and slow diffusion kinetics in an Al _(0.5)CoCrCuFeNi high entropy alloy[J].Intermetallics,2012,31:165-172.
参考文献 7
SHENG Wenjie,YANG Xiao,WANG Cong,et al.Nano-crystallization of high-entropy amorphous NbTiAlSiWxNy films prepared by magnetron sputtering[J].Entropy,2016,18(6):226.
参考文献 8
ZHANG Mina,ZHOU Xianglin,YU Xiangnan,et al.Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding [J].Surface & Coatings Technology,2017,311:321-329.
参考文献 9
SHON Youkang,JOSHI Sameehan S,KATAKAM Shravana,et al.Laser additive synthesis of high entropy alloy coating on aluminum:Corrosion behavior [J].Materials Letters,2015,142:122-125.
参考文献 10
CHANG Shouyi,LI Chenen,CHIANG Shengcheng,et al.4-nm thick multilayer structure of multi-component(AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects [J].Journal of Alloys and Compounds,2011,515:4-7.
参考文献 11
王俊,郝赛.磁控溅射技术的原理与发展[J].科技创新与应用,2015(2):35.WANG Jun,HAO Sai.The principle and development of magnetron sputtering technology [J].Science and Technology Innovation and Application,2015(2):35.(in Chinese)
参考文献 12
ZHAO Changjiang,MA Chao,LIU Juncheng,et al.Sputtering power on microstructure and properties of MgF2 thin films prepared with magnetron sputtering [J].Journal of Inorganic Materials,2020,35(9):1064-1070.(in Chinese)
参考文献 13
沈洁,李冠群,李玉阁,等.靶成分和溅射参数对碳化钒薄膜微结构与力学性能的影响[J].无机材料学报,2012,27(5):536-540.SHEN Jie,LI Guanqun,LI Yuge,et al.Effect of target composition and sputtering parameters on microstructure and mechanical properties of vanadium carbide thin films[J].Journal of Inorganic Materials,2012,27(5):536-540.(in Chinese)
参考文献 14
SUN Kewei,ZHOU Wancheng,HUANG Shanshan,et al.Effect of sputtering pressure on ZnO:Al Films by DC magnetron sputtering[J].Journal of Inorganic Materials,2012,27(10):1212-1216.
参考文献 15
ZHANG Lin,LIU Huihui,LIU Linjia,et al.Effect of La doping on magnetron sputtering CaB 6 films [J].Journal of Inorganic Materials,2017,32(5):555-560.
参考文献 16
曾晟,丁爱丽,仇萍荪,等.溅射工艺参数对PZT铁电薄膜相变过程的影响[J].无机材料学报,1999(1):107-113.ZENG Sheng,DING Aili,QIU Pingsun,et al.Effect of sputtering parameters on phase transition of PZT ferroelectric thin films[J].Journal of Inorganic Materials,1999(1):107-113.(in Chinese)
参考文献 17
周江.磁控溅射镀膜的原理与故障研究[J].科技展望,2015,25(23):135.ZHOU Jiang.Study on principle and fault of magnetron sputtering coating[J].Science and Technology Outlook,2015,25(23):135.(in Chinese)
参考文献 18
LIU L,ZHU J B,HOU C,et al.Dense and smooth amorphous films of multicomponent FeCoNiCuVZrAl high-entropy alloy deposited by direct current magnetron sputtering[J].Materials and Design,2013,46:675-679.
参考文献 19
INOUE Akihisa.High Strength bulk amorphous alloys with low critical cooling rates(overview)[J].Materials Transactions,JIM,1995,36(7):866-875.
参考文献 20
BRAECKMAN Br,MISJAK F,RADNOCZI G,et al.The nanostructure and mechanical properties of nanocomposite Nbx -CoCrCuFeNi thin films [J].Scripta Materialia,2017,139:155-158.
参考文献 21
刘晓东,谈淑咏,霍文燚,等.氮流量比对磁控溅射(CoCrFeNi)Nx 高熵合金薄膜的组织和性能的影响[J].材料研究学报,2019,33(3):185-190.LIU Xiaodong,TAN Shuyong,HUO Wenyi,et al.Effect of nitrogen flow ratio on microstructure and properties of CoCrFeNi Nx high entropy alloy thin films [J].Journal of materials research,2019,33(3):185-190.(in Chinese)
参考文献 22
DEDONCKER R,RADNOCZI G,ABADIAS G,et al.Reactive sputter deposition of CoCrCuFeNi in oxygen/argon mixtures[J].Surface & Coatings Technology,2019,378:13-19.
参考文献 23
DOLIQUE V,THOMANN A L,BRAULT P,et al.Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy[J].Materials Chemistry and Physics,2009,117(1):142-147.
参考文献 24
李荣斌,乔帮威,蒋春霞,等.氮气含量对 AlCrTaTiZrMoNx 高熵合金氮化物薄膜扩散阻挡性能的影响[J].材料保护,2018,51(1):22-27.LI Rongbin,QIAO Banwei,JIANG Chunxia,et al.Effects of Nitrogen content on diffusion barrier properties of AlCrTaTiZrMoNx high entropy alloy nitrides [J].Materials protection,2018,51(1):22-27.(in Chinese)
参考文献 25
LIN Miao-I,TSAI Minghung,SHEN Wanjui,et al.Evolution of structure and properties of multi-component(AlCrTaTiZr)Ox films[J].Thin Solid Films,2009,518(10):2732-2737.
参考文献 26
LAI Chiahan,LIN Sujien,YEH Jienwei,et al.Preparation and characterization of AlCrTaTiZr multi-element nitride coatings[J].Surface & Coatings Technology,2006,201(6):3275-3280.
参考文献 27
黄纯可,李伟,刘平,等.射频磁控溅射制备(AlCrTiZrNb)N 高熵合金薄膜的微观组织和力学性能[J].真空科学与技术学报,2018,38(6):487-493.HUANG Chunke,LI Wei,LIU Ping,et al.Microstructure and mechanical properties of(AlCrTiZrNb)N high entropy alloy thin films prepared by rf magnetron sputtering[J].Journal of Vacuum Science and Technology,2018,38(6):487-493.(in Chinese)
参考文献 28
CHANG Shouyi,CHEN Mingku.High thermal stability of AlCrTaTiZr nitride film as diffusion barrier for copper metallization [J].Thin Solid Films,2009,517(17):4961-4965.
参考文献 29
LIN C H,DUH J G,YEH J W.Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target inRF magnetron sputter[J].Surface & Coatings Technology,2006,201(14):6304-6308.
参考文献 30
LAI Chiahan,YEH Jienwei.Mechanical and tribological properties of multi-element(AlCrTaTiZr)N coatings [J].Surface & Coatings Technology,2008,202(15):3732-3738.
参考文献 31
谢启.等离子体增强磁控溅射制备TiVN薄膜技术研究[D].北京:中国地质大学,2019.XIE Qi.Plasma enhanced magnetron sputtering for the preparation of TiVN thin films[D].Beijing:China University of Geosciences,2019.(in Chinese)
参考文献 32
李新,唐祯安,邓新绿,等.微波ECR等离子体源增强非平衡磁控溅射DLC膜的制备与表征[J].功能材料,2004(3):304-305,307.LI Xin,TANG Zhen’ an,DENG Xinlu,et al.Preparation and characterization of non-equilibrium magnetron sputtering DLC films enhanced by microwave ECR plasma source[J].Functional Materials,2004(3):304-305,307.(in Chinese)
参考文献 33
丁万昱,徐军,李艳琴,等.微波ECR等离子体增强磁控溅射制备 SiNx 薄膜及其性能分析[J].物理学报,2006,55(3):1363-1368.DING Wanyu,XU Jun,LI Yanqin,et al.Preparation and properties of SiNx films by microwave ECR plasma enhanced magnetron sputtering[J].Acta Physica Sinica,2006,55(3):1363-1368.(in Chinese)
参考文献 34
朱继国.直流脉冲磁控溅射制备Mo薄膜及其性能研究[D].大连:大连交通大学,2008.ZHU Jiguo.Preparation and properties of Mo thin films by DC pulse magnetron sputtering [ D ].Dalian:Dalian Jiaotong University,2008.(in Chinese)
参考文献 35
张粲,丁万昱,王华林,等.O2/Ar 比例对直流脉冲磁控溅射制备 TiO2 薄膜光催化性能的影响[J].真空科学与技术学报,2010,30(2):106-110.ZHANG Can,DING Wanyu,WANG Hualin,et al.Effect of O2/Ar ratio on photocatalytic performance of TiO2 thin films prepared by DC pulse magnetron sputtering [J].Journal of Vacuum Science and Technology,2010,30(2):106-110.(in Chinese)
参考文献 36
董浩,黎明锴,刘传胜,等.中频脉冲磁控溅射制备氮化铝薄膜[J].武汉大学学报(理学版),2002,48(3):339-342.DONG Hao,LI Mingkai,LIU Chuansheng,et al.Preparation of aluminum nitride thin films by medium frequency pulse magnetron sputtering[J].Journal of Wuhan University(Science Edition),2002(3):339-342.(in Chinese)
参考文献 37
何延春.直流反应和中频脉冲磁控溅射制备 WO3 多晶薄膜 [C]//中国真空学会薄膜专业委员会,2013,中国浙江宁波.TFC′13 全国薄膜技术学术研讨会论文摘要集.中国真空学会薄膜专业委员会,2013:1.HE Yanchun.Preparation of WO3 polycrystalline thin films by dc reaction and medium frequency pulse magnetron sputtering[C]//Thin Film Professional Committee of China Vacuum Society,2013,Ningbo,Zhejiang,China.TFC ’ 13 National Film Technology Symposium Paper Abstract collection.Thin Film Professional Committee of China Vacuum Society,2013:1.(in Chinese)
参考文献 38
段伟赞.高功率复合脉冲磁控溅射放电特性及氮化物薄膜制备[D].哈尔滨:哈尔滨工业大学,2010.DUAN Weizan.High power composite pulse magnetron sputtering discharge characteristics and preparationof nitride thin films[D].Harbin:Harbin Institute of Technology,2010.(in Chinese)
参考文献 39
XU Yi,LI Guang,XIA Yuan.Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS [J].Applied Surface Science,2020,523(1):146529.
参考文献 40
XU Yi,LI Liuhe,LUO Sida,et al.Self-enhanced plasma discharge effect in the deposition of diamond-like carbon films on the inner surface of slender tube[J].Applied Surface Science,2017,393:467-473.
参考文献 41
WANG Z,ZHANG D,KE D P,et al.Influence of substrate negative bias on structure and properties of TiN coatings prepared by hybrid HIPIMS method[J].J.Mater.Sci.Technol,2015,31:37-42.
参考文献 42
LI Yantao,WANG Chunting,MA Donglin,et al.Nano dualphase CuNiTiNbCr high entropy alloy films produced by high-power pulsed magnetron sputtering [J].Surface & Coatings Technology,2021,420:524-531.
参考文献 43
CHANG Kaisheng,CHEN Kuanta,HSU Chunyao,et al.Growth(AlCrNbSiTiV)N thin films on the interrupted turning and properties using DCMS and HIPIMS system[J].Applied Surface Science,2018,440:1-7.
参考文献 44
TIRON V,VELICU I L,VASILOVICI O,et al.Optimization of deposition rate in HiPIMS by controlling the peak target current [J].Journal of Physics D:Applied Physics,2015,48(49):53-61.
参考文献 45
李忠丽,孙宏飞,高鹏.等.新型多主元高熵合金的研究进展[J].热加工工艺技术与材料研究,2010,8:62-64.LI Zhongli,SUN Hongfei,GAO Peng,et al.Research progress of novel high entropy multi-principal element alloys [J].Hot Working Technology and Material Research,2010,8:62-64.(in Chinese)
参考文献 46
邢秋玮.高熔点多基元合金薄膜的设计及性能[D].北京:北京科技大学,2019.XING Qiuwei.Design and properties of high melting point multielement alloys thin films[D].Beijing:University of Science and Technology Beijing,2019.(in Chinese)
参考文献 47
马明星,柳沅汛,谷雨,等.激光制备 Al xCoCrNiMo 高熵合金涂层的研究[J].应用激光,2010,30(6):433-437.MA Mingxing,LIU Yuanxun,GU Yu,et al.Study on preparation of Al xCoCrNiMo high entropy alloy coating by laser [J].Journal of Applied Laser,2010,30(6):433-437.(in Chinese)
参考文献 48
黄纯可,李伟,刘平,等.磁控溅射法制备 AlX CoCrFeNi 高熵合金薄膜的微观组织和力学性能研究[J].功能材料,2017,48(6):6144-6148.HUANG Chunke,LI Wei,LIU Ping,et al.Microstructure and mechanical properties of AlX CoCrFeNi high entropy alloy films prepared by magnetron sputtering [J].Functional Materials,2017,48(6):6144-6148.(in Chinese)
参考文献 49
GUO S,CHUN NG,LU J,et al.Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys.J Appl Phys,2011,109(10):1-5.
参考文献 50
NUTOR R K,CAO Q P,WANG X D,et al.Phase selection,lattice distortions,and mechanical properties in high-entropy alloys.Adv Eng Mater,2020,22(11):2034-2042.
参考文献 51
谈淑咏,刘晓东,霍文燚,等.磁控溅射CoCrFeNi高熵合金薄膜的硬度和电阻率研究[J].表面技术,2019,48(10):157-162.TAN Shuyong,LIU Xiaodong,HUO Wenyan,et al.Study on hardness and resistivity of CoCrFeNi high entropy alloythin films by magnetron sputtering [J].Surface Technology,2019,48(10):157-162.(in Chinese)
参考文献 52
石彦彦,罗永春,张国庆.不同基底温度FeNiCoCrMn高熵合金薄膜的制备及耐腐蚀性能的研究[J].金属功能材料,2016,23(4):35-39.SHI Yanyan,LUO Yongchun,ZHANG Guoqing.Preparation and corrosion resistance of FeNiCoCrMn high entropy alloy films with different substrate temperatures [J].Metal Functional Materials,2016,23(4):35-39.(in Chinese)
参考文献 53
KHAN,NAVEED A,AKHAVAN,et al.High entropy alloy thin films of AlCoCrCu _(0.5)FeNi with controlled microstructure [J].Applied Surface Science:A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2019,495(30):1-9.
参考文献 54
MEIJA J,COPLEN Tyler B,MICHAEL Berglund,et al.Atomic weights of the elements 2013(IUPAC Technical Report)[J].Pure and Applied Chemistry,2016,88(3):265-291.
参考文献 55
DOLIQUE V,THOMANN A L,BRAULT P,et al.Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy[J].Mater.Chem.Phys.,2009,117(1):142-147.
参考文献 56
刘径舟,刘洪喜,邸英南,等.碳含量对激光熔覆 CoCrFeMnNiCx 高熵合金涂层摩擦磨损和耐蚀性能的影响[J].中国表面工程,2020,33(6):118-127.LIU Jingzhou,LIU Hongxi,DI Yingnan,et al.Effects of carbon content on friction,wear and corrosion resistance of laser cladding CoCrFeMnNiCx high entropy alloy coatings [J].China surface engineering,2020,33(6):118-127.(in Chinese)
参考文献 57
时海芳,王红蕾.SiC 对氩弧熔覆AlCuFeNiCo高熵合金涂层组织性能的影响[J].中国表面工程,2020,33(5):75-82.SHI Haifang,WANG Honglei.Effect of SiC on microstructure and properties of argon arc cladding AlCuFeNiCo high entropy alloy coatings[J].China Surface Engineering,2020,33(5):75-82.(in Chinese)
参考文献 58
CHEN T K,SHUN T T,YEH J W,et al.Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering[J].Surface and Coatings Technology,2004,188-189:193-200.
参考文献 59
CHEN Takun,WONG Mingshow,SHUN Taotsung,et al.Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering[J].Surface & Coatings Technology,2005,200(5):1361-1365.
参考文献 60
CHENG Chunyang,YEH Jienwei.High-entropy BNbTaTiZr thin film with excellent thermal stability of amorphous structure and its electrical properties [J].Materials Letters,2016,185:456-459.
参考文献 61
CHANG Zuechin,TSAI Ducheng,CHEN Erhchiang.Structure and characteristics of reactive magnetron sputtered(CrTaTiVZr)N coatings[J].Materials Science in Semiconductor Processing,2015,39:30-39.
参考文献 62
TSAU Chun-huei,HWANG Zhang-yan,CHEN Swe-kai,et al.The microstructures and electrical resistivity of(Al,Cr,Ti)FeCoNiOx high-entropy alloy oxide thin films[J].Advances in Materials Science and Engineering,2015,2015:1-6.
参考文献 63
王子鑫,张勇.FeCrVTa_(0.4)W_(0.4)高熵合金氮化物薄膜的微观结构与性能[J].工程科学学报,2021,43(5):684-692.WANG Zixin,ZHANG Yong.Microstructure and properties of FeCrVTa_(0.4)W_(0.4)alloys nitride films[J].Journal of Engineering Science,2021,43(5):684-692.(in Chinese)
参考文献 64
TSAI Ducheng,DENG Minjen,CHANG Zuechin,et al.Oxidation resistance and characterization of(AlCrMoTaTi)-Six-N coating deposited via magnetron sputtering [J].Journal of Alloys and Compounds,2015,647:179-188.
参考文献 65
马铭,任瑛,侯晓多,等.磁控溅射制备AlCrWTaTiNb高熵合金薄膜低温等离子体氮化[J].大连理工大学学报,2019,59(1):28-34.MA Ming,REN Ying,HOU Xiaoduo,et al.Low Temperature plasma nitride of AlCrWTatInb high-entropyalloy films by magnetron sputtering [J].Journal of Dalian University of Technology,2019,59(1):28-34.(in Chinese)
参考文献 66
CHANG Zuechin,HAN Sheng,CHEN Yikun.Characteristics of TiVCrAlZr multi-element nitride filmsprepared by reactive sputtering[J].Nuclear Instruments and Methods in Physical Research,Section B.Beam Interactions with Materials and Atoms,2010,268(16):2504-2509.
参考文献 67
CHENG Kenghao,LAI Chiahan,LIN Sujien,et al.Structural and mechanical properties of multi-element(AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering[J].Thin Solid Films,2010,519(10):3185-3190.
参考文献 68
HUANG Pingkang.Effects of nitrogen content on structure and mechanical properties of multi-element(AlCrNbSiTiV)N coating [J].Surface & Coating Technology,2009,203(13):1891-1896.
参考文献 69
LIANG Shihchang,TSAI Ducheng,CHANG Zuechin,et al.Structural and mechanical properties of multi-element(TiVCrZrHf)N coatings by reactive magnetron sputtering [J].Applied Surface Science,2011,258(1):309-403.
参考文献 70
REN Bo,SHEN Zigang,LIU Zhongxia.Structure and mechanical properties of multi-element(AlCrMnMoNiZr)Nx coatings by reactive magnetron sputtering[J].Journal of Alloys and Compounds,2013,560:171-176.
参考文献 71
刘晓鹏.磁控溅射(AlSiTiCrNbV)N 薄膜的结构、性能及其在刀具中应用[D].西安:西安工业大学,2019.LIU Xiaopeng.Structure,properties and application of magnetron sputtering(AlSiTiCrNbV)N films in cutting tools[D].Xi’ an:Xi’an Polytechnic University,2019.(in Chinese)
参考文献 72
万松峰,许春耀,张钰乾.高熵合金AlCrNbSiTiV氮化物薄膜溅镀参数的优化[J].电镀与涂饰,2018(15):677-682.WAN Songfeng,XU Chunyao,ZHANG Yuqian.Optimization of splashing parameters of high entropyalloy AlCrNbSiTiV nitride thin films[J].Electroplating and Finishing,2018,37(15):677-682.(in Chinese)
参考文献 73
FENG Xingguo,ZHENG Yugang,ZHANG Kaifeng,et al.Microstructure and mechanical properties of reactive magnetron sputtering(CrMoTaNbVTi)N multiprincipal component films [J].Rare Metal Materials and Engineering,2020,49(8):2623-2629.
参考文献 74
闫薛卉,张勇.高熵薄膜和成分梯度材料[J].表面技术,2019,48(6):98-106.YAN Xuehui,ZHANG Yong.High-entropy films and compositional gradient materials[J].Surface Technology,2019,48(6):98-106.(in Chinese)
参考文献 75
SHEN W J,TSAI M H,TSAI K Y,et al.Superior oxidation resistance of(Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 High[J].Journal of the Electrochemical Society,2013,160(11):531-535.
参考文献 76
石彦彦.磁控溅射FeCrCoNiMn高熵合金薄膜及其耐腐蚀性能研究[D].兰州:兰州理工大学,2016.SHI Yanyan.Study on corrosion resistance of FeCrCoNiMn high entropy alloy films by magnetron sputtering [ D ].Lanzhou:Lanzhou University of Technology,2016.(in Chinese)
参考文献 77
HSUEH Hwaite,SHEN Wanjui,TSAI Minghung,et al.Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films(AlCrSiTiZr)100-x Nx [J].Surface & Coatings Technology,2012,206(19-20):4106-4112.
参考文献 78
张立东,刘春海,孙化冬,等.晶体AlCrTaTiNi高熵合金薄膜[J].功能材料,2012,43(3):394-397.ZHANG Lidong,LIU Chunhai,SUN Huadong,et al.High entropy AlCrTatini crystalline alloy films [J].Journal of Functional Materials,2012,43(3):394-397.(in Chinese)
参考文献 79
LIN Rueicheng,LEE Taikuang,WU Derho,et al.A study of thin film resistors prepared using Ni-Cr-Si-Al-Ta high entropy alloy [J].Advances in Materials Science and Engineering,2015,2015:1-7.
参考文献 80
姚陈忠,马会宣,童叶翔.非晶纳米高熵合金薄膜 Nd-Fe-Co-Ni-Mn 的电化学制备及磁学性能[J].应用化学,2011,28(10):1189-1194.YAO Chenzhong,MA Huixuan,TONG Yexiang.Electrochemical preparation and magnetic properties of Nd-Fe-Co-Ni-Mn amorphous nanocrystalline alloy films with high entropy [J].Applied Chemistry,2011,28(10):1189-1194.(in Chinese)
参考文献 81
LIN Peichung,CHENG Chunyang,YEH Jienwei,et al.Soft magnetic properties of high-entropy Fe-Co-Ni-Cr-Al-Si thin films [J].Entropy,2016,18(8):308.
参考文献 82
WANG Ze,WANG Cheng,ZHAO Yilu,et al.Nanotwinned CoCrFeMnNi high entropy alloy films for flexible electronic device applications[J].Vacuum,2021,189:106-113.
目录contents

    摘要

    作为新兴合金材料,多主元高熵合金打破了传统合金中主要组成元素为一种或两种的合金设计理念,由至少五种主要元素构成,从而获得的高熵效应使其在性能上往往比传统合金具有更大的优势,如高硬度、高强度、抗高温氧化、耐腐蚀等。 近年来,高熵合金薄膜的性能及制备技术同样备受学术界和工业界的关注。 磁控溅射薄膜制备技术具有成膜温度低、膜层致密、结合力好等优点,已逐渐应用于高熵合金薄膜的制备及性能研究,具有非常大的工程应用前景。 介绍直流、射频、离子束及脉冲磁控溅射的特点及其在高熵合金薄膜中的应用,重点分析不同磁控溅射技术下制备的高熵合金薄膜的相结构特点和规律,并系统地阐述薄膜优异的各种性能,最后展望磁控溅射技术制备高熵合金薄膜发展的方向。

    Abstract

    As a new alloy material, multi-principal component high-entropy alloy breaks the traditional alloy design concept of one or two main elements, and is composed of at least five main elements. The high entropy effect makes it have more advantages than traditional alloys in performance, such as high hardness, high strength, high temperature oxidation resistance, corrosion resistance, etc. The properties and preparation techniques of high entropy alloy films have attracted much attention from academia and industry. Magnetron sputtering technology has been gradually applied to the preparation and performance research of high entropy alloy films because of its advantages such as low film forming temperature, dense film layer and good binding force. It has a very large engineering application prospect. This paper introduces the characteristics of direct current, radio frequency, ion beam and pulse magnetron sputtering and the application in the high entropy alloy thin film, analyzes the characteristics and law of phase structure of high entropy alloy films under different magnetron sputtering technology as well, and systematically expounds the excellent properties of the films, finally prospects the development direction of high entropy alloy films deposited by magnetron sputtering.

  • 0 前言

  • 材料是现代社会文明的基础,而其中金属和合金材料占据了不可或缺的地位。金属和合金已有很长的历史,它们一直在人类文明进步的过程中起着不可替代的作用,如图1所示,展示了人类文明发展以来金属和合金材料的发现。近年来,高熵合金因其独特的多主元素固溶体结构及优良的性能引起了广泛的关注。高熵合金的定义还不统一,目前主要从组成成分和热力学中的熵两个方面来定义。从组成成分定义,高熵合金含有至少5种主要元素,且每种元素的原子百分比在5%~35%;从热力学方面定义,考虑合金中各元素原子百分比相等,高熵合金的混合熵在热力学计算中须大于1.61R(其中 R 为气体常数) [1-2]。按照这种定义,笔者还把混合熵小于1R 的合金称为低熵合金,混合熵介于1R 与1.61R 之间的称为中熵合金。高熵合金具有四大效应,分别为高熵效应、晶格畸变效应、迟滞扩散效应以及 “鸡尾酒”效应。高熵合金的高熵效应使金属间化合物或复杂相的形成受到抑制,只生成包含几种固溶体相甚至只有单相固溶体[3-5]。晶格畸变效应对材料力学性能、物理和化学性能都会产生重大影响, 严重的晶格畸变增加位错运动的阻力,会显著增加合金硬度和强度。迟滞扩散效应严重影响原子的扩散速率,而凝固时需要借助各元素协调扩散才能达到相分离平衡[6],故迟滞扩散效应抑制了新相的形核和晶粒长大,同时一些高熵合金中会有纳米晶粒析出。 “鸡尾酒”效应使高熵合金呈现出复合效应, 性能不只是各元素性质简单叠加或平均,还有不同元素之间的相互作用,对探索设计具有优异性能的高熵合金有重要指导意义。

  • 在高熵合金发展之前,人们对于金属薄膜的研究大部分停留在传统金属和合金上,即二元或三元薄膜已经被广泛研究。然而,由于合金熵的限制,传统的金属氮化物、碳化物及氧化物薄膜都是低熵合金膜,不能满足如今社会日益增长的要求和标准。随着高熵合金的不断发展,人们开始把目光放在研究高熵合金薄膜上。高熵合金薄膜不但拥有像高熵合金一样优异的性能,而且在某些方面还更优于高熵合金。这些合金薄膜在实际生产应用中有很大前景,它们在太阳能热转换系统[7]、高硬质涂层[8]、耐腐蚀涂层[9]、集成电路系统[10]等领域具有重要的应用价值。磁控溅射技术作为20世纪70年代迅速发展起来的一种“高速低温溅射技术”,是物理气相沉积(PVD)的一种,有成膜速率快、基片温度低、膜的附着性好以及可实现大面积镀膜的特点。磁控溅射的基本原理为利用气氛中的等离子体在电场和交变磁场的作用下,被加速成高能粒子从而去轰击靶材表面,在能量交换后,靶材表面的原子脱离原晶格而逸出,转移到基体表面而成膜[11]。磁控溅射镀膜具有成膜速率快,基体温度低,膜的粘附性好及可实现大面积镀膜的特点,且溅射条件的较小变化也会对溅射结果有较大的影响[12-16]

  • 本文综述了磁控溅射制备高熵合金薄膜的研究进展,介绍了几种制备高熵合金薄膜的磁控溅射技术,重点讨论了高熵合金及其化合物薄膜的相结构, 随后介绍了高熵合金薄膜的一些性能,最后展望了磁控溅射制备高熵合金薄膜的应用前景和未来研究趋势。

  • 图1 合金化学复杂性随时间的上升趋势(IMs:金属间化合物或金属化合物,HEA:高熵合金) [1]

  • Fig.1 Upward trend of the chemical complexity of alloys with time (IMs: intermetallic or metallic compounds, HEA: high entropy alloys) [1]

  • 1 高熵合金薄膜(HEAF)磁控溅射制备技术

  • 1.1 直流磁控溅射技术

  • 对于直流磁控溅射,薄膜沉积衬底和溅射靶材分别放置在正负电极。在正负电极间施加高的电压产生等离子体,使氩气发生辉光放电。等离子体中的电子在电场作用下向正电极加速运动,氩离子向负电极加速运动。电子通过磁场区域时会受到洛伦磁力的作用,使电子在两电极中运动的路径大大增加,从而可以和更多氩原子发生碰撞,提高了气体的离化率。最后,能量适当的氩离子在电场作用下轰击靶材,使得靶材原子脱离靶材表面,最后沉积在衬底上形成薄膜[17]

  • LIU等[18]在Ar与N2 的混合气氛中采用直流磁控溅射技术低温沉积了非晶FeCoNiCuVZrAl高熵合金氮化物薄膜,结果表明薄膜的化学成分、微观组织以及力学性能都和气氛中的N2 浓度有关。当N2 流量比为30%时可以得到致密光滑的非晶氮化物薄膜。图2为不同氮气流量比下该高熵合金氮化物薄膜的XRD图,从图中可以明显看出所有高熵合金薄膜均为非晶态薄膜,而根据INOUE [19]提出的多组分体系增强非晶形成能力的规律,在制备过程中形成非晶薄膜是合理的。随着氮气含量的增大,XRD图中峰的强度逐渐减小甚至完全消失,这表明结晶度很小以至于晶粒无法结晶。以下解释可能可以很好的解释上面现象,那就是N2 含量的增大使得在溅射过程中离化的离子数量增多,被溅射出来的靶材粒子与离子的碰撞机会更多,散射效应加强,再加上沉积过程的阴影效应,均使得最后沉积在基底上的粒子没有足够的能量扩散和结晶,薄膜晶体结构表现为非晶状态。 BRAECKMAN等[20] 采用相同的方法制备了NbxCoCrCuFeNi高熵合金薄膜,并研究了Nb的含量对该薄膜的纳米结构和力学性能的影响。结果表明随着Nb原子分数从0增加到24%, 该薄膜的相结构发生了改变,从面心立方结构转变为非晶相结构。 Nb原子分数为5%~15%时,可以看到在非晶基体上镶嵌的纳米晶粒,这就使得薄膜硬度有所提高。 FeCoNiCr系高熵合金薄膜由于其优异的性能和稳定的晶体结构一直以来都深受研究者的追捧,常见的添加元素有Mn、Cu和Al等。直流磁控溅射制备的FeCoNiCr系高熵合金薄膜在不同的气氛下,不同的溅射参数下,具有的晶体结构和优异性能也不同[21-23]。一般来说,FeCoNiCrAl高熵合金薄膜呈现体心立方结构,表现出较高的硬度和压缩强度,但塑性较差;而FeCoNiCrCu高熵合金薄膜通常是面心立方结构,表现出较低的硬度和压缩强度,但是塑性较高。 FeCoNiCrCuAl高熵合金薄膜的晶体结构和Cu和Al的相对含量有关。利用直流磁控溅射技术沉积AlCrTiZr系高熵合金薄膜也很常见,Nb、Ta、Mo、V等元素或单一或两两混合被加入到该高熵合金系中也已经被深入研究[24-25]

  • 图2 不同氮气流量比下FeCoNiCuVZrAl高熵合金氮化物薄膜的XRD [18]

  • Fig.2 XRD of FeCoNiCuVZrAl high entropy alloy nitrides at different nitrogen flow ratios [18]

  • 1.2 射频磁控溅射技术

  • 虽然直流磁控溅射的溅射速率一般比较大,但是直流溅射技术一般只能用于金属靶材。如果是绝缘体靶材,则由于阳离子在靶材表面积累,会造成所谓的“靶中毒”,溅射速率越来越低。射频磁控溅射技术,既可以溅射导体又可以溅射绝缘体,这样就解决了直流磁控溅射不能溅射绝缘体的问题。相比于用直流磁控溅射制备AlCrTiZr系高熵合金薄膜,也有不少研究人员采用反应式射频磁控溅射来制备。 LAI等[26] 采用反应式射频磁控溅射技术制备了AlCrTaTiZr高熵合金氮化物薄膜,研究了N2 流量比对该氮化物薄膜的化学成分、微观组织以及力学性能的影响。结果表明AlCrTaTiZr高熵合金薄膜呈现非晶状态,其氮化物薄膜却呈现简单面心立方结构。相比传统过渡金属的硬质涂层,该高熵合金氮化物薄膜的力学性能都有较大的提升。黄纯可等[27] 利用相同的方法在不同N2 和Ar流量比下制备了 (AlCrTiZrNb)N高熵合金薄膜,并研究了氮含量对该薄膜微观结构和力学性能的影响。随着氮气流量比的升高,薄膜结构由非晶态转变为简单面心立方, 同时薄膜的沉积速率逐渐降低。 CHANG等也通过反应式射频磁控溅射沉积了含氮量为41%的非晶态AlCrTiZrTa氮化物薄膜,且该薄膜只在800℃ 以上的退火温度下才开始结晶[28]。以上研究均说明AlCrTiZr系高熵合金薄膜在射频磁控溅射沉积下的初期容易出现非晶态结构,但随着氮气流量比增大或后续高温退火热处理等操作后,氮原子逐渐与金属原子形成氮化物,使结晶性得到提高,从而获得简单面心立方结构,这一点与在直流磁控溅射条件下制备出来的AlCrTiZr系高熵合金薄膜一致[24-25]。 LIN等[29] 采用射频磁控溅射技术在低碳钢上制备了TiAlCrSiV高熵合金氮化物薄膜,研究了不同工作压力下薄膜的化学成分、相结构以及表面形貌。结果发现在不同工作压力下会出现非晶结构和面心立方结构,且该氮化物薄膜的硬度大于30GPa,可成为工具钢的理想代替物。 LAI等[30] 采用相同的方法在Si和硬质合金基体上沉积了(AlCrTaTiZr)N高熵合金涂层,研究了0到-200V内的基底偏压对该薄膜的微观结构、力学性能以及耐磨性能。该氮化物薄膜呈现简单面心立方结构,且偏压的存在改变了该涂层的微观结构,使边界处带有微孔的柱状晶转变为致密的柱状晶。随着偏压的增大,晶体取向由(111)和(200)转变为(111)。一个可能的解释是随着偏压增大,撞击到薄膜上的粒子数量增多,使得薄膜整体能量偏高,但晶粒趋于稳定态将会使得整体能量最小化,故通过调整晶粒的取向来释放多余的能量,使能量维持在晶粒平衡状态附近。

  • 1.3 离子束磁控溅射技术

  • 在射频磁控溅射中,被溅射材料以分子尺寸大小的粒子不断穿过等离子体区并在衬底上沉积成膜,这样得到的膜致密、附着力好,但是溅射粒子穿过等离子体区时,会吸附等离子体中的气体。等离子体内的杂质和高温不稳定的热动态会影响沉积的薄膜,使薄膜产生更多的缺陷,降低了薄膜的强度, 成品率低。此外,射频溅射靶既是产生等离子体的工作参数的一部分,又是产生溅射粒子的工艺参数的一部分,不能单独各自调控,工艺掌握困难,操作复杂。这里笔者介绍另外一种技术,即离子束磁控溅射技术。离子束溅射方法分为一次离子束溅射和二次离子束溅射。一次离子束磁控溅射中的离子束直接由目标薄膜成分离子组成,其能量低,在达到衬底后沉积成膜。二次离子束磁控溅射中的离子束由高能惰性气体离子(Ar离子)组成,这些高能离子轰击靶材,使靶材原子或原子团沉积在衬底上。相比于直流磁控溅射,等离子体增强磁控溅射( PEMS) 是传统直流磁控溅射(DCMS) 的先进版本,通过热丝热离子发射产生极高的低能气体离子通量,从而在沉积系统中产生额外的等离子体。离子束磁控溅射可以克服射频磁控溅射衬底温度高的问题,另外还可以较轻松地通过控制离子束的种类和能量的大小来制备各种成分的薄膜,尤其适合制备多元薄膜。很多研究都表明,在薄膜的生长过程中,衬底的温度对沉积原子在衬底上的附着以及在其上的扩散都有很大的影响,是决定薄膜结构的重要条件。一般来说,衬底温度越高,吸附原子的动能也越大,跨越表面势垒的几率增大,形核需要的临界尺寸增大,原子在薄膜内部更容易凝聚,每个小岛的形状也更容易接近球形,易于结晶化,高温沉积的薄膜易形成粗大的岛状组织。然而在低温时,形核的数目增加,将有利于形成晶粒小而连续的薄膜组织,而且还增强了薄膜的附着力。因此,相比于射频磁控溅射技术,离子束磁控溅射技术在这方面有着显著优点。

  • 谢启[31] 采用等离子体增强磁控溅射技术 (PEMS) 在不同基体偏流条件下制备TiN薄膜,研究了基体偏流对等离子体增强磁控溅射TiN薄膜结构与性能的影响,并进一步研究了V含量对该薄膜结构与性能的影响。结果发现采用PEMS技术制备的Ti1-xVxN薄膜均表现出致密的微观结构,V元素的加入对薄膜的致密性影响较小;试验中制备的Ti1-xVxN薄膜均表现出NaCl结构,随着x的增加, 薄膜的结晶化程度先下降后逐渐增强,同时,TiN在 (311)晶面上的衍射峰强度增强。这些现象可由以下解释来说明:当x=0时,该薄膜为TiN薄膜,随着x的增加,TiN薄膜中加入的V元素不断固溶到薄膜中,加剧了晶格畸变,使得薄膜结晶化程度下降。由于金属Ti与金属V晶胞结构相同,原子半径相近,x的继续增加使V原子置换出部分Ti原子,同时增大了Ti与N原子的结合形成了TiN。李新等[32]采用微波ECR等离子体源增强非平衡磁控溅射技术制备了DLC薄膜,结果表明薄膜非常平滑, DLC膜上的磨痕较少,说明该薄膜具有较好的耐磨性。两年后,丁万昱等[33]也利用相同的方法制备了SiNx薄膜,并分析了N2 流量、Si靶溅射功率等试验参数对SiNx薄膜结构、化学配比以及力学性能的影响。利用等离子体增强磁控溅射技术制备高熵合金薄膜的研究在国内外鲜有报道,还需要更多学者在这一方面进行关注和研究。

  • 1.4 脉冲磁控溅射技术

  • 直流脉冲磁控溅射、中频脉冲磁控溅射以及高功率脉冲磁控溅射等属于脉冲磁控溅射技术。对于直流脉冲磁控溅射技术,朱继国[34] 利用直流脉冲磁控溅射方法,在普通钠钙玻璃衬底上制备太阳电池背接触Mo薄膜,对其生长特性、结构、表面粗糙度、光电性能的影响,以及不同厚度Mo薄膜的特性进行了研究。张粲等[35] 采用该方法在不同O2/Ar比例条件下制备具有不同结构、性能的TiO2 薄膜,并对薄膜的结构、透光性能、光催化性能等进行了表征。针对中频脉冲磁控溅射技术,董浩等[36] 采用中频脉冲磁控溅射技术分别在Si(111)、玻璃以及高速钢基底上沉积了AlN薄膜,并研究了薄膜的结构、光学及电学性质。 2013年,何延春[37] 采用直流反应磁控溅射和中频脉冲磁控溅射两种方法,分别在常温和加热条件下制备出了WO3 多晶电致变色薄膜,研究了溅射功率、氧气比例、基底温度、脉冲宽度、脉冲频率等参数对薄膜性能的影响。然而,直流脉冲磁控溅射和中频脉冲磁控溅射技术在制备高熵合金薄膜的方面在国内外鲜有研究,值得今后学者关注和研究。

  • 高功率脉冲磁控溅射技术(HiPIMS)作为脉冲磁控溅射技术中的一种,是一类全新实用的磁控溅射技术。作为一种利用高脉冲峰值功率和低脉冲占空比来实现高离化率的溅射沉积薄膜的新技术,它可以控制膜层的微观结构,降低膜层内应力,提高膜层致密度和膜基结合力,获得性能优异的薄膜,在国内外研究领域和工业界受到了广泛关注和重视。高功率磁控溅射技术为磁控溅射镀膜开辟了新的研究领域。由于脉冲作用时间短,其平均功率不高,这样阴极不会因过热而增加靶材冷却的要求。它的峰值功率是普通磁控溅射的100倍,为1~3kW/cm 2,等离子体密度可以高达10 18m-3 数量级,溅射材料离化率极高,溅射Cu靶的离化率可达70%,且这个高度离化的束流不含大颗粒,生成的薄膜致密,性能优异。段伟赞[38]对高功率复合脉冲磁控溅射的放电特性进行了深入研究,分别探讨了在Ti和Zr靶下氩氮流量比、靶电压、复合直流、脉宽、脉冲频率和气压等工艺参数对靶电流和基体电流的影响。 XU等[39] 通过高功率脉冲磁控溅射制备了超硬AlCrTiVZr高熵合金氮化物薄膜,并研究了N2 流量对HiPIMS放电特性、沉积速率以及薄膜的微观结构及性能的影响。结果表明,随着N2 流量增大, HiPIMS放电电流增大,同时沉积速率降低。这可能是由于N2 流量的增大使得离化的粒子数量增多, 在电场作用下更多的电子作定向移动,使电流增大。离化的粒子过多也使得散射效应加剧,延长了靶材粒子沉积到基底的时间,降低了沉积速率。此外,他们还发现沉积过程中N2 流量存在一个极限值,低于此极限值,晶粒沿着(200)晶面择优生长,而当N2 流量高于极限值时, 择优取向由 ( 200) 转变为 (111)。这是因为初期阶段等离子体密度增加,高能粒子轰击也增强,促使晶粒沿着表面能最低的 (200)方向生长[40],N2 流量达到极限值之后由于等离子体能量降低,使得粒子轰击减弱,改变了晶粒生长方向。对于低能量的沉积粒子, 薄膜倾向于 (111)方向生长,这是因为单位面积内的原子数量最多,可以在低能量位置合并[41]。 LI等[42] 采用HiPIMS在不同工作气压下沉积了双相CuNiTiNbCr高熵合金薄膜,其中双相结构为FCC基体相和富Cu的BCC相,同时薄膜展现出靠近基底的FCC以及上层FCC+BCC的双层结构。相比于FCC相,双相表现出更高的硬度。随着沉积气压的增加,薄膜的结构变得疏松,同时也导致性能下降。 CHANG等[43]为了研究直流磁控溅射(DCMS) 和高功率脉冲磁控溅射(HiPMS)对(AlCrNbSiTiV)N高熵合金氮化物薄膜的不同影响,通过微观组织分析表明,结果表明, 相对于直流磁控溅射, HiPMS放电使 (AlCrNbSiTiV)N薄膜密度更高,表面结构更光滑, 表面硬度更高。从沉积速率来讲,相比于传统直流磁控溅射,高功率磁控溅射的沉积速率低,但也有研究通过控制放电过程中靶电流的峰值提高了HiPIMS的沉积过程[44]

  • 2 HEAF相结构

  • 2.1 HEAF合金膜

  • 高熵合金薄膜的成分设计和高熵合金一样,所以高熵合金薄膜也像高熵合金一样具有“高熵效应”,再加上薄膜在沉积时冷却的速度很快,故易于形成非晶相或简单的FCC或BCC固溶体相。在介绍高熵合金薄膜相结构之前笔者先来了解它的分类,分类方法整体有两种,一种是按照薄膜的用途和功能进行分类,另外一种是按照薄膜的组成成分进行分类。成分分类法中高熵合金薄膜的种类包含纯金属薄膜、含氮化物的高熵合金薄膜、含碳化物的高熵合金薄膜以及含碳氮化物的复合型高熵合金薄膜;功能分类法中高熵合金薄膜的种类包括用来作阻挡扩散层的薄膜、用来增强硬度的薄膜以及软磁性薄膜等[45]。高熵合金作为一种新兴合金材料,在生产生活中具有极大的应用前景,高熵合金薄膜也是如此。因此,研究高熵合金薄膜的相结构很有必要,有助于笔者进一步了解高熵合金薄膜,为今后的高熵合金薄膜的设计和制备提供一定的指导。

  • 各类高熵合金薄膜的相结构不是一成不变的,甚至拥有不同元素含量的同一种高熵合金也具有不同的相结构,它与很多因素有关,例如合金元素的种类、成分、工艺参数等都会影响高熵合金薄膜的相结构。邢球玮[46] 在对(Ta0.5W0.5)100-X (Cr0.33Fe0.33V0.33) X 高熵合金薄膜的研究中发现,随着Ta和W含量的增加,当 X=24时发生非晶态向体心立方的相结构转变。马明星等[47] 制备了AlX CoCrNiMo高熵合金涂层,他发现随着 X 的增加,AlX CoCrNiMo涂层的相结构趋于简单化,即合金中的BCC相增多,复杂相减少。当Al含量进一步增加时, 得到的Al2CoCrNiMo、Al2.5CoCrNiMo薄膜相结构十分相似, 且比Al1.5CoCrNiMo的更加简单。黄可纯等[48] 也进行了相类似的研究, 利用磁控溅射技术制备了AlX CoCrFeNi高熵合金薄膜, 研究了Al含量对AlCoCrFeNi高熵合金薄膜微观结构和力学性能的影响。结构表明,Al元素的加入,使得原CoCrFeNi四元合金薄膜中的(200)峰消失,AlX CoCrFeNi薄膜呈现出(111)晶面的择优生长取向,薄膜形成了面心立方的单一均匀固溶体,如图3所示。通过上面的研究笔者可以发现,总体来说,制备得到的高熵合金固溶体相结构无论是fcc、bcc还是hcp中的哪一种,均与高熵合金中的元素相关,这本质上涉及到元素的种类、元素之间的关系、元素所占比例等,但仅仅通过这些信息并不能帮助笔者预测某种高熵合金固溶体的相结构。 GUO等[49] 认为高熵合金固溶体相的结构与高熵合金中的平均价电子浓度(VEC) 存在一定对应关系:当VEC>8时,fcc晶格会成为高熵合金固溶体相的稳定结构;当VEC<6.87时,稳定结构为bcc晶格;当6.87<VEC<8时,fcc和bcc两相混合的情况就会出现;当VEC<3时,少见的hcp才会成为稳定相[50]

  • 图3 不同Al含量的AlX CoCrFeNi系高熵合金薄膜的XRD衍射图[48]

  • Fig.3 XRD patterns of AlX CoCrFeNi high entropy alloy films with different Al contents [48]

  • 谈淑咏等[51] 利用磁控溅射技术制备了CoCrFeNi高熵合金薄膜,发现在不同的溅射功率下,CoCrFeNi薄膜均呈柱状方式生长,且随着溅射功率的增大,薄膜厚度增大,柱状生长愈加明显,薄膜表面晶粒尺寸增大,晶格常数变化不明显。同时, 随着溅射功率增大,CoCrFeNi薄膜中Cr和Fe的含量升高,Co和Ni的含量降低,薄膜结晶性改善,形成FCC相结构,且沿(111)择优生长更明显。石彦彦等[52]用射频磁控溅射技术制备了FeNiCoCrMn高熵合金薄膜,研究了不同基底温度下沉积薄膜的相结构、膜厚、形貌以及耐腐蚀性能规律。结果表明, 基底温度为100、200、300℃时沉积的薄膜为非晶结构,基底温度为400、500℃ 时沉积的为晶体结构。无论是溅射功率还是基底温度,都对原子的扩散有影响,对于上述研究,溅射功率或温度达到一定值后相结构的结晶度都有很大提升,这是由于高功率或高温使得沉积在薄膜上的原子有足够的能量克服能量势垒, 从而进行扩散迁移和晶体结构的组建。 KHAN等[53] 使用射频磁控溅射制备了AlCoCrCu0.5FeNi高熵合金薄膜,并设计了三种不同的工作压力(5、10及15mTorr) (1Torr=133.322 4Pa)来调节薄膜的微观形貌和力学性能。能谱结果表明在5mTorr的工作压力下制备的高熵合金薄膜在X射线下表现为非晶状态,同时具有相当高浓度的Al原子,这是由于Al原子到达衬底的途径中的散射大大减弱。 XRD结果表明在10mTorr下的AlCoCrCu0.5FeNi高熵合金薄膜具有面心和体心双相结构。 Al原子相比于其他几种金属原子的原子质量小,在10mTorr甚至15mTorr这样较高工作压力下,Al与Ar原子发生弹性碰撞的动量转移更容易发生散射,导致薄膜中Al原子浓度随压力增大而相对降低[54]。同时,Al的原子半径大于其他几种金属原子半径,在5mTorr工作压力下,较大的金属半径和35%以上的原子浓度可能导致薄膜结构发生过度的晶格畸变,形成非晶态[55]

  • 2.2 HEAF化合物膜

  • 高熵合金化合物薄膜作为高熵合金薄膜的产物,将高熵合金和化合物有机结合起来了。不仅仅是高熵合金中金属元素含量的变化会影响高熵合金的相结构, 对高熵合金进行氮化、氧化时, 也会改变高熵合金固溶体相中的相结构。常见的高熵合金化合物有高熵合金氮化物、碳化物及氧化物,它们相比于高熵合金薄膜具有更好的扩散阻挡性、良好的耐腐蚀性以及优异的耐磨性[56-57]。目前研究最广泛的还是高熵合金氮化物薄膜。

  • 2004年,CHEN等[58]首次采用高熵合金靶材制备了AlCoCrCuFeMnNi和Al 0.5CoCrCuFeNi的合金及氮化物薄膜,合金薄膜呈现单一FCC或FCC+BCC的混合相结构,随着氮气流量的增加,合金薄膜转变为非晶结构。 2005年,CHEN等[59]又进一步改变合金成分采用直流磁控溅射技术制备了Al2CoCrCuFeNi和AlCrNiSiTi的氮化物薄膜,他发现Al2CoCrCuFeNi物相结构与AlCoCrCuFeMnNi和Al 0.5CoCrCuFeNi的合金及氮化物相同, 而AlCrNiSiTi的金属薄膜便呈非晶态,随着氮含量的增加,其物相结构由非晶态逐渐向晶态转变。在这之后,学者们对多种高熵合金薄膜系统包括金属薄膜、氮化物薄膜、氧化物薄膜、碳化物薄膜以及氮硅化物薄膜展开了研究[60-64]。邢秋玮[46] 发现NbZrTiSiAlNX 高熵合金薄膜在600℃ 温度下具有良好的相稳定性,能够长时间保持非晶态而不发生晶化。在900℃ 温度下,NbZrTiSiAl高熵合金薄膜仍能保持良好的非晶态结构,而该系合金的氮化物薄膜发生了纳米晶化,生成具有面心立方结构的析出相。马铭等[65] 采用磁控溅射技术沉积了AlCrWTaTiNb多元高熵合金薄膜,并在400℃ 以下采用高密度等离子体设备对沉积的薄膜进行了氮化处理。结果表明,高熵效应有利于降低氮化温度,最低氮化温度仅为200℃,所有的氮化物薄膜晶体结构均呈现简单的FCC结构,且具有(111)择优取向。

  • 大量研究表明,氮气流量对高熵合金氮化物薄膜的相结构有很大的影响,所以许多研究报道了不同氮流量比下的高熵合金氮化物薄膜和涂层对相结构的影响, 例如AlCrTaTiZr [26]、 TiVCrAlZr [66]、 AlCrMoTaTiZr [67]、 AlCrNbSiTiV [68]、 TiVCrZrHf [69] 及AlCrMnMoNiZr [70]。研究发现,当N2 流量为0sccm (mL/min,标准毫升/分钟)时,涂层的XRD图谱中只有一个宽峰,表明涂层具有非晶态结构。随着N2 流量增加,高熵合金薄膜中出现简单的FCC结构。在TiVCrAlZr [66]、AlCrMoTaTiZr [67]、AlCrNbSiTiV [68]、 TiVCrZrHf [69] 氮化物和涂层中也可观察到类似现象。图4为其中(AlCrMoTaTiZr)N薄膜的硬度及弹性模量随N2 流量比的变化情况[67]。图5为不同N2 和Ar流量比下(AlCrTiZrNb)N高熵合金薄膜的XRD图谱[27]。当氮气流量比为0时,高熵合金薄膜呈现出非晶结构,且薄膜硬度和弹性模量均较低。随着氮气流量的增大,等离子体密度增加,高能粒子轰击加强,结晶度也随之提高,促使晶粒沿着表面能最低的(200)方向生长,正如图5中N2 与Ar的流量比为2 ∶4,3 ∶4,4 ∶4以及5 ∶4时XRD衍射峰对应的晶面都为(200)所示;但当N2 流量达到一定值之后由于等离子体能量降低,使得粒子轰击减弱,改变了晶粒生长方向,使得晶粒沿着(111)方向生长,这可通过图5中(200)晶面峰值强度下降以及(111)晶面衍射峰的出现来体现。这与XU等的研究结果一致[39-41]

  • 图4 AlCrMoTaTiZr氮化物薄膜的硬度和弹性模量与N2 流量比的关系[67]

  • Fig.4 Relationship between hardness and elastic modulus of AlCrMoTaTiZr nitride film and N2 flow ratio [67]

  • 图5 不同N2 和Ar流量比下(AlCrTiZrNb)N高熵合金薄膜的XRD图谱[27]

  • Fig.5 XRD patterns of (AlCrTiZrNb) N high entropy alloy films at different flow ratios of N2 and Ar [27]

  • 3 HEAF性能

  • 3.1 力学性能

  • 磁控溅射技术是制备高熵合金薄膜常用的一种技术,通过磁控溅射技术已经实现制备一些具有优异力学性能(如高硬度、高弹性模量、高耐磨性) 的高熵合金薄膜。刘晓鹏[71] 采用真空电弧熔炼制备了AlSiTiCrNbV高熵合金靶材,通过调控磁控溅射工艺参数,研究了溅射功率、溅射时间、N2 流量和负偏压对该高熵合金薄膜的力学性能和抗磨损性能的影响。他发现当功率为200W,溅射时间为60min, N2 流量为15sccm,负偏压为150V时,该薄膜显微硬度达到最大值56GPa,且与传统TiN、TiAlN刀具涂层材料对比分析发现,该涂层刀具的磨损失重和加工工件表面粗糙度均优于无涂层刀具和TiN涂层刀具。黄纯可[48]利用磁控溅射法制备了不同Al含量的AlCoCrFeNi高熵合金薄膜,并研究了Al含量对该薄膜力学性能的影响。结果表明,Al元素的加入起到固溶强化的作用,使AlX CoCrFeNi薄膜硬度相对于CoCrFeNi合金薄膜整体提高了1~2GPa。当Al含量为0.8时,薄膜的柱状晶尺寸达到最小, 硬度达到最大值18.7GPa。通过前面对高熵合金薄膜相结构的介绍,笔者可以很清楚地看到元素的添加对相结构有很大的影响,同时薄膜的相结构又决定了性能,因此,薄膜的性能和元素的选择有很大联系。高熵合金作为一种特殊的合金材料,具有 “高熵效应”,而它的高熵又离不开组成它的元素, 这从它的定义就可以看出[1]。谈淑咏等[51] 研究了不同工艺条件下CoCrFeNi高熵合金薄膜的性能,发现随着溅射功率增大,CoCrFeNi高熵合金薄膜硬度降低,当溅射功率为40W时,该薄膜硬度有最大值,为940.5HV。万松峰等[72]以AlCrNbSiTiV为靶材,用反应式磁控溅射技术分别在BNX20刀具和硅晶片上沉积了高熵合金氮化物(AlCrNbSiTiV) N薄膜。采用L9(34) 正交表考察了沉积时间、基材偏压、溅射功率和基材温度对该薄膜硬度和刀具寿命的影响,结果表明沉积时间为20min,基材偏压为-100V,溅射功率为250W,基材温度为400℃ 时薄膜硬度达到最大值2 814HV,且刀具寿命最长。冯兴国等[73] 采用直流反应磁控溅射制备了 (CrMoTaNbVTi)N多主元氮化物薄膜,研究了不同氮气流量比R N 对该薄膜的力学性能和摩擦学性能的影响。结果表明,R N=0%和 R N=10%时薄膜为BCC结构,当 R N=20%、30%、40%时为FCC结构。随着 R N 增大,表面颗粒逐渐减小,膜更致密,同时残余应力、膜基结合力、硬度及弹性模量逐渐增大, 且当 R N=40%时达到最大值,分别为-3.3GPa、 352mN、25.6±1.2GPa和278.8 ± 11.2GPa。 R N=40%时制备的氮化物薄膜具有最小的比磨损率,相比于合金薄膜降低了约1个数量级,表现出优异的耐磨损性能。总的来说,与传统的合金和非晶材料相比,高熵合金薄膜在硬度和杨氏模量方面展现出了明显的优势[74],如图6所示。

  • 3.2 高温抗氧化性

  • 大量试验研究表明,相对于传统合金薄膜,高熵合金及高熵合金薄膜具有优异的高温抗氧化性能。高熵合金薄膜具有的高熵效应和迟滞扩散效应,薄膜元素之间较低的扩散系数,在退火处理过程中发生的固溶元素再分配现象,以及抗氧化性元素(如Al、Cr、Ta和Zr)的加入均会大大改善高熵合金薄膜的高温抗氧化性能。

  • 图6 高熵合金薄膜与其他材料的力学性能比较[74]

  • Fig.6 Comparison of mechanical properties between high entropy alloy films and other materials [74]

  • SHEN等[75]利用反应式磁控溅射技术制备了 (Al 0.34Cr0.22Nb0.11 Si 0.11Ti 0.22)50N50 的高熵合金氮化物薄膜,并研究了该薄膜的抗氧化性能。在900℃ 温度下退火50h后薄膜表面上的氧化物层厚度为290nm。当温度增加到1 300℃ 后,该薄膜的增重仅为0.015mg·cm-2,如图7所示,可以明显看出该高熵合金氮化物薄膜的抗氧化性能远远好于其他氮化物薄膜。从该高熵合金薄膜的组成元素来看就会发现多种抗氧化性优良的元素被选入加进该高熵合金中,这与高熵合金具有的“鸡尾酒” 效应密切相关,因此很多研究人员在研究高熵合金高温抗氧化性的选材方面会着重考虑这方面因素。 TSAI等[61] 利用反应式磁控溅射法制备了(AlCrMoTaTi)-Si x-N高熵合金硅氮化物薄膜,他发现Si的加入会很好地提高该薄膜的高温抗氧化性。 Si的原子分数含量为7.51%时能使氧化层厚度在900℃氧化2h后从1 590nm降低到202nm左右。该薄膜优异的高温氧化性能可由表层的Al2O3 和氧化层内部的SiO2 相来解释。

  • 图7 (Al 0.34Cr0.22Nb0.11 Si 0.11Ti 0.22)50N50 薄膜与其他合金薄膜系统的氧化情况[75]

  • Fig.7 (Al 0.34 Cr0.22 Nb0.11 Si 0.11 Ti 0.22)50 N50 film and other alloy oxidation of films system [75]

  • 3.3 耐腐蚀性

  • 前面已经提到过高熵合金具有优异的耐腐蚀性能,而高熵合金薄膜由于高熵效应以及在制备过程中的快速冷却作用,易生成成分均匀且结构简单的FCC、BCC以及非晶相,因此会极大地提高其耐腐蚀性能。除此之外,一些耐腐蚀性元素(如Cr、Ni、Co及Cu)的加入,也会很好地提高高熵合金薄膜的耐腐蚀性。石彦彦[76] 以FeCrCoNiMn高熵合金为靶材,用射频磁控溅射的方法制备了高熵合金薄膜,并研究了它的腐蚀性能,发现该薄膜在1mol/L的NaOH和H2 SO4 溶液中的耐腐蚀性均明显优于304不锈钢。同一年他用相同的方法在单晶Si(100)和304不锈钢基底上制备了FeNiCoCrMn高熵合金薄膜,探讨了不同基底温度下沉积薄膜的耐腐蚀性能的规律。由动电位极化测试的结果表明不同基底温度沉积的高熵合金薄膜在1mol/L的H2 SO4 溶液中耐腐蚀性都优于304不锈钢,且随着基底温度升高, 耐腐蚀性能降低[52]。 HSUEH等[77] 研究了在直流反应式磁控溅射技术下N2 流量比和衬底偏压对 (AlCrSiTiZr)N高熵合金薄膜抗腐蚀性能的影响。结果表明,在没有偏压且N2 流量比为30%时该晶体薄膜具有最佳的抗腐蚀性能。同时,-100V的衬底偏压能有效地提高了(AlCrSiTiZr)N非晶薄膜的耐蚀性,这可能是由于衬底偏压导致的致密化效应以及薄膜压应力带来的影响。一个很有意思的地方在于,该薄膜具有最佳腐蚀性能的时候是在没有加负偏压的时候,一般来说,加负偏压之后基底对离子的吸引力增强,将使得薄膜的结晶度和致密度得到提升,从而提高薄膜的抗腐蚀性能。这里出现这样的情况的解释可能是:基底偏压和N2 流量比两个试验参数会相互作用,而且这种作用对薄膜性质的影响并不是简单的叠加。在负偏压存在且气压较高时,一方面,从靶材溅射出来的粒子经电离后变为离子,同时会受到基底负偏压的吸引而加速运动;另一方面,离子在运动过程中会受到气体散射作用,使得离子自身的能量不断降低,沉积效果下降,最终可能使得沉积后薄膜的结构和性质并不理想。

  • 3.4 物理性能

  • 对于高熵合金薄膜的物理性能的研究相对于高熵合金来说就相对少多了,不过这仍然不能影响高熵合金薄膜自身优异的电学和磁学性能。 TSAI等[64] 利用磁控溅射沉积了非晶态BNbTaTiZr高熵合金薄膜,并测出了该薄膜的电阻率,为246 μΩ·cm。谈淑咏等[51]研究了不同工艺条件下CoCrFeNi高熵合金薄膜的电阻率,发现随着溅射功率增大,CoCrFeNi薄膜电阻率降低。当溅射功率为40W时,CoCrFeNi电阻率最大,为336.5 μΩ·cm。张立东等[78] 用多靶射频磁控溅射技术,在纯氩气和不同溅射功率(40~100W)下制备了AlCrTaTiNi高熵合金薄膜,结果表明该薄膜在溅射功率为80W时晶粒尺寸最大,电阻率最低,为160 μΩ·cm左右,可为高熵合金在铜互连扩散阻挡层中的应用提供参考。 LIN等[79] 用直流磁控溅射法制备了NiCrSiAlTa高熵合金薄膜, 该薄膜在沉积功率为100W和退火温度为300℃ 时展现了很高的电阻率和较大的低温电阻系数,分别为2 215 μΩ·cm和-10ppm/℃。高熵合金薄膜具有高电阻的原因如下:第一,严重的晶格畸变增加了电子散射的程度;第二,高熵合金薄膜中存在很多固有的高度集中的点缺陷;第三,由于纳米晶结构的存在,产生了大量晶界作为散射中心[67]

  • 姚陈忠等[80]用电沉积法制备了BiFeCoNiMn高熵合金薄膜,发现在沉积时薄膜呈现软磁性特征,而在退火之后的薄膜呈现硬磁性特性。 LIN等[81] 制备了FeCoNiCrAlSi薄膜,并报道了该薄膜优异的软磁性特性。经200℃ 退火1h后得到的高熵合金薄膜的磁饱和度MS 为913kA/m,hHC 矫顽力为79.6A/m,eHC 矫顽力为1.59kA/m。该薄膜的磁学特征参数随退火温度的变化如图8所示。以上研究表明高熵合金薄膜材料在电磁方面具有优异的物理性能,可为今后电子器件方面的研究提供材料上的支持。值得注意的是,已经有很多学者开始这方面的研究了[82]

  • 图8 FeCoNiCrAlSi薄膜的磁特征参数随退火温度的变化[81]

  • Fig.8 Change of magnetic characteristic parameters of FeCoNiCrAlSi films with annealing temperature [81]

  • 4 结论与展望

  • 磁控溅射技术作为物理气相沉积( PVD) 的方式之一,具有成膜速率快、基底温度低、薄膜黏附性好等特点,是实际工程应用中最常见的沉积技术之一。本文从磁控溅射种类、高熵合金薄膜相结构以及性能三个方面阐述了磁控溅射技术制备高熵合金薄膜的研究进展,分别说明了不同磁控溅射的特点和差异,所制备高熵合金薄膜相结构的特点和规律, 以及薄膜所展现出来的优异性能,重点分析了不同磁控溅射技术下各类研究参数对沉积后的薄膜的结构和性能的巨大影响,以期促进磁控溅射技术和高熵合金今后不断的发展,为该领域的其他研究者提供了一定的参考。

  • 在过去的十几年里,人们在探索高熵合金薄膜方面做了大量研究。高硬度、高弹性模量、优异的耐磨性、耐腐蚀性和耐温性,以及优异的电学和磁学性能,已经在各种高熵合金薄膜中取得了验证并得到了广泛应用。高熵合金薄膜在太阳能热转换、工件表面工程、集成电路扩散阻挡层等领域已经显示出巨大的发展潜力。然而,高熵合金薄膜目前仍然存在一些问题值得继续研究。例如:需要探索新型制备工艺降低制备高质量高熵合金薄膜的成本;硅氮化物的高熵合金薄膜的相偏析行为有待进一步研究;迄今为止,还没有一个完整的相形成规律来指导高熵合金薄膜的研究;非氮化形成元素对高熵合金氮化物薄膜的微观组织和力学性能的影响还不清楚;关于高熵合金薄膜的预测计算模型还需要更多的研究和探索等问题。

  • 参考文献

    • [1] ZHANG Weiran,LIAW P K,ZHANG Yong.Science and technology in high-entropy alloys [J].Science China Materials,2018,61(1):2-22.

    • [2] 周鹏远,刘洪喜,张晓伟,等.轻质高熵合金的研究进展 [J].中国表面工程,2021,34(2):13-24.ZHOU Pengyuan,LIU Hongxi,ZHANG Xiaowei,et al.Research progress of light weight high entropy alloy[J].China Surface Engineering,2021,34(2):13-24.(in Chinese)

    • [3] YEH Jienwei,LIN Sujien,CHIN Tsungshune,et al.Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements [J].Metallurgical and Materials Transactions A,2004,35(8):2533-2536.

    • [4] TONG Chungjin,CHEN Yuliang,YEH Jienwei,et al.Microstructure characterization of Al xCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J].Metallurgical and Materials Transactions A,2005,36(4):881-893.

    • [5] 李工,张翼飞,马一墨,等.多主元合金的研究进展[J].燕山大学学报,2020,44(4):331-339.LI Gong,ZHANG Yifei,Ma Yimo,et al.Research progress of multi-principal element alloys [J].Journal of Yanshan University,2020,44(4):331-339.(in Chinese)

    • [6] CHUN N G,GUO Sheng,LUAN Junhua,et al.Entropy-driven phase stability and slow diffusion kinetics in an Al _(0.5)CoCrCuFeNi high entropy alloy[J].Intermetallics,2012,31:165-172.

    • [7] SHENG Wenjie,YANG Xiao,WANG Cong,et al.Nano-crystallization of high-entropy amorphous NbTiAlSiWxNy films prepared by magnetron sputtering[J].Entropy,2016,18(6):226.

    • [8] ZHANG Mina,ZHOU Xianglin,YU Xiangnan,et al.Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding [J].Surface & Coatings Technology,2017,311:321-329.

    • [9] SHON Youkang,JOSHI Sameehan S,KATAKAM Shravana,et al.Laser additive synthesis of high entropy alloy coating on aluminum:Corrosion behavior [J].Materials Letters,2015,142:122-125.

    • [10] CHANG Shouyi,LI Chenen,CHIANG Shengcheng,et al.4-nm thick multilayer structure of multi-component(AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects [J].Journal of Alloys and Compounds,2011,515:4-7.

    • [11] 王俊,郝赛.磁控溅射技术的原理与发展[J].科技创新与应用,2015(2):35.WANG Jun,HAO Sai.The principle and development of magnetron sputtering technology [J].Science and Technology Innovation and Application,2015(2):35.(in Chinese)

    • [12] ZHAO Changjiang,MA Chao,LIU Juncheng,et al.Sputtering power on microstructure and properties of MgF2 thin films prepared with magnetron sputtering [J].Journal of Inorganic Materials,2020,35(9):1064-1070.(in Chinese)

    • [13] 沈洁,李冠群,李玉阁,等.靶成分和溅射参数对碳化钒薄膜微结构与力学性能的影响[J].无机材料学报,2012,27(5):536-540.SHEN Jie,LI Guanqun,LI Yuge,et al.Effect of target composition and sputtering parameters on microstructure and mechanical properties of vanadium carbide thin films[J].Journal of Inorganic Materials,2012,27(5):536-540.(in Chinese)

    • [14] SUN Kewei,ZHOU Wancheng,HUANG Shanshan,et al.Effect of sputtering pressure on ZnO:Al Films by DC magnetron sputtering[J].Journal of Inorganic Materials,2012,27(10):1212-1216.

    • [15] ZHANG Lin,LIU Huihui,LIU Linjia,et al.Effect of La doping on magnetron sputtering CaB 6 films [J].Journal of Inorganic Materials,2017,32(5):555-560.

    • [16] 曾晟,丁爱丽,仇萍荪,等.溅射工艺参数对PZT铁电薄膜相变过程的影响[J].无机材料学报,1999(1):107-113.ZENG Sheng,DING Aili,QIU Pingsun,et al.Effect of sputtering parameters on phase transition of PZT ferroelectric thin films[J].Journal of Inorganic Materials,1999(1):107-113.(in Chinese)

    • [17] 周江.磁控溅射镀膜的原理与故障研究[J].科技展望,2015,25(23):135.ZHOU Jiang.Study on principle and fault of magnetron sputtering coating[J].Science and Technology Outlook,2015,25(23):135.(in Chinese)

    • [18] LIU L,ZHU J B,HOU C,et al.Dense and smooth amorphous films of multicomponent FeCoNiCuVZrAl high-entropy alloy deposited by direct current magnetron sputtering[J].Materials and Design,2013,46:675-679.

    • [19] INOUE Akihisa.High Strength bulk amorphous alloys with low critical cooling rates(overview)[J].Materials Transactions,JIM,1995,36(7):866-875.

    • [20] BRAECKMAN Br,MISJAK F,RADNOCZI G,et al.The nanostructure and mechanical properties of nanocomposite Nbx -CoCrCuFeNi thin films [J].Scripta Materialia,2017,139:155-158.

    • [21] 刘晓东,谈淑咏,霍文燚,等.氮流量比对磁控溅射(CoCrFeNi)Nx 高熵合金薄膜的组织和性能的影响[J].材料研究学报,2019,33(3):185-190.LIU Xiaodong,TAN Shuyong,HUO Wenyi,et al.Effect of nitrogen flow ratio on microstructure and properties of CoCrFeNi Nx high entropy alloy thin films [J].Journal of materials research,2019,33(3):185-190.(in Chinese)

    • [22] DEDONCKER R,RADNOCZI G,ABADIAS G,et al.Reactive sputter deposition of CoCrCuFeNi in oxygen/argon mixtures[J].Surface & Coatings Technology,2019,378:13-19.

    • [23] DOLIQUE V,THOMANN A L,BRAULT P,et al.Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy[J].Materials Chemistry and Physics,2009,117(1):142-147.

    • [24] 李荣斌,乔帮威,蒋春霞,等.氮气含量对 AlCrTaTiZrMoNx 高熵合金氮化物薄膜扩散阻挡性能的影响[J].材料保护,2018,51(1):22-27.LI Rongbin,QIAO Banwei,JIANG Chunxia,et al.Effects of Nitrogen content on diffusion barrier properties of AlCrTaTiZrMoNx high entropy alloy nitrides [J].Materials protection,2018,51(1):22-27.(in Chinese)

    • [25] LIN Miao-I,TSAI Minghung,SHEN Wanjui,et al.Evolution of structure and properties of multi-component(AlCrTaTiZr)Ox films[J].Thin Solid Films,2009,518(10):2732-2737.

    • [26] LAI Chiahan,LIN Sujien,YEH Jienwei,et al.Preparation and characterization of AlCrTaTiZr multi-element nitride coatings[J].Surface & Coatings Technology,2006,201(6):3275-3280.

    • [27] 黄纯可,李伟,刘平,等.射频磁控溅射制备(AlCrTiZrNb)N 高熵合金薄膜的微观组织和力学性能[J].真空科学与技术学报,2018,38(6):487-493.HUANG Chunke,LI Wei,LIU Ping,et al.Microstructure and mechanical properties of(AlCrTiZrNb)N high entropy alloy thin films prepared by rf magnetron sputtering[J].Journal of Vacuum Science and Technology,2018,38(6):487-493.(in Chinese)

    • [28] CHANG Shouyi,CHEN Mingku.High thermal stability of AlCrTaTiZr nitride film as diffusion barrier for copper metallization [J].Thin Solid Films,2009,517(17):4961-4965.

    • [29] LIN C H,DUH J G,YEH J W.Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target inRF magnetron sputter[J].Surface & Coatings Technology,2006,201(14):6304-6308.

    • [30] LAI Chiahan,YEH Jienwei.Mechanical and tribological properties of multi-element(AlCrTaTiZr)N coatings [J].Surface & Coatings Technology,2008,202(15):3732-3738.

    • [31] 谢启.等离子体增强磁控溅射制备TiVN薄膜技术研究[D].北京:中国地质大学,2019.XIE Qi.Plasma enhanced magnetron sputtering for the preparation of TiVN thin films[D].Beijing:China University of Geosciences,2019.(in Chinese)

    • [32] 李新,唐祯安,邓新绿,等.微波ECR等离子体源增强非平衡磁控溅射DLC膜的制备与表征[J].功能材料,2004(3):304-305,307.LI Xin,TANG Zhen’ an,DENG Xinlu,et al.Preparation and characterization of non-equilibrium magnetron sputtering DLC films enhanced by microwave ECR plasma source[J].Functional Materials,2004(3):304-305,307.(in Chinese)

    • [33] 丁万昱,徐军,李艳琴,等.微波ECR等离子体增强磁控溅射制备 SiNx 薄膜及其性能分析[J].物理学报,2006,55(3):1363-1368.DING Wanyu,XU Jun,LI Yanqin,et al.Preparation and properties of SiNx films by microwave ECR plasma enhanced magnetron sputtering[J].Acta Physica Sinica,2006,55(3):1363-1368.(in Chinese)

    • [34] 朱继国.直流脉冲磁控溅射制备Mo薄膜及其性能研究[D].大连:大连交通大学,2008.ZHU Jiguo.Preparation and properties of Mo thin films by DC pulse magnetron sputtering [ D ].Dalian:Dalian Jiaotong University,2008.(in Chinese)

    • [35] 张粲,丁万昱,王华林,等.O2/Ar 比例对直流脉冲磁控溅射制备 TiO2 薄膜光催化性能的影响[J].真空科学与技术学报,2010,30(2):106-110.ZHANG Can,DING Wanyu,WANG Hualin,et al.Effect of O2/Ar ratio on photocatalytic performance of TiO2 thin films prepared by DC pulse magnetron sputtering [J].Journal of Vacuum Science and Technology,2010,30(2):106-110.(in Chinese)

    • [36] 董浩,黎明锴,刘传胜,等.中频脉冲磁控溅射制备氮化铝薄膜[J].武汉大学学报(理学版),2002,48(3):339-342.DONG Hao,LI Mingkai,LIU Chuansheng,et al.Preparation of aluminum nitride thin films by medium frequency pulse magnetron sputtering[J].Journal of Wuhan University(Science Edition),2002(3):339-342.(in Chinese)

    • [37] 何延春.直流反应和中频脉冲磁控溅射制备 WO3 多晶薄膜 [C]//中国真空学会薄膜专业委员会,2013,中国浙江宁波.TFC′13 全国薄膜技术学术研讨会论文摘要集.中国真空学会薄膜专业委员会,2013:1.HE Yanchun.Preparation of WO3 polycrystalline thin films by dc reaction and medium frequency pulse magnetron sputtering[C]//Thin Film Professional Committee of China Vacuum Society,2013,Ningbo,Zhejiang,China.TFC ’ 13 National Film Technology Symposium Paper Abstract collection.Thin Film Professional Committee of China Vacuum Society,2013:1.(in Chinese)

    • [38] 段伟赞.高功率复合脉冲磁控溅射放电特性及氮化物薄膜制备[D].哈尔滨:哈尔滨工业大学,2010.DUAN Weizan.High power composite pulse magnetron sputtering discharge characteristics and preparationof nitride thin films[D].Harbin:Harbin Institute of Technology,2010.(in Chinese)

    • [39] XU Yi,LI Guang,XIA Yuan.Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS [J].Applied Surface Science,2020,523(1):146529.

    • [40] XU Yi,LI Liuhe,LUO Sida,et al.Self-enhanced plasma discharge effect in the deposition of diamond-like carbon films on the inner surface of slender tube[J].Applied Surface Science,2017,393:467-473.

    • [41] WANG Z,ZHANG D,KE D P,et al.Influence of substrate negative bias on structure and properties of TiN coatings prepared by hybrid HIPIMS method[J].J.Mater.Sci.Technol,2015,31:37-42.

    • [42] LI Yantao,WANG Chunting,MA Donglin,et al.Nano dualphase CuNiTiNbCr high entropy alloy films produced by high-power pulsed magnetron sputtering [J].Surface & Coatings Technology,2021,420:524-531.

    • [43] CHANG Kaisheng,CHEN Kuanta,HSU Chunyao,et al.Growth(AlCrNbSiTiV)N thin films on the interrupted turning and properties using DCMS and HIPIMS system[J].Applied Surface Science,2018,440:1-7.

    • [44] TIRON V,VELICU I L,VASILOVICI O,et al.Optimization of deposition rate in HiPIMS by controlling the peak target current [J].Journal of Physics D:Applied Physics,2015,48(49):53-61.

    • [45] 李忠丽,孙宏飞,高鹏.等.新型多主元高熵合金的研究进展[J].热加工工艺技术与材料研究,2010,8:62-64.LI Zhongli,SUN Hongfei,GAO Peng,et al.Research progress of novel high entropy multi-principal element alloys [J].Hot Working Technology and Material Research,2010,8:62-64.(in Chinese)

    • [46] 邢秋玮.高熔点多基元合金薄膜的设计及性能[D].北京:北京科技大学,2019.XING Qiuwei.Design and properties of high melting point multielement alloys thin films[D].Beijing:University of Science and Technology Beijing,2019.(in Chinese)

    • [47] 马明星,柳沅汛,谷雨,等.激光制备 Al xCoCrNiMo 高熵合金涂层的研究[J].应用激光,2010,30(6):433-437.MA Mingxing,LIU Yuanxun,GU Yu,et al.Study on preparation of Al xCoCrNiMo high entropy alloy coating by laser [J].Journal of Applied Laser,2010,30(6):433-437.(in Chinese)

    • [48] 黄纯可,李伟,刘平,等.磁控溅射法制备 AlX CoCrFeNi 高熵合金薄膜的微观组织和力学性能研究[J].功能材料,2017,48(6):6144-6148.HUANG Chunke,LI Wei,LIU Ping,et al.Microstructure and mechanical properties of AlX CoCrFeNi high entropy alloy films prepared by magnetron sputtering [J].Functional Materials,2017,48(6):6144-6148.(in Chinese)

    • [49] GUO S,CHUN NG,LU J,et al.Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys.J Appl Phys,2011,109(10):1-5.

    • [50] NUTOR R K,CAO Q P,WANG X D,et al.Phase selection,lattice distortions,and mechanical properties in high-entropy alloys.Adv Eng Mater,2020,22(11):2034-2042.

    • [51] 谈淑咏,刘晓东,霍文燚,等.磁控溅射CoCrFeNi高熵合金薄膜的硬度和电阻率研究[J].表面技术,2019,48(10):157-162.TAN Shuyong,LIU Xiaodong,HUO Wenyan,et al.Study on hardness and resistivity of CoCrFeNi high entropy alloythin films by magnetron sputtering [J].Surface Technology,2019,48(10):157-162.(in Chinese)

    • [52] 石彦彦,罗永春,张国庆.不同基底温度FeNiCoCrMn高熵合金薄膜的制备及耐腐蚀性能的研究[J].金属功能材料,2016,23(4):35-39.SHI Yanyan,LUO Yongchun,ZHANG Guoqing.Preparation and corrosion resistance of FeNiCoCrMn high entropy alloy films with different substrate temperatures [J].Metal Functional Materials,2016,23(4):35-39.(in Chinese)

    • [53] KHAN,NAVEED A,AKHAVAN,et al.High entropy alloy thin films of AlCoCrCu _(0.5)FeNi with controlled microstructure [J].Applied Surface Science:A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2019,495(30):1-9.

    • [54] MEIJA J,COPLEN Tyler B,MICHAEL Berglund,et al.Atomic weights of the elements 2013(IUPAC Technical Report)[J].Pure and Applied Chemistry,2016,88(3):265-291.

    • [55] DOLIQUE V,THOMANN A L,BRAULT P,et al.Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy[J].Mater.Chem.Phys.,2009,117(1):142-147.

    • [56] 刘径舟,刘洪喜,邸英南,等.碳含量对激光熔覆 CoCrFeMnNiCx 高熵合金涂层摩擦磨损和耐蚀性能的影响[J].中国表面工程,2020,33(6):118-127.LIU Jingzhou,LIU Hongxi,DI Yingnan,et al.Effects of carbon content on friction,wear and corrosion resistance of laser cladding CoCrFeMnNiCx high entropy alloy coatings [J].China surface engineering,2020,33(6):118-127.(in Chinese)

    • [57] 时海芳,王红蕾.SiC 对氩弧熔覆AlCuFeNiCo高熵合金涂层组织性能的影响[J].中国表面工程,2020,33(5):75-82.SHI Haifang,WANG Honglei.Effect of SiC on microstructure and properties of argon arc cladding AlCuFeNiCo high entropy alloy coatings[J].China Surface Engineering,2020,33(5):75-82.(in Chinese)

    • [58] CHEN T K,SHUN T T,YEH J W,et al.Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering[J].Surface and Coatings Technology,2004,188-189:193-200.

    • [59] CHEN Takun,WONG Mingshow,SHUN Taotsung,et al.Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering[J].Surface & Coatings Technology,2005,200(5):1361-1365.

    • [60] CHENG Chunyang,YEH Jienwei.High-entropy BNbTaTiZr thin film with excellent thermal stability of amorphous structure and its electrical properties [J].Materials Letters,2016,185:456-459.

    • [61] CHANG Zuechin,TSAI Ducheng,CHEN Erhchiang.Structure and characteristics of reactive magnetron sputtered(CrTaTiVZr)N coatings[J].Materials Science in Semiconductor Processing,2015,39:30-39.

    • [62] TSAU Chun-huei,HWANG Zhang-yan,CHEN Swe-kai,et al.The microstructures and electrical resistivity of(Al,Cr,Ti)FeCoNiOx high-entropy alloy oxide thin films[J].Advances in Materials Science and Engineering,2015,2015:1-6.

    • [63] 王子鑫,张勇.FeCrVTa_(0.4)W_(0.4)高熵合金氮化物薄膜的微观结构与性能[J].工程科学学报,2021,43(5):684-692.WANG Zixin,ZHANG Yong.Microstructure and properties of FeCrVTa_(0.4)W_(0.4)alloys nitride films[J].Journal of Engineering Science,2021,43(5):684-692.(in Chinese)

    • [64] TSAI Ducheng,DENG Minjen,CHANG Zuechin,et al.Oxidation resistance and characterization of(AlCrMoTaTi)-Six-N coating deposited via magnetron sputtering [J].Journal of Alloys and Compounds,2015,647:179-188.

    • [65] 马铭,任瑛,侯晓多,等.磁控溅射制备AlCrWTaTiNb高熵合金薄膜低温等离子体氮化[J].大连理工大学学报,2019,59(1):28-34.MA Ming,REN Ying,HOU Xiaoduo,et al.Low Temperature plasma nitride of AlCrWTatInb high-entropyalloy films by magnetron sputtering [J].Journal of Dalian University of Technology,2019,59(1):28-34.(in Chinese)

    • [66] CHANG Zuechin,HAN Sheng,CHEN Yikun.Characteristics of TiVCrAlZr multi-element nitride filmsprepared by reactive sputtering[J].Nuclear Instruments and Methods in Physical Research,Section B.Beam Interactions with Materials and Atoms,2010,268(16):2504-2509.

    • [67] CHENG Kenghao,LAI Chiahan,LIN Sujien,et al.Structural and mechanical properties of multi-element(AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering[J].Thin Solid Films,2010,519(10):3185-3190.

    • [68] HUANG Pingkang.Effects of nitrogen content on structure and mechanical properties of multi-element(AlCrNbSiTiV)N coating [J].Surface & Coating Technology,2009,203(13):1891-1896.

    • [69] LIANG Shihchang,TSAI Ducheng,CHANG Zuechin,et al.Structural and mechanical properties of multi-element(TiVCrZrHf)N coatings by reactive magnetron sputtering [J].Applied Surface Science,2011,258(1):309-403.

    • [70] REN Bo,SHEN Zigang,LIU Zhongxia.Structure and mechanical properties of multi-element(AlCrMnMoNiZr)Nx coatings by reactive magnetron sputtering[J].Journal of Alloys and Compounds,2013,560:171-176.

    • [71] 刘晓鹏.磁控溅射(AlSiTiCrNbV)N 薄膜的结构、性能及其在刀具中应用[D].西安:西安工业大学,2019.LIU Xiaopeng.Structure,properties and application of magnetron sputtering(AlSiTiCrNbV)N films in cutting tools[D].Xi’ an:Xi’an Polytechnic University,2019.(in Chinese)

    • [72] 万松峰,许春耀,张钰乾.高熵合金AlCrNbSiTiV氮化物薄膜溅镀参数的优化[J].电镀与涂饰,2018(15):677-682.WAN Songfeng,XU Chunyao,ZHANG Yuqian.Optimization of splashing parameters of high entropyalloy AlCrNbSiTiV nitride thin films[J].Electroplating and Finishing,2018,37(15):677-682.(in Chinese)

    • [73] FENG Xingguo,ZHENG Yugang,ZHANG Kaifeng,et al.Microstructure and mechanical properties of reactive magnetron sputtering(CrMoTaNbVTi)N multiprincipal component films [J].Rare Metal Materials and Engineering,2020,49(8):2623-2629.

    • [74] 闫薛卉,张勇.高熵薄膜和成分梯度材料[J].表面技术,2019,48(6):98-106.YAN Xuehui,ZHANG Yong.High-entropy films and compositional gradient materials[J].Surface Technology,2019,48(6):98-106.(in Chinese)

    • [75] SHEN W J,TSAI M H,TSAI K Y,et al.Superior oxidation resistance of(Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 High[J].Journal of the Electrochemical Society,2013,160(11):531-535.

    • [76] 石彦彦.磁控溅射FeCrCoNiMn高熵合金薄膜及其耐腐蚀性能研究[D].兰州:兰州理工大学,2016.SHI Yanyan.Study on corrosion resistance of FeCrCoNiMn high entropy alloy films by magnetron sputtering [ D ].Lanzhou:Lanzhou University of Technology,2016.(in Chinese)

    • [77] HSUEH Hwaite,SHEN Wanjui,TSAI Minghung,et al.Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films(AlCrSiTiZr)100-x Nx [J].Surface & Coatings Technology,2012,206(19-20):4106-4112.

    • [78] 张立东,刘春海,孙化冬,等.晶体AlCrTaTiNi高熵合金薄膜[J].功能材料,2012,43(3):394-397.ZHANG Lidong,LIU Chunhai,SUN Huadong,et al.High entropy AlCrTatini crystalline alloy films [J].Journal of Functional Materials,2012,43(3):394-397.(in Chinese)

    • [79] LIN Rueicheng,LEE Taikuang,WU Derho,et al.A study of thin film resistors prepared using Ni-Cr-Si-Al-Ta high entropy alloy [J].Advances in Materials Science and Engineering,2015,2015:1-7.

    • [80] 姚陈忠,马会宣,童叶翔.非晶纳米高熵合金薄膜 Nd-Fe-Co-Ni-Mn 的电化学制备及磁学性能[J].应用化学,2011,28(10):1189-1194.YAO Chenzhong,MA Huixuan,TONG Yexiang.Electrochemical preparation and magnetic properties of Nd-Fe-Co-Ni-Mn amorphous nanocrystalline alloy films with high entropy [J].Applied Chemistry,2011,28(10):1189-1194.(in Chinese)

    • [81] LIN Peichung,CHENG Chunyang,YEH Jienwei,et al.Soft magnetic properties of high-entropy Fe-Co-Ni-Cr-Al-Si thin films [J].Entropy,2016,18(8):308.

    • [82] WANG Ze,WANG Cheng,ZHAO Yilu,et al.Nanotwinned CoCrFeMnNi high entropy alloy films for flexible electronic device applications[J].Vacuum,2021,189:106-113.

  • 参考文献

    • [1] ZHANG Weiran,LIAW P K,ZHANG Yong.Science and technology in high-entropy alloys [J].Science China Materials,2018,61(1):2-22.

    • [2] 周鹏远,刘洪喜,张晓伟,等.轻质高熵合金的研究进展 [J].中国表面工程,2021,34(2):13-24.ZHOU Pengyuan,LIU Hongxi,ZHANG Xiaowei,et al.Research progress of light weight high entropy alloy[J].China Surface Engineering,2021,34(2):13-24.(in Chinese)

    • [3] YEH Jienwei,LIN Sujien,CHIN Tsungshune,et al.Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements [J].Metallurgical and Materials Transactions A,2004,35(8):2533-2536.

    • [4] TONG Chungjin,CHEN Yuliang,YEH Jienwei,et al.Microstructure characterization of Al xCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J].Metallurgical and Materials Transactions A,2005,36(4):881-893.

    • [5] 李工,张翼飞,马一墨,等.多主元合金的研究进展[J].燕山大学学报,2020,44(4):331-339.LI Gong,ZHANG Yifei,Ma Yimo,et al.Research progress of multi-principal element alloys [J].Journal of Yanshan University,2020,44(4):331-339.(in Chinese)

    • [6] CHUN N G,GUO Sheng,LUAN Junhua,et al.Entropy-driven phase stability and slow diffusion kinetics in an Al _(0.5)CoCrCuFeNi high entropy alloy[J].Intermetallics,2012,31:165-172.

    • [7] SHENG Wenjie,YANG Xiao,WANG Cong,et al.Nano-crystallization of high-entropy amorphous NbTiAlSiWxNy films prepared by magnetron sputtering[J].Entropy,2016,18(6):226.

    • [8] ZHANG Mina,ZHOU Xianglin,YU Xiangnan,et al.Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding [J].Surface & Coatings Technology,2017,311:321-329.

    • [9] SHON Youkang,JOSHI Sameehan S,KATAKAM Shravana,et al.Laser additive synthesis of high entropy alloy coating on aluminum:Corrosion behavior [J].Materials Letters,2015,142:122-125.

    • [10] CHANG Shouyi,LI Chenen,CHIANG Shengcheng,et al.4-nm thick multilayer structure of multi-component(AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects [J].Journal of Alloys and Compounds,2011,515:4-7.

    • [11] 王俊,郝赛.磁控溅射技术的原理与发展[J].科技创新与应用,2015(2):35.WANG Jun,HAO Sai.The principle and development of magnetron sputtering technology [J].Science and Technology Innovation and Application,2015(2):35.(in Chinese)

    • [12] ZHAO Changjiang,MA Chao,LIU Juncheng,et al.Sputtering power on microstructure and properties of MgF2 thin films prepared with magnetron sputtering [J].Journal of Inorganic Materials,2020,35(9):1064-1070.(in Chinese)

    • [13] 沈洁,李冠群,李玉阁,等.靶成分和溅射参数对碳化钒薄膜微结构与力学性能的影响[J].无机材料学报,2012,27(5):536-540.SHEN Jie,LI Guanqun,LI Yuge,et al.Effect of target composition and sputtering parameters on microstructure and mechanical properties of vanadium carbide thin films[J].Journal of Inorganic Materials,2012,27(5):536-540.(in Chinese)

    • [14] SUN Kewei,ZHOU Wancheng,HUANG Shanshan,et al.Effect of sputtering pressure on ZnO:Al Films by DC magnetron sputtering[J].Journal of Inorganic Materials,2012,27(10):1212-1216.

    • [15] ZHANG Lin,LIU Huihui,LIU Linjia,et al.Effect of La doping on magnetron sputtering CaB 6 films [J].Journal of Inorganic Materials,2017,32(5):555-560.

    • [16] 曾晟,丁爱丽,仇萍荪,等.溅射工艺参数对PZT铁电薄膜相变过程的影响[J].无机材料学报,1999(1):107-113.ZENG Sheng,DING Aili,QIU Pingsun,et al.Effect of sputtering parameters on phase transition of PZT ferroelectric thin films[J].Journal of Inorganic Materials,1999(1):107-113.(in Chinese)

    • [17] 周江.磁控溅射镀膜的原理与故障研究[J].科技展望,2015,25(23):135.ZHOU Jiang.Study on principle and fault of magnetron sputtering coating[J].Science and Technology Outlook,2015,25(23):135.(in Chinese)

    • [18] LIU L,ZHU J B,HOU C,et al.Dense and smooth amorphous films of multicomponent FeCoNiCuVZrAl high-entropy alloy deposited by direct current magnetron sputtering[J].Materials and Design,2013,46:675-679.

    • [19] INOUE Akihisa.High Strength bulk amorphous alloys with low critical cooling rates(overview)[J].Materials Transactions,JIM,1995,36(7):866-875.

    • [20] BRAECKMAN Br,MISJAK F,RADNOCZI G,et al.The nanostructure and mechanical properties of nanocomposite Nbx -CoCrCuFeNi thin films [J].Scripta Materialia,2017,139:155-158.

    • [21] 刘晓东,谈淑咏,霍文燚,等.氮流量比对磁控溅射(CoCrFeNi)Nx 高熵合金薄膜的组织和性能的影响[J].材料研究学报,2019,33(3):185-190.LIU Xiaodong,TAN Shuyong,HUO Wenyi,et al.Effect of nitrogen flow ratio on microstructure and properties of CoCrFeNi Nx high entropy alloy thin films [J].Journal of materials research,2019,33(3):185-190.(in Chinese)

    • [22] DEDONCKER R,RADNOCZI G,ABADIAS G,et al.Reactive sputter deposition of CoCrCuFeNi in oxygen/argon mixtures[J].Surface & Coatings Technology,2019,378:13-19.

    • [23] DOLIQUE V,THOMANN A L,BRAULT P,et al.Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy[J].Materials Chemistry and Physics,2009,117(1):142-147.

    • [24] 李荣斌,乔帮威,蒋春霞,等.氮气含量对 AlCrTaTiZrMoNx 高熵合金氮化物薄膜扩散阻挡性能的影响[J].材料保护,2018,51(1):22-27.LI Rongbin,QIAO Banwei,JIANG Chunxia,et al.Effects of Nitrogen content on diffusion barrier properties of AlCrTaTiZrMoNx high entropy alloy nitrides [J].Materials protection,2018,51(1):22-27.(in Chinese)

    • [25] LIN Miao-I,TSAI Minghung,SHEN Wanjui,et al.Evolution of structure and properties of multi-component(AlCrTaTiZr)Ox films[J].Thin Solid Films,2009,518(10):2732-2737.

    • [26] LAI Chiahan,LIN Sujien,YEH Jienwei,et al.Preparation and characterization of AlCrTaTiZr multi-element nitride coatings[J].Surface & Coatings Technology,2006,201(6):3275-3280.

    • [27] 黄纯可,李伟,刘平,等.射频磁控溅射制备(AlCrTiZrNb)N 高熵合金薄膜的微观组织和力学性能[J].真空科学与技术学报,2018,38(6):487-493.HUANG Chunke,LI Wei,LIU Ping,et al.Microstructure and mechanical properties of(AlCrTiZrNb)N high entropy alloy thin films prepared by rf magnetron sputtering[J].Journal of Vacuum Science and Technology,2018,38(6):487-493.(in Chinese)

    • [28] CHANG Shouyi,CHEN Mingku.High thermal stability of AlCrTaTiZr nitride film as diffusion barrier for copper metallization [J].Thin Solid Films,2009,517(17):4961-4965.

    • [29] LIN C H,DUH J G,YEH J W.Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target inRF magnetron sputter[J].Surface & Coatings Technology,2006,201(14):6304-6308.

    • [30] LAI Chiahan,YEH Jienwei.Mechanical and tribological properties of multi-element(AlCrTaTiZr)N coatings [J].Surface & Coatings Technology,2008,202(15):3732-3738.

    • [31] 谢启.等离子体增强磁控溅射制备TiVN薄膜技术研究[D].北京:中国地质大学,2019.XIE Qi.Plasma enhanced magnetron sputtering for the preparation of TiVN thin films[D].Beijing:China University of Geosciences,2019.(in Chinese)

    • [32] 李新,唐祯安,邓新绿,等.微波ECR等离子体源增强非平衡磁控溅射DLC膜的制备与表征[J].功能材料,2004(3):304-305,307.LI Xin,TANG Zhen’ an,DENG Xinlu,et al.Preparation and characterization of non-equilibrium magnetron sputtering DLC films enhanced by microwave ECR plasma source[J].Functional Materials,2004(3):304-305,307.(in Chinese)

    • [33] 丁万昱,徐军,李艳琴,等.微波ECR等离子体增强磁控溅射制备 SiNx 薄膜及其性能分析[J].物理学报,2006,55(3):1363-1368.DING Wanyu,XU Jun,LI Yanqin,et al.Preparation and properties of SiNx films by microwave ECR plasma enhanced magnetron sputtering[J].Acta Physica Sinica,2006,55(3):1363-1368.(in Chinese)

    • [34] 朱继国.直流脉冲磁控溅射制备Mo薄膜及其性能研究[D].大连:大连交通大学,2008.ZHU Jiguo.Preparation and properties of Mo thin films by DC pulse magnetron sputtering [ D ].Dalian:Dalian Jiaotong University,2008.(in Chinese)

    • [35] 张粲,丁万昱,王华林,等.O2/Ar 比例对直流脉冲磁控溅射制备 TiO2 薄膜光催化性能的影响[J].真空科学与技术学报,2010,30(2):106-110.ZHANG Can,DING Wanyu,WANG Hualin,et al.Effect of O2/Ar ratio on photocatalytic performance of TiO2 thin films prepared by DC pulse magnetron sputtering [J].Journal of Vacuum Science and Technology,2010,30(2):106-110.(in Chinese)

    • [36] 董浩,黎明锴,刘传胜,等.中频脉冲磁控溅射制备氮化铝薄膜[J].武汉大学学报(理学版),2002,48(3):339-342.DONG Hao,LI Mingkai,LIU Chuansheng,et al.Preparation of aluminum nitride thin films by medium frequency pulse magnetron sputtering[J].Journal of Wuhan University(Science Edition),2002(3):339-342.(in Chinese)

    • [37] 何延春.直流反应和中频脉冲磁控溅射制备 WO3 多晶薄膜 [C]//中国真空学会薄膜专业委员会,2013,中国浙江宁波.TFC′13 全国薄膜技术学术研讨会论文摘要集.中国真空学会薄膜专业委员会,2013:1.HE Yanchun.Preparation of WO3 polycrystalline thin films by dc reaction and medium frequency pulse magnetron sputtering[C]//Thin Film Professional Committee of China Vacuum Society,2013,Ningbo,Zhejiang,China.TFC ’ 13 National Film Technology Symposium Paper Abstract collection.Thin Film Professional Committee of China Vacuum Society,2013:1.(in Chinese)

    • [38] 段伟赞.高功率复合脉冲磁控溅射放电特性及氮化物薄膜制备[D].哈尔滨:哈尔滨工业大学,2010.DUAN Weizan.High power composite pulse magnetron sputtering discharge characteristics and preparationof nitride thin films[D].Harbin:Harbin Institute of Technology,2010.(in Chinese)

    • [39] XU Yi,LI Guang,XIA Yuan.Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS [J].Applied Surface Science,2020,523(1):146529.

    • [40] XU Yi,LI Liuhe,LUO Sida,et al.Self-enhanced plasma discharge effect in the deposition of diamond-like carbon films on the inner surface of slender tube[J].Applied Surface Science,2017,393:467-473.

    • [41] WANG Z,ZHANG D,KE D P,et al.Influence of substrate negative bias on structure and properties of TiN coatings prepared by hybrid HIPIMS method[J].J.Mater.Sci.Technol,2015,31:37-42.

    • [42] LI Yantao,WANG Chunting,MA Donglin,et al.Nano dualphase CuNiTiNbCr high entropy alloy films produced by high-power pulsed magnetron sputtering [J].Surface & Coatings Technology,2021,420:524-531.

    • [43] CHANG Kaisheng,CHEN Kuanta,HSU Chunyao,et al.Growth(AlCrNbSiTiV)N thin films on the interrupted turning and properties using DCMS and HIPIMS system[J].Applied Surface Science,2018,440:1-7.

    • [44] TIRON V,VELICU I L,VASILOVICI O,et al.Optimization of deposition rate in HiPIMS by controlling the peak target current [J].Journal of Physics D:Applied Physics,2015,48(49):53-61.

    • [45] 李忠丽,孙宏飞,高鹏.等.新型多主元高熵合金的研究进展[J].热加工工艺技术与材料研究,2010,8:62-64.LI Zhongli,SUN Hongfei,GAO Peng,et al.Research progress of novel high entropy multi-principal element alloys [J].Hot Working Technology and Material Research,2010,8:62-64.(in Chinese)

    • [46] 邢秋玮.高熔点多基元合金薄膜的设计及性能[D].北京:北京科技大学,2019.XING Qiuwei.Design and properties of high melting point multielement alloys thin films[D].Beijing:University of Science and Technology Beijing,2019.(in Chinese)

    • [47] 马明星,柳沅汛,谷雨,等.激光制备 Al xCoCrNiMo 高熵合金涂层的研究[J].应用激光,2010,30(6):433-437.MA Mingxing,LIU Yuanxun,GU Yu,et al.Study on preparation of Al xCoCrNiMo high entropy alloy coating by laser [J].Journal of Applied Laser,2010,30(6):433-437.(in Chinese)

    • [48] 黄纯可,李伟,刘平,等.磁控溅射法制备 AlX CoCrFeNi 高熵合金薄膜的微观组织和力学性能研究[J].功能材料,2017,48(6):6144-6148.HUANG Chunke,LI Wei,LIU Ping,et al.Microstructure and mechanical properties of AlX CoCrFeNi high entropy alloy films prepared by magnetron sputtering [J].Functional Materials,2017,48(6):6144-6148.(in Chinese)

    • [49] GUO S,CHUN NG,LU J,et al.Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys.J Appl Phys,2011,109(10):1-5.

    • [50] NUTOR R K,CAO Q P,WANG X D,et al.Phase selection,lattice distortions,and mechanical properties in high-entropy alloys.Adv Eng Mater,2020,22(11):2034-2042.

    • [51] 谈淑咏,刘晓东,霍文燚,等.磁控溅射CoCrFeNi高熵合金薄膜的硬度和电阻率研究[J].表面技术,2019,48(10):157-162.TAN Shuyong,LIU Xiaodong,HUO Wenyan,et al.Study on hardness and resistivity of CoCrFeNi high entropy alloythin films by magnetron sputtering [J].Surface Technology,2019,48(10):157-162.(in Chinese)

    • [52] 石彦彦,罗永春,张国庆.不同基底温度FeNiCoCrMn高熵合金薄膜的制备及耐腐蚀性能的研究[J].金属功能材料,2016,23(4):35-39.SHI Yanyan,LUO Yongchun,ZHANG Guoqing.Preparation and corrosion resistance of FeNiCoCrMn high entropy alloy films with different substrate temperatures [J].Metal Functional Materials,2016,23(4):35-39.(in Chinese)

    • [53] KHAN,NAVEED A,AKHAVAN,et al.High entropy alloy thin films of AlCoCrCu _(0.5)FeNi with controlled microstructure [J].Applied Surface Science:A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2019,495(30):1-9.

    • [54] MEIJA J,COPLEN Tyler B,MICHAEL Berglund,et al.Atomic weights of the elements 2013(IUPAC Technical Report)[J].Pure and Applied Chemistry,2016,88(3):265-291.

    • [55] DOLIQUE V,THOMANN A L,BRAULT P,et al.Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy[J].Mater.Chem.Phys.,2009,117(1):142-147.

    • [56] 刘径舟,刘洪喜,邸英南,等.碳含量对激光熔覆 CoCrFeMnNiCx 高熵合金涂层摩擦磨损和耐蚀性能的影响[J].中国表面工程,2020,33(6):118-127.LIU Jingzhou,LIU Hongxi,DI Yingnan,et al.Effects of carbon content on friction,wear and corrosion resistance of laser cladding CoCrFeMnNiCx high entropy alloy coatings [J].China surface engineering,2020,33(6):118-127.(in Chinese)

    • [57] 时海芳,王红蕾.SiC 对氩弧熔覆AlCuFeNiCo高熵合金涂层组织性能的影响[J].中国表面工程,2020,33(5):75-82.SHI Haifang,WANG Honglei.Effect of SiC on microstructure and properties of argon arc cladding AlCuFeNiCo high entropy alloy coatings[J].China Surface Engineering,2020,33(5):75-82.(in Chinese)

    • [58] CHEN T K,SHUN T T,YEH J W,et al.Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering[J].Surface and Coatings Technology,2004,188-189:193-200.

    • [59] CHEN Takun,WONG Mingshow,SHUN Taotsung,et al.Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering[J].Surface & Coatings Technology,2005,200(5):1361-1365.

    • [60] CHENG Chunyang,YEH Jienwei.High-entropy BNbTaTiZr thin film with excellent thermal stability of amorphous structure and its electrical properties [J].Materials Letters,2016,185:456-459.

    • [61] CHANG Zuechin,TSAI Ducheng,CHEN Erhchiang.Structure and characteristics of reactive magnetron sputtered(CrTaTiVZr)N coatings[J].Materials Science in Semiconductor Processing,2015,39:30-39.

    • [62] TSAU Chun-huei,HWANG Zhang-yan,CHEN Swe-kai,et al.The microstructures and electrical resistivity of(Al,Cr,Ti)FeCoNiOx high-entropy alloy oxide thin films[J].Advances in Materials Science and Engineering,2015,2015:1-6.

    • [63] 王子鑫,张勇.FeCrVTa_(0.4)W_(0.4)高熵合金氮化物薄膜的微观结构与性能[J].工程科学学报,2021,43(5):684-692.WANG Zixin,ZHANG Yong.Microstructure and properties of FeCrVTa_(0.4)W_(0.4)alloys nitride films[J].Journal of Engineering Science,2021,43(5):684-692.(in Chinese)

    • [64] TSAI Ducheng,DENG Minjen,CHANG Zuechin,et al.Oxidation resistance and characterization of(AlCrMoTaTi)-Six-N coating deposited via magnetron sputtering [J].Journal of Alloys and Compounds,2015,647:179-188.

    • [65] 马铭,任瑛,侯晓多,等.磁控溅射制备AlCrWTaTiNb高熵合金薄膜低温等离子体氮化[J].大连理工大学学报,2019,59(1):28-34.MA Ming,REN Ying,HOU Xiaoduo,et al.Low Temperature plasma nitride of AlCrWTatInb high-entropyalloy films by magnetron sputtering [J].Journal of Dalian University of Technology,2019,59(1):28-34.(in Chinese)

    • [66] CHANG Zuechin,HAN Sheng,CHEN Yikun.Characteristics of TiVCrAlZr multi-element nitride filmsprepared by reactive sputtering[J].Nuclear Instruments and Methods in Physical Research,Section B.Beam Interactions with Materials and Atoms,2010,268(16):2504-2509.

    • [67] CHENG Kenghao,LAI Chiahan,LIN Sujien,et al.Structural and mechanical properties of multi-element(AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering[J].Thin Solid Films,2010,519(10):3185-3190.

    • [68] HUANG Pingkang.Effects of nitrogen content on structure and mechanical properties of multi-element(AlCrNbSiTiV)N coating [J].Surface & Coating Technology,2009,203(13):1891-1896.

    • [69] LIANG Shihchang,TSAI Ducheng,CHANG Zuechin,et al.Structural and mechanical properties of multi-element(TiVCrZrHf)N coatings by reactive magnetron sputtering [J].Applied Surface Science,2011,258(1):309-403.

    • [70] REN Bo,SHEN Zigang,LIU Zhongxia.Structure and mechanical properties of multi-element(AlCrMnMoNiZr)Nx coatings by reactive magnetron sputtering[J].Journal of Alloys and Compounds,2013,560:171-176.

    • [71] 刘晓鹏.磁控溅射(AlSiTiCrNbV)N 薄膜的结构、性能及其在刀具中应用[D].西安:西安工业大学,2019.LIU Xiaopeng.Structure,properties and application of magnetron sputtering(AlSiTiCrNbV)N films in cutting tools[D].Xi’ an:Xi’an Polytechnic University,2019.(in Chinese)

    • [72] 万松峰,许春耀,张钰乾.高熵合金AlCrNbSiTiV氮化物薄膜溅镀参数的优化[J].电镀与涂饰,2018(15):677-682.WAN Songfeng,XU Chunyao,ZHANG Yuqian.Optimization of splashing parameters of high entropyalloy AlCrNbSiTiV nitride thin films[J].Electroplating and Finishing,2018,37(15):677-682.(in Chinese)

    • [73] FENG Xingguo,ZHENG Yugang,ZHANG Kaifeng,et al.Microstructure and mechanical properties of reactive magnetron sputtering(CrMoTaNbVTi)N multiprincipal component films [J].Rare Metal Materials and Engineering,2020,49(8):2623-2629.

    • [74] 闫薛卉,张勇.高熵薄膜和成分梯度材料[J].表面技术,2019,48(6):98-106.YAN Xuehui,ZHANG Yong.High-entropy films and compositional gradient materials[J].Surface Technology,2019,48(6):98-106.(in Chinese)

    • [75] SHEN W J,TSAI M H,TSAI K Y,et al.Superior oxidation resistance of(Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 High[J].Journal of the Electrochemical Society,2013,160(11):531-535.

    • [76] 石彦彦.磁控溅射FeCrCoNiMn高熵合金薄膜及其耐腐蚀性能研究[D].兰州:兰州理工大学,2016.SHI Yanyan.Study on corrosion resistance of FeCrCoNiMn high entropy alloy films by magnetron sputtering [ D ].Lanzhou:Lanzhou University of Technology,2016.(in Chinese)

    • [77] HSUEH Hwaite,SHEN Wanjui,TSAI Minghung,et al.Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films(AlCrSiTiZr)100-x Nx [J].Surface & Coatings Technology,2012,206(19-20):4106-4112.

    • [78] 张立东,刘春海,孙化冬,等.晶体AlCrTaTiNi高熵合金薄膜[J].功能材料,2012,43(3):394-397.ZHANG Lidong,LIU Chunhai,SUN Huadong,et al.High entropy AlCrTatini crystalline alloy films [J].Journal of Functional Materials,2012,43(3):394-397.(in Chinese)

    • [79] LIN Rueicheng,LEE Taikuang,WU Derho,et al.A study of thin film resistors prepared using Ni-Cr-Si-Al-Ta high entropy alloy [J].Advances in Materials Science and Engineering,2015,2015:1-7.

    • [80] 姚陈忠,马会宣,童叶翔.非晶纳米高熵合金薄膜 Nd-Fe-Co-Ni-Mn 的电化学制备及磁学性能[J].应用化学,2011,28(10):1189-1194.YAO Chenzhong,MA Huixuan,TONG Yexiang.Electrochemical preparation and magnetic properties of Nd-Fe-Co-Ni-Mn amorphous nanocrystalline alloy films with high entropy [J].Applied Chemistry,2011,28(10):1189-1194.(in Chinese)

    • [81] LIN Peichung,CHENG Chunyang,YEH Jienwei,et al.Soft magnetic properties of high-entropy Fe-Co-Ni-Cr-Al-Si thin films [J].Entropy,2016,18(8):308.

    • [82] WANG Ze,WANG Cheng,ZHAO Yilu,et al.Nanotwinned CoCrFeMnNi high entropy alloy films for flexible electronic device applications[J].Vacuum,2021,189:106-113.

  • 手机扫一扫看