en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

姜淑文(通信作者),女,1976年出生,博士,副教授,硕士研究生导师。主要研究方向为微纳米粉体表面改性、硬质涂层制备与评价。E-mail:swjiang@dlpu.edu.cn

中图分类号:TF123;TU512

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210417001

参考文献 1
RAIHANUZZAMAN R M,XIE Z,HONG S J,et al.Powder refinement,consolidation and mechanical properties of cemented carbides-An overview [J].Powder Technology,2014,261:1-13.
参考文献 2
REN X,MIAO H,PENG Z.A review of cemented carbides for rock drilling:An old but still tough challenge in geo-engineering [J].International Journal of Refractory Metals & Hard Materials,2013,39:61-77.
参考文献 3
ZAKHAROVA E S,MARKOVA I Y,MASLOV A L,et al.Morphology of powders of tungsten carbide used in wear-resistant coatings and deposition on the PDC drill bits [J].Journal of Physics:Conference Series,2017,857:012058.
参考文献 4
GUO J,XU B S,WANG H D,et al.Characterization of WC/Co coatings on metal substrates [J].Materials Letters,2007,61(11/12):2454-2456.
参考文献 5
HEIMANN R B.Applications of plasma-sprayed ceramic coatings [J].Key Engineering Materials,1996,122-124:399-442.
参考文献 6
GUILEMANY J M,NUTTING J,MIGUEL J R,et al.Microstructure characterization of WC-Ni coatings obtained by HVOF thermal spraying[J].Scripta Metallurgica et Materialia,1995,33(1):55-61.
参考文献 7
ZHANG X F,ZHANG X L,WANG A H,et al.Microstructure and properties of HVOF sprayed Ni-based submicron WS2/CaF2 self-lubricating composite coating[J].Transactions of Nonferrous Metals Society of China,2009,19(1):85-92.
参考文献 8
TORRES H,VUCHKOV T,RODRÍGUEZ R M,et al.Tribological behaviour of MoS2-based self-lubricating laser cladding for use in high temperature applications[J].Tribology International,2018,126:153-165.
参考文献 9
LIU X B,MENG X J,LIU H Q,et al.Development and characterization of laser clad high temperature self-lubricating wear resistant composite coatings on Ti-6Al-4V alloy [J].Materials and Design,2014,55:404.
参考文献 10
GUILEMANY J M,PACO J M D,MIGUEL J R,et al.Characterization of the W2C phase formed during the high velocity oxygen fuel spraying of a WC + 12 pct Co powder [J].Metallurgical & Materials Transactions A,1999,30(8):1913-1921.
参考文献 11
HUI W,XIA W,JIN Y.A study on abrasive resistance of Ni-based coatings with a WC hard phase [J].Wear,1996,195(1-2):47-52.
参考文献 12
STEWART D A,SHIPWAY P H,MCCARTNEY D G.Abrasive wear behaviour of conventional and nanocomposite HVOF-Sprayed WC-Co coatings [J].Wear,1999,225-229(Part2,April):789-798.
参考文献 13
VERDON C,KARIMI A,MARTIN J L.A Study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings[J].Materials Science and Engineering A,1998,246(1-2):11-24.
参考文献 14
BAIK K H,KIM J H,SEONG B G.Improvements in hardness and wear resistance of thermally sprayed WC-Co nanocomposite coatings[J].Materials Science & Engineering A,2007,449:846-849.
参考文献 15
MATEEN A,SAHA G C,KHAN T I,et al.Tribological behaviour of HVOF sprayed near-nanostructured and microstructured WC-17wt.% Co coatings [J].Surface & Coatings Technology,2011,206(6):1077-1084.
参考文献 16
HAN J C,BAHRAMABADI M J,PARK C G,et al.Microstructure-property relations in WC-Co coatings sprayed from combinatorial Ni-plated and nanostructured powders [J].Materials Characterization,2017,129:207-216.
参考文献 17
JAFARI M,ENAYATI M,SALEHI M,et al.Influence of nickel-coated nanostructured WC-Co powders on microstructural and tribological properties of HVOF coatings [J].Journal of Thermal Spray Technology,2014,23(8):1456-1469.
参考文献 18
JAFARI M,ENAYATI M H,SALEHI M,et al.Microstructural and mechanical characterizations of a novel HVOF-sprayed WC-Co coating deposited from electroless Ni-P coated WC-12Co powders[J].Materials Science & Engineering A,2013,578:46-53.
参考文献 19
LI G J.Fabrication of Ni-coated Al2O3 powders by the heterogeneous precipitation method [J].Materials Research Bulletin,2001,36(7-8):1307-1315.
参考文献 20
RODEGHIERO E D,TSE O K,CHISAKI J,et al.Synthesis and properties of Ni-α-Al2O3 composites via sol-gel [J].Materials Science & Engineering A,1995,195:151-161.
参考文献 21
USUI H,SHIBATA M,NAKAI K,et al.Anode properties of thick-film electrodes prepared by gas deposition of Ni-coated Si particles [J].Fuel and Energy Abstracts,2011,196(4):2143-2148.
参考文献 22
WANG H,JIA J,SONG H,et al.The preparation of Cu-coated Al2O3 composite powders by electroless plating [J].Ceramics International,2011,37(7):2181-2184.
参考文献 23
DAI J H,LIU X Z,ZHAI H Z,et al.Preparation of Ni-coated Si3N4 powders via electroless plating method [J].Ceramics International,2009,35(8):3407-3410.
参考文献 24
ZHU S L,TANG L,CUI Z D,et al.Preparation of copper-coated β-SiC nanoparticles by electroless plating[J].Surface & Coatings Technology,2011,205(8-9):2985-2988.
参考文献 25
BALARAJU J N,NARAYANAN T,SESHADRI S K,et al.Electroless Ni-P composite coatings [J].Journal of Applied Electrochemistry,2003,33(9):807-816.
参考文献 26
SUDAGAR J,LIAN J S,SHA W.Electroless nickel,alloy,composite and nano coatings:A critical review[J].Journal of Alloys and Compounds,2013,571(31):183-204.
参考文献 27
GER M D.Electrochemical deposition of nickel/SiC composites in the presence of surfactants [J].Materials Chemistry and Physics,2004,87(1):67-74.
参考文献 28
ZHU S L,YANG X J,LIANG Y Q,et al.Preparation of nickel-coated graphite by electroless plating under mechanical or ultrasonic agitation[J].Surface & Coatings Technology,2014,204:425-431.
参考文献 29
CHEN B H,HONG L,MA Y,et al.Effects of surfactants in an electroless nickel-plating bath on the properties of Ni-P alloy deposits [J].Industrial & Engineering Chemistry Research,2002,41(11):2668-2678.
参考文献 30
TAMILARASAN T R,RAJENDRAN R.SHANKAR M Siva,et al.Wear and scratch behaviour of electroless Ni-P-nano-TiO2:Effect of Surfactants[J].Wear,2016,346-347:148-157.
参考文献 31
ZIELINSKA K,STANKIEWICZ A,SZCZYGIEL I.Electroless deposition of Ni-P-nano-ZrO2 composite coatings in the presence of various types of surfactants [J].Journal of Colloid and Interface Science,2012,377(1):362-367.
参考文献 32
MAFI I R,DEHGHANIAN C.Comparison of the coating properties and corrosion rates in electroless Ni-P/PTFE composites prepared by different types of surfactants[J].Applied Surface Science,2011,257(20):8653-8658.
参考文献 33
AFROUKHTEH S,DEHGHANIAN C,EMAMY M,et al.Corrosion behavior of Ni-P/nano-TiC composite coating prepared in electroless baths containing different types of surfactant [J].Progress in Natural Science:Materials International,2012,22(5):480-487.
参考文献 34
ZAREBIDAKI A,ALLAHKARAM S R.Effect of surfactant on the fabrication and characterization of Ni-P-CNT composite coatings[J].Journal of Alloys and Compounds,2011,509(5):1836-1840.
参考文献 35
TAMILARASAN T R,RAJENDRAN R,RAJAGOPAL G,et al,Effect of surfactants on the coating properties and corrosion behaviour of Ni-P-nano-TiO2 coatings[J].Surface and Coatings Technology,2015,276:320-326.
参考文献 36
ELANSEZHIAN R,RAMAMOORTHY B,NAIR P K.Effect of surfactants on the mechanical properties of electroless(Ni-P)coating[J].Surface and Coatings Technology,2008,203(5):709-712.
参考文献 37
GER M D,HWANG B J.Effect of surfactants on codeposition of PTFE particles with electroless Ni-P coating [J].Materials Chemistry and Physics,2002,76(1):38-45.
参考文献 38
AGARWAL A,PUJARI M,UPPALURI R,et al.Efficacy of reducing agent and surfactant contacting pattern on the performance characteristics of nickel electroless plating baths coupled with and without ultrasound [J].Ultrasonics Sonochemistry,2014,21(4):1382-1391.
参考文献 39
ELANSEZHIAN R,RAMAMOORTHY B,NAIR P K.The influence of SDS and CTAB surfactants on the surface morphology and surface topography of electroless Ni-P deposits[J].Journal of Materials Processing Tech,2009,209(1):233-240.
参考文献 40
HAMID Z A.Mechanism of electroless deposition of Ni-W-P alloys by adding surfactants[J].Surface & Interface Analysis,2010,35(6):496-501.
参考文献 41
KUO S L,CHEN Y C,GER M D,et al.Nano-particles dispersion effect on Ni/Al2O3 composite coatings[J].Materials Chemistry & Physics,2004,86(1):5-10.
参考文献 42
LIN K J,WU H M,YU Y H,et al.Preparation of PMMA-Ni core-shell composite particles by electroless plating on polyelectrolyte-modified PMMA beads [J].Applied Surface Science,2013,282:741-745.
参考文献 43
TANG P,JIANG S W,YAN J W,et al.Role of various pretreatment processes in electroless nickel deposition on TiH2 particles with a simple plating bath [J].Journal of Alloys and Compounds,2020,825:154037.
参考文献 44
JIANG S W,YANG L,PANG J N,et al.Electrodeposition of Ni-Al2O3 composite coatings with combined addition of SDS and HPB surfactants [J].Surface & Coatings Technology,2016,286:197-205.
参考文献 45
KANETA T,TANAKA S,TAGA M,et al.Migration behavior of inorganic anions in micellar electrokinetic capillary chromatography using cationic surfactant [J].Analytical Chemistry,1992,64(7):798-801.
目录contents

    摘要

    采用金属层包覆硬质合金喷涂粉体是抑制热喷涂粉体中碳化物硬质相脱碳、提高沉积粒子浸润性、减少涂层孔隙缺陷的一种有效手段,然而如何获得连续致密且厚度可控的金属包覆层仍缺乏系统研究。 对比研究阳离子型十六烷基三甲基溴化铵(CTAB)和溴代十六烷基吡啶(HPB)、非离子型 Triton X-100 以及阴离子型十二烷基磺酸钠( SDS)等三种荷电类型表面活性剂对 WC-10Ni 粉体表面化学镀镍包覆层形成的影响作用。 采用场发射扫描电子显微镜(FE-SEM)和能谱仪(EDS)对镀镍前后 WC-10Ni 粉体的表面形貌和元素分布进行表征,基于 EDS 元素分布图像的统计方法定量评价粉体表面镍包覆层的完整性和均匀性;分析三类表面活性剂对 WC-10Ni 粉体表面化学镀镍的固-液界面吸附行为、粉体表面电荷状态及其对 Ni 2+还原过程的影响。 研究结果表明,适当浓度的阴离子型表面活性剂 SDS 或非离子型表面活性剂 Triton X-100 改善了 WC-10Ni 粉体表面镀层的完整性和均匀性,而阳离子型 CTAB 和 HPB 则阻碍 Ni 2+ 的迁移、吸附和金属 Ni 的形核和生长,不利于WC-10Ni 粉体表面 Ni 层的均匀沉积。 在较低的沉积温度下,Ni 层的沉积速度与沉积均匀性之间达到平衡,进一步促进了WC-10Ni 粉体表面完整均匀 Ni 层的形成。

    Abstract

    It is recently recognized that coating of a stable metallic layer onto cemented carbides powders for thermal spray processes is a potential method to effectively suppress decarburizing of the powders and improve wettability between the splats toward a defect-free coatings. There is still lack of systematic study on how to achieve a continuous, dense and thickness controllable metallic layer on the powders. Effect of three types of surfactants, cationic CTAB ( Cetyltrimethyl ammonium bromide ) and HPB (Hexadecyltrimethylammonium bromide), non-ionic Triton X-100 and anionic SDS ( Sodium laurylsulfonate) are comparatively investigated during electroless deposition of nickel layer on WC-10Ni powders at various process temperatures. The surface morphology and the elemental distribution of Ni-coated WC-10Ni powders are characterized with field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy ( EDS), respectively. A statistical method based on EDS elemental mapping images is employed to quantify the overall nickel coverage ratio of the powders for a comprehensively quantitative evaluation of the integrity and homogeneity of the deposited nickel layers. The underlying influential mechanism of the various types of surfactants is discussed concerning the corresponding solid / liquid interface adsorption, powder surface charge state and its role in affecting Ni 2+ reduction. The results indicate that anionic SDS and non-ionic Triton X-100 at a suitable, low concentration can improve the homogeneity and integrity of deposited nickel layers on the WC-10Ni powders, whereas cationic CTAB and HPB deteriorate the integrity and homogeneity of the deposited nickel layers by hindering the migration, adsorption as well as the reduction of nickel ions. Furthermore, low deposition temperature is beneficial to homogenous nickel layer formation on the powders due to relatively good balance between nucleation and growth rates of the nickel layer.

  • 0 前言

  • WC基硬质合金,如WC-Ni或WC-Co,由于拥有强韧结合的综合力学特性以及优良的耐蚀性,作为航空航天、核电、石油化工等领域首选的防护涂层材料而得到广泛研究和关注[1-3]。目前,为获得高致密化程度以及足够涂层-基体结合强度,WC基硬质合金涂层主要以爆炸喷涂[4]、等离子喷涂[5]、超音速火焰喷涂[6-7] 或激光熔覆[8-9] 等高温物理方法制备。然而,WC在高温下与氧气接触会发生严重脱碳分解, 导致涂层中的硬质相含量降低, 形成W2C、金属W等缺碳相以及裂纹、大气孔等工艺缺陷,从而导致涂层性能恶化[10-13]。在喷涂硬质合金粉体表面包覆金属层被认为是抑制WC脱碳、增加硬质相与金属相的润湿性、改善涂层致密化程度的有效手段[14-18]。 BAIK等[14] 通过在WC-Co粉体表面还原Co的水合物溶胶得到金属Co包覆的WC-Co复合粉体,有效降低了WC在超音速火焰喷涂过程中的脱碳程度。 MATEEN等[15] 通过化学气相沉积方法制备了具有双层Co结构的纳米WC-Co粉体,发现粉体表面的Co层有效降低了WC氧化脱碳, 从而提高了涂层的耐磨耐蚀性。 JAFARI等[16-18]采用Ni包覆的WC-Co硬质合金粉体进行超音速火焰喷涂制备涂层,发现Ni覆层可以有效抑制WC氧化脱碳,获得改善的涂层显微硬度、断裂强度、弹性模量及耐磨性。

  • 目前,粉体表面包覆金属形成核-壳结构可以通过沉淀法[19]、溶胶-凝胶法[20]、化学气相沉积[21] 和化学镀法[22]来实现。其中,化学镀基于金属盐离子在待镀表面的可控自催化还原反应,不受工件形状、尺寸和导电性影响,可在任何材料表面上均匀沉积金属层, 已在粉体表面金属包覆中广泛应用[22-26]。理论上,粉体由于高比表面比平板试样更容易施镀,但是镀液中过高的界面/表面能、离子浓度以及粉体浓度容易导致粉体团聚[27],同时粉体巨大的表面积会在镀液中形成大的液-固自催化反应界面,易导致沉积速度过快、甚至造成镀液分解。此外,化学镀镍的副产物氢气容易吸附在粉体表面形成气泡,阻碍金属在粉体表面的沉积。常规工艺中可通过连续机械或超声搅拌来促进粉体分散和氢气排出,从而获得均匀金属覆层[28]

  • 表面活性剂能够通过调控分子在溶液中的扩散、吸附、成核和生长,从而控制镀层成分、结构、形貌和性能。表面活性剂添加已被证明在平板试样的化学镀体系中起到增强润湿、调节沉积速率、改善镀层光亮度和减少微孔的作用[29-41]。 CHEN等[29] 在铜基体上化学镀Ni-P层过程中加入非离子表面活性剂Triton X-100和Tergitol15-S-12,有效减少了镀层中的微孔并提高镀层耐蚀性。 GER等[37] 通过化学镀沉积Ni-P-PTFE复合涂层,发现表面活性剂不仅可以通过增加悬浮颗粒与镀液间润湿性以及颗粒表面电荷来提高悬浮粒子的稳定性,而且还有助于促进惰性粒子共沉积嵌入到镀层中。 LIN等[42] 发现,经PHA和PAA改性的PMMA微珠表面能够锚定Ni2+,从而获得连续、致密、结合良好的覆Ni层。由于属于多界面体系,粉体表面化学镀要比平板试样的化学镀更复杂,因而表面活性剂的影响也可能不同。目前,表面活性剂对粉体表面化学镀金属沉积行为的影响还不明晰,这与粉体表面微小特征变化的表征受限有关。

  • 本文针对WC-10Ni硬质合金喷涂粉体表面化学镀纯镍工艺,采用统计学等多种表征手段,系统研究了不同荷电类型表面活性剂在不同浓度和沉积温度下对WC-10Ni粉体表面化学镀Ni层均匀性的影响,并对其作用机制进行了讨论。

  • 1 试验

  • 1.1 WC-10Ni粉体表面化学镀镍

  • 采用60g/L的氯化镍(NiCl2·6H2O)作为镍源, 浓度为35g/L的二甲胺基硼烷(DMAB) 作为还原剂,在平均粒径约为28 μm的商用WC-10Ni粉体表面进行Ni包覆;不同类型表面活性剂的添加浓度为0.1~0.3g/L;沉积温度为60℃、70℃ 和85℃,化学镀期间施以机械搅拌;镀覆时间为20min时镀液由墨绿色变无色透明,表明其中Ni2+基本被还原完毕。此时取出粉体、用去离子水进行彻底清洗并干燥。

  • 1.2 粉体表征

  • 采用场发射扫描电子显微镜 ( FE-SEM, M-7800F)观察原始以及镍包覆WC-10Ni粉体形貌。将粉体用树脂包埋、经抛光制成截面试样,分别采用FE-SEM的背散射模式以及能谱仪 ( EDS, X-Max50)对粉体进行表面和截面的Ni、W元素分布表征。基于粉体表面EDS元素分析结果统计,计算Ni层完全包覆的WC-10Ni粉体颗粒比例,从而评估WC-10Ni粉体表面包覆Ni层的均匀性和完整性。采用岛津X-7000S X射线衍射仪对粉体表面相结构进行分析。为弄清表面活性剂在WC-10Ni粉体表面吸附导致的镀液中固-液界面性质变化,采用POWEREACH-JS94H型Zeta电位仪测定了纳米WC粉体在蒸馏水和含不同类型表面活性剂NiCl2 溶液中的Zeta电位,并根据表面活性剂对粉体表面电荷的影响及其与Ni2+和还原剂的相互作用,讨论了其对WC-10Ni粉体表面化学镀镍的影响机理。

  • 2 结果与讨论

  • 2.1 表面活性剂类型对化学镀镍的影响

  • 图1 为原始WC-10Ni粉体和在无表面活性剂添加条件下制备的Ni包覆WC-10Ni粉体的表面形貌和元素分布。可以观察到原始WC-10Ni粉体呈球形,由大量几微米粒径的多面体WC颗粒与少量的镍粘结而成,其表面粗糙并且随机分布有一些亚微米级的孔隙(图1a, 1b),其EDS元素分布(图1c)显示未覆Ni粉体主要呈现代表W元素的蓝色。而对化学镀Ni包覆WC-10Ni粉体,可以观察到其表面被瘤状结构的金属Ni完全覆盖,微孔几乎全部消失(图1d, 1e),而且镀层在WC-10Ni粉体表面的分布比较均匀,大部分粉体颗粒表面被代表Ni元素的绿色覆盖,少部分颗粒成蓝色,说明Ni层太薄或无覆Ni层,如图1f所示。

  • 图1 原始WC-10Ni以及无表面活性剂添加的Ni包覆WC-10Ni粉末SEM形貌

  • Fig.1 Surface morphologies of raw and electroless Ni-coated WC-10Ni powders without surfactants

  • 图2 为添加不同荷电类型表面活性剂获得的Ni包覆WC-10Ni粉体表面的SEM形貌。阳离子表面活性剂CTAB和HPB对镀层形貌的影响类似(图2a,2b),粉体表面瘤状结构尺寸略微增加,粉体表面Ni层更加平整;在镀液中添加阴离子表面活性剂SDS使粉体表面镀层平滑程度提高,但覆Ni层表面瘤状堆积结构消失(图2c);当镀液中添加Triton X-100时, 覆Ni粉体表面的瘤状结构却更加明显 (图2d)。

  • 图3 为Ni包覆WC-10Ni粉体的截面SEM背散射电子像和相应EDS元素分布。可以在粉体周围观察到清晰、连续、完整的Ni环,而在元素分布图像中可以观察到Ni在WC-10Ni颗粒周围的富集,WC-10Ni粉体表面镀层厚度处于在0.8~1.5 μm。

  • 对原始以及Ni包覆WC-10Ni粉体进行XRD表征,结果如图4所示。可以观察到,Ni包覆的WC-10Ni样品的XRD图谱中仅有Ni和WC的衍射峰出现,与原始WC-10Ni粉体的XRD谱图衍射峰几乎一致,未发现Ni衍射峰的增强。根据我们之前的研究结果,这可能是因为WC-10Ni粉体表面Ni层太薄或者沉积的金属Ni为非晶态[43]

  • 考虑图3所展示的粉体横截面制样SEM观察是已报道文献中普遍采用的包覆层常规表征方法, 由于本研究中Ni包覆层较薄,厚度主要处于1 μm左右,该方法可确认包覆层形成,却难以分辨不同表面活性剂种类及浓度下镀层包覆完整性和均一性的定量变化规律。喷涂硬质合金粉体表面包覆Ni层应尽均匀、致密,避免裸露的WC颗粒,才能有效抑制WC相的高温氧化脱碳行为。因此,有必要对化学镀Ni层在粉体表面的覆盖完整性以及均匀性进行定量表征。为此,本文提出一种基于EDS元素分布图像的考虑更多粉体样本数的统计分析方法。扫描电子显微镜中通过高能电子激发特征X射线的深度为1 μm,因此可以根据EDS分析得到的Ni和W元素分布结果来确认粉体颗粒表面是否存在完整均匀的Ni包覆层。当EDS分析得到的元素分布图像中颗粒表面全部或部分呈现代表W元素的蓝色,则意味着该颗粒没有被Ni层完全包覆或Ni层厚薄不均。因此,通过统计EDS图像中被Ni层完全包覆的粉体颗粒在全部粉体中的占比———Ni层覆盖率,可以有效评估WC-10Ni粉体表面Ni包覆的均匀性和完整性。

  • 图2 添加不同类型表面活性剂制备的Ni包覆WC-10Ni粉体表面的SEM形貌

  • Fig.2 Surface morphologies of Ni-coated WC-10Ni powders deposited with addition of different surfactants at their varied concentrations

  • 图5 为在镀液中添加不同浓度的CTAB、HPB、 SDS和Triton X-100情况下制备的Ni包覆WC-10Ni粉体的表面EDS元素分布图像,对应的各粉体样品表面Ni层覆盖率如图6所示。

  • 相比于不添加表面活性剂试样,镀液中存在低浓度(0.1g/L)阴离子表面活性剂SDS或非离子型表面活性剂Triton X-100时,WC-10Ni粉体表面的Ni层覆盖率分别从88%提高至95%和93%,但是随着镀液中SDS或Triton X-100浓度的提高,镀层覆盖率又逐渐下降,说明镀液中存在低浓度的阴离子表面活性剂或非离子型表面活性剂才有助于金属Ni在WC-10Ni粉体表面的均匀沉积;而镀液中存在阳离子型表面活性剂CTAB和HPB时则不利于Ni层在WC-10Ni粉体表面的均匀镀覆,其镀层覆盖率相比于不添加表面活性剂时明显降低,并且随着镀液中阳离子表面活性剂浓度的提高而进一步降低。

  • 图3 不同表面活性剂添加浓度下Ni包覆WC-10Ni粉末的截面背散射电子像以及Ni元素分布图

  • Fig.3 Backscattered cross-section SEM images and Ni distribution of electroless Ni-coated WC-10Ni powders with addition of different surfactants at their varied concentrations

  • 为阐明表面活性剂对WC-10Ni粉体表面化学镀镍的影响机理,采用测定纳米WC粉体在蒸馏水和含不同种类表面活性剂的NiCl2 溶液中的Zeta电位方法[44],分析WC-10Ni粉体在镀液中的固液界面性质,结果如图7所示。纳米WC在去离子水中的表面电势约为-10mV,说明WC-10Ni颗粒在去离子水中表面带负电荷;然而,在NiCl2 溶液中测定时,获得的Zeta电位接近零,这是由于镀液中二价Ni2+在粉体表面吸附、以及镀液中高离子浓度导致WC颗粒电泳运动不明显导致。当镀液中存在阴离子表面活性剂SDS时,纳米WC粉体在蒸馏水和NiCl2 溶液中的Zeta电位分别从-10mV和+1mV升至-45mV和-10mV;加入阳离子表面活性剂CTAB和HPB后,在蒸馏水和NiCl2 溶液中,WC粉体表面Zeta电位分别从-10mV和+1mV增加到+ 40mV和+9mV左右;非离子型表面活性剂Triton X-100由于不带电荷、对WC粉体表面Zeta电位的影响不明显,Zeta电位分别稳定在-10mV和+ 1mV左右。

  • 图4 添加不同表面活性剂制备的Ni包覆WC-10Ni粉体的XRD图谱

  • Fig.4 XRD spectra of raw and electroless Ni-coated WC-10Ni powders with addition of different surfactants

  • 图5 添加不同表面活性剂制备的Ni包覆WC-10Ni粉体的表面元素分布图

  • Fig.5 Element distribution of electroless Ni-coated WC-10Ni particles with addition of different surfactants at their varied concentrations analyzed with EDS results

  • 不同类型表面活性剂对WC-10Ni粉体表面化学镀镍的影响机制如图8示意所示。镀液中的WC-10Ni粉体由于WC的负电属性而吸引大量Ni2+至其表面(图8a),此时加入还原剂时,DMAB分子通过扩散层到达催化中心、释放出电子,将粉体表面吸附的镍离子还原为金属Ni,形成均匀、致密、结合良好的金属层。当镀液中存在阳离子型表面活性剂CTAB或HPB时(图8b),其带正电的亲水基团在静电吸引的作用下会优先吸附到WC-10Ni粉体表面, 导致WC-10Ni粉体表面电势升高,颗粒表面带正电荷,使得Ni2+向粉体表面的迁移和吸附行为受到抑制,并且随着CTAB或HPB浓度的增加,由于长链基团间的疏水作用,还会在粉体表面形成双层表面活性剂分子膜,进一步阻碍Ni2+的迁移和吸附过程。此外,阳离子表面活性剂还会与Ni2+竞争、与还原剂释放的电子反应,对金属Ni在固体表面的形核和沉积过程产生影响,导致金属Ni只能在部分颗粒或颗粒的某一部分形核生长而不能均匀沉积在所有颗粒表面。

  • 图6 基于EDS结果计算的WC-10Ni粉体表面Ni完整覆盖率

  • Fig.6 Statistical nickel coverage of WC-10Ni powders with addition of different surfactants calculated based on EDS results

  • 图7 去离子水以及NiCl2 溶液中测定的不同表面活性剂吸附时纳米WC粉体表面Zeta电位

  • Fig.7 Zeta potential of nano-sized WC powders in distilled water and nickel chloride with adsorption of different surfactants

  • 图8 不同类型表面活性剂作用下WC-10Ni粉体表面Ni沉积机制示意图

  • Fig.8 Schematic illustration of mechanisms of electroless Ni deposition on WC-10Ni powders with and without surfactants

  • 当镀液中存在阴离子型表面活性剂SDS时(图8c),表面活性剂分子同样会在粉体表面优先吸附, 并使粉体颗粒表面携带的负电荷量增加,有利于Ni2+向粉体表面的迁移和在粉体表面的锚定,使得Ni在颗粒表面均匀沉积。但随着表面活性剂浓度的升高,表面活性剂会在溶液中形成胶束,部分镍离子将被表面活性剂胶束捕获,阻碍金属Ni在WC-10Ni粉体表面的均匀沉积[45],这解释了为什么SDS的添加存在适宜浓度。

  • 非离子型表面活性剂Triton X-100对WC-10Ni粉体的表面电荷分布没有明显的影响,但表面活性剂分子在粉体表面的吸附降低了界面张力,表面生成焓降低,降低了生成新的Ni颗粒所需要的能量, 因而促进金属Ni在粉体表面形核;同时表面活性剂在Ni颗粒表面的吸附也减缓了其生长速率,有利于Ni层在WC-10Ni表面均匀沉积(图8d)。然而,粉体表面吸附过多的表面活性剂分子则会严重影响Ni2+向粉体表面的迁移过程,进而影响金属Ni在粉体表面沉积的均匀性。

  • 2.2 不同沉积温度下表面活性剂的影响

  • 图9 为分别在60℃、70℃和85℃的沉积温度下,添加浓度为0.2g/L的CTAB、HPB、SDS以及Triton X-100制备的Ni包覆WC-10Ni粉体的表面形貌。可以发现,随着沉积温度升高,Ni包覆WC-10Ni粉体表面愈加光滑,瘤状堆积结构的尺寸增加。从它们的背散射电子图像(见图10)可看出,不同沉积温度下的镀层厚度没有显著差异,均在0.8~1.5 μm。

  • 不同沉积温度下制备的Ni包覆WC-10Ni粉体的表面元素分布以及覆Ni层覆盖率分别如图11和12所示。可见,随着沉积温度降低,WC-10Ni粉体上Ni层沉积的均匀性均有所提高。此外,与阳离子型表面活性剂CTAB和HPB相比,阴离子型表面活性剂SDS和非离子型表面活性剂Triton X-100更有利于Ni在WC-10Ni粉体上的均匀沉积,镀层覆盖率相对较高,而Triton X-100的效果又优于SDS。温度对WC-10Ni粉体化学镀Ni层的影响可以解释为:化学镀镍是一种吸热反应,需要从周围环境中吸收能量。因而升高镀液温度,金属Ni的沉积速率也相应提高,但粉体的高表面能本身会使沉积速率维持在一个较高水平。因此,过高的沉积温度会导致金属Ni在WC-10Ni颗粒的沉积速率过快,使得Ni层均匀性降低。因此,对本工作的化学镀Ni体系来说,为达到镀速和镀层质量之间的平衡,最佳镀液温度可保持在60℃。

  • 图9 不同沉积温度下获得的Ni包覆WC-10Ni粉体SEM形貌(表面活性剂浓度为0.2g/L)

  • Fig.9 Surface morphologies of Ni-coated WC-10Ni powders deposited with 0.2g/L surfactants at varied deposition temperatures

  • 3 结论

  • 采用多种评价方法,系统研究了不同荷电类型表面活性剂以及沉积温度对WC-10Ni喷涂粉体表面化学镀Ni规律的影响,并揭示了其作用机制。研究结论如下:粉体吸附的表面活性剂类型改变了其表面电荷性质,决定了镀液中Ni2+的迁移和还原过程;阴离子型表面活性剂SDS和非离子型表面活性剂Triton X-100在适宜的添加浓度下可提高Ni层在WC-10Ni粉体表面分布的均匀性;阳离子型表面活性剂CTAB和HPB则不利于Ni在WC-10Ni粉体表面的均匀镀覆。同时,较低的沉积温度能更好地平衡Ni形核速率和生长速率,改善了WC-10Ni粉体表面镀Ni层的均匀性和完整性。通过表面活性剂类型调节、沉积工艺温度控制,可获得致密、连续的亚微米、微米金属Ni包覆WC-Ni复合喷涂粉体,为有效提高WC-Ni热喷涂涂层性能提供了可行的粉体改性新技术。

  • 图10 不同沉积温度下获得的Ni包覆WC-10Ni粉体的截面背散射电子像以及Ni元素分布

  • Fig.10 Backscattered cross-section SEM images and Ni distribution of electroless Ni-coated WC-10Ni powders with 0.2g/L surfactants at varied deposition temperatures

  • 图11 添加不同表面活性剂制备的Ni包覆WC-10Ni粉体的表面元素分布图(表面活性剂浓度为0.2g/L)

  • Fig.11 Element distribution of electroless Ni-coated WC-10Ni particles with addition of 0.2g/L surfactants at varied deposition temperatures

  • 图12 不同沉积温度下获得Ni包覆WC-10Ni粉体的Ni完整覆盖率

  • Fig.12 Statistical nickel coverage of WC-10Ni powders with addition of different surfactants at varied deposition temperatures

  • 参考文献

    • [1] RAIHANUZZAMAN R M,XIE Z,HONG S J,et al.Powder refinement,consolidation and mechanical properties of cemented carbides-An overview [J].Powder Technology,2014,261:1-13.

    • [2] REN X,MIAO H,PENG Z.A review of cemented carbides for rock drilling:An old but still tough challenge in geo-engineering [J].International Journal of Refractory Metals & Hard Materials,2013,39:61-77.

    • [3] ZAKHAROVA E S,MARKOVA I Y,MASLOV A L,et al.Morphology of powders of tungsten carbide used in wear-resistant coatings and deposition on the PDC drill bits [J].Journal of Physics:Conference Series,2017,857:012058.

    • [4] GUO J,XU B S,WANG H D,et al.Characterization of WC/Co coatings on metal substrates [J].Materials Letters,2007,61(11/12):2454-2456.

    • [5] HEIMANN R B.Applications of plasma-sprayed ceramic coatings [J].Key Engineering Materials,1996,122-124:399-442.

    • [6] GUILEMANY J M,NUTTING J,MIGUEL J R,et al.Microstructure characterization of WC-Ni coatings obtained by HVOF thermal spraying[J].Scripta Metallurgica et Materialia,1995,33(1):55-61.

    • [7] ZHANG X F,ZHANG X L,WANG A H,et al.Microstructure and properties of HVOF sprayed Ni-based submicron WS2/CaF2 self-lubricating composite coating[J].Transactions of Nonferrous Metals Society of China,2009,19(1):85-92.

    • [8] TORRES H,VUCHKOV T,RODRÍGUEZ R M,et al.Tribological behaviour of MoS2-based self-lubricating laser cladding for use in high temperature applications[J].Tribology International,2018,126:153-165.

    • [9] LIU X B,MENG X J,LIU H Q,et al.Development and characterization of laser clad high temperature self-lubricating wear resistant composite coatings on Ti-6Al-4V alloy [J].Materials and Design,2014,55:404.

    • [10] GUILEMANY J M,PACO J M D,MIGUEL J R,et al.Characterization of the W2C phase formed during the high velocity oxygen fuel spraying of a WC + 12 pct Co powder [J].Metallurgical & Materials Transactions A,1999,30(8):1913-1921.

    • [11] HUI W,XIA W,JIN Y.A study on abrasive resistance of Ni-based coatings with a WC hard phase [J].Wear,1996,195(1-2):47-52.

    • [12] STEWART D A,SHIPWAY P H,MCCARTNEY D G.Abrasive wear behaviour of conventional and nanocomposite HVOF-Sprayed WC-Co coatings [J].Wear,1999,225-229(Part2,April):789-798.

    • [13] VERDON C,KARIMI A,MARTIN J L.A Study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings[J].Materials Science and Engineering A,1998,246(1-2):11-24.

    • [14] BAIK K H,KIM J H,SEONG B G.Improvements in hardness and wear resistance of thermally sprayed WC-Co nanocomposite coatings[J].Materials Science & Engineering A,2007,449:846-849.

    • [15] MATEEN A,SAHA G C,KHAN T I,et al.Tribological behaviour of HVOF sprayed near-nanostructured and microstructured WC-17wt.% Co coatings [J].Surface & Coatings Technology,2011,206(6):1077-1084.

    • [16] HAN J C,BAHRAMABADI M J,PARK C G,et al.Microstructure-property relations in WC-Co coatings sprayed from combinatorial Ni-plated and nanostructured powders [J].Materials Characterization,2017,129:207-216.

    • [17] JAFARI M,ENAYATI M,SALEHI M,et al.Influence of nickel-coated nanostructured WC-Co powders on microstructural and tribological properties of HVOF coatings [J].Journal of Thermal Spray Technology,2014,23(8):1456-1469.

    • [18] JAFARI M,ENAYATI M H,SALEHI M,et al.Microstructural and mechanical characterizations of a novel HVOF-sprayed WC-Co coating deposited from electroless Ni-P coated WC-12Co powders[J].Materials Science & Engineering A,2013,578:46-53.

    • [19] LI G J.Fabrication of Ni-coated Al2O3 powders by the heterogeneous precipitation method [J].Materials Research Bulletin,2001,36(7-8):1307-1315.

    • [20] RODEGHIERO E D,TSE O K,CHISAKI J,et al.Synthesis and properties of Ni-α-Al2O3 composites via sol-gel [J].Materials Science & Engineering A,1995,195:151-161.

    • [21] USUI H,SHIBATA M,NAKAI K,et al.Anode properties of thick-film electrodes prepared by gas deposition of Ni-coated Si particles [J].Fuel and Energy Abstracts,2011,196(4):2143-2148.

    • [22] WANG H,JIA J,SONG H,et al.The preparation of Cu-coated Al2O3 composite powders by electroless plating [J].Ceramics International,2011,37(7):2181-2184.

    • [23] DAI J H,LIU X Z,ZHAI H Z,et al.Preparation of Ni-coated Si3N4 powders via electroless plating method [J].Ceramics International,2009,35(8):3407-3410.

    • [24] ZHU S L,TANG L,CUI Z D,et al.Preparation of copper-coated β-SiC nanoparticles by electroless plating[J].Surface & Coatings Technology,2011,205(8-9):2985-2988.

    • [25] BALARAJU J N,NARAYANAN T,SESHADRI S K,et al.Electroless Ni-P composite coatings [J].Journal of Applied Electrochemistry,2003,33(9):807-816.

    • [26] SUDAGAR J,LIAN J S,SHA W.Electroless nickel,alloy,composite and nano coatings:A critical review[J].Journal of Alloys and Compounds,2013,571(31):183-204.

    • [27] GER M D.Electrochemical deposition of nickel/SiC composites in the presence of surfactants [J].Materials Chemistry and Physics,2004,87(1):67-74.

    • [28] ZHU S L,YANG X J,LIANG Y Q,et al.Preparation of nickel-coated graphite by electroless plating under mechanical or ultrasonic agitation[J].Surface & Coatings Technology,2014,204:425-431.

    • [29] CHEN B H,HONG L,MA Y,et al.Effects of surfactants in an electroless nickel-plating bath on the properties of Ni-P alloy deposits [J].Industrial & Engineering Chemistry Research,2002,41(11):2668-2678.

    • [30] TAMILARASAN T R,RAJENDRAN R.SHANKAR M Siva,et al.Wear and scratch behaviour of electroless Ni-P-nano-TiO2:Effect of Surfactants[J].Wear,2016,346-347:148-157.

    • [31] ZIELINSKA K,STANKIEWICZ A,SZCZYGIEL I.Electroless deposition of Ni-P-nano-ZrO2 composite coatings in the presence of various types of surfactants [J].Journal of Colloid and Interface Science,2012,377(1):362-367.

    • [32] MAFI I R,DEHGHANIAN C.Comparison of the coating properties and corrosion rates in electroless Ni-P/PTFE composites prepared by different types of surfactants[J].Applied Surface Science,2011,257(20):8653-8658.

    • [33] AFROUKHTEH S,DEHGHANIAN C,EMAMY M,et al.Corrosion behavior of Ni-P/nano-TiC composite coating prepared in electroless baths containing different types of surfactant [J].Progress in Natural Science:Materials International,2012,22(5):480-487.

    • [34] ZAREBIDAKI A,ALLAHKARAM S R.Effect of surfactant on the fabrication and characterization of Ni-P-CNT composite coatings[J].Journal of Alloys and Compounds,2011,509(5):1836-1840.

    • [35] TAMILARASAN T R,RAJENDRAN R,RAJAGOPAL G,et al,Effect of surfactants on the coating properties and corrosion behaviour of Ni-P-nano-TiO2 coatings[J].Surface and Coatings Technology,2015,276:320-326.

    • [36] ELANSEZHIAN R,RAMAMOORTHY B,NAIR P K.Effect of surfactants on the mechanical properties of electroless(Ni-P)coating[J].Surface and Coatings Technology,2008,203(5):709-712.

    • [37] GER M D,HWANG B J.Effect of surfactants on codeposition of PTFE particles with electroless Ni-P coating [J].Materials Chemistry and Physics,2002,76(1):38-45.

    • [38] AGARWAL A,PUJARI M,UPPALURI R,et al.Efficacy of reducing agent and surfactant contacting pattern on the performance characteristics of nickel electroless plating baths coupled with and without ultrasound [J].Ultrasonics Sonochemistry,2014,21(4):1382-1391.

    • [39] ELANSEZHIAN R,RAMAMOORTHY B,NAIR P K.The influence of SDS and CTAB surfactants on the surface morphology and surface topography of electroless Ni-P deposits[J].Journal of Materials Processing Tech,2009,209(1):233-240.

    • [40] HAMID Z A.Mechanism of electroless deposition of Ni-W-P alloys by adding surfactants[J].Surface & Interface Analysis,2010,35(6):496-501.

    • [41] KUO S L,CHEN Y C,GER M D,et al.Nano-particles dispersion effect on Ni/Al2O3 composite coatings[J].Materials Chemistry & Physics,2004,86(1):5-10.

    • [42] LIN K J,WU H M,YU Y H,et al.Preparation of PMMA-Ni core-shell composite particles by electroless plating on polyelectrolyte-modified PMMA beads [J].Applied Surface Science,2013,282:741-745.

    • [43] TANG P,JIANG S W,YAN J W,et al.Role of various pretreatment processes in electroless nickel deposition on TiH2 particles with a simple plating bath [J].Journal of Alloys and Compounds,2020,825:154037.

    • [44] JIANG S W,YANG L,PANG J N,et al.Electrodeposition of Ni-Al2O3 composite coatings with combined addition of SDS and HPB surfactants [J].Surface & Coatings Technology,2016,286:197-205.

    • [45] KANETA T,TANAKA S,TAGA M,et al.Migration behavior of inorganic anions in micellar electrokinetic capillary chromatography using cationic surfactant [J].Analytical Chemistry,1992,64(7):798-801.

  • 参考文献

    • [1] RAIHANUZZAMAN R M,XIE Z,HONG S J,et al.Powder refinement,consolidation and mechanical properties of cemented carbides-An overview [J].Powder Technology,2014,261:1-13.

    • [2] REN X,MIAO H,PENG Z.A review of cemented carbides for rock drilling:An old but still tough challenge in geo-engineering [J].International Journal of Refractory Metals & Hard Materials,2013,39:61-77.

    • [3] ZAKHAROVA E S,MARKOVA I Y,MASLOV A L,et al.Morphology of powders of tungsten carbide used in wear-resistant coatings and deposition on the PDC drill bits [J].Journal of Physics:Conference Series,2017,857:012058.

    • [4] GUO J,XU B S,WANG H D,et al.Characterization of WC/Co coatings on metal substrates [J].Materials Letters,2007,61(11/12):2454-2456.

    • [5] HEIMANN R B.Applications of plasma-sprayed ceramic coatings [J].Key Engineering Materials,1996,122-124:399-442.

    • [6] GUILEMANY J M,NUTTING J,MIGUEL J R,et al.Microstructure characterization of WC-Ni coatings obtained by HVOF thermal spraying[J].Scripta Metallurgica et Materialia,1995,33(1):55-61.

    • [7] ZHANG X F,ZHANG X L,WANG A H,et al.Microstructure and properties of HVOF sprayed Ni-based submicron WS2/CaF2 self-lubricating composite coating[J].Transactions of Nonferrous Metals Society of China,2009,19(1):85-92.

    • [8] TORRES H,VUCHKOV T,RODRÍGUEZ R M,et al.Tribological behaviour of MoS2-based self-lubricating laser cladding for use in high temperature applications[J].Tribology International,2018,126:153-165.

    • [9] LIU X B,MENG X J,LIU H Q,et al.Development and characterization of laser clad high temperature self-lubricating wear resistant composite coatings on Ti-6Al-4V alloy [J].Materials and Design,2014,55:404.

    • [10] GUILEMANY J M,PACO J M D,MIGUEL J R,et al.Characterization of the W2C phase formed during the high velocity oxygen fuel spraying of a WC + 12 pct Co powder [J].Metallurgical & Materials Transactions A,1999,30(8):1913-1921.

    • [11] HUI W,XIA W,JIN Y.A study on abrasive resistance of Ni-based coatings with a WC hard phase [J].Wear,1996,195(1-2):47-52.

    • [12] STEWART D A,SHIPWAY P H,MCCARTNEY D G.Abrasive wear behaviour of conventional and nanocomposite HVOF-Sprayed WC-Co coatings [J].Wear,1999,225-229(Part2,April):789-798.

    • [13] VERDON C,KARIMI A,MARTIN J L.A Study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings[J].Materials Science and Engineering A,1998,246(1-2):11-24.

    • [14] BAIK K H,KIM J H,SEONG B G.Improvements in hardness and wear resistance of thermally sprayed WC-Co nanocomposite coatings[J].Materials Science & Engineering A,2007,449:846-849.

    • [15] MATEEN A,SAHA G C,KHAN T I,et al.Tribological behaviour of HVOF sprayed near-nanostructured and microstructured WC-17wt.% Co coatings [J].Surface & Coatings Technology,2011,206(6):1077-1084.

    • [16] HAN J C,BAHRAMABADI M J,PARK C G,et al.Microstructure-property relations in WC-Co coatings sprayed from combinatorial Ni-plated and nanostructured powders [J].Materials Characterization,2017,129:207-216.

    • [17] JAFARI M,ENAYATI M,SALEHI M,et al.Influence of nickel-coated nanostructured WC-Co powders on microstructural and tribological properties of HVOF coatings [J].Journal of Thermal Spray Technology,2014,23(8):1456-1469.

    • [18] JAFARI M,ENAYATI M H,SALEHI M,et al.Microstructural and mechanical characterizations of a novel HVOF-sprayed WC-Co coating deposited from electroless Ni-P coated WC-12Co powders[J].Materials Science & Engineering A,2013,578:46-53.

    • [19] LI G J.Fabrication of Ni-coated Al2O3 powders by the heterogeneous precipitation method [J].Materials Research Bulletin,2001,36(7-8):1307-1315.

    • [20] RODEGHIERO E D,TSE O K,CHISAKI J,et al.Synthesis and properties of Ni-α-Al2O3 composites via sol-gel [J].Materials Science & Engineering A,1995,195:151-161.

    • [21] USUI H,SHIBATA M,NAKAI K,et al.Anode properties of thick-film electrodes prepared by gas deposition of Ni-coated Si particles [J].Fuel and Energy Abstracts,2011,196(4):2143-2148.

    • [22] WANG H,JIA J,SONG H,et al.The preparation of Cu-coated Al2O3 composite powders by electroless plating [J].Ceramics International,2011,37(7):2181-2184.

    • [23] DAI J H,LIU X Z,ZHAI H Z,et al.Preparation of Ni-coated Si3N4 powders via electroless plating method [J].Ceramics International,2009,35(8):3407-3410.

    • [24] ZHU S L,TANG L,CUI Z D,et al.Preparation of copper-coated β-SiC nanoparticles by electroless plating[J].Surface & Coatings Technology,2011,205(8-9):2985-2988.

    • [25] BALARAJU J N,NARAYANAN T,SESHADRI S K,et al.Electroless Ni-P composite coatings [J].Journal of Applied Electrochemistry,2003,33(9):807-816.

    • [26] SUDAGAR J,LIAN J S,SHA W.Electroless nickel,alloy,composite and nano coatings:A critical review[J].Journal of Alloys and Compounds,2013,571(31):183-204.

    • [27] GER M D.Electrochemical deposition of nickel/SiC composites in the presence of surfactants [J].Materials Chemistry and Physics,2004,87(1):67-74.

    • [28] ZHU S L,YANG X J,LIANG Y Q,et al.Preparation of nickel-coated graphite by electroless plating under mechanical or ultrasonic agitation[J].Surface & Coatings Technology,2014,204:425-431.

    • [29] CHEN B H,HONG L,MA Y,et al.Effects of surfactants in an electroless nickel-plating bath on the properties of Ni-P alloy deposits [J].Industrial & Engineering Chemistry Research,2002,41(11):2668-2678.

    • [30] TAMILARASAN T R,RAJENDRAN R.SHANKAR M Siva,et al.Wear and scratch behaviour of electroless Ni-P-nano-TiO2:Effect of Surfactants[J].Wear,2016,346-347:148-157.

    • [31] ZIELINSKA K,STANKIEWICZ A,SZCZYGIEL I.Electroless deposition of Ni-P-nano-ZrO2 composite coatings in the presence of various types of surfactants [J].Journal of Colloid and Interface Science,2012,377(1):362-367.

    • [32] MAFI I R,DEHGHANIAN C.Comparison of the coating properties and corrosion rates in electroless Ni-P/PTFE composites prepared by different types of surfactants[J].Applied Surface Science,2011,257(20):8653-8658.

    • [33] AFROUKHTEH S,DEHGHANIAN C,EMAMY M,et al.Corrosion behavior of Ni-P/nano-TiC composite coating prepared in electroless baths containing different types of surfactant [J].Progress in Natural Science:Materials International,2012,22(5):480-487.

    • [34] ZAREBIDAKI A,ALLAHKARAM S R.Effect of surfactant on the fabrication and characterization of Ni-P-CNT composite coatings[J].Journal of Alloys and Compounds,2011,509(5):1836-1840.

    • [35] TAMILARASAN T R,RAJENDRAN R,RAJAGOPAL G,et al,Effect of surfactants on the coating properties and corrosion behaviour of Ni-P-nano-TiO2 coatings[J].Surface and Coatings Technology,2015,276:320-326.

    • [36] ELANSEZHIAN R,RAMAMOORTHY B,NAIR P K.Effect of surfactants on the mechanical properties of electroless(Ni-P)coating[J].Surface and Coatings Technology,2008,203(5):709-712.

    • [37] GER M D,HWANG B J.Effect of surfactants on codeposition of PTFE particles with electroless Ni-P coating [J].Materials Chemistry and Physics,2002,76(1):38-45.

    • [38] AGARWAL A,PUJARI M,UPPALURI R,et al.Efficacy of reducing agent and surfactant contacting pattern on the performance characteristics of nickel electroless plating baths coupled with and without ultrasound [J].Ultrasonics Sonochemistry,2014,21(4):1382-1391.

    • [39] ELANSEZHIAN R,RAMAMOORTHY B,NAIR P K.The influence of SDS and CTAB surfactants on the surface morphology and surface topography of electroless Ni-P deposits[J].Journal of Materials Processing Tech,2009,209(1):233-240.

    • [40] HAMID Z A.Mechanism of electroless deposition of Ni-W-P alloys by adding surfactants[J].Surface & Interface Analysis,2010,35(6):496-501.

    • [41] KUO S L,CHEN Y C,GER M D,et al.Nano-particles dispersion effect on Ni/Al2O3 composite coatings[J].Materials Chemistry & Physics,2004,86(1):5-10.

    • [42] LIN K J,WU H M,YU Y H,et al.Preparation of PMMA-Ni core-shell composite particles by electroless plating on polyelectrolyte-modified PMMA beads [J].Applied Surface Science,2013,282:741-745.

    • [43] TANG P,JIANG S W,YAN J W,et al.Role of various pretreatment processes in electroless nickel deposition on TiH2 particles with a simple plating bath [J].Journal of Alloys and Compounds,2020,825:154037.

    • [44] JIANG S W,YANG L,PANG J N,et al.Electrodeposition of Ni-Al2O3 composite coatings with combined addition of SDS and HPB surfactants [J].Surface & Coatings Technology,2016,286:197-205.

    • [45] KANETA T,TANAKA S,TAGA M,et al.Migration behavior of inorganic anions in micellar electrokinetic capillary chromatography using cationic surfactant [J].Analytical Chemistry,1992,64(7):798-801.

  • 手机扫一扫看