en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李建勇,男,1997年出生,硕士研究生。主要研究方向为聚合物摩擦学。E-mail:572187102@qq.com;

李锦棒(通信作者),男,1988年出生,博士,讲师,研究生导师。主要研究方向为压电驱动和聚合物摩擦学。E-mail:lijinbang@nbu.edu.cn

中图分类号:TH145

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210419002

参考文献 1
LIAW D J,WANG K L,HUANG Y C,et al.Advanced polyimide materials:Syntheses,physical properties and applications[J].Progress in Polymer Science,2012,37(7):907-974.
参考文献 2
HUANG F,CORNELIUS C J.Polyimide-SiO2 -TiO2 nanocomposite structural study probing free volume,physical properties,and gas transport[J].Journal of Membrane Science,2017,542:110-122.
参考文献 3
ZHOU S G,LI W T,ZHAO W J,et al.Tribological behaviors of polyimide composite coatings containing carbon nanotubes and fluorinated graphene with hybrid phase or blend phase [J].Progress in Organic Coatings,2020,147:105800.
参考文献 4
ZHANG D,WANG C,WANG Q H,et al.High thermal stability and wear resistance of porous thermosetting heterocyclic polyimide impregnated with silicone oil [J].Tribology International,2019,140:105728.
参考文献 5
ZHANG X R,PEI X Q,WANG Q H.Friction and wear studies of polyimide composites filled with short carbon fibers and graphite and micro SiO2 [J].Materials and Design,2009,30(10):4414-4420.
参考文献 6
MARCHETTI M,MEURISSE M H,VERGNE P,et al.Lubricant supply by porous reservoirs in space mechanisms[J].Tribology Series,2000,38:777-785.
参考文献 7
WANG J Q,ZHAO H J,HUANG W,et al.Investigation of porous polyimide lubricant retainers to improve the performance of rolling bearings under conditions of starved lubrication [J].Wear,2017,380-381:52-58.
参考文献 8
邱维维,孟祥宇,王非,等.聚酰亚胺基自润滑材料与 WS2-Ag 固体润滑膜的相容性[J].中国表面工程,2020,33(1):55-62.QIU W W,MENG X Y,WANG F,et al.Compatibility of polyimide-based self-lubricating material and WS2-Ag solid lubricating film[J].China Surface Engineering,2020,33(1):55-62.(in Chinese)
参考文献 9
ZHAO G,HUSSAINOVA I,ANTONOV M,et al.Friction and wear of fiber reinforced polyimide composites[J].Wear,2013,301(1-2):122-129.
参考文献 10
JIA W H,YANG S G,REN S L,et al.Preparation and tribological behaviors of porous oil-containing polyimide/hollow mesoporous silica nanospheres composite films [J].Tribology International,2020,145:106184.
参考文献 11
黄占凯.碳纳米管填充聚合物多孔含油材料摩擦学性能研究 [D].哈尔滨:哈尔滨工业大学,2015.HUANG Z K.Research on the tribological properties of carbon nanotube filled porous polymer with oily material[D].Harbin:Harbin Institute of Technology,2015.(in Chinese)
参考文献 12
SHI Y J,MU L W,FENG X,et al.The tribological behavior of nanometer and micrometer TiO2 particle-filled polytetrafluoroethylene/polyimide [J].Materials and Design,2011,32(2):964-970.
参考文献 13
LI X H,YAN S J,CHEN X,et al.Microstructure and mechanical properties of graphene-reinforced copper matrix composites prepared by in-situ CVD,ball-milling,and spark plasma sintering[J].Journal of Alloys and Compounds,2020,834:155182.
参考文献 14
孔尚,胡文敬,李久盛.石墨烯在PAO基础油中的摩擦学性能[J].中国表面工程,2019,32(3):162-169.CHEN S,HU W J,LI J S.Tribological properties of graphene in PAO base oil[J].China Surface Engineering,2019,32(3):162-169.(in Chinese)
参考文献 15
李迎春,程蓓,邱明,等.不同石墨烯添加量下 MoS2 基复合涂层的摩擦磨损及耐腐蚀性能[J].中国机械工程,2020,31(20):2437-2444.LI Y C,CHENG B,QIU M,et al.Friction,wear and corrosion resistance of MoS2-based composite coatings with different graphene additions[J].China Mechanical Engineering,2020,31(20):2437-2444.(in Chinese)
参考文献 16
TIWARI S K,SAHOO S,WANG N N,et al.Graphene research and their outputs:Status and prospect[J].Journal of Science:Advanced Materials and Devices,2020,5(1):10-29.
参考文献 17
VERDEJ R,BERNAL M M,ROMASANTA L J,et al.Graphene filled polymer nanocomposites[J].Journal of Materials Chemistry,2011,21(10):3301-3310.
参考文献 18
耿浩,李金华,刘宣勇.石墨烯在表面工程领域的研究进展 [J].中国表面工程,2015,28(1):4-14.GENG H,LI J H,LIU X Y.Research progress of graphene in the field of surface engineering[J].China Surface Engineering,2015,28(1):4-14.(in Chinese)
参考文献 19
HUANG T,XIN Y S,LI T S,et al.Modified graphene/polyimide nanocomposites:reinforcing and tribological effects.[J].ACS Applied Materials & Interfaces,2013,5(11):4878-4891.
参考文献 20
ROY A,MU L W,SHI Y J.Tribological properties of polyimidegraphene composite coatings at elevated temperatures [J].Progress in Organic Coatings,2020,142:105602.
参考文献 21
WANG H,XIE G Y,ZHU Z G,et al.Enhanced tribological performance of the multi-layer graphene filled ploy(vinyl chloride)composites[J].Composites Part A,2014,67:268-273.
参考文献 22
胡超,徐静,余家欣,等.氧化石墨烯/聚酰亚胺复合材料摩擦学行为及其机理研究[J].摩擦学学报,2020,40(1):12-20.HU C,XU J,YU J X,et al.Research on tribological behavior and mechanism of graphene oxide/polyimide composite [J].Tribology,2020,40(1):12-20.(in Chinese)
目录contents

    摘要

    多孔聚酰亚胺(PI)应用广泛,但其摩擦磨损特性有待进一步提升。 采用石墨烯纳米片(GNS)为改性剂,制备多孔 PI 复合材料,系统研究 GNS 填充剂对多孔 PI 材料的冲击性能、含油性能和摩擦学性能的影响,探究 GNS、PI 和润滑油三者的协调润滑机制。 结果表明:添加一定量的 GNS 可以提高多孔 PI 材料的含油率和含油保持率。 加入 GNS 填料后,复合材料的孔径和孔隙率均有所增大,使复合材料对油液的吸附力更强,提高了其贮油能力。 复合材料的冲击强度随着 GNS 含量的变化为先升高后降低,少量的 GNS 分散在基体中,可以起到增韧的结果,而大量的 GNS 削弱了 PI 颗粒之间的结合性,且容易团聚导致界面结合性变差。 添加 0. 5% GNS 时,多孔 PI 复合材料表现出最佳的摩擦学性能,相比纯 PI,摩擦因数降低了 37. 2%,磨痕宽度减小了 26. 5%。 适量的 GNS 可以进一步提高材料的含油性能和摩擦性能。

    Abstract

    Porous polyimide (PI) is widely used, but its friction and wear characteristics need to be further improved. Graphene nanosheets (GNS) were used as modifiers to prepare porous PI composites. The impact of GNS fillers on the impact performance, oil content and tribological properties of porous PI materials were studied, and the coordinated lubrication mechanism of GNS, PI and lubrications were explored. The results show that adding a certain amount of GNS can increase the oil content and oil retention rate of porous PI materials. After adding the GNS filler, the pore size and porosity of the composite material are increased, which makes the composite material have a stronger adsorption force for oil and improves its oil storage capacity. The impact strength of the composite material increases first and then decreases with the change of GNS content. A small amount of GNS is dispersed in the matrix, which can achieve toughening results, while a large amount of GNS weakens the bonding between PI particles. GNS is easy to agglomerate leads to poor interface bonding. When 0. 5% GNS is added, the porous PI composite exhibits the best tribological performance. Compared with pure PI, the friction factor is reduced by 37. 2%, and the wear scar width is reduced by 26. 5%. A proper amount of GNS can further improve the oil-containing properties and friction properties of the material.

  • 0 前言

  • 聚酰亚胺具有优良的耐热性、耐腐蚀性以及优异的力学和电学性能[1-3],被广泛研究并应用于航空航天、轨道交通等领域[4-6]。在飞轮、控制力矩陀螺等空间高速运动部件中,常采用多孔聚酰亚胺 (PI)作为轴系的贮油器和轴承保持架,已提供长效而稳定的润滑。多孔PI内部连通的孔隙能贮存润滑油,随着温度和压力变化释放到摩擦表面实现润滑[7-8]。目前,为了减少由PI材料摩擦和磨损后导致的机械故障,零件失效等问题,许多研究人员提出向PI基体中加入填料,例如纤维、介孔二氧化硅纳米球、 CNT和PTFE等以提高复合材料的耐磨性[9-12]。选择合适的填料在耐磨聚合物复合材料的设计中非常重要,这将极大地提高聚合物材料的摩擦性能。

  • 石墨烯作为一种新型纳米材料,由于其独特的力学、导电性和自润滑性能[13-15],近年来在材料应用方面受到广泛关注[16-18]。有研究发现,将改性后的石墨烯加入到PI中,材料干摩擦状态下耐磨性提升了将近20倍[19]。 ROY等[20] 研究了PI/GNS复合涂层的摩擦学性能,提出GNS添加剂可以有效减少涂层表面的损坏。 WANG等[21] 制备了多层石墨烯填充的聚氯乙烯复合材料,发现减摩主要是来自复合材料韧性的增强和石墨烯的高自润滑性能。但另有研究表明,过量的石墨烯会破坏转移膜的结构, 导致摩擦学性能降低[22]。那么对于多孔材料来说, 石墨烯的加入会引起哪些作用呢?

  • 为了探索提高多孔PI摩擦学性能的方法,采用石墨烯纳米片为改性剂,添加到多孔PI中。 PI材料本身、石墨烯纳米片及微孔中的润滑油均具有润滑作用,三者的协同润滑机理尚不明确,同时石墨烯纳米片也会改变多孔PI内部孔隙结构,影响材料的含油性能和力学性能。本文研究了石墨烯对多孔PI冲击强度、含油特性及摩擦磨损的影响,揭示石墨烯、PI与润滑油的协同作用,有助于进一步提升多孔含油PI材料的性能。

  • 1 试验

  • 1.1 材料

  • 试验选用牌号为YS-20的PI模塑粉,由上海市合成树脂研究所有限公司生产。石墨烯纳米片 (GNS)购置于南京先丰纳米材料科技有限公司,片径为5~10 μm,厚度3~10nm。

  • 1.2 制备

  • 试样的制备过程分为混料、烧结和浸油三步。首先,将PI和GNS粉末放置于鼓风干燥箱进行干燥预处理。用电子天平按比例称取干燥后的PI和GNS粉末倒入多功能高速搅拌机,每次搅拌90s,然后冷却20min,重复8次。然后,将混合后的粉末放置于模具中,使用液压机对模具双向加压,设置试验压力大小为90MPa,保压时间20min。冷压成型后将紧固的模具放入加热炉中,设定烧结温度350℃, 保温时间60min。烧结完成后,模具随炉冷至室温, 通过压力机辅助卸模,得到盘状试样和条状试样,石墨烯含量按质量分数设置为0.1%、0.5%、1%和2%。盘状试样的直径为48mm,厚度为7mm,条状试样的长度为80mm,宽度为10mm,厚度为4mm。采用5000#砂纸打磨试样,并用超声波清洗机清洗备用。最后,将清洗干燥后的盘状试样垂直立在烧杯中,倒入聚 α 烯烃PAO4润滑油,浸没试样,置于真空干燥箱中,机械泵连续抽真空并加热至80℃, 保温20h后取出试样,去除表面浮油。

  • 1.3 试验方法

  • 含油率 φ 和保油率 ω 通过式(1)和(2)进行计算。其中甩油试验使用TG16G台式高速离心机,在3 000r/min转速下进行离心甩油,每隔10min后取出试样称重,累计甩油120min。

  • ψ=m1-m0m0100%
    (1)
  • ω=mx-m0m1-m0100%
    (2)
  • 式中,m0为试样干重;m1 为含油后的试样重量;mx 为每次间隔10min离心甩油后的试样重量。

  • 试样的摩擦学性能测试通过SFT-2M型球-盘摩擦磨损试验机进行,如图1所示。施加载荷为10N, 摩擦半径5mm,电机转速400r/min,测试时间为120min。对摩球选用GCr15轴承钢,直径5mm,每组试验重复三次,以计算平均摩擦因数。通过KH-8700型三维数字显微镜测量磨损试验后的磨痕宽度,观察对摩球的表面形貌,采用VK-X210激光共聚焦扫描显微镜表征了磨痕的三维形貌,使用SU5000扫描电镜观察表面孔洞的分布,磨痕和断面形貌,采用JZL系列液晶数显冲击试验机测试材料的冲击强度。

  • 图1 摩擦副示意图

  • Fig.1 Schematic diagram of friction pair

  • 2 结果与讨论

  • 2.1 复合材料的微结构分析

  • 采用SEM观察PI与GNS颗粒形态,如图2所示。从图2a中可以看到PI颗粒表面光滑,呈现粒状。图2b中GNS为片状结构,大片径表面有褶皱凸起。为了减轻GNS的团聚,采用高速搅拌器多次搅拌。经充分搅拌后,此时粉末中难以观察到大片径的GNS,PI颗粒表面附着细碎的小片。通过对比能谱结果可知(见表1),图2a中PI颗粒处测得的C元素的含量为85.25%,图2c中显示碎片处的C元素含量为94.01%,其中微量的Cu元素来自于固定粉末的铜片。上述结果表明,GNS在通过机械力搅拌后,细化了颗粒大小,形成了许多碎片均匀粘附在PI表面。

  • 表1 区域1和2的能谱分析结果

  • Table1 Energy spectrum analysis results of regions 1and 2

  • 图2 PI颗粒与GNS颗粒SEM图片

  • Fig.2 SEM micrographs of PI particles and GNS particles

  • 2.2 GNS/多孔PI复合材料的冲击性能

  • 图3 为复合材料冲击性能结果和断面SEM形貌。对比纯PI试样,加入0.1%GNS后,复合材料的冲击性能有一定增强,进一步添加GNS,可以看到材料的冲击性能明显降低。分析认为少量的GNS均匀分散在基体中,可以传递应力,提供承载性,起到了增韧的结果。过量的GNS与PI粉末均匀混合后,一方面,GNS依附在较大的PI颗粒表面, 弱化了PI颗粒自身的结合,另一方面,GNS之间团聚成较大颗粒进一步削弱了PI基体的强度。从材料的断面图上也可以证明,图3b、3c、3d断面充满褶皱,布满了网状的粘接结构,主要是由材料之间相互拉扯作用所造成的。观察图3e、3f,断口呈现脆性断裂的迹象,粘接结构明显减小,PI颗粒之间的结合性减弱。另外,在每个试样的断面处都能观察到的GNS,也证明了GNS会影响材料的结合性能。

  • 图3 复合材料冲击性能结果和断面SEM照片

  • Fig.3 Composite material impact performance results and cross-sectional SEM micrographs

  • 2.3 GNS/多孔PI复合材料的含油特性

  • 图4 为GNS/多孔PI复合材料的含油特性测试结果。含油率和含油保持率是衡量材料储油性能的两个重要指标。对比含油率的试验结果,如图4a所示。因为少量GNS均匀分布在PI基体中,占据了部分油液体积,使得含油率降低。 GNS填料增加后,材料内部孔隙结构改变,GNS团聚加重导致材料孔隙变大,毛细作用力加强,使得复合材料的含油率慢慢上升。另外,由于GNS较大的比表面积使得复合材料的内比表面增大,体现出更好的吸油能力。从材料的含油保持率来看,与纯PI相比,GNS的加入进一步提高了材料的含油保持率。同时,为了更好地表征复合材料的含油特性,通过压汞仪分别测试了纯PI、0.1%GNS和1%GNS的孔隙率和孔径大小,如表2所示,试验结果表明0.1%GNS和纯PI孔隙率相近,而1%GNS的孔隙率从13.8%增加到17.7%,且材料内部孔径随着GNS含量的增加而变大,如图4d所示,这印证了含油率的结果。另外,通过简易的吸油装置测试试样的吸油性能,如图4e所示,试验前调平液面,然后将试样放置在U型管右侧,从左侧管中注入50 μl油液。由于微孔产生的毛细作用力,U型管中的润滑油能够自下而上地吸收到材料内部。通过记录不同时刻的液面高度,发现随着GNS含量的增加,材料块吸满油所花的时间越少。因为GNS对油液的吸附力更强,复合材料体现出更好的吸油效果,加快了材料的储油能力,含油保持率的结果也体现了这一点。

  • 图4 PI及GNS/多孔PI含油特性测试结果

  • Fig.4 PI and GNS/porous PI oil characteristics test results

  • 表2 压汞仪测试结果

  • Table2 Mercury porosimeter test results

  • 2.4 GNS/多孔PI复合材料含油摩擦磨损性能

  • 2.4.1 摩擦因数和磨痕宽度

  • 图5a表示含油后的多孔复合材料通过摩擦试验后得到的摩擦因数。可以看到大约在20min后, 摩擦因数趋于平稳。另外,0.5%GNS/多孔PI复合材料表现出最好的摩擦性能。图5b给出了平均摩擦因数和磨痕宽度,对比于纯PI试样,加入GNS后,材料的平均摩擦因数先减小后增大,磨痕宽度与摩擦因数的变化一致。其中,当GNS含量为0.5%时,摩擦因数从0.050下降到0.032,最低磨痕宽度为265.8 μm,与纯PI相比,降低了26.5%。说明一定量的GNS可以提高复合材料的摩擦学性能,少量的GNS作用微小,过量的GNS破坏了材料内部结构,不利于材料摩擦磨损的降低。

  • 图5 GNS/多孔PI复合材料含油摩擦性能测试结果

  • Fig.5 GNS/porous PI composite oil-containing friction performance test results

  • 2.4.2 摩擦磨损机理

  • (1) GNS/多孔PI试样表面

  • 图6 表示为不同GNS含量试样的表面形貌,可以看到所有表面均匀分布了一些孔洞,且随着GNS含量的增加,发现表面的孔径变大,GNS含量超过0.5%时尤为明显,表面出现了裂缝和材料脱落的现象,如图6d、6e所示。这是因为PI颗粒与GNS颗粒之间的界面结合力小,导致GNS与PI之间有间隙,表面的材料容易脱落。

  • 图6 试样表面SEM照片

  • Fig.6 SEM micrographs of sample surface

  • (2) GNS/多孔PI磨损形貌

  • 通过SEM观察给出了不同GNS填料的试样含油摩擦后的磨损表面,如图7所示。可以看到磨损后的材料表面上出现很多开放式的大孔,未被磨屑填补或覆盖,且SEM下未观察到磨损区域与未磨损区域的分界线,磨损较轻微。在图7a中,最显著的特征是孔洞的变大。由于储存在多孔结构中的润滑油在摩擦热和载荷的协同作用下被释放到材料表面,形成润滑油膜,且孔洞周围的材料受到更大的接触应力,容易脱落,导致表面孔隙变大。图7b、7c的磨痕形貌相似,表面的微孔更加密集。在图7d中,磨痕表面的裂缝进一步延伸,出现了较多大孔。因为GNS的分布密度提高, 产生局部应力集中,裂缝沿基体界面向边缘扩展。图7e中磨痕表面呈现龟裂状,出现大块的材料脱离现象,磨损加剧。

  • 图7 不同GNS含量的复合材料含油摩擦后的SEM磨损表面

  • Fig.7 SEM wear surface of composite materials with different GNS content after oil-bearing friction

  • 为了更好地对比材料的磨损情况,通过激光共聚焦显微镜表征了材料的三维形貌,如图8所示,发现纯PI磨痕深度明显,约为8 μm。加入GNS后,复合材料的磨痕深度进一步减小。其中,0.5%GNS/多孔PI的磨损表面几乎看不到磨损痕迹,在摩擦过程中,脱落的石墨烯微粒在摩擦副间起到了缓解摩擦力的作用。当GNS含量超过0.5%时,因为GNS与PI之间的界面结合性差,脱落的微粒逐渐增大,降低了润滑作用。

  • (3) 对摩球磨损形貌

  • 图9a1~9e1 为含油摩擦后钢球表面形貌。可以发现,在摩擦试验2h后,钢球上能清楚地看到油膜,说明所有试样均能稳定有效地向表面持续供油, 避免了钢球和试样的直接接触,大大降低了摩擦因数,同时减小了材料的磨损。图9a2~9e2 为清洗后钢球表面,能观察到少量材料的粘附,且钢球表面能看到一些划痕。随着GNS含量的增加,对比发现0.5%GNS填料的试样摩擦后,钢球表面划痕最少, 磨损最小,也证明填充0.5%GNS为最佳比例。

  • 综合以上试验结果,可得出GNS对多孔PI材料摩擦润滑的影响机理。纯PI和0.1%GNS的摩擦曲线相似,钢球上观察到较多的划痕,这是因为试验开始时,金属小球表面微凸起与材料表面凸峰摩擦造成,这种点接触产生的犁耕作用明显,随着摩擦时间的延长,摩擦副接触方式改变,且油液顺着微孔渗出到摩擦表面,摩擦因数开始趋于稳定。通过比较纯PI和0.1%GNS的磨损表面和三位形貌图,可知0.1%的GNS没有起到明显的作用,可能原因为GNS含量较少,且均匀分布在PI基体中,微量GNS存在摩擦副之间难以发挥效果。加入0.5%GNS后,摩擦曲线较纯PI稳定,GNS颗粒的加入,细化了PI磨屑,少量的GNS可以保持润滑的稳定性。同时,GNS增大了材料的孔径,润滑油在毛细作用力下以更快的速度释放,形成稳定的润滑油膜,石墨烯与微量润滑油的协同作用降低了摩擦因数和磨痕宽度,此时复合材料表现出最佳的摩擦学性能。当GNS的含量超过0.5%时,摩擦因数开始增大。这是由于GNS的含量超过阈值,GNS弱化了PI颗粒之间结合,材料的磨损加剧。在摩擦过程中,过量的GNS颗粒在对摩副中运动抑制了油膜的形成,磨屑的增加导致部分接触平衡被打破,不利于摩擦的降低。另外,孔径的进一步增大,使得润滑油的回流加快,对油膜承载能力有一定的削弱。

  • 图8 不同GNS含量的复合材料含油摩擦后磨痕三维形貌图

  • Fig.8 Three-dimensional topography of wear scars of composites with different GNS content after oil-bearing friction

  • 图9 光学显微镜下与不同GNS/PI多孔复合材料含油摩擦后的对摩球表面形貌

  • Fig.9 The surface morphology of the grinding ball after friction with different GNS/PI porous composite materials under an optical microscope

  • 3 结论

  • (1) 合理的GNS含量可以提高冲击强度。采用冷压烧结的方法,制备了GNS/多孔PI复合材料。 GNS与PI混合后,GNS会粘附于PI颗粒表面,少量的GNS可以提高冲击强度,GNS含量较大会导致PI之间交联性减弱,降低材料的冲击强度。

  • (2) GNS可提升复合材料的含油率和含油保持率。随着GNS填料的增加,复合材料内部孔径增大,材料体现的亲油性更强,增强了孔隙对润滑油的毛细作用。

  • (3) 当GNS含量为0.5%时,GNS、PI及润滑油三者的协同润滑作用最好。相比纯PI,摩擦因数明显减小,磨痕宽度也相应减小。

  • 参考文献

    • [1] LIAW D J,WANG K L,HUANG Y C,et al.Advanced polyimide materials:Syntheses,physical properties and applications[J].Progress in Polymer Science,2012,37(7):907-974.

    • [2] HUANG F,CORNELIUS C J.Polyimide-SiO2 -TiO2 nanocomposite structural study probing free volume,physical properties,and gas transport[J].Journal of Membrane Science,2017,542:110-122.

    • [3] ZHOU S G,LI W T,ZHAO W J,et al.Tribological behaviors of polyimide composite coatings containing carbon nanotubes and fluorinated graphene with hybrid phase or blend phase [J].Progress in Organic Coatings,2020,147:105800.

    • [4] ZHANG D,WANG C,WANG Q H,et al.High thermal stability and wear resistance of porous thermosetting heterocyclic polyimide impregnated with silicone oil [J].Tribology International,2019,140:105728.

    • [5] ZHANG X R,PEI X Q,WANG Q H.Friction and wear studies of polyimide composites filled with short carbon fibers and graphite and micro SiO2 [J].Materials and Design,2009,30(10):4414-4420.

    • [6] MARCHETTI M,MEURISSE M H,VERGNE P,et al.Lubricant supply by porous reservoirs in space mechanisms[J].Tribology Series,2000,38:777-785.

    • [7] WANG J Q,ZHAO H J,HUANG W,et al.Investigation of porous polyimide lubricant retainers to improve the performance of rolling bearings under conditions of starved lubrication [J].Wear,2017,380-381:52-58.

    • [8] 邱维维,孟祥宇,王非,等.聚酰亚胺基自润滑材料与 WS2-Ag 固体润滑膜的相容性[J].中国表面工程,2020,33(1):55-62.QIU W W,MENG X Y,WANG F,et al.Compatibility of polyimide-based self-lubricating material and WS2-Ag solid lubricating film[J].China Surface Engineering,2020,33(1):55-62.(in Chinese)

    • [9] ZHAO G,HUSSAINOVA I,ANTONOV M,et al.Friction and wear of fiber reinforced polyimide composites[J].Wear,2013,301(1-2):122-129.

    • [10] JIA W H,YANG S G,REN S L,et al.Preparation and tribological behaviors of porous oil-containing polyimide/hollow mesoporous silica nanospheres composite films [J].Tribology International,2020,145:106184.

    • [11] 黄占凯.碳纳米管填充聚合物多孔含油材料摩擦学性能研究 [D].哈尔滨:哈尔滨工业大学,2015.HUANG Z K.Research on the tribological properties of carbon nanotube filled porous polymer with oily material[D].Harbin:Harbin Institute of Technology,2015.(in Chinese)

    • [12] SHI Y J,MU L W,FENG X,et al.The tribological behavior of nanometer and micrometer TiO2 particle-filled polytetrafluoroethylene/polyimide [J].Materials and Design,2011,32(2):964-970.

    • [13] LI X H,YAN S J,CHEN X,et al.Microstructure and mechanical properties of graphene-reinforced copper matrix composites prepared by in-situ CVD,ball-milling,and spark plasma sintering[J].Journal of Alloys and Compounds,2020,834:155182.

    • [14] 孔尚,胡文敬,李久盛.石墨烯在PAO基础油中的摩擦学性能[J].中国表面工程,2019,32(3):162-169.CHEN S,HU W J,LI J S.Tribological properties of graphene in PAO base oil[J].China Surface Engineering,2019,32(3):162-169.(in Chinese)

    • [15] 李迎春,程蓓,邱明,等.不同石墨烯添加量下 MoS2 基复合涂层的摩擦磨损及耐腐蚀性能[J].中国机械工程,2020,31(20):2437-2444.LI Y C,CHENG B,QIU M,et al.Friction,wear and corrosion resistance of MoS2-based composite coatings with different graphene additions[J].China Mechanical Engineering,2020,31(20):2437-2444.(in Chinese)

    • [16] TIWARI S K,SAHOO S,WANG N N,et al.Graphene research and their outputs:Status and prospect[J].Journal of Science:Advanced Materials and Devices,2020,5(1):10-29.

    • [17] VERDEJ R,BERNAL M M,ROMASANTA L J,et al.Graphene filled polymer nanocomposites[J].Journal of Materials Chemistry,2011,21(10):3301-3310.

    • [18] 耿浩,李金华,刘宣勇.石墨烯在表面工程领域的研究进展 [J].中国表面工程,2015,28(1):4-14.GENG H,LI J H,LIU X Y.Research progress of graphene in the field of surface engineering[J].China Surface Engineering,2015,28(1):4-14.(in Chinese)

    • [19] HUANG T,XIN Y S,LI T S,et al.Modified graphene/polyimide nanocomposites:reinforcing and tribological effects.[J].ACS Applied Materials & Interfaces,2013,5(11):4878-4891.

    • [20] ROY A,MU L W,SHI Y J.Tribological properties of polyimidegraphene composite coatings at elevated temperatures [J].Progress in Organic Coatings,2020,142:105602.

    • [21] WANG H,XIE G Y,ZHU Z G,et al.Enhanced tribological performance of the multi-layer graphene filled ploy(vinyl chloride)composites[J].Composites Part A,2014,67:268-273.

    • [22] 胡超,徐静,余家欣,等.氧化石墨烯/聚酰亚胺复合材料摩擦学行为及其机理研究[J].摩擦学学报,2020,40(1):12-20.HU C,XU J,YU J X,et al.Research on tribological behavior and mechanism of graphene oxide/polyimide composite [J].Tribology,2020,40(1):12-20.(in Chinese)

  • 参考文献

    • [1] LIAW D J,WANG K L,HUANG Y C,et al.Advanced polyimide materials:Syntheses,physical properties and applications[J].Progress in Polymer Science,2012,37(7):907-974.

    • [2] HUANG F,CORNELIUS C J.Polyimide-SiO2 -TiO2 nanocomposite structural study probing free volume,physical properties,and gas transport[J].Journal of Membrane Science,2017,542:110-122.

    • [3] ZHOU S G,LI W T,ZHAO W J,et al.Tribological behaviors of polyimide composite coatings containing carbon nanotubes and fluorinated graphene with hybrid phase or blend phase [J].Progress in Organic Coatings,2020,147:105800.

    • [4] ZHANG D,WANG C,WANG Q H,et al.High thermal stability and wear resistance of porous thermosetting heterocyclic polyimide impregnated with silicone oil [J].Tribology International,2019,140:105728.

    • [5] ZHANG X R,PEI X Q,WANG Q H.Friction and wear studies of polyimide composites filled with short carbon fibers and graphite and micro SiO2 [J].Materials and Design,2009,30(10):4414-4420.

    • [6] MARCHETTI M,MEURISSE M H,VERGNE P,et al.Lubricant supply by porous reservoirs in space mechanisms[J].Tribology Series,2000,38:777-785.

    • [7] WANG J Q,ZHAO H J,HUANG W,et al.Investigation of porous polyimide lubricant retainers to improve the performance of rolling bearings under conditions of starved lubrication [J].Wear,2017,380-381:52-58.

    • [8] 邱维维,孟祥宇,王非,等.聚酰亚胺基自润滑材料与 WS2-Ag 固体润滑膜的相容性[J].中国表面工程,2020,33(1):55-62.QIU W W,MENG X Y,WANG F,et al.Compatibility of polyimide-based self-lubricating material and WS2-Ag solid lubricating film[J].China Surface Engineering,2020,33(1):55-62.(in Chinese)

    • [9] ZHAO G,HUSSAINOVA I,ANTONOV M,et al.Friction and wear of fiber reinforced polyimide composites[J].Wear,2013,301(1-2):122-129.

    • [10] JIA W H,YANG S G,REN S L,et al.Preparation and tribological behaviors of porous oil-containing polyimide/hollow mesoporous silica nanospheres composite films [J].Tribology International,2020,145:106184.

    • [11] 黄占凯.碳纳米管填充聚合物多孔含油材料摩擦学性能研究 [D].哈尔滨:哈尔滨工业大学,2015.HUANG Z K.Research on the tribological properties of carbon nanotube filled porous polymer with oily material[D].Harbin:Harbin Institute of Technology,2015.(in Chinese)

    • [12] SHI Y J,MU L W,FENG X,et al.The tribological behavior of nanometer and micrometer TiO2 particle-filled polytetrafluoroethylene/polyimide [J].Materials and Design,2011,32(2):964-970.

    • [13] LI X H,YAN S J,CHEN X,et al.Microstructure and mechanical properties of graphene-reinforced copper matrix composites prepared by in-situ CVD,ball-milling,and spark plasma sintering[J].Journal of Alloys and Compounds,2020,834:155182.

    • [14] 孔尚,胡文敬,李久盛.石墨烯在PAO基础油中的摩擦学性能[J].中国表面工程,2019,32(3):162-169.CHEN S,HU W J,LI J S.Tribological properties of graphene in PAO base oil[J].China Surface Engineering,2019,32(3):162-169.(in Chinese)

    • [15] 李迎春,程蓓,邱明,等.不同石墨烯添加量下 MoS2 基复合涂层的摩擦磨损及耐腐蚀性能[J].中国机械工程,2020,31(20):2437-2444.LI Y C,CHENG B,QIU M,et al.Friction,wear and corrosion resistance of MoS2-based composite coatings with different graphene additions[J].China Mechanical Engineering,2020,31(20):2437-2444.(in Chinese)

    • [16] TIWARI S K,SAHOO S,WANG N N,et al.Graphene research and their outputs:Status and prospect[J].Journal of Science:Advanced Materials and Devices,2020,5(1):10-29.

    • [17] VERDEJ R,BERNAL M M,ROMASANTA L J,et al.Graphene filled polymer nanocomposites[J].Journal of Materials Chemistry,2011,21(10):3301-3310.

    • [18] 耿浩,李金华,刘宣勇.石墨烯在表面工程领域的研究进展 [J].中国表面工程,2015,28(1):4-14.GENG H,LI J H,LIU X Y.Research progress of graphene in the field of surface engineering[J].China Surface Engineering,2015,28(1):4-14.(in Chinese)

    • [19] HUANG T,XIN Y S,LI T S,et al.Modified graphene/polyimide nanocomposites:reinforcing and tribological effects.[J].ACS Applied Materials & Interfaces,2013,5(11):4878-4891.

    • [20] ROY A,MU L W,SHI Y J.Tribological properties of polyimidegraphene composite coatings at elevated temperatures [J].Progress in Organic Coatings,2020,142:105602.

    • [21] WANG H,XIE G Y,ZHU Z G,et al.Enhanced tribological performance of the multi-layer graphene filled ploy(vinyl chloride)composites[J].Composites Part A,2014,67:268-273.

    • [22] 胡超,徐静,余家欣,等.氧化石墨烯/聚酰亚胺复合材料摩擦学行为及其机理研究[J].摩擦学学报,2020,40(1):12-20.HU C,XU J,YU J X,et al.Research on tribological behavior and mechanism of graphene oxide/polyimide composite [J].Tribology,2020,40(1):12-20.(in Chinese)

  • 手机扫一扫看