en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

车清论(通信作者),男,1984年出生,博士研究生,副教授。主要研究方向为聚合物智能润滑材料制备及纳米润滑材料合成。E-mail:cheqinglun@163.com

中图分类号:TH117

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210419001

参考文献 1
ZHANG G,WETZEL B,WANG Q,et al.Tribological behavior of PEEK-based materials under mixed and boundary lubrication conditions[J].Tribology International,2015,88:153-161.
参考文献 2
ERDEMIR A.Review of engineered tribological interfaces for improved boundary lubrication [J].Tribology International,2005,38(3):249-256.
参考文献 3
YAO D D,PENG N K,ZHENG Y P,Enhanced mechanical and thermal performances of epoxy resin by oriented solvent-free graphene/carbon nanotube/Fe3O4 composite nanofluid [J].Composites Science and Technology,2018,167:234-242.
参考文献 4
胡超,徐静,余家欣,等.氧化石墨烯/聚酰亚胺复合材料摩擦学行为及机理研究 [J].摩擦学学报,2020,40(1):12-20.HU C,XU J,YU J X,et al.Tribological performance and mechanism of graphene oxide/polyimide[J].Tribology,2020,40(1):12-20.(in Chinese)
参考文献 5
DOMUN N,HADAVINIA H,ZHANG T,et al.Improving the fracture toughness and the strength of epoxy using nanomaterials-a review of the current status [J].Nanoscale,2015,7(23):10294-10329.
参考文献 6
CHE Q L,ZHANG G,ZHANG L G,et al.Switching brake materials to extremely wear-resistant self-lubrication materials via tuning interface nanostructures[J].ACS Appl Mater Interfaces,2018,10(22):19173-19181.
参考文献 7
LI G T,QI H M,ZHANG G,et al.Significant friction and wear reduction by assembling two individual PEEK composites with specific functionalities [J].Materials & Design,2017,116:152-159.
参考文献 8
ALMASLOW A,GHAZALI M J,TALIB R J,et al.Effects of epoxidized natural rubber-alumina nanoparticles(ENRAN)composites in semi-metallic brake friction materials[J].Wear,2013,302(1-2):1392-1396.
参考文献 9
JIAO D,ZHENG S H,WANG Y Z,et al.The tribology properties of alumina/silica composite nanoparticles as lubricant additives[J].Applied Surface Science,2011,257(13):5720-5725.
参考文献 10
祁渊,龚俊,杨东亚,等.纳米 Al2O3 填料增强 PEEK-PTFE复合材料基于环-块摩擦结构的摩擦过程研究[J].材料导报,2019,33(10):1756-1761.QI Y,GONG J,YANG D Y,et al.Study on tribological properties evolution of ptfe composites filled with PEEK and nano-Al2O3 based on block-on-ring friction model[J].Materials Reports,2019,33(10):1756-1761.(in Chinese)
参考文献 11
SHANG W,WU F,WEN Y Q,et al.Corrosion resistance and mechanism of graphene oxide composite coatings on magnesium alloy[J].Industrial & Engineering Chemistry Research,2018,58(3):1200-1211.
参考文献 12
QU D,ZHENG M,ZHANG L,et al.Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots[J].Sci Rep,2014,4(1):5294.
参考文献 13
DONG Y Q,SHAO J W,CHEN C Q,et al.Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid [J].Carbon,2012,50(12):4738-4743.
参考文献 14
HUANG H,YANG S,LI Q,et al.Electrochemical cutting in weak aqueous electrolytes:The strategy for efficient and controllable preparation of graphene quantum dots [J].Langmuir,2018,34(1):250-258.(in Chinese)
参考文献 15
LI Y,ZHAO Y,CHENG H,et al.Nitrogen-doped graphene quantum dots with oxygen-rich functional groups[J].Journal of the American Chemical Society,2012,134(1):15-18.
参考文献 16
YU Z,ZHANG L,WANG X,et al.Fabrication of ZnO/carbon quantum dots composite sensor for detecting NO gas [J].Sensors,2020,20(17):4961.
参考文献 17
王春红,王利剑,任子龙,等.SiO2-竹纤维协同改性对环氧树脂基复合材料摩擦磨损性能的影响[J].复合材料学报,2019,36(7):1633-1639.WANG C H,WANG L J,REN Z L,et al.Effect of SiO2-bamboo fiber synergistic modification on friction and wear properties of epoxy resin matrix composites [J].Acta Materiae Compositae Sinica,2019,36(7):1633-1639.(in Chinese)
参考文献 18
郝松松,孙晓峰,宋巍,等.石墨烯改性环氧树脂涂层的制备及其性能[J].中国表面工程,2018,31(3):108-115.HAO S S,SUN X F,SONG W,et al.Preparation and properties of graphene modified epoxy resin coating [J].China Surface Engineering,2018,123 31(3):108-115.(in Chinese)
参考文献 19
GUO Y X,GUO L H,LI G T,et al.Solvent-free ionic nanofluids based on graphene oxide-silica hybrid as highperformance lubricating additive[J].Applied Surface Science,2019,471:482-493.
参考文献 20
QI H M,ZHANG G,CHANG L,et al.Ultralow friction and wear of polymer composites under extreme unlubricated sliding conditions[J].Advanced Materials Interfaces,2017,4(13):1601171.
参考文献 21
BOUMAZA A,FAVARO L,LÉDION J,et al.Transition alumina phases induced by heat treatment of boehmite:An X-ray diffraction and infrared spectroscopy study[J].Journal of Solid State Chemistry,2009,182(5):1171-1176.
参考文献 22
GUO L H,LI G T,GUO Y X,et al.Extraordinarily low friction and wear of epoxy-metal sliding pairs lubricated with ultra-low sulfur diesel [J].ACS Sustainable Chemistry & Engineering,2018,6(11):15781-15790
目录contents

    摘要

    为改善环氧树脂(EP)的摩擦学性能,将氮掺杂的石墨烯量子点(N-GQDs)和 Al 2O3 纳米颗粒(Nano-Al 2O3 )杂化物添加到环氧树脂中制备 EP 纳米复合材料。 利用 MRH-1A 摩擦试验机考察纳米复合材料在 PAO 油润滑条件下的摩擦磨损性能, 结合磨损表面的形貌及摩擦化学分析,研究界面转移膜的形成机理和润滑效应。 试验结果表明,3N-GQDs-1Nano-Al 2O3 / EP 纳米复合材料获得了最好的摩擦学性能,其最低摩擦因数和磨损率分别为 0. 08 和 7. 4×10 -5 mm 3 / Nm。 同时对偶金属表面上能够观察到一层均匀的转移膜,其中 C、N、O 元素主要分布于沟壑,而 N、Al 元素则集中于高台区域。 机理分析表明,N-GQDs 和 Nano-Al 2O3 有效促进了转移膜的生成,从而避免了摩擦界面的直接接触。

    Abstract

    Nitrogen-doped graphene quantum dots and Al 2O3 nanoparticles hybrids were added to epoxy resin to prepare high tribological performance EP nanocomposites. Tribometer with Plate-on-Ring mode was used to investigate the tribological properties of the nanocomposite under PAO lubrication condition. The morphology and tribochemistry of worn surface were analyzed, the mechanisms governing the formation and anti-friction performance of the tribofilm were explored. The results showed that the lowest friction coefficient and wear rate of 0. 08 and 7. 4 × 10 -5 mm 3 / Nm are obtained when 3N-GQDs-1Nano-Al 2O3 / EP rubbed with the steel counterpart. A continuous and thin tribo-film is distributed on the the steel countersurface, in which the C, N and O elements are mainly distributed in the gully, while the N and Al elements are concentrated in the plateau area. It is demonstrated that a tribofilm promoted by N-GQDs and Al 2O3 effectively avoided direct contact of friction pair.

  • 0 前言

  • 随着高技术工业的迅速发展,汽车、海运船舶等零部件长期运转于高负载、频繁启停的恶劣工况中, 从而对运动机构的服役寿命和可靠性提出了严峻的挑战,因此,发展高性能摩擦副材料具有重要的理论与现实意义[1-2]。环氧树脂(EP)因具有良好的机械强度和高化学稳定性,广泛应用于交通运输和航空航天等领域[3]。然而,纯EP作为自润滑材料其力学强度较差,摩擦磨损较为严重,难以满足苛刻工况。研究发现,在聚合物基体中添加功能性填料可以提高材料的承载能力,降低摩擦副的真实接触面积和黏着力,从而改善复合材料的摩擦学性能[4]

  • 功能性纳米颗粒因具有独特的结构和性能,作为聚合物复合材料的增强相可以有效增强复合材料的强度及韧性,起到阻止裂纹扩展的作用[5]。此外,在常规聚合物基体(例如PEEK和PR) 中添加无机纳米颗粒(例如Al2O3、ZrO2 和SiO2)能够进一步提高其摩擦学性能[6-7]。 Nano-Al2O3 是一种典型的纳米颗粒,研究表明Nano-Al2O3 不仅能够提高聚合物的力学性能[8],还在摩擦过程中具有抛光和承载作用[9]。祁渊等[10] 发现在摩擦过程中复合材料中的Nano-Al2O3 与PEEK和PTFE等传统材料之间存在协同作用,Nano-Al2O3 易于释放到接触界面,通过摩擦烧结形成稳健、均匀的纳米陶瓷转移膜,从而抑制摩擦副的直接接触。然而,单一的纳米颗粒难以达到优异的减摩抗磨作用,可能需要两种或两种以上的纳米颗粒复合协同效应来提高聚合物复合材料力学性能和摩擦学性能。近期,研究者发现N-GQDs作为一种独特的新型零维石墨烯材料,其表面含有丰富的羧基和羟基等官能团,与树脂的特定官能团形成化学键合,从而有效提高了其在聚合物基体中分散性[8,11]。研究表明单一的N-GQDs填充EP复合材料获得了优异的减摩性能,其抗磨性能较差。研究者分析认为纳米复合材料中释放的N-GQDs未能在摩擦界面上形成稳定的转移膜,从而引起严重的磨损。基于以上综合分析,推测Nano-Al2O3 和N-GQDs杂化物填充EP纳米复合材料可能会形成协同效果,有利于提高复合材料的力学性能和摩擦学性能。

  • 因此,本文将尿素作为氮源制备N-GQDs,并将其与Nano-Al2O3 杂化共同引入EP基体中。利用MRH-1A摩擦试验机研究N-GQDs-Nano-Al2O3 杂化物对EP纳米复合材料摩擦学性能的影响,深入分析在边界润滑状态下界面转移膜的纳米结构,进一步揭示N-GQDs-Nano-Al2O3 杂化物对摩擦界面转移膜形成机理。

  • 1 试验

  • 1.1 试验材料

  • 环氧树脂(EP),南通星辰合成材料有限公司产品,环氧当量182~192g/mol,密度1.18g/mm 3;三乙四胺(TETA) 固化剂,国药集团化学试剂有限公司产品;Nano-Al2O3,宣城晶瑞新材料有限公司产品,粒径尺寸约为30nm;聚 α 烯烃(PAO)基础油, 金盾石化集团有限公司产品;尿素(H2NCONH2)与一水合柠檬酸,国药集团化学试剂有限公司产品。

  • 1.2 N-GQDs的制备

  • 根据文献 [ 12] 中的方法合成N-GQDs, 先将0.21g一合水柠檬酸与0.42g尿素加入5ml去离子水中,充分搅拌直至完全溶解,再将混合溶液转移至内衬为聚四氟乙烯的水热反应釜中,水热反应温度为160℃,持续时间4h,然后自然冷却至室温,最终得到褐色溶液。再将褐色溶液离心,5 000r/min, 15min,用去离子水洗涤直至没有沉淀,取上清液透析,然后刮下滤纸上的粉末放入冷冻干燥机中干燥, 最后得到N-GQDs。

  • 1.3 EP复合材料的制备

  • 首先称取一定质量EP和Nano-Al2O3 置于烘箱中,加热至100℃,保温24h,以备后期使用。将干燥好的EP放置于真空高速搅拌机(Dispermat CN-10,VMA-Getzmann,德国)中真空搅拌5min,去除液体EP中部分气泡。在真空度为-95kPa,转速为3 000r/min条件下分散5min。其次,称取一定量的N-GQDs和Nano-Al2O3 粉末倒入球磨罐,由于两种粉末表面都含有特定官能团,球磨过程中产生的机械力促使N-GQDs粘附在Nano-Al2O3 表面,从而得到N-GQDs-Nano-Al2O3 杂化物。再者,将不同含量N-GQD的杂化物加入到上述液体EP中,抽真空至-95kPa,并将转速调至5 000r/min,得到均匀分散的EP纳米复合材料。最后, 将固化剂TETA (EP ∶TETA=100 ∶13)加入到EP中,在真空高速下搅拌均匀,随后将混合液移至模具中,室温下放置2h,在100℃ 下固化2h得到EP纳米复合材料。为了进行试验对比,试验前用同样的方式制备得到了纯EP和N-GQDs/EP复合材料。表1给出了不同组分EP纳米复合材料。

  • 表1 EP复合材料的成分组成

  • Table1 Composition of EP composite

  • 1.4 摩擦性能测试

  • 使用MRH-1A( Plate-on-Ring,POR,济南益华科技有限公司)摩擦试验机对几种纳米复合材料进行了摩擦学性能的测试。每个样品至少重复三次摩擦试验,试验测试时间为3h,POR测试方式示意图图1。试样尺寸为50mm × 10mm × 5mm,轴承钢 (GCr15)作为对偶件,圆环直径为70mm,试验前用W28金相砂纸打磨对偶件,打磨后其表面粗糙度约为0.2 μm,原因在于购买所得的钢环表面是未经统一处理的,使用W28金相砂纸打磨的目的是最大程度上减小不同钢环之间的差异性,保证钢环表面具有一致的粗糙度,所造成的的原始划痕对试验结果影响较小。所用试样和对偶件均用石油醚超声清洗。摩擦试验均在室温( 20℃,环境湿度为20~60%)下进行,测试条件如下:载荷为50~200N,速度为0.05m/s,时间为3h,浸油润滑。通过传感器及计算机计算得出摩擦因数,每组试验至少重复三次,纳米复合材料试样的磨损率W S 由下式计算:

  • WS=L'R2arcsinW2R-W44R2-W2FL

  • 式中,L′为试样宽度( mm),R 为轴承钢环的直径 (mm),W 为磨痕的宽度,F 为施加于试样上的载荷 (N),L 为滑动距离(m)。

  • 图1 滑块式的摩擦接触方式

  • Fig.1 Contact schematic of POR test

  • 1.5 材料和磨损表面的表征

  • 利用高分辨率透射电子显微镜 ( HR-TEM, Tecnai G2TF20,FEI)和傅里叶变换红外光谱(ATR-FTIR,Nicolet 6700, Thermo Fisher Scientific) 对N-GQDs的化学结构进行分析,使用场发射扫描电子显微镜(FE-SEM,Mira3,Tescan,工作电压1~10kV, 放大倍数200~2 000)、能量色散X射线光谱仪 (SEM-EDX,Energy350,Oxford)和ATR-FTIR分别对金属磨损表面形貌和化学结构进行分析。

  • 2 结果与讨论

  • 2.1 材料的显微结构

  • 董永强等研究表明,氮掺杂的GQDs对不同波段的光响应是区别其光学性质的有效手段[13-14]。因此,笔者将使用不同波长的光源照射N-GQDs水溶液,在自然光(228nm)照射条件下,N-GQDs水溶液呈棕色(见图2a);而将N-GQDs水溶液置于紫外线光(365nm)环境中,观察到N-GQDs水溶液发出淡蓝色的荧光(见图2b)。图2c是N-GQDs结构的TEM图, 显示合成制备的N-GQDs尺寸大约为3nm,形状呈规则的圆形,且分布均匀。进一步利用ATR-FTIR光谱对N-GQDs的化学结构进行了表征(如图2d所示),在3 188cm-1 和3 080cm-1 位置处的光谱峰分别为-OH和N-H伸缩振动,表明N-GQDs表面存在大量的氨基和羟基,为N元素成功掺杂GQDs提供了直接证据。在1 582cm-1 和1 402cm-1 位置处的光谱峰与C=O双键和C-N单键的拉伸振动相呼应,而1 120cm-1 处的吸收峰对应C-C的伸缩振动,进一步证明了N-GQDs的成功制备。上述结果表明在N-GQDs中存在大量的羟基和羧基等含氧和含氮的官能团,因此,带有大量官能团的N-GQDs表面可以在EP树脂材料中较好的分散[15]。如图2e所示,将N-GQDs和Nano-Al2O3 粉末加入球磨罐,在机械力作用下粉末相互碰撞使N-GQDs粘附到Nano-Al2O3 表面形成N-GQDs-Nano-Al2O3 杂化体,N-GQDs复合后的纳米粒子相对于原始的Nano-Al2O3 表面其表面被氮掺杂石墨烯量子点包裹[16]

  • 2.2 油润滑状态下EP纳米复合材料的摩擦学性能

  • 图3 和图4展示了油润滑条件下EP纳米复合材料在不同载荷条件下的摩擦因数与磨损率。在速度为0.05m/s的条件下,图3a与3b展示了两种载荷和N-GQDs含量条件下EP纳米复合材料摩擦学行为。在低载(50N)条件下,在磨合阶段纯EP的摩擦因数呈现上升趋势,随后摩擦因数逐渐稳定于0.12(如图3a)。然而,将N-GQDs引入到EP中其摩擦因数随N-GQDs质量分数的增加而降低。从图3b中可以看出,在高载(100N) 条件下,3N-GQDs/EP纳米复合材料表现出更短的磨合时间和更低的摩擦因数。有文献研究表明,Nano-Al2O3 在摩擦过程中易于释放到擦界面,不仅具有抛光和承载作用, 并且在摩擦力的作用下易于在摩擦界面烧结形成具有润滑特性和牢固吸附的转移膜[10]。基于此,笔者研究了不同含量N-GQDs与1%Al2O3 复合杂化对EP摩擦因数的影响(如图3c所示),0.5N-GQDs-1Nano-Al2O3/EP的摩擦因数高于EP树脂材料,当添加的质量分数提高到1.0%时,纳米复合材料摩擦因数显著降低至0.08,这是由于杂化物的加入缩短了跑合时间,两者之间的协同作用发挥了减摩效果。

  • 笔者研究了不同载荷对于EP纳米复合材料磨损率。从图4a和4b可以看出纯EP和EP纳米复合材料的磨损率随着载荷的增加而增加,其中N-GQDs和其杂化物的加入表现出显著的抗磨作用。 3N-GQDs-1Nano-Al2O3 杂化物的加入使纯EP的磨损率从1.23× 10-4 mm 3/(N·m)降到了7.4×10-5 mm 3/(N·m),显著提高了纯EP的耐磨性。其中, 3N-GQDs-1Nano-Al2O3/EP纳米复合材料比纯EP的磨损率降低了约50%,而且还低于N-GQDs/EP复合材料的磨损率。结果表明,杂化物的协同效应起到了优异的抗磨效果,可以延长材料的使用寿命。

  • 图2 N-GQDs的光学性质、形貌、红外表征及杂化示意图

  • Fig.2 Schematic diagram of optical properties, morphology, infrared characterization and hybridization of N-GQDs

  • 图3 不同EP复合材料的摩擦因数随时间变化曲线

  • Fig.3 Friction coefficient curve of different EP composites with time

  • 通过试验对比发现,纯EP的摩擦学性能较差, 可能是因为在摩擦过程中容易发生界面粘附,导致跑和时间较长,而且在金属对偶表面不易形成转移膜,导致减摩抗磨效果较差[17-18]。而N-GQDs具有显著的减摩效果,结果表明,在摩擦过程中N-GQDs及其杂化物会从EP中释放到摩擦界面形成了润滑性的转移膜,延缓了摩擦表面的直接接触。特别是,杂化物的协同效应使纳米复合材料的抗磨提高了50%,同时起到了稳定摩擦因数的作用。结果表明, 杂化物的协同作用应归因于Nano-Al2O3 提高了摩擦界面转移膜的稳健性和鲁棒性,N-GQDs提高了转移膜的润滑特性。

  • 图4 不同EP复合材料的磨损率

  • Fig.4 Wear rate of different EP composites

  • 2.3 磨损表面转移膜的形貌及物相

  • 在摩擦过程中N-GQDs和N-GQDs-Nano-Al2O3 杂化物的加入起到了显著的减摩抗磨作用,主要归因于其对界面转移膜结构的影响,因此,通过SEM和EDS对磨损表面转移膜的形貌和成分进行分析显得十分必要。图5为EP纳米复合材料与金属对摩后金属磨损表面的SEM照片。图5a给出了金属与纯EP摩擦后磨损表面形貌,在金属表面上几乎没有观察到转移膜的存在,且表面刮擦较为严重,导致纯EP存在较高的摩擦因数和磨损率。显然,随着N-GQDs/EP纳米复合中N-GQDs填料含量的增加,观察到金属表面的转移膜所占比例明显增加 (见图5b、5c中箭头所示),转移膜的增加与减摩抗磨作用相呼应(见图3和图4),表明N-GQDs促进了润滑特性转移膜在金属表面上的生长。而进一步将N-GQDs-Nano-Al2O3 杂化物引入后,随着N-GQDs填料含量的增加,N-GQDs和Nano-Al2O3 协同作用更加显著,观察到转移膜几乎覆盖了整个磨损表面, 金属表面生长了一层具有润滑特性的转移膜,有效延缓了其表面的刮擦,使其金属表面保留了大部分原始的划痕(见图5d~5f),进一步证明转移膜的存在起到了更好的减摩抗磨效果。结果表明, N-GQDs-Nano-Al2O3 杂化物的加入有利于金属表面生长一层连续的润滑特性杂化转移膜。

  • 图5 EP复合材料GCr15对磨损后金属表面转移膜形貌的SEM照片

  • Fig.5 SEM micrographs of the steel surfaces rubbed with EP composite

  • 摩擦界面生成的转移膜结构和成分是影响纳米复合材料摩擦磨损性能的一个重要因素[19-20],本文利用SEM和EDS分析磨损金属表面生长转移膜的结构和成分。图6和图7分别给出了在油润滑条件下金属与0.5N-GQDs/EP、 3N-GQDs/EP和3N-GQDs-1Nano-Al2O3/EP纳米复合材料对摩后其表面SEM图和EDS元素分布图像。金属与0.5N-GQDs/EP纳米复合材料对摩后其磨损表面刮擦较为严重(见图6a),图6b、6c和6d元素EDS图像显示金属磨损表面主要以C、N、O三种元素分布为主, 表明金属表面生长的转移膜以EP树脂为主,抗刮擦和承载能力低,减摩抗磨能力较差。同时,观察到摩擦界面存在较大的氧化铁平台。上述结果表明, 填料N-GQDs含量的增加,能够促进金属表面生长优异润滑特性的转移膜,明显起到了减摩抗磨作用。

  • 图6 EP纳米复合材料滑动钢表面后磨损表面SEM、EDS照片

  • Fig.6 SEM micrograph and EDS map of the steel surface rubbed with EP composite

  • 金属与3N-GQDs-1Nano-Al2O3/EP纳米复合材料滑动后其磨损表面形貌基本保持了原始的划痕 (见图7a)。元素分布EDS图像显示金属表面的沟壑主要以C、N、O元素填充为主(见图7b、7c、7d、 7f),而平台区域的C元素信号减弱,N和Al元素均匀地分布在平台区域,表明Nano-Al2O3 在机械力和热的作用下与残余的碳材料在金属表面烧结形成陶瓷基转移膜,在摩擦时可以使转移膜承载高剪切力和载荷;随着N-GQDs含量的增加,N-GQDs与高承载的陶瓷基转移膜的复合使其具有更加优异的润滑特性(见图3和4)。研究结果表明,相比与单独添加N-GQDs,N-GQDs-Nano-Al2O3 杂化物更能有助于促进金属表面生长具有优异抗刮擦力、高承载力、优异润滑特性的杂化转移膜,可以明显降低纳米复合材料的摩擦因数和磨损率。

  • 图7 金属与3N-GQDs-1Nano-Al2O3/EP对摩后材料滑动钢表面后磨损表面SEM、EDS照片

  • Fig.7 SEM micrograph and EDS map of the steel surface rubbed with 3N-GQDs-1Nano-Al2O3/EP

  • 2.4 转移膜的化学结构

  • 为了阐明金属表面转移膜的化学结构与N-GQDs和Nano-Al2O3 的相关性,通过ATR-FTIR对钢与3N-GQDs-1Nano-Al2O3/EP纳米复合材料对摩损后其表面转移膜的化学结构进行了表征。如图8所示,在620cm-1 和760cm-1 位置处的红外图谱吸收峰对应Al3+离子六配位的吸收峰[21],证明Nano-Al2O3 在摩擦过程中转移到金属表面的转移膜中; 在1 250cm-1 和1 300cm-1 位置处的红外图谱吸收峰对应C-O的对称拉伸振动和非对称芳香族拉伸振动[22],表明EP也是转移膜组成一部分;在3 080cm-1 位置处的显著红外图谱吸收峰对应N-H的伸缩振动,分析表明N-GQDs也参与了转移膜的形成。红外图谱分析结果表明,在机械力和热的作用下摩擦烧结形成了高性能杂化转移膜是由N-GQDs、残余树脂和Nano-Al2O3 组成。

  • 图8 3N-GQDs-1Nano-Al2O3/EP转移膜的ATR-FIIR图谱

  • Fig.8 ATR-FTIR spectrum of the tribofilm of 3N-GQDs-1Nano-Al2O3/EP

  • 3 结论

  • (1) N-GQDs-Nano-Al2O3 杂化物的加入明显改善了EP树脂在边界以及混合润滑条件下的减摩抗磨性能。其中3N-GQDs-1Nano-Al2O3/EP纳米复合材料获得了最好的摩擦学性能,促进了摩擦副表面转移膜的形成,证明N-GQDs和Nano-Al2O3 在EP纳米复合材料减摩抗磨方面具有协同作用。

  • (2) 在机械力和热作用下,从N-GQDs-Nano-Al2O3/EP纳米复合材料中释放的N-GQDs在摩擦界面上形成了具有润滑特性的转移膜,提高了系统的润滑性能;而释放的Nano-Al2O3 在摩擦界面上烧结形成了陶瓷基转移膜,可以增强杂化转移膜的承载力和抗刮擦能力;避免纳米复合材料与金属表面的直接接触,从而使纳米复合材料获得优异的摩擦学性能。

  • (3) 对进一步提升树脂纳米复合材料在恶劣工作条件下的摩擦学性能具有一定的指导价值,为构建具有优异润滑特性的转移膜提供了参考。

  • 参考文献

    • [1] ZHANG G,WETZEL B,WANG Q,et al.Tribological behavior of PEEK-based materials under mixed and boundary lubrication conditions[J].Tribology International,2015,88:153-161.

    • [2] ERDEMIR A.Review of engineered tribological interfaces for improved boundary lubrication [J].Tribology International,2005,38(3):249-256.

    • [3] YAO D D,PENG N K,ZHENG Y P,Enhanced mechanical and thermal performances of epoxy resin by oriented solvent-free graphene/carbon nanotube/Fe3O4 composite nanofluid [J].Composites Science and Technology,2018,167:234-242.

    • [4] 胡超,徐静,余家欣,等.氧化石墨烯/聚酰亚胺复合材料摩擦学行为及机理研究 [J].摩擦学学报,2020,40(1):12-20.HU C,XU J,YU J X,et al.Tribological performance and mechanism of graphene oxide/polyimide[J].Tribology,2020,40(1):12-20.(in Chinese)

    • [5] DOMUN N,HADAVINIA H,ZHANG T,et al.Improving the fracture toughness and the strength of epoxy using nanomaterials-a review of the current status [J].Nanoscale,2015,7(23):10294-10329.

    • [6] CHE Q L,ZHANG G,ZHANG L G,et al.Switching brake materials to extremely wear-resistant self-lubrication materials via tuning interface nanostructures[J].ACS Appl Mater Interfaces,2018,10(22):19173-19181.

    • [7] LI G T,QI H M,ZHANG G,et al.Significant friction and wear reduction by assembling two individual PEEK composites with specific functionalities [J].Materials & Design,2017,116:152-159.

    • [8] ALMASLOW A,GHAZALI M J,TALIB R J,et al.Effects of epoxidized natural rubber-alumina nanoparticles(ENRAN)composites in semi-metallic brake friction materials[J].Wear,2013,302(1-2):1392-1396.

    • [9] JIAO D,ZHENG S H,WANG Y Z,et al.The tribology properties of alumina/silica composite nanoparticles as lubricant additives[J].Applied Surface Science,2011,257(13):5720-5725.

    • [10] 祁渊,龚俊,杨东亚,等.纳米 Al2O3 填料增强 PEEK-PTFE复合材料基于环-块摩擦结构的摩擦过程研究[J].材料导报,2019,33(10):1756-1761.QI Y,GONG J,YANG D Y,et al.Study on tribological properties evolution of ptfe composites filled with PEEK and nano-Al2O3 based on block-on-ring friction model[J].Materials Reports,2019,33(10):1756-1761.(in Chinese)

    • [11] SHANG W,WU F,WEN Y Q,et al.Corrosion resistance and mechanism of graphene oxide composite coatings on magnesium alloy[J].Industrial & Engineering Chemistry Research,2018,58(3):1200-1211.

    • [12] QU D,ZHENG M,ZHANG L,et al.Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots[J].Sci Rep,2014,4(1):5294.

    • [13] DONG Y Q,SHAO J W,CHEN C Q,et al.Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid [J].Carbon,2012,50(12):4738-4743.

    • [14] HUANG H,YANG S,LI Q,et al.Electrochemical cutting in weak aqueous electrolytes:The strategy for efficient and controllable preparation of graphene quantum dots [J].Langmuir,2018,34(1):250-258.(in Chinese)

    • [15] LI Y,ZHAO Y,CHENG H,et al.Nitrogen-doped graphene quantum dots with oxygen-rich functional groups[J].Journal of the American Chemical Society,2012,134(1):15-18.

    • [16] YU Z,ZHANG L,WANG X,et al.Fabrication of ZnO/carbon quantum dots composite sensor for detecting NO gas [J].Sensors,2020,20(17):4961.

    • [17] 王春红,王利剑,任子龙,等.SiO2-竹纤维协同改性对环氧树脂基复合材料摩擦磨损性能的影响[J].复合材料学报,2019,36(7):1633-1639.WANG C H,WANG L J,REN Z L,et al.Effect of SiO2-bamboo fiber synergistic modification on friction and wear properties of epoxy resin matrix composites [J].Acta Materiae Compositae Sinica,2019,36(7):1633-1639.(in Chinese)

    • [18] 郝松松,孙晓峰,宋巍,等.石墨烯改性环氧树脂涂层的制备及其性能[J].中国表面工程,2018,31(3):108-115.HAO S S,SUN X F,SONG W,et al.Preparation and properties of graphene modified epoxy resin coating [J].China Surface Engineering,2018,123 31(3):108-115.(in Chinese)

    • [19] GUO Y X,GUO L H,LI G T,et al.Solvent-free ionic nanofluids based on graphene oxide-silica hybrid as highperformance lubricating additive[J].Applied Surface Science,2019,471:482-493.

    • [20] QI H M,ZHANG G,CHANG L,et al.Ultralow friction and wear of polymer composites under extreme unlubricated sliding conditions[J].Advanced Materials Interfaces,2017,4(13):1601171.

    • [21] BOUMAZA A,FAVARO L,LÉDION J,et al.Transition alumina phases induced by heat treatment of boehmite:An X-ray diffraction and infrared spectroscopy study[J].Journal of Solid State Chemistry,2009,182(5):1171-1176.

    • [22] GUO L H,LI G T,GUO Y X,et al.Extraordinarily low friction and wear of epoxy-metal sliding pairs lubricated with ultra-low sulfur diesel [J].ACS Sustainable Chemistry & Engineering,2018,6(11):15781-15790

  • 参考文献

    • [1] ZHANG G,WETZEL B,WANG Q,et al.Tribological behavior of PEEK-based materials under mixed and boundary lubrication conditions[J].Tribology International,2015,88:153-161.

    • [2] ERDEMIR A.Review of engineered tribological interfaces for improved boundary lubrication [J].Tribology International,2005,38(3):249-256.

    • [3] YAO D D,PENG N K,ZHENG Y P,Enhanced mechanical and thermal performances of epoxy resin by oriented solvent-free graphene/carbon nanotube/Fe3O4 composite nanofluid [J].Composites Science and Technology,2018,167:234-242.

    • [4] 胡超,徐静,余家欣,等.氧化石墨烯/聚酰亚胺复合材料摩擦学行为及机理研究 [J].摩擦学学报,2020,40(1):12-20.HU C,XU J,YU J X,et al.Tribological performance and mechanism of graphene oxide/polyimide[J].Tribology,2020,40(1):12-20.(in Chinese)

    • [5] DOMUN N,HADAVINIA H,ZHANG T,et al.Improving the fracture toughness and the strength of epoxy using nanomaterials-a review of the current status [J].Nanoscale,2015,7(23):10294-10329.

    • [6] CHE Q L,ZHANG G,ZHANG L G,et al.Switching brake materials to extremely wear-resistant self-lubrication materials via tuning interface nanostructures[J].ACS Appl Mater Interfaces,2018,10(22):19173-19181.

    • [7] LI G T,QI H M,ZHANG G,et al.Significant friction and wear reduction by assembling two individual PEEK composites with specific functionalities [J].Materials & Design,2017,116:152-159.

    • [8] ALMASLOW A,GHAZALI M J,TALIB R J,et al.Effects of epoxidized natural rubber-alumina nanoparticles(ENRAN)composites in semi-metallic brake friction materials[J].Wear,2013,302(1-2):1392-1396.

    • [9] JIAO D,ZHENG S H,WANG Y Z,et al.The tribology properties of alumina/silica composite nanoparticles as lubricant additives[J].Applied Surface Science,2011,257(13):5720-5725.

    • [10] 祁渊,龚俊,杨东亚,等.纳米 Al2O3 填料增强 PEEK-PTFE复合材料基于环-块摩擦结构的摩擦过程研究[J].材料导报,2019,33(10):1756-1761.QI Y,GONG J,YANG D Y,et al.Study on tribological properties evolution of ptfe composites filled with PEEK and nano-Al2O3 based on block-on-ring friction model[J].Materials Reports,2019,33(10):1756-1761.(in Chinese)

    • [11] SHANG W,WU F,WEN Y Q,et al.Corrosion resistance and mechanism of graphene oxide composite coatings on magnesium alloy[J].Industrial & Engineering Chemistry Research,2018,58(3):1200-1211.

    • [12] QU D,ZHENG M,ZHANG L,et al.Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots[J].Sci Rep,2014,4(1):5294.

    • [13] DONG Y Q,SHAO J W,CHEN C Q,et al.Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid [J].Carbon,2012,50(12):4738-4743.

    • [14] HUANG H,YANG S,LI Q,et al.Electrochemical cutting in weak aqueous electrolytes:The strategy for efficient and controllable preparation of graphene quantum dots [J].Langmuir,2018,34(1):250-258.(in Chinese)

    • [15] LI Y,ZHAO Y,CHENG H,et al.Nitrogen-doped graphene quantum dots with oxygen-rich functional groups[J].Journal of the American Chemical Society,2012,134(1):15-18.

    • [16] YU Z,ZHANG L,WANG X,et al.Fabrication of ZnO/carbon quantum dots composite sensor for detecting NO gas [J].Sensors,2020,20(17):4961.

    • [17] 王春红,王利剑,任子龙,等.SiO2-竹纤维协同改性对环氧树脂基复合材料摩擦磨损性能的影响[J].复合材料学报,2019,36(7):1633-1639.WANG C H,WANG L J,REN Z L,et al.Effect of SiO2-bamboo fiber synergistic modification on friction and wear properties of epoxy resin matrix composites [J].Acta Materiae Compositae Sinica,2019,36(7):1633-1639.(in Chinese)

    • [18] 郝松松,孙晓峰,宋巍,等.石墨烯改性环氧树脂涂层的制备及其性能[J].中国表面工程,2018,31(3):108-115.HAO S S,SUN X F,SONG W,et al.Preparation and properties of graphene modified epoxy resin coating [J].China Surface Engineering,2018,123 31(3):108-115.(in Chinese)

    • [19] GUO Y X,GUO L H,LI G T,et al.Solvent-free ionic nanofluids based on graphene oxide-silica hybrid as highperformance lubricating additive[J].Applied Surface Science,2019,471:482-493.

    • [20] QI H M,ZHANG G,CHANG L,et al.Ultralow friction and wear of polymer composites under extreme unlubricated sliding conditions[J].Advanced Materials Interfaces,2017,4(13):1601171.

    • [21] BOUMAZA A,FAVARO L,LÉDION J,et al.Transition alumina phases induced by heat treatment of boehmite:An X-ray diffraction and infrared spectroscopy study[J].Journal of Solid State Chemistry,2009,182(5):1171-1176.

    • [22] GUO L H,LI G T,GUO Y X,et al.Extraordinarily low friction and wear of epoxy-metal sliding pairs lubricated with ultra-low sulfur diesel [J].ACS Sustainable Chemistry & Engineering,2018,6(11):15781-15790

  • 手机扫一扫看