en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

丁昊昊,男,1988年出生,博士。主要研究方向为轮轨摩擦学。E-mail:haohao.ding@swjtu.edu.cn;

王文健(通信作者),男,1980年出生,博士,研究员,博士研究生导师。主要研究方向为轨道交通轮轨关系与服役行为研究。E-mail:wwj527@163.com

中图分类号:TH117.1

DOI:10.11933/j.issn.1007-9289.20210124002

参考文献 1
王延朋,丁昊昊,邹强,等.列车车轮踏面滚动接触疲劳研究进展[J].表面技术,2020,49(5):120-128.WANG Y P,DING H H,ZOU Q,et al.Research progress on rolling contact fatigue of railway wheel treads [J].Surface Technology,2020,49(5):120-128.(in Chinese)
参考文献 2
ZHU Y,WANG W J,LEWIS R,et al.A review on wear between railway wheels and rails under environmental conditions [J].Journal of Tribology,2019,141:120801.
参考文献 3
王文健,郭俊,刘启跃.轮轨磨损与滚动疲劳裂纹损伤关系及预防研究[J].中国表面工程,2010,23(3):106-109.WANG W J,GUO J,LIU Q Y.Study on relationship between wear and rolling fatigue crack of wheel/rail and prevention measures[J].China Surface Engineering,2010,23(3):106-109.(in Chinese)
参考文献 4
周野飞,秦广阔,邢晓磊,等.激光熔覆无碳化物贝氏体涂层制备及其摩擦学性能[J].中国表面工程,2018,31(4):160-168.ZHOU Y F,QIN G K,XING X L,et al.Preparation and tribological properties of carbide-free bainite coatings by laser cladding[J].China Surface Engineering,2018,31(4):160-168.(in Chinese)
参考文献 5
FRANKLIN F J,WEEDA G J,KAPOOR A,et al.Rolling contact fatigue and wear behaviour of the infrastar two-material rail[J].Wear,2005,258:1048-1054.
参考文献 6
HIENSCH M,LARSSON P,NILSSON O,et al.Two-material rail development:Field test results regarding rolling contact fatigue and squeal noise behavior[J].Wear,2005,258:964-972.
参考文献 7
RINGSBERG J W,FRANKLIN F J,JOSEFSON B L,et al.Fatigue evaluation of surface coated railway rails using shakedown theory,finite element calculations,and lab and field trials[J].International Journal of Fatigue,2005,27:680-694.
参考文献 8
LEWIS S R,LEWIS R,FLETCHER D I.Assessment of laser cladding as an option for repairing/enhancing rails[J].Wear,2015,330-331:581-591.
参考文献 9
LEWIS S R,FRETWELL-SMITH S,GOODWIN P S,et al.Improving rail wear and RCF performance using laser cladding [J].Wear,2016,366-367:268-278.
参考文献 10
LEWIS S R,LEWIS R,GOODWIN P S,et al.Full-scale testing of laser clad railway track;Case study-Testing for wear,bend fatigue and insulated block joint lipping integrity [J].Wear,2017,376-377:1930-1937.
参考文献 11
LAI Q,ABRAHAMS R,YAN W Y,et al.Influences of depositing materials,processing parameters and heating conditions on material characteristics of laser-cladded hypereutectoid rails [J].Journal of Materials Processing Technology,2019,263:1-20.
参考文献 12
ROY T,LAI Q,ABRAHAMS R,et al.Effect of deposition material and heat treatment on wear and rolling contact fatigue of laser cladded rails[J].Wear,2018,412-413:69-81.
参考文献 13
ZHU Y,YANG Y,MU X,et al.Study on wear and RCF performance of repaired damage railway wheels:Assessing laser cladding to repair local defects on wheels[J].Wear,2019,430-431:126-136.
参考文献 14
WANG W J,HU J,GUO J,et al.Effect of laser cladding on wear and damage behaviors of heavy-haul wheel/rail materials [J].Wear,2014,311:130-136.
参考文献 15
张瑞珠,李林杰,唐明奇,等.激光熔覆技术的研究进展 [J].热处理技术与装备,2017,38(3):7-11.ZHANG R Z,LI L J,TANG M Q,et al.Research progress of laser cladding technology [J].Rechuli Jishu Yu Zhuangbei,2017,38(3):7-11.(in Chinese)
参考文献 16
慕鑫鹏,王文健,祝毅,等.两种激光熔覆涂层对轮轨材料磨损与损伤性能的影响[J].摩擦学学报,2020,40(2):225-233.MU X P,WANG W J,ZHU Y,et al.Effects of two laser cladding coatings on wear and damage properties of wheel/rail materials[J].Tribology,2020,40(2):225-233.(in Chinese)
参考文献 17
付志凯.轮轨材料激光溶覆Fe基合金涂层的微观组织与磨损性能研究[D].成都:西南交通大学 2015.FU Z K.Study on microstructure and wear properties of laser cladding Fe-based alloy coating on wheel/rail materials [ D].Chengdu:Southwest Jiaotong University,2015.(in Chinese)
参考文献 18
石皋莲,吴少华,任佳,等.含 h-BN 的钛合金激光熔覆自润滑耐磨涂层的摩擦学行为[J].润滑与密封,2015,40(11):89-93.SHI G L,WU S H,REN J,et al.tribological properties of selflubricating anti-wear composite coating with 10% h-BN on Ti6Al4V alloy by laser cladding [J].Lubrication Engineering,2015,40(11):89-93.(in Chinese)
参考文献 19
WANG H M,YU Y L,LI S Q.Microstructure and tribological properties of laser clad CaF2/Al2O3 self-lubrication wear-resistant ceramic matrix composite coatings[J].Scripta Materialia,2002,47:57-61.
参考文献 20
FLETCHER D I,LEWIS S.Creep curve measurement to support wear and adhesion modelling,using a continuously variable creep twin disc machine[J].Wear,2013,298-299:57-65.
参考文献 21
AVRIL L,COURANT B,HANTZPERGUE J J.Tribological performance of α-Fe(Cr)-Fe2B-FeB and α-Fe(Cr)-h-BN coatings obtained by laser melting[J].Wear,2006,260:351-360.
参考文献 22
秦琴,王竹,文然,等.激光技术在金属中的强化机理研究分析[J/OL].热加工工艺,[2020-09-24].https://doi.org/10.14158/j.cnki.1001-3814.20192575.QIN Q,WANG Z,WEN R,et al.Research and analysis on strengthening mechanism of laser technology in metals[ J/OL].Hot Working Technology,[2020-09-24].https://doi.org/10.14158/j.cnki.1001-3814.20192575.(in Chinese)
参考文献 23
刘晓东,姜洪雷,谢蒙.Q345 钢激光熔覆的残余应力分析 [J].金属热处理,2020,45(3):226-230.LIU X D,JIANG H L,XIE M.Analysis on residual stress of Q345 steel in laser cladding process [J].Heat Treatment of Metals,2020,45(3):226-230.(in Chinese)
参考文献 24
戴德平,蒋小华,蔡建鹏,等.激光熔覆Inconel718镍基合金温度场与应力场模拟 [J].中国激光,2015,42(9):0903005.DAI D P,JIANG X H,CAI J P,et al.Numerical simulation of temperature field and stress distribution in Inconel718 Ni base alloy induced by laser cladding[J].Chinese Journal of Lasers,2015,42(9):0903005.(in Chinese)
参考文献 25
申鹏.轮轨黏着特性试验研究[D].成都:西南交通大学,2012.SHEN P.Experimental study on wheel/rail adhesion characteristc [ D ].Chengdu:Southwest Jiaotong University,2012.(in Chinese)
目录contents

    摘要

    激光熔覆铁基合金涂层的摩擦因数及磨损率均较高,h-BN 和 CaF2 作为固体添加剂已应用于激光熔覆处理,然而含 hBN 和 CaF2 的铁基熔覆涂层在列车车轮材料表面的磨损性能及最佳含量尚不清楚。 因此,以不同比例的 h-BN(0 ~ 2%)、CaF2 (2% ~ 0)和 Fe 基合金(98%)粉末为熔覆材料,在列车车轮材料表面制备合金涂层,对激光熔覆车轮试样进行滚动摩擦磨损试验。 结果表明:涂层微观组织主要由枝晶组织和共晶组织构成,硬度约 800 HV0. 3 ,表面存在残余压应力,其值为 800 ~ 1300 MPa。 加入 h-BN 粉末可将黏着系数降低至 0. 35~ 0. 39,激光熔覆车轮试样表面以滚动接触疲劳损伤为主,裂纹在表面产生并在塑性变形层内扩展。 随 h-BN 含量增加和 CaF2 含量减小,微观组织尺寸、黏着系数、磨损率、滚动接触疲劳裂纹长度和深度均呈先减小后增加趋势。 h-BN、CaF2 和 Fe 基合金质量比为 1%:1%:98%时,涂层微观组织最致密、残余压应力最大、耐磨与抗疲劳性能最优。 研究结果可为激光熔覆技术在列车车轮上的应用与优化提供理论与技术指导。

    Abstract

    The friction coefficient and wear rate of laser cladded Fe-based alloy were high. h-BN and CaF2 , as solid additives have been used laser cladding. However, the wear performance and the optimum contents of the Fe-based cladding with h-BN and CaF2 are not clear. Therefore, coatings were produced on the railway wheel material using the laser cladding technology, from the powders with different proportions of h-BN ( 0 ~ 2%), CaF2 ( 2% ~ 0), and Fe based alloy ( 98%). The rolling friction and wear tests were conducted. The results show that the claddings are composed of dendritic and eutectic phases. The hardness reaches around 800 HV0. 3 . Residual compressive stresses existed on the surface with the values of 800 ~ 1300 MPa. Addition of h-BN powder could decrease the adhesion coefficient to 0. 35~0. 39. Rolling contact fatigue damage is predominant on the worn surface of the laser cladded wheel sample. Cracks initiate on the surface and then develop in the plastic deformation layer. With the increase in h-BN proportion and the decrease in CaF2 proportion, the size of microstructure, the adhesion coefficient, wear rate, and length and depth of rolling contact fatigue cracks are decreased and then increased. When the proportions of h-BN, CaF2 , Fe based alloy are 1%:1%:98%, the cladding has the finest microstructure, the largest residual compressive stress, and the best anti-wear and anti-fatigue performance. The results could provide theoretical and technical guidance for the application and optimization of laser cladding technology on railway wheels.

  • 0 前言

  • 轮轨系统是列车运行的重要部件之一,随着铁路朝着快速与重载方向发展,轮轨系统的磨损与损伤问题日益突出。其中,严重的磨损和滚动接触疲劳(RCF)降低了车轮服役寿命,同时给列车运行的舒适性和可靠性带来不利影响[1-3]。因此,为提高车轮耐磨和耐疲劳性能,车轮材料的强化技术已成为研究热点。

  • 激光熔覆技术也称为激光堆焊技术,是利用高能激光束将熔覆材料和基体浅表层材料熔化,并快速凝固形成一层和基体材料冶金结合的表面涂层, 通过选择不同熔覆材料,可获得减摩、耐磨、耐疲劳、耐腐蚀、抗氧化等性能。激光熔覆技术已被广泛应用于汽车制造、石油化工、航天航海、机械制造与修复等领域[4],然而,在轮轨系统上的应用研究相对较少。 2005年, 来自欧洲 “ InfraStar ” 项目的FRANKLIN等[5]、 HIENSCH等[6] 和RINGSBERG等[7]首先报道了在UIC900A钢轨表面激光熔覆的两种合金涂层,分析了不同工况下涂层的磨损和损伤行为,研究发现大部分激光熔覆涂层表现出了较好的抗疲劳性能,但少部分涂层会产生更加严重的滚动接触疲劳损伤。 LEWIS等[8-10]在钢轨表面激光熔覆了多种合金,包括多相锰钢 (MMV)、马氏体不锈钢 (MSS)、孪生诱发塑性钢( TWIP)、NiCrBSi合金、Stellite12和Stellite6。相比未熔覆钢轨,上述六种熔覆涂层均具有更长的滚动接触疲劳寿命,马氏体不锈钢、Stellite12和Stellite6涂层的磨损率减小, 而另外三种涂层的磨损率反而增加。 LAI等[11] 和ROY等[12] 研究发现激光熔覆前后的热处理对钢轨表面激光熔覆涂层的微观组织、应力状态和磨损性能有影响。祝毅等[13]选用不锈钢合金粉末,通过激光熔覆技术对车轮局部缺陷进行修复,研究发现熔覆材料具有较好的耐磨性,表明激光熔覆技术可用于车轮损伤修复。王文健等[14] 在轮轨表面激光熔覆了钴基合金涂层,通过双轮对滚试验发现激光熔覆后轮轨试样的磨损量下降37%~88%。

  • 铁基合金粉末因其较好的自熔性能和低廉的价格,已广泛应用于激光熔覆处理[15]。慕鑫鹏等[16]研究了轮轨表面激光熔覆铁基合金涂层和钴基合金涂层的摩擦磨损行为,相比未熔覆轮轨,两种合金涂层的磨损率均降低80%以上。然而,相比钴基合金涂层,铁基合金涂层的摩擦因数较高,磨损率也较高。通过在熔覆材料里引入固体添加剂,可以进一步提升激光熔覆涂层的耐磨性能。付志凯等[17] 在铁基合金熔覆材料里引入氧化镧,结果表明氧化镧的加入可以细化晶粒,轮轨试样的磨损和损伤现象减轻,当氧化镧含量为1.2%时,激光熔覆涂层的耐磨性能最佳。

  • h-BN具有片层状结构,每一层为B原子和N原子交替形成的平面六元环,层与层之间通过范德华力连接,剪切强度较低。 CaF2 属于等轴晶系,在较低剪切力下层与层之间可发生相对滑动。 h-BN和CaF2 因其良好的润滑性能已作为固体添加剂开始应用于激光熔覆处理。石皋莲等[18] 利用激光熔覆技术在Ti6Al4V基体上制备了含h-BN的镍基合金熔覆涂层,WANG等[19]在Al2O3 结构陶瓷基体上激光熔覆了CaF2/Al2O3涂层,h-BN和CaF2 的加入均能降低滑动摩擦因数和磨损量。但是,含h-BN和CaF2 的铁基合金涂层在轮轨上的应用还未见报道,此外,添加剂含量对涂层服役性能具有重要影响。因此,为了获得车轮表面服役性能更优的铁基熔覆涂层,h-BN和CaF2 含量对车轮表面铁基合金涂层的摩擦磨损性能的影响需进一步研究。

  • 本文利用激光熔覆技术在车轮试样表面制备不同h-BN和CaF2 含量的铁基合金涂层,利用MJP-30A滚动接触疲劳试验机对激光熔覆试样进行滚动摩擦磨损试验,分析激光熔覆涂层微观组织、硬度、残余应力、黏着(摩擦)系数、磨损率和滚动接触疲劳损伤等,阐明车轮表面h-BN/CaF2/Fe基激光熔覆涂层摩擦磨损与损伤性能,确定h-BN和CaF2 的最佳含量,研究结果可为激光熔覆技术在列车车轮上的应用与优化提供技术指导。

  • 1 试验准备

  • 1.1 样品制备

  • 车轮试样为圆柱形滚动试样,取自CL60车轮踏面处(图1),直径为54mm,厚度为5mm,车轮材料化学成分(质量分数)见表1。利用TR-3000多模横流CO2 激光器在车轮试样上进行同步送粉式激光熔覆处理(图1),熔覆材料为Fe基合金粉末并加入不同成分的h-BN和CaF2 粉末。图2给出了Fe基合金粉末、h-BN粉末和CaF2 粉末的扫描电子显微图像,Fe基合金粉末为球状和棒状颗粒,尺寸约为100 μm,化学成分(质量分数)见表2,h-BN粉末和CaF2 粉末均为片状颗粒,尺寸在0.3~1.0 μm范围内,h-BN颗粒尺寸略大于CaF2 颗粒,h-BN粉末和CaF2 粉末纯度均达到99%以上。

  • 图1 车轮试样取样及激光熔覆示意图

  • Fig.1 Schematic diagram of sampling of wheel sample and laser cladding process

  • 表1 轮轨材料化学成分(质量分数/%)

  • Table1 Chemical compositions (mass fraction) of wheel/rail materials (w%)

  • 图2 激光熔覆粉末扫描电子显微图片

  • Fig.2 SEM images of powders for cladding

  • 表2 铁基合金粉末化学成分(质量分数/%)

  • Table2 Chemical compositions (mass fraction) of Fe-based powder (w%)

  • 在激光熔覆前,将熔覆粉末充分机械混合并干燥处理。 Fe基合金粉末、h-BN粉末和CaF2 粉末混合比例见表3,从试样1#到试样5#,熔覆粉末中h-BN含量从0曾加至2%,CaF2 粉末含量从2%下降至0,Fe基合金粉末保持在98%。激光熔覆参数如下:激光功率为1.9kW,激光光斑为7mm×1mm的矩形光斑,试样转速为6(°)/s(即扫描速度: 3mm/s),送粉速度为15g/min。激光熔覆处理后,将熔覆涂层表面进行机械加工以获得直径为56mm的光滑滚动试样, 涂层厚度约为1mm。

  • 表3 激光熔覆粉末成分比例(%)

  • Table3 Contents of powders for laser cladding (w%)

  • 1.2 滚动摩擦磨损试验

  • 轮轨滚动摩擦磨损试验在MJP-30A滚动接触疲劳试验机上进行,以双轮对滚方式模拟车轮和钢轨滚动接触,车轮试样为表3所示的五种激光熔覆试样,钢轨试样为取自U71Mn钢轨轨头的轮形试样,直径为56mm,宽度为5mm,成分见表1,钢轨试样硬度约为300HV,不进行激光熔覆处理。试验参数如下:法向载荷为2 380N,即最大赫兹接触应力约为1.1GPa(平均赫兹接触应力约为910MPa), 根据赫兹接触模拟准则[20] (即现场轮轨最大赫兹接触应力等于实验室内轮轨试样最大接触应力),计算得到对应列车轴质量约为14t,钢轨试样转速为500r/min,车轮试样转速略小,轮轨试样滑差率为0.75%,循环次数为4万次,所有试验重复2次。

  • 利用维氏硬度仪(MVK-H21, Japan)测量激光熔覆车轮试样硬度;利用电子分析天平(JA4103±0.1mg) 测量试验前后试样质量,计算磨损率;利用便携式残余应力测试仪(μ-X360n)测量试样残余应力;利用光学显微镜(OM)和扫描电子显微镜(SEM)观察分析试样的微观组织、表面损伤及剖面裂纹扩展情况。

  • 2 结果与讨论

  • 2.1 微观组织、硬度及残余应力

  • 激光熔覆车轮试样分为熔覆区、热影响区和基体区。作者前期研究发现[16],滚动磨损与损伤主要发生在熔覆涂层表面,热影响区及基体区未发现明显裂纹等损伤,因此图3主要给出了五种涂层微观组织的OM和SEM图片。由OM图片可知,不同成分的涂层组织均匀致密,无明显裂纹、空隙等缺陷。从图3b中可以看出,靠近熔覆表面区域(A点) 组织相对较细,靠近基体区域(B点) 晶粒较为粗大。在激光熔覆处理中,晶粒大小主要由温度梯度(G) 和凝固速度(R)共同决定,且晶粒增长具有择优取向性。在靠近基体区域,温度梯度大,凝固速度慢, G/R比值大,晶粒反方向生长,表现为定向熔凝特性,形成粗大晶粒组织。在靠近涂层表面区域,通过熔液的对流散热、新结晶区域与基体材料和已结晶区域的热传导、以及向大气中的热辐射效应等进行散热,散热条件较好,G/R比值较小,晶粒呈多向生长,涂层组织细化。图3中SEM图片为激光熔覆涂层中部区域微观组织,可以看出涂层由枝晶组织和共晶组织构成,枝晶组织主要为胞状、柱状和树枝状,并呈交错生长状态。随h-BN粉末含量增加和CaF2 粉末含量减小,微观组织尺寸呈先减小后增大的变化趋势, 当h-BN粉末、 CaF2 粉末和Fe基合金粉末质量比为1 ∶ 1 ∶ 98时 (即1%h-BN-1%CaF2-Fe),涂层微观组织最为致密,晶胞尺寸最小。

  • 图3 激光熔覆涂层微观组织OM和SEM图片

  • Fig.3 OM and SEM images of microstructures of laser claddings

  • 在激光熔覆冷却过程中,枝晶组织首先析出,残余的金属液体逐渐形成片层状共晶组织。激光熔覆粉末中Fe和Cr为含量最高的两种元素,Fe元素在枝晶组织中含量较高,而Cr元素在共晶组织中含量较高。冷却过程中富含Fe元素的枝晶组织首先形成,残余的Fe、Cr、Ni、C等元素可形成硬质Cr7C3 和Ni-Cr-Fe相等。 CaF2 熔点和密度(1 402℃、3.18g/cm 3)均比Fe (1 538℃、7.86g/cm 3)低,在激光熔覆过程中容易浮向熔池表面,涂层表面被后续机械加工切削掉,但CaF2 粉末的加入可增加金属熔液的流动性。 h-BN熔点较高(约3 000℃),可部分存在于涂层中[21], 由于h-BN含量较少且硬度较低(莫氏硬度约2),不会导致涂层的开裂等缺陷。

  • 未处理车轮材料硬度约为310HV0.3,经激光熔覆处理后硬度明显提升。图4给出了激光熔覆车轮试样剖面硬度,涂层表层硬度约为800HV0.3。 h-BN和CaF2 具有不同硬度(莫氏硬度分别为2和4),激光熔覆粉末不同含量对涂层硬度影响不明显,主要是因为涂层的高硬度主要是激光熔覆产生的固溶强化和细晶强化共同作用的结果[22],此外,h-BN和CaF2 粉末含量较少,因此对涂层硬度影响不明显。随深度增加,硬度值在涂层内呈现略微下降趋势,主要是因为涂层组织晶胞尺寸随深度增加呈增大趋势。在热影响区,硬度值快速降低至基体硬度。

  • 图4 激光熔覆车轮试样硬度

  • Fig.4 Hardness of cladded wheel samples

  • 利用日本PULSTEC μ-X360n对激光熔覆处理前后车轮试样沿滚动方向上的残余应力进行测试, 残余应力测试原理见图5,PULSTEC μ-X360n是基于cosα 方法单角度一次入射后,利用二维探测器获得完整德拜环。通过对比有无应力状态下德拜环差异来计算对应的应力值。未处理车轮试样表面为残余拉应力,其值为400~500MPa;而激光熔覆处理后试样表面为残余压应力,其值为800~1 300MPa,如图6所示。由于激光熔覆过程的复杂性,激光熔覆参数、熔覆材料、基体材料、热处理工艺等均会对熔覆后涂层表面残余应力状态产生影响,刘晓东等[23] 在Q345钢表面激光熔覆的Stellite合金涂层 (CoCrMo合金+碳化物)表面残余应力主要呈拉应力,戴德平等[24] 通过应力场仿真发现激光熔覆的Inconel718镍基合金涂层中间区域可产生200MPa的残余压应力。本文中制备的h-BN/CaF2/Fe基激光熔覆涂层均呈压应力,压应力的存在对抑制疲劳裂纹的萌生和发展起到积极作用。此外,1%h-BN1%CaF2-Fe涂层(3#)表面残余压应力相对较大,可能是其较为致密的微观组织结构导致。

  • 图5 残余应力测试原理示意图

  • Fig.5 Schematic diagram of residual stress measurement

  • 图6 激光熔覆车轮试样残余压应力

  • Fig.6 Residual compressive stresses of cladded wheel samples

  • 2.2 黏着系数与磨损率

  • 图7a为1%h-BN-1%CaF2-Fe车轮试样的黏着系数随循环次数的变化规律。需要指出的是,铁路现场实际应用中轮轨黏着水平是通过“计算黏着系数”衡量的[25],它是根据现场实测轮轨黏着系数并综合其他影响因素修正后得到的经验公式,与列车型号和列车速度有关。本试验中轮轨黏着系数为特定滑差下(本文中滑差为0.75%)轮轨界面的摩擦因数(即切向力与法向力的比值)。试验开始阶段, 黏着系数较低,约为0.1,主要因为试样初始表面较为光滑。随循环次数增加至300左右时,轮轨黏着系数缓慢增加至约0.2,因为试验初期磨损表面开始变得粗糙。随后,黏着系数显著增加至0.4左右, 可能是因为试样表面开始出现裂纹,显著增加了轮轨界面的粗糙度,导致摩擦因数显著增加。最后,试样表面损伤达到动态平衡,黏着系数保持相对稳定。

  • 图7b为稳定阶段轮轨黏着系数,对于未熔覆车轮试样,黏着系数约为0.33 (平均切向应力约为300MPa),在车轮试样表面熔覆Fe基合金后(不含h-BN和CaF2),黏着系数升高至0.4左右(平均切向应力约为360MPa)。较高的黏着系数会增加能耗,同时也会加剧车轮的磨损与损伤。因此,为降低黏着系数,试样1#-5#在Fe基粉末中加入h-BN和CaF2 粉末。由图可以看出,仅向Fe基合金粉末中加入CaF2 粉末时(1#,2%CaF2-Fe),黏着系数无明显降低,约为0.41(平均切向应力约为370MPa), 当加入h-BN粉末后(2#-5#),黏着系数呈不同程度的降低,处于0.35~0.39范围内(平均切向应力约为320~350MPa),1%h-BN-1%CaF2-Fe涂层(3#) 的黏着系数最低。

  • 图7 轮轨黏着系数

  • Fig.7 Adhesion coefficient of wheel/rail

  • 图8 为激光熔覆车轮试样的磨损率(磨损质量损失/滚动距离),相比于未激光处理的车轮试样磨损率(约1.29×10-5 g/m [16]),激光熔覆处理后,磨损率明显降低至0.22×10-5~0.34×10-5 g/m范围内, 磨损率降低幅度可达73%~83%,激光熔覆涂层的高耐磨性主要是因为其较高的硬度(图4)。此外, 随着h-BN粉末含量增加和CaF2 粉末含量减小,磨损率呈现先减小后增大的趋势,这与激光熔覆涂层微观组织尺寸相吻合(图3),相比其他涂层,1%h-BN-1%CaF2-Fe涂层(3#)微观组织最为致密,晶胞尺寸最小,因此其耐磨性最佳。

  • 图8 激光熔覆车轮磨损率

  • Fig.8 Wear rates of laser cladded wheel samples

  • 2.3 表面与剖面损伤

  • 图9 给出了激光熔覆车轮试样表面损伤,未添加h-BN的涂层 ( 1 #,2%CaF2-Fe),表面损伤严重,以密集的疲劳裂纹 ( crack) 和小块剥落 ( spalling)为主。加入h-BN对涂层的表面损伤有一定的抑制作用,表面损伤以疲劳裂纹为主,且疲劳裂纹密度减小。其中,0.5%h-BN-1.5%CaF2-Fe涂层(2#)表面的疲劳裂纹较明显,裂纹宽度较大;随h-BN含量增加,1%h-BN-1%CaF2-Fe涂层 (3#)表面疲劳损伤减弱,疲劳裂纹变窄;随h-BN含量继续增加, 1.5%h-BN-0.5%CaF2-Fe涂层 (4#)表面疲劳损伤反而加剧,疲劳裂纹更加明显; 2%h-BN-Fe涂层(5#)表面可观测到大块的材料剥落现象。

  • 图10 给出了1.5%h-BN-0.5%CaF2-Fe激光熔覆车轮试样(4#) 剖面SEM图片。可以发现,涂层表层材料发生塑性变形,塑性变形层厚度为10~20 μm(图10a)。疲劳裂纹倾向于在材料表面变形的枝晶组织和共晶组织晶界处萌生 (图10b),然后沿着晶界向材料深处扩展,疲劳裂纹的深度可接近塑性变形区域底部(图10c)。

  • 图11 给出了车轮试样剖面上疲劳裂纹长度与深度的统计结果,未熔覆车轮试样疲劳裂纹平均长度可达108 μm,对于激光熔覆车轮试样,疲劳裂纹长度明显降低,平均裂纹长度处于40~65 μm范围内,主要是因为h-BN和CaF2 加入涂层粉末后,可以降低晶界张力和晶界能,使得晶粒得到细化,抑制疲劳裂纹的扩展。此外,通过图10可以看出,疲劳裂纹主要在塑性变形区域扩展,而未变形区域的枝晶组织对裂纹的扩展有一定的阻碍作用,可以抑制裂纹生长。由图11b可以看出熔覆试样疲劳裂纹深度比未熔覆车轮略微减小,但减小趋势不明显,未熔覆车轮试样疲劳裂纹平均深度约为16 μm,激光熔覆车轮试样平均裂纹深度处于9~14 μm范围内。因为疲劳裂纹较为规则(即以一定角度向材料内部扩展), 可以通过平均裂纹深度和长度比值的反正弦函数来表征裂纹角度的大小,计算得到,未处理车轮材料裂纹角度约为8.5°,激光熔覆试样裂纹角度约为14°~16°。说明激光熔覆涂层疲劳裂纹的扩展角度较未熔覆车轮裂纹大,这是因为疲劳裂纹沿着车轮试样塑性变形线扩展,未熔覆的车轮材料硬度较小,材料塑性流动更加严重,表层塑性变形线趋于和表面平行,而熔覆车轮试样涂层硬度较高,塑性变形较轻,塑性变形线和试样表面角度较大,因此疲劳裂纹角度也较大。随着h-BN粉末含量增加和CaF2 粉末含量减小,疲劳裂纹长度呈现先减小后增大的趋势,当h-BN粉末、CaF2 粉末和Fe基合金粉末质量比为1 ∶ 1 ∶ 98时( 3#),抗疲劳性能最好。

  • 图9 激光熔覆车轮试样表面损伤

  • Fig.9 Surface damages laser cladded wheel samples

  • 图10 1.5%h-BN-0.5%CaF2-Fe激光熔覆车轮试样剖面损伤

  • Fig.10 Damages on cross section of laser cladded 1.5%h-BN-0.5%CaF2-Fe wheel sample

  • 综上所述,车轮表面激光熔覆涂层的微观组织由枝晶组织和共晶组织组成。激光熔覆涂层的磨损机制以滚动接触疲劳磨损为主,图12给出了涂层的滚动接触疲劳裂纹萌生与扩展示意图。在周期性法向力与切向力作用下,涂层组织发生塑性流动。由于涂层中枝晶组织和共晶组织塑性变形能力不同,在塑性变形过程中两种组织晶界处出现应力集中, 随着应力逐渐累积,表层组织开裂并形成疲劳裂纹, 然后疲劳裂纹可沿着晶界向材料深处扩展。达到塑性变形层底部时,疲劳裂纹扩展受到阻碍,激光熔覆涂层内的疲劳裂纹主要存在于塑性变形区域。随着周期性滚动接触,疲劳裂纹上部材料疲劳断裂,导致材料的疲劳磨损。

  • 图11 车轮试样滚动接触疲劳裂纹长度与深度

  • Fig.11 Length and depth of rolling contact fatigue cracks on wheel samples

  • 图12 激光熔覆涂层滚动接触疲劳裂纹示意图

  • Fig.12 Schematic diagram of rolling contact fatigue crack on laser cladding

  • 相比未熔覆车轮,激光熔覆导致的固溶强化和细晶强化作用导致涂层硬度提高约158%( 图4),较高的硬度是提高其耐磨性的主要原因之一,激光熔覆后车轮试样磨损率降低了73%~83%。随着h-BN粉末含量增加和CaF2 粉末含量减小,涂层微观组织尺寸呈现先减小后增加的趋势,同时,轮轨黏着系数先降低后增加,因此轮轨间的切向力也先减小后增加,导致车轮试样磨损率呈现先减小后增大的趋势,h-BN粉末、CaF2粉末和Fe基合金粉末质量比为1 ∶ 1 ∶ 98时,涂层的耐磨最佳。

  • 本文中激光熔覆涂层表面滚动接触疲劳裂纹长度显著降低,但裂纹深度降低不明显,而滚动接触疲劳性能的评价要综合考虑裂纹长度、深度、萌生时间等参数,因此尚无法得到激光熔覆涂层的抗疲劳性能是否得到显著提升。为了进一步研究激光熔覆涂层的抗疲劳性能,未来研究中可进一步研究涂层的材料抗拉强度、屈服强度、延伸率、结合强度、韧性等,分析滚动接触疲劳裂纹萌生时间、疲劳失效机制等。

  • 3 结论

  • 以不同比例的h-BN(0~2%)、CaF2(2%~0)和Fe基合金(98%)粉末为熔覆材料在列车车轮材料表面制备激光熔覆涂层,分析涂层微观组织和滚动摩擦磨损性能可得以下结论:

  • (1) 车轮材料表面激光熔覆h-BN/CaF2/Fe涂层的微观组织主要由枝晶组织和共晶组织构成;激光熔覆后车轮试样硬度显著提升至800HV0.3 左右,表面产生800~1 300MPa的残余压应力。

  • (2) 加入h-BN粉末后,黏着系数降低至0.35~0.39范围;激光熔覆可降低轮轨磨损率,相比未熔覆车轮试样, 激光熔覆车轮试样磨损率降低了73%~83%。

  • (3) 激光熔覆车轮试样磨损表面以滚动接触疲劳损伤为主,涂层表层材料发生塑性变形,滚动接触疲劳裂纹在表面产生,沿变形的枝晶与共晶组织晶界扩展。

  • (4) 当h-BN粉末、CaF2 粉末和Fe基合金粉末质量比为1 ∶ 1 ∶ 98时,涂层的耐磨和抗疲劳性能最佳。

  • 参考文献

    • [1] 王延朋,丁昊昊,邹强,等.列车车轮踏面滚动接触疲劳研究进展[J].表面技术,2020,49(5):120-128.WANG Y P,DING H H,ZOU Q,et al.Research progress on rolling contact fatigue of railway wheel treads [J].Surface Technology,2020,49(5):120-128.(in Chinese)

    • [2] ZHU Y,WANG W J,LEWIS R,et al.A review on wear between railway wheels and rails under environmental conditions [J].Journal of Tribology,2019,141:120801.

    • [3] 王文健,郭俊,刘启跃.轮轨磨损与滚动疲劳裂纹损伤关系及预防研究[J].中国表面工程,2010,23(3):106-109.WANG W J,GUO J,LIU Q Y.Study on relationship between wear and rolling fatigue crack of wheel/rail and prevention measures[J].China Surface Engineering,2010,23(3):106-109.(in Chinese)

    • [4] 周野飞,秦广阔,邢晓磊,等.激光熔覆无碳化物贝氏体涂层制备及其摩擦学性能[J].中国表面工程,2018,31(4):160-168.ZHOU Y F,QIN G K,XING X L,et al.Preparation and tribological properties of carbide-free bainite coatings by laser cladding[J].China Surface Engineering,2018,31(4):160-168.(in Chinese)

    • [5] FRANKLIN F J,WEEDA G J,KAPOOR A,et al.Rolling contact fatigue and wear behaviour of the infrastar two-material rail[J].Wear,2005,258:1048-1054.

    • [6] HIENSCH M,LARSSON P,NILSSON O,et al.Two-material rail development:Field test results regarding rolling contact fatigue and squeal noise behavior[J].Wear,2005,258:964-972.

    • [7] RINGSBERG J W,FRANKLIN F J,JOSEFSON B L,et al.Fatigue evaluation of surface coated railway rails using shakedown theory,finite element calculations,and lab and field trials[J].International Journal of Fatigue,2005,27:680-694.

    • [8] LEWIS S R,LEWIS R,FLETCHER D I.Assessment of laser cladding as an option for repairing/enhancing rails[J].Wear,2015,330-331:581-591.

    • [9] LEWIS S R,FRETWELL-SMITH S,GOODWIN P S,et al.Improving rail wear and RCF performance using laser cladding [J].Wear,2016,366-367:268-278.

    • [10] LEWIS S R,LEWIS R,GOODWIN P S,et al.Full-scale testing of laser clad railway track;Case study-Testing for wear,bend fatigue and insulated block joint lipping integrity [J].Wear,2017,376-377:1930-1937.

    • [11] LAI Q,ABRAHAMS R,YAN W Y,et al.Influences of depositing materials,processing parameters and heating conditions on material characteristics of laser-cladded hypereutectoid rails [J].Journal of Materials Processing Technology,2019,263:1-20.

    • [12] ROY T,LAI Q,ABRAHAMS R,et al.Effect of deposition material and heat treatment on wear and rolling contact fatigue of laser cladded rails[J].Wear,2018,412-413:69-81.

    • [13] ZHU Y,YANG Y,MU X,et al.Study on wear and RCF performance of repaired damage railway wheels:Assessing laser cladding to repair local defects on wheels[J].Wear,2019,430-431:126-136.

    • [14] WANG W J,HU J,GUO J,et al.Effect of laser cladding on wear and damage behaviors of heavy-haul wheel/rail materials [J].Wear,2014,311:130-136.

    • [15] 张瑞珠,李林杰,唐明奇,等.激光熔覆技术的研究进展 [J].热处理技术与装备,2017,38(3):7-11.ZHANG R Z,LI L J,TANG M Q,et al.Research progress of laser cladding technology [J].Rechuli Jishu Yu Zhuangbei,2017,38(3):7-11.(in Chinese)

    • [16] 慕鑫鹏,王文健,祝毅,等.两种激光熔覆涂层对轮轨材料磨损与损伤性能的影响[J].摩擦学学报,2020,40(2):225-233.MU X P,WANG W J,ZHU Y,et al.Effects of two laser cladding coatings on wear and damage properties of wheel/rail materials[J].Tribology,2020,40(2):225-233.(in Chinese)

    • [17] 付志凯.轮轨材料激光溶覆Fe基合金涂层的微观组织与磨损性能研究[D].成都:西南交通大学 2015.FU Z K.Study on microstructure and wear properties of laser cladding Fe-based alloy coating on wheel/rail materials [ D].Chengdu:Southwest Jiaotong University,2015.(in Chinese)

    • [18] 石皋莲,吴少华,任佳,等.含 h-BN 的钛合金激光熔覆自润滑耐磨涂层的摩擦学行为[J].润滑与密封,2015,40(11):89-93.SHI G L,WU S H,REN J,et al.tribological properties of selflubricating anti-wear composite coating with 10% h-BN on Ti6Al4V alloy by laser cladding [J].Lubrication Engineering,2015,40(11):89-93.(in Chinese)

    • [19] WANG H M,YU Y L,LI S Q.Microstructure and tribological properties of laser clad CaF2/Al2O3 self-lubrication wear-resistant ceramic matrix composite coatings[J].Scripta Materialia,2002,47:57-61.

    • [20] FLETCHER D I,LEWIS S.Creep curve measurement to support wear and adhesion modelling,using a continuously variable creep twin disc machine[J].Wear,2013,298-299:57-65.

    • [21] AVRIL L,COURANT B,HANTZPERGUE J J.Tribological performance of α-Fe(Cr)-Fe2B-FeB and α-Fe(Cr)-h-BN coatings obtained by laser melting[J].Wear,2006,260:351-360.

    • [22] 秦琴,王竹,文然,等.激光技术在金属中的强化机理研究分析[J/OL].热加工工艺,[2020-09-24].https://doi.org/10.14158/j.cnki.1001-3814.20192575.QIN Q,WANG Z,WEN R,et al.Research and analysis on strengthening mechanism of laser technology in metals[ J/OL].Hot Working Technology,[2020-09-24].https://doi.org/10.14158/j.cnki.1001-3814.20192575.(in Chinese)

    • [23] 刘晓东,姜洪雷,谢蒙.Q345 钢激光熔覆的残余应力分析 [J].金属热处理,2020,45(3):226-230.LIU X D,JIANG H L,XIE M.Analysis on residual stress of Q345 steel in laser cladding process [J].Heat Treatment of Metals,2020,45(3):226-230.(in Chinese)

    • [24] 戴德平,蒋小华,蔡建鹏,等.激光熔覆Inconel718镍基合金温度场与应力场模拟 [J].中国激光,2015,42(9):0903005.DAI D P,JIANG X H,CAI J P,et al.Numerical simulation of temperature field and stress distribution in Inconel718 Ni base alloy induced by laser cladding[J].Chinese Journal of Lasers,2015,42(9):0903005.(in Chinese)

    • [25] 申鹏.轮轨黏着特性试验研究[D].成都:西南交通大学,2012.SHEN P.Experimental study on wheel/rail adhesion characteristc [ D ].Chengdu:Southwest Jiaotong University,2012.(in Chinese)

  • 参考文献

    • [1] 王延朋,丁昊昊,邹强,等.列车车轮踏面滚动接触疲劳研究进展[J].表面技术,2020,49(5):120-128.WANG Y P,DING H H,ZOU Q,et al.Research progress on rolling contact fatigue of railway wheel treads [J].Surface Technology,2020,49(5):120-128.(in Chinese)

    • [2] ZHU Y,WANG W J,LEWIS R,et al.A review on wear between railway wheels and rails under environmental conditions [J].Journal of Tribology,2019,141:120801.

    • [3] 王文健,郭俊,刘启跃.轮轨磨损与滚动疲劳裂纹损伤关系及预防研究[J].中国表面工程,2010,23(3):106-109.WANG W J,GUO J,LIU Q Y.Study on relationship between wear and rolling fatigue crack of wheel/rail and prevention measures[J].China Surface Engineering,2010,23(3):106-109.(in Chinese)

    • [4] 周野飞,秦广阔,邢晓磊,等.激光熔覆无碳化物贝氏体涂层制备及其摩擦学性能[J].中国表面工程,2018,31(4):160-168.ZHOU Y F,QIN G K,XING X L,et al.Preparation and tribological properties of carbide-free bainite coatings by laser cladding[J].China Surface Engineering,2018,31(4):160-168.(in Chinese)

    • [5] FRANKLIN F J,WEEDA G J,KAPOOR A,et al.Rolling contact fatigue and wear behaviour of the infrastar two-material rail[J].Wear,2005,258:1048-1054.

    • [6] HIENSCH M,LARSSON P,NILSSON O,et al.Two-material rail development:Field test results regarding rolling contact fatigue and squeal noise behavior[J].Wear,2005,258:964-972.

    • [7] RINGSBERG J W,FRANKLIN F J,JOSEFSON B L,et al.Fatigue evaluation of surface coated railway rails using shakedown theory,finite element calculations,and lab and field trials[J].International Journal of Fatigue,2005,27:680-694.

    • [8] LEWIS S R,LEWIS R,FLETCHER D I.Assessment of laser cladding as an option for repairing/enhancing rails[J].Wear,2015,330-331:581-591.

    • [9] LEWIS S R,FRETWELL-SMITH S,GOODWIN P S,et al.Improving rail wear and RCF performance using laser cladding [J].Wear,2016,366-367:268-278.

    • [10] LEWIS S R,LEWIS R,GOODWIN P S,et al.Full-scale testing of laser clad railway track;Case study-Testing for wear,bend fatigue and insulated block joint lipping integrity [J].Wear,2017,376-377:1930-1937.

    • [11] LAI Q,ABRAHAMS R,YAN W Y,et al.Influences of depositing materials,processing parameters and heating conditions on material characteristics of laser-cladded hypereutectoid rails [J].Journal of Materials Processing Technology,2019,263:1-20.

    • [12] ROY T,LAI Q,ABRAHAMS R,et al.Effect of deposition material and heat treatment on wear and rolling contact fatigue of laser cladded rails[J].Wear,2018,412-413:69-81.

    • [13] ZHU Y,YANG Y,MU X,et al.Study on wear and RCF performance of repaired damage railway wheels:Assessing laser cladding to repair local defects on wheels[J].Wear,2019,430-431:126-136.

    • [14] WANG W J,HU J,GUO J,et al.Effect of laser cladding on wear and damage behaviors of heavy-haul wheel/rail materials [J].Wear,2014,311:130-136.

    • [15] 张瑞珠,李林杰,唐明奇,等.激光熔覆技术的研究进展 [J].热处理技术与装备,2017,38(3):7-11.ZHANG R Z,LI L J,TANG M Q,et al.Research progress of laser cladding technology [J].Rechuli Jishu Yu Zhuangbei,2017,38(3):7-11.(in Chinese)

    • [16] 慕鑫鹏,王文健,祝毅,等.两种激光熔覆涂层对轮轨材料磨损与损伤性能的影响[J].摩擦学学报,2020,40(2):225-233.MU X P,WANG W J,ZHU Y,et al.Effects of two laser cladding coatings on wear and damage properties of wheel/rail materials[J].Tribology,2020,40(2):225-233.(in Chinese)

    • [17] 付志凯.轮轨材料激光溶覆Fe基合金涂层的微观组织与磨损性能研究[D].成都:西南交通大学 2015.FU Z K.Study on microstructure and wear properties of laser cladding Fe-based alloy coating on wheel/rail materials [ D].Chengdu:Southwest Jiaotong University,2015.(in Chinese)

    • [18] 石皋莲,吴少华,任佳,等.含 h-BN 的钛合金激光熔覆自润滑耐磨涂层的摩擦学行为[J].润滑与密封,2015,40(11):89-93.SHI G L,WU S H,REN J,et al.tribological properties of selflubricating anti-wear composite coating with 10% h-BN on Ti6Al4V alloy by laser cladding [J].Lubrication Engineering,2015,40(11):89-93.(in Chinese)

    • [19] WANG H M,YU Y L,LI S Q.Microstructure and tribological properties of laser clad CaF2/Al2O3 self-lubrication wear-resistant ceramic matrix composite coatings[J].Scripta Materialia,2002,47:57-61.

    • [20] FLETCHER D I,LEWIS S.Creep curve measurement to support wear and adhesion modelling,using a continuously variable creep twin disc machine[J].Wear,2013,298-299:57-65.

    • [21] AVRIL L,COURANT B,HANTZPERGUE J J.Tribological performance of α-Fe(Cr)-Fe2B-FeB and α-Fe(Cr)-h-BN coatings obtained by laser melting[J].Wear,2006,260:351-360.

    • [22] 秦琴,王竹,文然,等.激光技术在金属中的强化机理研究分析[J/OL].热加工工艺,[2020-09-24].https://doi.org/10.14158/j.cnki.1001-3814.20192575.QIN Q,WANG Z,WEN R,et al.Research and analysis on strengthening mechanism of laser technology in metals[ J/OL].Hot Working Technology,[2020-09-24].https://doi.org/10.14158/j.cnki.1001-3814.20192575.(in Chinese)

    • [23] 刘晓东,姜洪雷,谢蒙.Q345 钢激光熔覆的残余应力分析 [J].金属热处理,2020,45(3):226-230.LIU X D,JIANG H L,XIE M.Analysis on residual stress of Q345 steel in laser cladding process [J].Heat Treatment of Metals,2020,45(3):226-230.(in Chinese)

    • [24] 戴德平,蒋小华,蔡建鹏,等.激光熔覆Inconel718镍基合金温度场与应力场模拟 [J].中国激光,2015,42(9):0903005.DAI D P,JIANG X H,CAI J P,et al.Numerical simulation of temperature field and stress distribution in Inconel718 Ni base alloy induced by laser cladding[J].Chinese Journal of Lasers,2015,42(9):0903005.(in Chinese)

    • [25] 申鹏.轮轨黏着特性试验研究[D].成都:西南交通大学,2012.SHEN P.Experimental study on wheel/rail adhesion characteristc [ D ].Chengdu:Southwest Jiaotong University,2012.(in Chinese)

  • 手机扫一扫看