en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

薛鑫宇,男,1996年出生,硕士研究生。主要研究方向为超疏水涂层。E-mail:xxy961117@163.com;

蒋永锋(通信作者),男,1974年出生,2004年于上海交通大学获得博士学位,现为河海大学机电工程学院教授,博士生导师。主要研究方向为等离子体电化学表面处理、材料表面腐蚀与防护等。E-mail:jiangyf@hhuc.edu.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007-9289.20210227001

参考文献 1
张宁,孙立娟,刘栓,等.Q235 钢在不同 Cl- 浓度滨海滩涂土壤中的电化学腐蚀行为 [J].材料保护,2015(48):44-46.ZHANG N,SUN L J,LIU S,et al.Electrochemical corrosion behavior of Q235 steel in simulated soil solutions of coastal tidal flats with different concentration of chlorideion [J].Material Protection,2015(48):44-46.(in Chinese)
参考文献 2
WEI W,WU X Q,KE W,et al.Electrochemical corrosion behavior of thermal-sprayed stainless steel-coated Q235 steel in simulated soil solutions[J].Journal of Materials Engineering & Performance,2016,25(2):518-529.
参考文献 3
NASCIMENTO A R C,GATEMAN S M,MAUZEROLL J,et al.Electrochemical behavior,microstructure,and surface chemistry of thermal-sprayed stainless-steel coatings[J].Coatings,2019,9(12):835.
参考文献 4
LIU Q,MA R,DU A,et al.Investigation of the anticorrosion properties of graphene oxide doped thin organic anticorrosion films for hot-dip galvanized steel[J].Applied Surface Science,2019,480:646-654.
参考文献 5
XU W,RAJAN K,CHEN X G,et al.Facile electrodeposition of superhydrophobic aluminum stearate thin films on copper substrates for active corrosion protection [J].Surface and Coatings Technology,2019,364:406-415.
参考文献 6
SINGH,KUMAR A.Inhibition of mild steel corrosion in hydrochloric acid solution by 3-(4-((Z)-Indolin-3-ylideneamino)phenylimino)indolin-2-one [J].Industrial & Engineering Chemistry Research,2016,51(8):3215-3223.
参考文献 7
GLOVER C F,CAIN T W,SCULLY J R.Performance of Mg-Sn surface alloys for the sacrificial cathodic protection of Mg alloy AZ31B-H24[J].Corrosion Science,2019,149:195-206.
参考文献 8
ALJUMAILY M M,ALSAADI M A,DAS R,et al.Optimization of the synthesis of superhydrophobic carbon nanomaterials by chemical vapor deposition[J].Scientific Reports,2018,8(1):2778.
参考文献 9
THONGROM S,TIRAWANICHAKUL Y,MUNSIT N,et al.One-step microwave plasma enhanced chemical vapor deposition(MW-PECVD)for transparent superhydrophobic surface [J].Iop Conference,2018,311:012015.
参考文献 10
LIU H,HUANG J,CHEN Z,et al.Robust translucent superhydrophobic PDMS/PMMA film by facile one-step spray for self-cleaning and efficient emulsion separation [J].Chemical Engineering Journal,2017,330:26-35.
参考文献 11
ZHANG X F,CHEN Y Q,HU J M.Robust superhydrophobic SiO2/polydimethylsiloxane films coated on mild steel for corrosion protection[J].Corrosion Science,2020,166:108452.
参考文献 12
LIU J,FANG X,ZHU C,et al.Fabrication of superhydrophobic coatings for corrosion protection by electrodeposition:a comprehensive review [J].Colloids and Surfaces A Physicochemical and Engineering Aspects,2020,607:125498.
参考文献 13
NANDA D,SAHOO A,KUMAR A,et al.Facile approach to develop durable and reusable superhydrophobic/superoleophilic coatings for steel mesh surfaces [J].Journal of Colloid and Interface Science,2018,535:50-57.
参考文献 14
KHORSAND S,RAEISSI K,ASHRAFIZADEH F,et al.Corrosion behaviour of super-hydrophobic electrodeposited nickelcobalt alloy film [J].Applied Surface Science,2016,364:349-357.
参考文献 15
YANG M P,LIU W Q,JIANG C,et al.Fabrication of superhydrophobic cotton fabric with fluorinated TiO2 sol by a green and one-step sol-gel process[J].Carbohydrate Polymers,2018,197:75-82.
参考文献 16
OU J,HU W,XUE M,et al.One-step solution immersion process to fabricate superhydrophobic surfaces on light alloys[J].Acs Applied Materials & Interfaces,2013,5(20):9867-9871.
参考文献 17
LIU X,ZHANG T C,HE H,et al.A stearic Acid/CeO2 bilayer coating on AZ31B magnesium alloy with superhydrophobic and self-cleaning properties for corrosion inhibition [J].Journal of Alloys and Compounds,2020,834:155210.
参考文献 18
XIA B,LIU H,FAN Y,et al.Preparation of robust CuO/TiO2 superamphiphobic steel surface through chemical deposition and Sol-Gel Methods [J].Advanced Engineering Materials,2017,19(2):1-10.
参考文献 19
HOODA A,GOYAT M S,PANDEY J K,et al.A review on fundamentals,constraints and fabrication techniques of superhydrophobic coatings [J].Progress in Organic Coatings,2020,142:105557.
参考文献 20
JIANG D,ZHOU H,WAN S,et al.Fabrication of superhydrophobic coating on magnesium alloy with improved corrosion resistance by combining micro-arc oxidation and cyclic assembly [J].Surface & Coatings Technology,2018,339:155-166.
参考文献 21
YAO W,LIANG W,HUANG G,et al.Superhydrophobic coatings for corrosion protection of magnesium alloys[J].Journal of Materials Science & Technology,2020,52:100-118.
目录contents

    摘要

    针对碳钢腐蚀电位相对更负、更容易发生腐蚀的特点,在 Q235 钢表面制备超疏水 TiO2 / PDMS 涂层以提高其耐蚀性能。 采用表面活性剂分散纳米 TiO2 并进行改性,然后与 PDMS 混合,用溶胶凝胶法在 Q235 钢表面制备有聚二甲基硅氧烷 (PDMS)过渡层的 TiO2 / PDMS 超疏水涂层。 借助扫描电镜(SEM)、接触角测量仪、红外光谱(FT-IR)及 X 射线衍射仪(XRD) 表征其表面涂层的表面形貌、化学成分及疏水性能,用电化学试验和浸泡试验测试其防腐性。 结果表明:TiO2 / PDMS 涂层表面具有独特的微纳结构,与水的接触角达到 154. 3°;其腐蚀电位由碳钢的-0. 77 mV 正移至超疏水涂层的-0. 24 mV,腐蚀电流密度则下降两个数量级,即从 5. 02×10 -6 A·cm -2下降至 3. 95×10 -8 A·cm -2 ;超疏水涂层的交流阻抗值高于碳钢基底 3 个数量级。 经过 7 d 的 3. 5wt. %NaCl 溶液浸泡,超疏水涂层并未发生失重。 制备的 TiO2 / PDMS 超疏水涂层具有超疏水效果和良好的长期耐腐蚀性。

    Abstract

    In order to improve the corrosion resistance of Q235 steel, superhydrophobic TiO2 / PDMS coating was prepared on Q235 steel to improve its corrosion resistance. The nano-TiO2 was modified by surfactant to avoid the agglomeration problem caused by its small surface energy. After the polydimethylsiloxane (PDMS) transition layer was prepared on the surface of Q235 steel, the TiO2 / PDMS superhydrophobic coating was prepared on the surface of Q235 steel by sol-gel method after mixing the modified TiO2 with PDMS. Scanning electron microscope ( SEM), contact angle meter, infrared spectrum (FT-IR) and X-ray diffraction(XRD) were used for characterization. Corrosion resistance was tested by electrochemical experiment and immersion test. The results indicate that: the surface of TiO2 / PDMS coating has a unique micro / nano structure with the water contact angle of 154. 3°, which proves the coating with excellent superhydrophobic property was prepared. The electrochemistry results showed that compared to the bare Q235, the coating prepared has good corrosion resistance with a positive shifted corrosion potential(from -0. 77 mV to -0. 24 mV), a decline in the corrosion current density(from 5. 02×10 -6 A·cm -2 to 3. 95×10 -8 A·cm -2 , up to two orders of magnitude) and a increased alternating current impedance(three orders of magnitude). The base material protected by the coating is identified for a fine long-term corrosion resistance due to the no weight loss after the 7 days immersion in 3. 5wt. % NaCl solution. TiO2 / PDMS superhydrophobic coating successfully prepared on Q235 steel surface by sol-gel method has superhydrophobic effect and good long-term corrosion resistance.

  • 0 前言

  • 目前已经有较多常见的防护方法用于金属表面的腐蚀防护[1-4],如涂层保护法[5]、缓蚀剂保护法[6]、电化学保护法[7] 等。这些保护法可在一定程度上对金属起到物理或化学的防护作用,但当接触到水时,水会在表面扩散,使腐蚀离子更容易接触基底,同时会使涂层容易脱落,从而引发难以预测的腐蚀。

  • 超疏水涂层区别于传统防护方法,具有优良的自清洁、抗覆冰和油水分离的性能[8-9]。超疏水表面即与水的接触角大于150°,滚动角小于10°的表面[10]。其防腐蚀原理来源于自然界,许多植物叶子和动物羽毛都具有显著的疏水特征[11-12]

  • 目前,制备超疏水自清洁表面的常用方法有刻蚀修饰法[13]、电化学法[14]、溶胶凝胶法[15]、水热法[16]等。各种方法各有优势,其中,溶胶凝胶法具有工艺简单高效,反应条件易于控制等优点[17-18]。无机材料因其良好的物理性能,可以改变材料的表面粗糙度,常作为填充材料,与有机材料复合后,使用溶胶凝胶法制备超疏水涂层。然而超疏水表面主要是微纳米结构组成,机械耐用性差,受到机械损伤会使其超疏水性能能变弱。因此,获得的超疏水涂层必须具备耐腐蚀以及优良的服役可靠性。

  • 本文以月桂酸钠和六偏磷酸钠成功改性纳米TiO2,在Q235钢表面制备PDMS过渡层后,采用溶胶凝胶法在表面制备出耐用的超疏水TiO2/PDMS涂层,并对涂层的疏水性及耐腐蚀性能进行研究。

  • 1 材料与方法

  • 1.1 试验材料及试剂

  • 试验材料选用Q235钢为基板。尺寸为25mm× 20mm × 2mm。试剂使用纳米TiO2 (30nm)、月桂酸钠、聚二甲基硅氧烷( PDMS)及相应固化剂、六偏磷酸钠、盐酸、无水乙醇、氯化钠。

  • 1.2 试验方法

  • 1.2.1 改性纳米TiO2

  • 在200mL去离子水中加入2g纳米TiO2 和0.03g分散剂六偏磷酸钠,用稀盐酸溶液调至pH值为5时,加入0.1g的表面活性剂月桂酸钠,保持40℃恒温水浴搅拌2h,后放入干燥箱,于130℃ 干燥,取出固体研磨成粉备用。

  • 1.2.2 涂层的制备

  • 制备前对Q235表面进行预处理,依次用200~2 000目的砂纸打磨。随后清洗除油,吹干。

  • 将PDMS及固化剂,按照10 ∶ 1的质量比混合后,均匀涂抹在Q235表面,在80℃下干燥2h,获得PDMS涂层。

  • 将溶解后的PDMS乳液加入TiO2 的乙醇中,加入固化剂,充分搅拌至形成混合凝胶。使用滴涂法将混合凝胶涂敷于PDMS涂层上。继续在80℃下固化3h,最终得到TiO2/PDMS超疏水涂层(见图1)。

  • 图1 TiO2/PDMS超疏水涂层的制备流程示意图

  • Fig.1 Preparation process of TiO2/PDMS superhydrophobic coating

  • 1.3 测试与表征

  • 采用JC2000D1型接触角测量仪观察Q235钢、 PDMS过渡层、TiO2/PDMS超疏水涂层和水的接触角。通过观察接触角的现象分析其润湿性的规律。采用FEI inspect F50场发射扫描电子显微镜(SEM) 观察试样表面形貌。使用smartlab-9kW X射线衍射仪对改性前后TiO2 进行XRD测试。使用Nicolet iS5傅里叶变换红外光谱仪( FT-IR) 对改性前后TiO2 及涂层进行官能团测定。

  • 使用CS2350电化学工作站对试样进行电化学测试。采用三电极体系,工作电极为不加措施的Q235钢板、PDMS涂层及超疏水TiO2/PDMS涂层, 工作面积为1cm 2;辅助电极为铂电极;参比电极为饱和甘汞电极,腐蚀介质为3.5%NaCl溶液。测量样品的极化曲线(PC),扫描电位区间为-0.3V(vs.E corr)至+0.3V( vs.E corr),扫描速率1mV/s。测试样品的电化学阻抗谱(EIS),在自腐蚀电位下测量, 自腐蚀电位稳定时长30min,正弦波扰动电位为5mV,扫描频率10 5~10-2 Hz。将两组试样放入3.5wt.%的NaCl溶液中浸泡7d,通过对比各自的失重并计算腐蚀速率,验证超疏水涂层对于基体的保护作用。

  • 2 结果与讨论

  • 2.1 表面形貌及接触角表征

  • 用扫描电镜观察PDMS涂层及TiO2/PDMS涂层的表面形貌,如图2所示,图片右上角为相应的接触角。图2a可以看出, 碳钢表面形成了致密的PDMS涂层。接触角测量仪测出的接触角达到112.3°,表现出疏水性,这是由于PDMS具有较低的表面能。然而PDMS涂层的表面光滑,表面粗糙度较低, 因此无法达到超疏水效果。当继续施加TiO2/PDMS涂层后,表面形貌如图2b所示,经过表面活性剂改性后纳米TiO2 颗粒没有发生团聚现象, 形成了大量微纳米团簇体,均匀分布于基体表面,具有足够的表面粗糙度。经过测量,接触角达到了154.3°,水滴与涂层的接触模式符合Cassie模型[19],具有良好的超疏水性。图2c为TiO2/PDMS涂层更高倍下的表面形貌,可以清楚地观察到,高度粗糙的TiO2 形成了微纳米结构,其表面具有很多凹槽,有助于在涂层表面形成空气层,使液滴在粗糙界面处于一种复合状态,形成气-固-液三相接触,而非固-液界面[20],认证了TiO2/PDMS涂层优良的超疏水性(如图3所示)。

  • 图2 试样的表面SEM形貌

  • Fig.2 SEM morphologies of different samples

  • 图3 不同试样与液滴的接触示意图

  • Fig.3 Shematic diagram of contact between different samples and droplets

  • 图4 为不同pH值溶液下TiO2/PDMS涂层的接触角。从曲线中可知,不同的pH值液体(1~14)在涂层表面的接触角均维持在150°以上,且随着pH值增加没有发生明显变化。说明溶液的酸碱性对于涂层的接触角影响不大,涂层无论在何种pH值下均具有超疏水性。上述结果证明了TiO2/PDMS涂层具有良好的超疏水性,并在酸碱环境中都具有稳定的超疏水性。

  • 图4 不同pH值溶液下TiO2/PDMS涂层的接触角

  • Fig.4 Contact angle of TiO2/PDMS coating in different pH values

  • 2.2 化学成分及物相分析

  • 改性前后TiO2 的XRD图谱如图5所示。可以看出,改性前后TiO2 的特征衍射峰在2θ 为25.38°、 38.08°、48.08°、54.56°、56.14°、62.74°、68.98°、70.45° 处,与锐钛型TiO2 对应,验证了涂敷在Q235钢表面的是TiO2。 XRD图中并未出现其他特征峰,说明在改性TiO2 时,改性剂只与表面的羟基反应,而改性后的TiO2 晶体结构并未改变,没有反应生成新的化合物,说明月桂酸钠对TiO2 的表面结构没有影响。

  • 图5 改性前后TiO2 的XRD图谱

  • Fig.5 XRD patterns of TiO2 before and after modification

  • XRD图显示两组衍射峰的强度不同,改性后的强度小于改性前的,这归因于改性剂的加入,月桂酸钠为有机物,所以在XRD图中并未出现其衍射峰。纳米TiO2 容易发生团聚的问题得到解决,原理为改性后的TiO2 表面的羟基数量减少,并被长链烷基包覆,使颗粒表面能降低,颗粒间斥力变大。

  • 图6 为改性前后TiO2 和超疏水复合涂层的红外光谱图。可以看出,未改性的TiO2 的吸收峰主要在1 100cm-1 和500~1 000cm-1,分别是Ti─O─Ti伸缩振动和C─H弯曲振动峰。 550~1 000cm-1 之间是由C─H面外弯曲振动、(─C─H2─)n 平面摆动和结晶振动共同作用产生的吸收峰。经表面活性剂改性后的TiO2 在2 958cm-1、 2 921cm-1 和2 853cm-1 处有明显的吸收峰,分别对应─CH3 伸缩振动吸收峰、─CH2 中C─H键的对称伸缩振动、不对称伸缩振动峰,结果表明改性后TiO2 表面出现甲基。改性后TiO2 在1 565cm-1 和1 466cm-1 出现特征峰,这是由羧酸盐中的羧酸根(─COO)振动引起的,引入的月桂酸钠中的羧酸与TiO2 表面的羟基发生脱水反应。 3 500cm-1 左右为─OH的吸收峰。可以看出,改性后强度减弱,羟基数量减少,说明表面活性剂月桂酸钠与TiO2 表面羟基发生反应, 达到了TiO2 改性的目的。

  • 图6 改性前后TiO2 及超疏水涂层的红外光谱图

  • Fig.6 FT-TR spectra of TiO2 before and after modification and superhydrophobic coating

  • 相较改性的TiO2,超疏水涂层在1 093cm-1 和1 262cm-1 处出现了明显的吸收峰,分别对应PDMS中的Si─O─Si的不对称伸缩振动峰和Si─CH3 的伸缩振动吸收峰。这说明PDMS成功组装到涂层表面,为涂层达到超疏水效果提供了低表面能的成分保证。

  • 2.3 超疏水涂层耐腐蚀性能

  • 分别将Q235钢、施加PDMS涂层的试样及TiO2/PDMS超疏水涂层的试样放入质量分数为3.5wt.%的NaCl溶液中24h后,得到如图7所示的极化曲线。腐蚀电位E corr 及腐蚀电流密度J corr 的拟合结果如表1所示。保护效率为 η,计算公式[20]为:

  • η=Jcorr 0-Jcorr /Jcorr 0×100%
    (1)
  • 图7 不同试样在3.5wt.%NaCl溶液中的Tafel曲线

  • Fig.7 Tafel curves of different samples in 3.5wt.%NaCl solution

  • 表1 同试样的Tafel曲线拟合结果

  • Table1 afel curve fitting results of different samples

  • 从表1可以看出, 碳钢、 PDMS涂层、 TiO2/PDMS超疏水涂层三种试样的腐蚀电位依次正移, 同时腐蚀电流密度下降明显,说明超疏水涂层的耐腐蚀性能高于碳钢基体和PDMS涂层,其中碳钢基体耐腐蚀性能最差。特别是TiO2/PDMS超疏水涂层,腐蚀电流密度相较碳钢基体降低达到两个多数量级,达到3.95×10-8 A·cm-2。经计算,PDMS涂层的保护效率达到89.66%,超疏水涂层表面保护效率达到99.21%。

  • 相较于单一的PDMS涂层,TiO2/PDMS超疏水涂层中的TiO2 和PDMS协同作用,同时提供表面粗糙度和低表面能,在试样表面形成致密涂层,并达到超疏水效果,从而具有更优良的耐腐蚀性。

  • 三组试样在质量分数为3.5wt.%的NaCl溶液中EIS图如图8所示。从图8a可以看出,每个样品的奈奎斯特图都只有一个电容弧。容抗弧的半径大小代表腐蚀过程中电荷传递的阻力和溶液电阻大小,容抗弧的直径与试样的耐腐蚀性能成正比,直径越大,耐腐蚀性能越好。从图中可以看出, TiO2/PDMS超疏水涂层的容抗弧半径远远大于PDMS涂层及碳钢基板。这说明TiO2/PDMS超疏水涂层的耐蚀性能最好,PDMS涂层次之,碳钢基底最差。

  • 图8 不同试样3.5wt.%NaCl溶液中的EIS图

  • Fig.8 EIS of different samples in 3.5wt.%NaCl solution

  • 图8b、8c为三组试样的波特图,通常情况下,涂层和碳钢界面的腐蚀发生在低频区域,因此研究低频下阻抗模量是评价涂层耐腐蚀性能的主要指标。从图8b中可以看出,在低频下PDMS涂层的阻抗值比碳钢基底高1个数量级,说明PDMS涂层对基底具有一定的保护作用;TiO2/PDMS超疏水涂层低频下的阻抗值则比碳钢基底高4个数量级,这说明TiO2/PDMS超疏水涂层具有更有效的耐腐蚀效果。

  • 从图8c中可以观察到,低碳钢的波特图中有一个时间常数,大约在35Hz,这与碳钢浸泡到腐蚀介质中的电化学活性有关,主要是固体/电解质界面的电双层的电容。而两种涂层都有两个时间常数,低频处在0.1Hz左右,超疏水涂层在低频处的时间常数比低碳钢的更低,是因为超疏水涂层表面更好的隔离性能,从而抑制腐蚀介质与基板接触,具有优良的耐腐蚀性能。

  • 为了检测TiO2/PDMS超疏水涂层对于Q235低碳钢的防护作用,将两组试样放入3.5wt.%的NaCl溶液中浸泡7d的结果如图8所示,通过对比各自的失重并计算腐蚀速率,验证超疏水涂层对于基板的保护作用。计算腐蚀速率的公式如下:

  • R=8.76×107M-M1STD
    (2)
  • 从图9和表2可以观察出,随着时间的变化,不加处理的Q235钢失重严重,达到0.017 7g,经计算,腐蚀速率 R 达到0.235 2mm/a。而超疏水涂层试样的质量并未发生改变,腐蚀速率为0mm/a,仍能保持良好的疏水性,验证了良好的耐腐蚀性。

  • 图9 不同试样在3.5wt.%的NaCl溶液中失重曲线

  • Fig.9 Weight loss curves of different samples in 3.5wt.%NaCl solution

  • 表2 不同试样在3.5wt.%的NaCl溶液中浸泡7d后的失重情况

  • Table2 Weight loss of two groups of samples after immersion in 3.5wt.%NaCl solution for 7days

  • 2.4 防腐蚀机理分析

  • 对不同样品的交流阻抗进行拟合,得到如图10所示的拟合电路。其中,R s 表示溶液电阻,R ctC dl 分别是界面(涂层或基板)的电荷转移电阻和双电层电容。 C cR c 是超疏水涂层的电容及电阻。拟合结果如表3所示。

  • 图10 不同试样3.5wt.%NaCl溶液中的等效电路

  • Fig.10 Equivalent circuit of different samples in 3.5wt.%NaCl solution

  • 表3 不同试样的等效电路拟合结果

  • Table3 Equivalent circuit fitting results of different samples

  • 从电路图(图11)中,可以进一步分析超疏水涂层防腐蚀的机理。 R c 表示超疏水涂层的电阻,R c 越大,说明离子越不容易渗透。从表3中观察到, TiO2/PDMS超疏水涂层具有很大的R cR ct,这是由于超疏水涂层的微纳结构增加了与腐蚀介质的空气层。而空气层可以被看成接触角180°的绝对超疏水材料,这减少了腐蚀介质与基体的接触,从而阻止腐蚀的发生[21]。然而碳钢表面制备的涂层虽然比较致密,涂层內部却存在着纳米的孔隙,孔隙之间联接,形成通道。在长期浸泡中,腐蚀介质中的小分子可以通过这些通道达到内部受保护的基体,造成腐蚀坑。腐蚀坑会向试样内部扩散,导致腐蚀程度变重,腐蚀面积增大。 TiO2/PDMS超疏水涂层的防腐蚀理论主要有两条:一是空气层理论,Cassie状态下表面粗糙的微纳结构填充了大量空气,阻止了腐蚀离子接触基体形成腐蚀。二是毛细效应,由于超疏水表面的表面能极低,因此表面的腐蚀液体会被拉普拉斯压力挤出,不能润湿表面,从而对基底提供有效的保护。

  • 图11 超疏水涂层防腐蚀机理原理图

  • Fig.11 Schematic diagram of anti-corrosion mechanism of superhydrophobic coating

  • 3 结论

  • (1) 选择TiO2 构造粗糙表面,聚二甲基硅氧烷 (PDMS)作为低表面能物质,采用溶胶-凝胶法在碳钢表面制备了TiO2/PDMS超疏水涂层。其接触角达到最佳的154.3°,具有良好的疏水性。

  • (2) 针对超疏水涂层长期耐腐蚀性较差的缺点。选择高粘度的弹性体PDMS作为过渡层,既可以发挥粘结剂的作用,增加与基底的结合力,又可充当弹性基底,保持疏水性。

  • (3) 制备的TiO2/PDMS超疏水涂层在3.5wt.%的NaCl溶液中,相较Q235钢基体保护效率达到99.21%。经过7d的3.5wt.%的NaCl溶液浸泡,制备的超疏水涂层并未发生失重。说明超疏水涂层具有长期良好的耐腐蚀性能。

  • 参考文献

    • [1] 张宁,孙立娟,刘栓,等.Q235 钢在不同 Cl- 浓度滨海滩涂土壤中的电化学腐蚀行为 [J].材料保护,2015(48):44-46.ZHANG N,SUN L J,LIU S,et al.Electrochemical corrosion behavior of Q235 steel in simulated soil solutions of coastal tidal flats with different concentration of chlorideion [J].Material Protection,2015(48):44-46.(in Chinese)

    • [2] WEI W,WU X Q,KE W,et al.Electrochemical corrosion behavior of thermal-sprayed stainless steel-coated Q235 steel in simulated soil solutions[J].Journal of Materials Engineering & Performance,2016,25(2):518-529.

    • [3] NASCIMENTO A R C,GATEMAN S M,MAUZEROLL J,et al.Electrochemical behavior,microstructure,and surface chemistry of thermal-sprayed stainless-steel coatings[J].Coatings,2019,9(12):835.

    • [4] LIU Q,MA R,DU A,et al.Investigation of the anticorrosion properties of graphene oxide doped thin organic anticorrosion films for hot-dip galvanized steel[J].Applied Surface Science,2019,480:646-654.

    • [5] XU W,RAJAN K,CHEN X G,et al.Facile electrodeposition of superhydrophobic aluminum stearate thin films on copper substrates for active corrosion protection [J].Surface and Coatings Technology,2019,364:406-415.

    • [6] SINGH,KUMAR A.Inhibition of mild steel corrosion in hydrochloric acid solution by 3-(4-((Z)-Indolin-3-ylideneamino)phenylimino)indolin-2-one [J].Industrial & Engineering Chemistry Research,2016,51(8):3215-3223.

    • [7] GLOVER C F,CAIN T W,SCULLY J R.Performance of Mg-Sn surface alloys for the sacrificial cathodic protection of Mg alloy AZ31B-H24[J].Corrosion Science,2019,149:195-206.

    • [8] ALJUMAILY M M,ALSAADI M A,DAS R,et al.Optimization of the synthesis of superhydrophobic carbon nanomaterials by chemical vapor deposition[J].Scientific Reports,2018,8(1):2778.

    • [9] THONGROM S,TIRAWANICHAKUL Y,MUNSIT N,et al.One-step microwave plasma enhanced chemical vapor deposition(MW-PECVD)for transparent superhydrophobic surface [J].Iop Conference,2018,311:012015.

    • [10] LIU H,HUANG J,CHEN Z,et al.Robust translucent superhydrophobic PDMS/PMMA film by facile one-step spray for self-cleaning and efficient emulsion separation [J].Chemical Engineering Journal,2017,330:26-35.

    • [11] ZHANG X F,CHEN Y Q,HU J M.Robust superhydrophobic SiO2/polydimethylsiloxane films coated on mild steel for corrosion protection[J].Corrosion Science,2020,166:108452.

    • [12] LIU J,FANG X,ZHU C,et al.Fabrication of superhydrophobic coatings for corrosion protection by electrodeposition:a comprehensive review [J].Colloids and Surfaces A Physicochemical and Engineering Aspects,2020,607:125498.

    • [13] NANDA D,SAHOO A,KUMAR A,et al.Facile approach to develop durable and reusable superhydrophobic/superoleophilic coatings for steel mesh surfaces [J].Journal of Colloid and Interface Science,2018,535:50-57.

    • [14] KHORSAND S,RAEISSI K,ASHRAFIZADEH F,et al.Corrosion behaviour of super-hydrophobic electrodeposited nickelcobalt alloy film [J].Applied Surface Science,2016,364:349-357.

    • [15] YANG M P,LIU W Q,JIANG C,et al.Fabrication of superhydrophobic cotton fabric with fluorinated TiO2 sol by a green and one-step sol-gel process[J].Carbohydrate Polymers,2018,197:75-82.

    • [16] OU J,HU W,XUE M,et al.One-step solution immersion process to fabricate superhydrophobic surfaces on light alloys[J].Acs Applied Materials & Interfaces,2013,5(20):9867-9871.

    • [17] LIU X,ZHANG T C,HE H,et al.A stearic Acid/CeO2 bilayer coating on AZ31B magnesium alloy with superhydrophobic and self-cleaning properties for corrosion inhibition [J].Journal of Alloys and Compounds,2020,834:155210.

    • [18] XIA B,LIU H,FAN Y,et al.Preparation of robust CuO/TiO2 superamphiphobic steel surface through chemical deposition and Sol-Gel Methods [J].Advanced Engineering Materials,2017,19(2):1-10.

    • [19] HOODA A,GOYAT M S,PANDEY J K,et al.A review on fundamentals,constraints and fabrication techniques of superhydrophobic coatings [J].Progress in Organic Coatings,2020,142:105557.

    • [20] JIANG D,ZHOU H,WAN S,et al.Fabrication of superhydrophobic coating on magnesium alloy with improved corrosion resistance by combining micro-arc oxidation and cyclic assembly [J].Surface & Coatings Technology,2018,339:155-166.

    • [21] YAO W,LIANG W,HUANG G,et al.Superhydrophobic coatings for corrosion protection of magnesium alloys[J].Journal of Materials Science & Technology,2020,52:100-118.

  • 参考文献

    • [1] 张宁,孙立娟,刘栓,等.Q235 钢在不同 Cl- 浓度滨海滩涂土壤中的电化学腐蚀行为 [J].材料保护,2015(48):44-46.ZHANG N,SUN L J,LIU S,et al.Electrochemical corrosion behavior of Q235 steel in simulated soil solutions of coastal tidal flats with different concentration of chlorideion [J].Material Protection,2015(48):44-46.(in Chinese)

    • [2] WEI W,WU X Q,KE W,et al.Electrochemical corrosion behavior of thermal-sprayed stainless steel-coated Q235 steel in simulated soil solutions[J].Journal of Materials Engineering & Performance,2016,25(2):518-529.

    • [3] NASCIMENTO A R C,GATEMAN S M,MAUZEROLL J,et al.Electrochemical behavior,microstructure,and surface chemistry of thermal-sprayed stainless-steel coatings[J].Coatings,2019,9(12):835.

    • [4] LIU Q,MA R,DU A,et al.Investigation of the anticorrosion properties of graphene oxide doped thin organic anticorrosion films for hot-dip galvanized steel[J].Applied Surface Science,2019,480:646-654.

    • [5] XU W,RAJAN K,CHEN X G,et al.Facile electrodeposition of superhydrophobic aluminum stearate thin films on copper substrates for active corrosion protection [J].Surface and Coatings Technology,2019,364:406-415.

    • [6] SINGH,KUMAR A.Inhibition of mild steel corrosion in hydrochloric acid solution by 3-(4-((Z)-Indolin-3-ylideneamino)phenylimino)indolin-2-one [J].Industrial & Engineering Chemistry Research,2016,51(8):3215-3223.

    • [7] GLOVER C F,CAIN T W,SCULLY J R.Performance of Mg-Sn surface alloys for the sacrificial cathodic protection of Mg alloy AZ31B-H24[J].Corrosion Science,2019,149:195-206.

    • [8] ALJUMAILY M M,ALSAADI M A,DAS R,et al.Optimization of the synthesis of superhydrophobic carbon nanomaterials by chemical vapor deposition[J].Scientific Reports,2018,8(1):2778.

    • [9] THONGROM S,TIRAWANICHAKUL Y,MUNSIT N,et al.One-step microwave plasma enhanced chemical vapor deposition(MW-PECVD)for transparent superhydrophobic surface [J].Iop Conference,2018,311:012015.

    • [10] LIU H,HUANG J,CHEN Z,et al.Robust translucent superhydrophobic PDMS/PMMA film by facile one-step spray for self-cleaning and efficient emulsion separation [J].Chemical Engineering Journal,2017,330:26-35.

    • [11] ZHANG X F,CHEN Y Q,HU J M.Robust superhydrophobic SiO2/polydimethylsiloxane films coated on mild steel for corrosion protection[J].Corrosion Science,2020,166:108452.

    • [12] LIU J,FANG X,ZHU C,et al.Fabrication of superhydrophobic coatings for corrosion protection by electrodeposition:a comprehensive review [J].Colloids and Surfaces A Physicochemical and Engineering Aspects,2020,607:125498.

    • [13] NANDA D,SAHOO A,KUMAR A,et al.Facile approach to develop durable and reusable superhydrophobic/superoleophilic coatings for steel mesh surfaces [J].Journal of Colloid and Interface Science,2018,535:50-57.

    • [14] KHORSAND S,RAEISSI K,ASHRAFIZADEH F,et al.Corrosion behaviour of super-hydrophobic electrodeposited nickelcobalt alloy film [J].Applied Surface Science,2016,364:349-357.

    • [15] YANG M P,LIU W Q,JIANG C,et al.Fabrication of superhydrophobic cotton fabric with fluorinated TiO2 sol by a green and one-step sol-gel process[J].Carbohydrate Polymers,2018,197:75-82.

    • [16] OU J,HU W,XUE M,et al.One-step solution immersion process to fabricate superhydrophobic surfaces on light alloys[J].Acs Applied Materials & Interfaces,2013,5(20):9867-9871.

    • [17] LIU X,ZHANG T C,HE H,et al.A stearic Acid/CeO2 bilayer coating on AZ31B magnesium alloy with superhydrophobic and self-cleaning properties for corrosion inhibition [J].Journal of Alloys and Compounds,2020,834:155210.

    • [18] XIA B,LIU H,FAN Y,et al.Preparation of robust CuO/TiO2 superamphiphobic steel surface through chemical deposition and Sol-Gel Methods [J].Advanced Engineering Materials,2017,19(2):1-10.

    • [19] HOODA A,GOYAT M S,PANDEY J K,et al.A review on fundamentals,constraints and fabrication techniques of superhydrophobic coatings [J].Progress in Organic Coatings,2020,142:105557.

    • [20] JIANG D,ZHOU H,WAN S,et al.Fabrication of superhydrophobic coating on magnesium alloy with improved corrosion resistance by combining micro-arc oxidation and cyclic assembly [J].Surface & Coatings Technology,2018,339:155-166.

    • [21] YAO W,LIANG W,HUANG G,et al.Superhydrophobic coatings for corrosion protection of magnesium alloys[J].Journal of Materials Science & Technology,2020,52:100-118.

  • 手机扫一扫看