en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

郭培林,女,1995年出生,硕士研究生。主要研究方向为固液复合润滑。E-mail:1744038155@qq.com;

贾倩,女,1995年出生,硕士研究生。主要要究方向为固体薄膜润滑超滑机制。E-mail:jiaqian1@qq.com;

刘广桥(通信作者),男,1968年出生,教授。主要研究方向为碳基薄膜的制备及性能。E-mail:liuguangll@sina.com;

张斌,男,1982年出生,研究员。主要研究方向为减摩、耐磨材料及表面防腐技术。E-mail:bzhang@licp.cas.cn

中图分类号:TG174;TB321

DOI:10.11933/j.issn.1007-9289.20210324002

参考文献 1
GHADAI R K,SINGH K,SHARMA A,et al.Mechanical and tribological properties of metal incorporated DLC thin film[M]//Nanostructured Materials and their Applications.Singapore:Springer:229-263.
参考文献 2
SHARIFAHMADIAN O,MAHBOUBI F,OSKOUIE A.Structural evolution and tribological behavior of nitrogen-doped DLC coatings deposited by pulsed DC PACVD method [J].Diamond and Related Materials,2019,91:74-83.
参考文献 3
TOKUTA Y,ITOH T,SHIOZAKI T,et al.Low friction mechanism of chlorine-doped amorphous carbon films sliding against an aluminium alloy[J].Tribology International,2017,115:573-579.
参考文献 4
ERDEMIR A,FONTAINE J,DONNET C.An overview of superlubricity in diamond-like carbon films[ M]//DONNET C,ERDEMIR A.Tribology of Diamond-Like Carbon Films:Fundamentals and Applications.Boston:Springer US,2008:237-262.
参考文献 5
BOUABIBSA I,LAMRI S,SANCHETTE F.Structure,mechanical and tribological properties of Me-doped diamond-like carbon(DLC)(Me = Al,Ti,or Nb)hydrogenated amorphous carbon coatings[J].Coatings,2018,8(10):370.
参考文献 6
BROITMAN E,HULTMAN L.Tribology of carbon-based coatings:Past,present,and future [ M ].2nd International Workshop of Tribology Tribaries,May 7-9,Cuidad de Buenos Aries,Argentina.2013:7-10.
参考文献 7
代明江.类金刚石薄膜掺杂作用机理及其摩擦学性能[D].广州:华南理工大学,2016.DAI M J.Doping mechanism and tribological properties of diamond-like carbon films [ D ].Guangzhou:South China University of Technology,2016.(in Chinese)
参考文献 8
孙德恩,董洪铭,ZHANG Sam,等.元素掺杂类金刚石碳膜降内应力研究综述[J].表面技术,2018,47(6):95-103.SUN D E,DAONG H M,ZHANG S,et al.Internal stress reduction in diamond-like carbon coatings via elemental doping:A Review[J].Surface Technology,2018,47(6):95-103.(in Chinese)
参考文献 9
张婷,何娟,任瑛,等.类金刚石薄膜残余应力的研究进展 [J].材料导报,2016,30(1):84-87,95.ZHANG T,HE J,REN Y,et al.Progress and perspectives of the residual stress of diamond-like carbon thin film[J].Materials Reports,2016,30(1):84-87,95.(in Chinese)
参考文献 10
LI A,CHEN Q,WU G,et al.Probing the lubrication mechanism of multilayered Si-DLC coatings in water and air environments[J].Diamond and Related Materials,2020,105:107772.
参考文献 11
XU P,WANG Y,CAO X,et al.The tribological properties of DLC/SiC and DLC/Si3N4 under different relative humidity:The transition from abrasive wear to tribo-chemical reaction [J].Ceramics International,2021,47(3):3901-3910.
参考文献 12
SHARIFAHMADIAN O,MAHBOUBI F,OSKOUIE A.Structural evolution and tribological behavior of nitrogen-doped DLC coatings deposited by pulsed DC PACVD method [J].Diamond and Related Materials,2019,91:74-83.
参考文献 13
HE D,SHANG L,LU Z,et al.Tailoring the mechanical and tribological properties of B4C/a-C coatings by controlling the boron carbide content [J].Surface and Coatings Technology,2017,329:11-18.
参考文献 14
SHARIFAHMADIAN O,MAHBOUBI F.A comparative study of microstructural and tribological properties of N-DLC/DLC double layer and single layer coatings deposited by DC-pulsed PACVD process [J].Ceramics International,2019,45(6):7736-7742.
参考文献 15
BOOTKUL D,SUPSERMPOL B,SAENPHINIT N,et al.Nitrogen doping for adhesion improvement of DLC film deposited on Si substrate by Filtered Cathodic Vacuum Arc(FCVA)technique[J].Applied Surface Science,2014,310:284-292.
参考文献 16
ZHANG N,LIN L,LIU B,et al.Tribological properties improvement of H-DLC films through reconstruction of microstructure and surface morphology by low-energy helium ion irradiation[J].Diamond and Related Materials,2020,109:108080.
参考文献 17
ZHANG R,SHEN M,HE Z.The unusual tribological behavior of diamond-like carbon films under high vacuum[J].Surface and Interface Analysis,2020,52(6):339-347.
参考文献 18
ALMEIDA L S,SOUZA A R M,COSTA L H,et al.Effect of nitrogen in the properties of diamond-like carbon(DLC)coating on Ti6Al4V substrate [J].Materials Research Express,2020,7(6):065601.
参考文献 19
SALIMON I A,TEMIROV A A,KUBASOV I V,et al.Characterization of Si-DLC films synthesized by low cost plasmaenhanced chemical vapor deposition [J].Materials Today:Proceedings,2020.
参考文献 20
MILEWSKI K,MADEJ M.Structure and mechanical properties of diamond-like carbon(DLC)coatings doped with silicon[J].Metalurgija,2020,59(4):481-484.
参考文献 21
GUO C Q,LIN S S,GAO D,et al.Modulation of Si on microstructure and tribo-mechanical properties of hydrogen-free DLC films prepared by magnetron sputtering[J].Applied Surface Science,2020,509:145381.
参考文献 22
LAN H,KATO T,LIU C.Molecular dynamics simulations of atomic-scale tribology between amorphous DLC and Si-DLC films [J].Tribology International,2011,44(11):1329-1332.
参考文献 23
ZHANG M,XIE T,QIAN X,et al.Mechanical properties and biocompatibility of Ti-doped diamond-like carbon films[J].ACS Omega,2020,5(36):22772-22777.
参考文献 24
BEAKE B D,MCMASTER S J,LISKIEWICZ T W,et al.Influence of Si-and W-doping on micro-scale reciprocating wear and impact performance of DLC coatings on hardened steel[J].Tribology International,2021:107063.
参考文献 25
YU W,WANG J,HUANG W,et al.Improving high temperature tribological performances of Si doped diamond-like carbon by using W interlayer[J].Tribology International,2020,146:106241.
参考文献 26
DAI W,LIU J,GENG D,et al.Microstructure and property of diamond-like carbon films with Al and Cr co-doping deposited using a hybrid beams system [J].Applied Surface Science,2016,388:503-509.
参考文献 27
CAO H,YE X,LI H,et al.Microstructure,mechanical and tribological properties of multilayer Ti-DLC thick films on Al alloys by filtered cathodic vacuum arc technology[J].Materials & Design,2021,198:109320.
参考文献 28
HUANG L,YUAN J,LI C,et al.Microstructure,tribological and cutting performance of Ti-DLC/α-C:H multilayer film on cemented carbide[J].Surface and Coatings Technology,2018,353:163-170.
参考文献 29
ZHOU Y,LI L,SHAO W,et al.Mechanical and tribological behaviors of Ti-DLC films deposited on 304 stainless steel:Exploration with Ti doping from micro to macro [J].Diamond and Related Materials,2020,107:107870.
参考文献 30
DUMINICA F D,BELCHI R,LIBRALESSO L,et al.Investigation of Cr(N)/DLC multilayer coatings elaborated by PVD for high wear resistance and low friction applications[J].Surface and Coatings Technology,2018,337:396-403.
参考文献 31
AMANOV A,WATABE T,TSUBOI R,et al.Fretting wear and fracture behaviors of Cr-doped and non-doped DLC films deposited on Ti-6Al-4V alloy by unbalanced magnetron sputtering [J].Tribology International,2013,62:49-57.
参考文献 32
KHADEM M,KIM D-E.Friction and wear behaviors of bare and diamond-like carbon/chromium bi-layer coated SKH51 steel at low temperatures[J].Surface and Coatings Technology,2021,412:127018.
参考文献 33
VITU T,ESCUDEIRO A,POLCAR T,et al.Sliding properties of Zr-DLC coatings:The effect of tribolayer formation [J].Surface and Coatings Technology,2014,258:734-745.
参考文献 34
MA G,LIN G,SUN G,et al.Characteristics of DLC containing Ti and Zr films deposited by reactive magnetron sputtering[J].Physics Procedia,2011,18:9-15.
参考文献 35
CAO L,LIU J,WAN Y,et al.Corrosion and tribocorrosion behavior of W doped DLC coating in artificial seawater [J].Diamond and Related Materials,2020,109:108019.
参考文献 36
GHASEMI M H,GHASEMI B,SEMNANI H R M.Wear performance of DLC coating on plasma nitrided astaloy Mo[J].Diamond and Related Materials,2019,93:8-15.
参考文献 37
TANG X S,WANG H J,FENG L,et al.Mo doped DLC nanocomposite coatings with improved mechanical and blood compatibility properties [J].Applied Surface Science,2014,311:758-762.
参考文献 38
ZHOU B,XU B,XU Y,et al.Selective bonding effect on microstructure and mechanical properties of(Al,N)-DLC composite films by ion beam-assisted cathode arc evaporation[J].Applied Physics A,2018,125(1):34.
参考文献 39
GOTO M.Preparations and tribological properties of soft-metal/DLC composite coatings by RF magnetron sputter using composite targets[J].International Journal of Mechanics and Materials in Design,2018,14(3):313-327.
参考文献 40
MANNINEN N K,RIBEIRO F,ESCUDEIRO A,et al.Influence of Ag content on mechanical and tribological behavior of DLC coatings[J].Surface and Coatings Technology,2013,232:440-446.
参考文献 41
DIMIGEN H,KLAGES C-P.Microstructure and wear behavior of metal-containing diamond-like coatings[J].Surface and Coatings Technology,1991,49(1):543-547.
参考文献 42
CHEN C,TANG W,LI X,et al.Structure and cutting performance of Ti-DLC films prepared by reactive magnetron sputtering[J].Diamond and Related Materials,2020,104:107735.
参考文献 43
CUI J,QIANG L,ZHANG B,et al.Mechanical and tribological properties of Ti-DLC films with different Ti content by magnetron sputtering technique [J].Applied Surface Science,2012,258(12):5025-5030.
参考文献 44
GUO Y,GUO P,SUN L,et al.Tribological properties of Tidoped diamond-like carbon coatings under dry friction and PAO oil lubrication [J].Surface and Interface Analysis,2019,51(3):361-370.
参考文献 45
WANG Q,ZHOU F,ZHOU Z,et al.Influence of Ti content on the structure and tribological properties of Ti-DLC coatings in water lubrication [J].Diamond and Related Materials,2012,25:163-175.
参考文献 46
SANTIAGO J A,FERNÁNDEZ-MARTÍNEZ I,SÁNCHEZLÓPEZ J C,et al.Tribomechanical properties of hard Cr-doped DLC coatings deposited by low-frequency HiPIMS [J].Surface and Coatings Technology,2020,382:124899.
参考文献 47
ZOU C W,WANG H J,FENG L,et al.Effects of Cr concentrations on the microstructure,hardness,and temperaturedependent tribological properties of Cr-DLC coatings [J].Applied Surface Science,2013,286:137-141.
参考文献 48
ZHU L N,LI J C,KANG J J,et al.Different Cr contents on the microstructure and tribomechanical properties of multi-layered diamond-like carbon films prepared by unbalanced magnetron sputtering [J].Journal of Materials Engineering and Performance,2020,29(11):7131-7140.
参考文献 49
DAI W,WANG A.Synthesis,characterization and properties of the DLC films with low Cr concentration doping by a hybrid linear ion beam system[J].Surface and Coatings Technology,2011,205(8-9):2882-2886.
参考文献 50
DAI W,WANG A.Deposition and properties of Al-containing diamond-like carbon films by a hybrid ion beam sources [J].Journal of Alloys and Compounds,2011,509(13):4626-4631.
参考文献 51
XU W,LIN S,DAI M,et al.Effects of bias voltage on the microstructure and properties of Al-doped hydrogenated amorphous carbon films synthesized by a hybrid deposition technique[J].Vacuum,2018,154:159-166.
参考文献 52
GONG Y L,JING P P,ZHOU Y J,et al.Formation of rodshaped wear debris and the graphitization tendency of Cu-doped hydrogenated diamond-like carbon films [J].Diamond and Related Materials,2020,102:107654.
参考文献 53
KHAMSEH S,ALIBAKHSHI E,MAHDAVIAN M,et al.Magnetron-sputtered copper/diamond-like carbon composite thin films with super anti-corrosion properties [J].Surface and Coatings Technology,2018,333:148-157.
参考文献 54
JING P P,MA D L,GONG Y L,et al.Influence of Ag doping on the microstructure,mechanical properties,and adhesion stability of diamond-like carbon films[J].Surface and Coatings Technology,2020:126542.
参考文献 55
CLOUTIER M,TURGEON S,BUSBY Y,et al.Controlled distribution and clustering of silver in Ag-DLC nanocomposite coatings using a hybrid plasma approach [J].ACS Applied Materials & Interfaces,2016,8(32):21020-21027.
参考文献 56
GAYATHRI S,KUMAR N,KRISHNAN R,et al.Influence of transition metal doping on the tribological properties of pulsed laser deposited DLC films[J].Ceramics International,2015,41(1):1797-1805.
参考文献 57
MARCIANO F R,BONETTI L F,SANTOS L V,et al.Antibacterial activity of DLC and Ag-DLC films produced by PECVD technique[J].Diamond and Related Materials,2009,18(5-8):1010-1014.
参考文献 58
PATNAIK L,MAITY S R,KUMAR S.Comprehensive structural,nanomechanical and tribological evaluation of silver doped DLC thin film coating with chromium interlayer(Ag-DLC/Cr)for biomedical application [J].Ceramics International,2020,46(14):22805-22818.
参考文献 59
PAUL R,PAL A K.Ni-DLC composite films prepared by CVD technique:Synthesis and characterization[J].Advanced Science Letters,2010,3(3):323-332.
参考文献 60
ZHOU H,HOU Q,XIAO T,et al.The composition,microstructure and mechanical properties of Ni/DLC nanocomposite films by filtered cathodic vacuum arc deposition [J].Diamond and Related Materials,2017,75:96-104.
参考文献 61
MIYAKE S,SAITO T,YASUDA Y,et al.Improvement of boundary lubrication properties of diamond-like carbon(DLC)films due to metal addition[J].Tribology International,2004,37(9):751-761.
参考文献 62
REN N,MA Z J,ZHAO D C,et al.Preparation and property of a Fe-Doped DLC multilayer by ion sources[J].Materials Science Forum,2010,654-656:1908-1911.
参考文献 63
SHEN Y,ZHANG Z,LIAO B,et al.Comparative study on effects of Ni ion implantation on amorphous carbon(a-C)coating and tetrahedral amorphous carbon(ta-C)coating[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2020,467:1-8.
参考文献 64
XU X,GUO P,ZUO X,et al.Understanding the effect of Al/Ti ratio on the tribocorrosion performance of Al/Ti co-doped diamond-like carbon films for marine applications [J].Surface and Coatings Technology,2020,402:126347.
参考文献 65
KONG C,GUO P,SUN L,et al.Tribological mechanism of diamond-like carbon films induced by Ti/Al co-doping [J].Surface and Coatings Technology,2018,342:167-177.
参考文献 66
GUO T,KONG C,LI X,et al.Microstructure and mechanical properties of Ti/Al co-doped DLC films:Dependence on sputtering current,source gas,and substrate bias[J].Applied Surface Science,2017,410:51-59.
参考文献 67
JI L,WU Y,LI H,et al.The role of trace Ti concentration on the evolution of microstructure and properties of duplex doped Ti(Ag)/DLC films[J].Vacuum,2015,115:23-30.
参考文献 68
ZHOU B,PILIPTSOU D G,JIANG X,et al.Structure and mechanical properties of Ni and Cr binary doped amorphous carbon coatings deposited by magnetron sputtering and pulse cathodic arc[J].Thin Solid Films,2020,701:137942.
参考文献 69
ZHANG Y G,SUN W C,DONG Y R,et al.Electrodeposition and microstructure of Ni and B co-doped diamond-like carbon(Ni/B-DLC)films [J].Surface and Coatings Technology,2021,405:126713.
参考文献 70
LIU X,YANG J,HAO J,et al.Microstructure,mechanical and tribological properties of Si and Al co-doped hydrogenated amorphous carbon films deposited at various bias voltages [J].Surface and Coatings Technology,2012,206(19):4119-4125.
参考文献 71
RODRIGUEZ B J,SCHILLER T L,PROPRENTNER D,et al.Effect of chromium doping on high temperature tribological properties of silicon-doped diamond-like carbon films [J].Tribology International,2020,152:106546.
目录contents

    摘要

    类金刚石碳薄膜具有良好的润滑性能,摩擦界面的磨屑或摩擦层结构影响其摩擦行为。 掺杂的类金刚石碳薄膜是一个重要类别,其特征在于在非晶碳结构中结合不同的元素,改善其力学、摩擦学、电化学等性能。 报告了不同非金属及金属元素的掺杂对类金刚石碳薄膜性能的影响,讨论了摩擦学性能随其化学组成和微观结构的变化,尽可能获得其间的一般趋势或相关性,并对元素掺杂类金刚石薄膜的发展进行了展望。

    Abstract

    Diamond-like carbon film has good lubricating properties, and the wear debris or tribo-layer structure at the friction interface affect the friction behavior. Doped diamond-like carbon film is an important category, which is characterized by combining different elements with the structure of amorphous carbon to improve its mechanical, tribological, electrochemical and other properties. The effects of incorporation of different non-metals and metal elements on the mechanical properties of diamond-like carbon films are reported. The tribological properties are discussed to obtain the general trend or correlation based on their chemical composition. Finally, the development of element-doped diamond-like carbon films is prospected.

  • 0 前言

  • 类金刚石碳薄膜(DLC)是一种无定形碳,通常由氢、碳sp 2 和sp 3 化轨道组成[1]。因此,调控sp 2 键与sp 3 键的比例可以调控DLC薄膜的性能,从而得获得不同工况环境的应用,如在机械和光学领域。 DLC薄膜因其独特的特性,如高耐磨性、低摩擦因数、高硬度、生物相容性和化学惰性等[2-3]。其摩擦特性对机械系统的效率、耐久性产生了巨大的积极影响,如磁性硬盘、滑动和/或滚动接触轴承、齿轮、机械密封、耐刮擦玻璃、侵入性和可植入性医疗设备、微机电系统等[4]

  • 然而,限制薄膜厚度的高压缩应力是DLC薄膜的主要缺点。降低应力的方法之一是在薄膜中引入不同的成分。金属或非金属掺杂是较为常用的手段,可以通过掺杂元素改善DLC薄膜粘附性、热稳定性、韧性、硬度和弹性模量[5-6]。例如具体表现为,异质元素的掺入可以通过调节DLC薄膜中sp 2、 sp 3 键的比例,降低薄膜内应力,缓解高度交联的碳网络,增强膜基结合力,从而改善薄膜的力学性能。不同于金属掺杂,非金属掺杂与碳膜的作用是复杂的。非金属元素既可以部分取代碳网络中的碳、氢原子,使碳网络发生改变,也可以取代氢原子和碳原子键合,获得更稳定的结构。

  • 本文将以元素掺杂为着手点,探讨不同非金属或金属元素掺入对DLC薄膜性能,尤其是其内应力、粘附性及摩擦性能的影响。重点论述双金属及多组元掺杂的协同作用对DLC薄膜性能的影响。

  • 1 元素掺杂与内应力

  • DLC薄膜的极低磨损率归因于其低的摩擦因数和高硬度的结合。硬度主要与碳的三维网络结构、内应力及存在于薄膜中的各种纳米团簇等因素有关。高sp 3 杂化键含量意味着高硬度,但也导致了薄膜中碳原子平均配位数相对较高,进而使得DLC薄膜的三维网络结构过度约束,从而产生较大的内应力,使其表面易产生裂纹、褶皱甚至脱落[7]

  • 薄膜的内应力主要来源于三部分,σ=σT +σg + σm。其中 σT 为薄膜从沉积温度向室温冷却过程中的温度变化,由于DLC薄膜与基材之间的热膨胀系数不同,从而在DLC薄膜内部引起应力;σg 为DLC薄膜生长过程中由于荷能离子轰击导致C-C键长、键角变化,空间网络节点扭曲,从而在DLC薄膜内部引起应力,可以通过调节掺杂元素及荷能离子能量进行调控;σm 为金属掺杂DLC薄膜各组元材质力学性质不匹配引起的DLC薄膜内应力,可以通过调节组元种类、数量及分布形态进行调控[8]

  • 目前,降低DLC薄膜内应力和改善膜基结合力的方法有四种[9] :第一,选用和DLC薄膜热膨胀系数相近的铜(Cu)、硅( Si)、钼( Mo) 等材料作为基材,减少DLC薄膜的热应力;第二,通过退火处理给予一定的活化能消除DLC薄膜沉积过程中产生的缺陷,降低DLC薄膜本征应力;第三,掺杂金属或非金属元素,缓解sp 3 杂化键的高度交联程度和扭曲变形,改善DLC薄膜残余应力;第四,添加过渡层, 多层DLC复合薄膜和不同金属掺杂DLC薄膜的交叠复合。

  • 2 非金属掺杂DLC薄膜摩擦学性能的影响因素

  • 非金属元素掺杂是常用的降低内应力和改善膜基结合力的方法之一。较为常见的元素有S、O、N、 H、F、B、P等i [10-11]

  • SHARIFAHMADIAN等[12] 通过脉冲直流PECVD沉积了N-DLC,研究了N掺杂对DLC薄膜摩擦学性能的影响。薄膜内应力随着薄膜中N含量的增加而降低,归因于N原子进入碳网络抑制了sp 3 原子的形成,使sp 2 键和N=C键增加。 DLC薄膜的摩擦因数稳定性随着氮含量的增加而提高,但由于sp 3 键含量的降低,其硬度降低,DLC膜的摩擦因数也会增加。

  • HE等[13]同时溅射B4C和石墨靶材制备了B4C改性的B-DLC薄膜。 B4C的硬度仅次于金刚石和立方氮化硼,适当的B4C掺入DLC薄膜,提高了薄膜的硬度和弹性模量。当掺入量超过2.92at.%时,DLC薄膜中大量存在的B-B键,导致硬度降低。同时在20%RH的特定湿度条件下力学性能的增强和石墨化转移膜的形成,使B-DLC薄膜具有优异的摩擦学性能。

  • SHARIFAHMADIAN等[14] 在DLC薄膜中掺N, C≡N键的存在减少了碳网络之间的交联程度,并导致薄膜的硬度和内应力降低。通过沉积N-DLC/DLC薄膜,可以获得最佳的力学和摩擦性能,以及薄膜与基材之间的适当粘附性。

  • BOOTKUL等[15] 在单晶基片衬底上沉积了N-DLC薄膜。 N掺杂降低了sp 3 的含量,改善了膜基结合力,摩擦学性能显著提高,而硬度等力学性能降低。

  • ZHANG N等[16]通过等离子增强化学气相沉积 (PECVD)技术沉积H-DLC薄膜,并在宽剂量范围内注入60keV He离子(He +)。低辐照处理在H-DLC薄膜改性层中引起了石墨化的结构转变,而石墨的润滑作用而使得摩擦性能提高。 H-DLC薄膜的摩擦因数和磨损率的降低是石墨相变和低粗糙度综合作用的结果。高辐射诱导薄膜表面形成He气泡和孔,导致摩擦性能下降。

  • ZHANG R等[17] 使用PECVD系统沉积掺F和F/S-DLC薄膜。掺F的DLC膜的使用寿命长于F/S-DLC薄膜。 F/S-DLC薄膜的短寿命归因于高真空下的快速石墨化。 FeF2 纳米层状晶体的形成有效避免了两个碳界面之间的黏合,并有助于延长F-DLC膜的磨损寿命。

  • ALMEIDA等[18]通过PECVD制备DLC薄膜和N-DLC薄膜。中间含量的N的引入减少了sp 3 键, 既保持了DLC膜的机械特性,同时改善了金属基材中的膜黏附性。在DLC膜中引入高百分比的N会增加sp 3 键的含量,从而增加薄膜的硬度,同时降低了薄膜的附着力和耐磨性。证明了薄膜摩擦学性能与DLC薄膜的黏附性直接相关。

  • SALIMON等[19]通过PECVD合成了Si-DLC薄膜,适量的Si掺入提高了膜基结合力,薄膜摩擦学性能有所改善,摩擦因数降低了4~6倍。

  • MILEWSKI等[20] 通过PECVD在100Cr6钢上制备的Si-DLC薄膜。相比未掺杂的DLC薄膜,Si-DLC薄膜表面结构均匀,硬度高,与基体附着力好, 摩擦因数更低,为未掺杂DLC薄膜的一半。

  • GUO等[21] 通过反应性高功率脉冲磁控溅射 (HiPIMS)和中频复合磁控溅射沉积技术制备了Si-DLC薄膜。随着Si-DLC膜中Si含量的增加,更多的sp 3 键产生,导致硬度和弹性模量提高。高硬度和高弹性模量使得Si-DLC薄膜具有较高的耐磨性, 较低的摩擦因数。同时,Si的掺入,导致薄膜在磨擦过程中产生了更多的sp 2 键转移膜,降低了磨损率。

  • LAN等[22]研究了边界润滑条件下DLC薄膜与Si-DLC薄膜之间的滑动摩擦过程。随着Si原子的加入,DLC薄膜的sp 2 键部分转变为sp 3 键,sp 3/sp 2 比值随着Si含量的增加而增加。薄膜具有较高的硬度和弹性模量。在DLC和Si-DLC薄膜之间的摩擦滑动形成了转移膜。 Si的掺入促进了转移膜的形成,降低了摩擦因数。

  • ZHANG M等[23] 合成了不同Si含量的Si-DLC薄膜。由于Si原子优先取代sp 2 杂化的碳原子,增加了sp 3 键的数量,Si的掺杂使DLC薄膜的sp 3/sp 2 明显增加。掺Si提高了薄膜的力学性能,包括硬度和结合强度,同时降低了薄膜的残余应力。 Si原子抑制了DLC薄膜在高温下的石墨化,导致DLC薄膜具有更高的热稳定性和机械稳定性。在氧化条件下,由于薄膜热稳定性增强和在磨损表面形成了含Si润滑层,使得Si-DLC薄膜表现出较好的高温摩擦学性能。

  • BEAKE等[24] 对Si-DLC薄膜的往复磨损和冲击性能进行了研究。 Si-DLC薄膜显示出了良好的抗磨性,最高的硬度和最高的H 3/E 2,但容易在重复冲击条件下断裂。这是因为Si的掺入导致DLC薄膜中的sp 3 含量增加,硬度和弹性模量的增大。

  • YU等[25]利用反应磁控溅射沉积了具有热稳定性的Si-DLC薄膜,其中Si不仅可以起到降低薄膜内应力的作用,而且还可以与C原子形成sp 3 杂化, 从而改善薄膜的热稳定性。而具有W中间层的Si-DLC薄膜,改善了Si-DLC薄膜在高温下的摩擦性能,普通Si-DLC薄膜在500℃高温下无法保持低的摩擦因数,W中间层的引入改善了Si-DLC薄膜的高温耐磨性。这归因于W中间层在500℃ 时的摩擦化学作用下,形成了由氧化钨和碳化物组成的摩擦膜。摩擦膜的形成如图1所示,在高温摩擦测试中,原始致密膜(图1a)变得疏松(图1b),力学性能迅速下降,在摩擦过程中,Si被氧化成SiO2,然后从磨损轨迹中挤出。当W中间层暴露时(图1c),一部分W被氧化,另一部分与残留的C(或磨屑)反应生成WC相。图1c中接触区域放大图为图1d。正是因为这些新形成的相镶嵌在碳基质中,Si-DLC薄膜在高温下具有较低的摩擦因数。

  • 图1 500℃下Si-DLC复合薄膜的形成机理示意图[25]

  • Fig.1 Schematic diagram of the formation mechanism of Si-DLC composite film at 500℃ [25]

  • 3 金属掺杂DLC薄膜摩擦学性能的影响因素

  • 金属掺杂的DLC薄膜,掺杂金属的种类和浓度对摩擦性能有着重要的影响。在不同的摩擦环境中,Me-DLC的摩擦因数大有不同。当金属含量低于30at.%时,摩擦对湿度和环境有轻微的依赖性。据报道,掺杂的金属原子可以在DLC薄膜基体中形成二维纳米团簇阵列或者在DLC薄膜基体中形成原子尺度的复合物,并且掺杂的金属原子的化学状态和存在形式将显著影响DLC薄膜的性质[26]。软金属掺入DLC薄膜可以提高韧性,通过塑性变形释放内应力。硬质金属物掺入DLC薄膜可以提高硬度,同时也会导致内应力的增加。掺杂金属根据与碳的反应分为碳化物形成金属( Ti [27-29],Cr [30-32], Zr [33-34],W [35], Mo [36-37] 等), 非碳化物形成金属 (Al [38],Cu [39],Ag [40] 等)。其中碳化物元素以金属碳化物的小纳米晶形式分散在网络中,可以减少氢轰击化学腐蚀,从而提高沉积速率。非碳化物形成元素以非晶或纳米晶团簇形态弥散分布于非晶碳基质中。

  • Me-DLC薄膜的摩擦因数与金属含量、载荷和湿度有复杂的关系。除了高的膜基结合力,非常小的磨损也是Me-DLC薄膜的一个特征[41]

  • 3.1 碳化物形成金属

  • ZHOU等[29] 通过离子束辅助增强不平衡磁控溅射在304不锈钢基底上制备了不同含量Ti-DLC薄膜。探讨了Ti掺入量和TiC纳米微晶对DLC薄膜摩擦学性能的影响。微含量Ti掺杂的Ti-DLC薄膜的力学性能优于纯DLC薄膜和Ti掺杂含量相对较高的Ti-DLC薄膜的力学性能。如图2所示,对于DLC薄膜,在滑动过程中,无定形碳结构的存在和光滑表面可作为润滑层,使得摩擦过程较为稳定。微Ti掺杂时,TiC纳米微晶主要作用是调节碳基体, 进而改善了DLC薄膜的硬度和断裂韧性,使DLC薄膜具有优异的摩擦学性能。随着Ti掺杂含量的增加逐渐形成更大的TiC纳米晶体时,DLC薄膜的结构和表面光滑度可能被破坏,造成磨粒磨损从而导致了高而波动的摩擦因数。 CHEN等[42] 使用直流磁控溅射制备了Ti-DLC薄膜,Ti的掺入导致在DLC薄膜中形成纳米石墨和纳米碳化物。较高的sp 2 含量和DLC薄膜的石墨团簇增大,这导致DLC薄膜具有更好的自润滑性能,更高的韧性,更低的内应力,良好的黏附性以及更高的摩擦学性能。 CUI等[43]在CH4 和Ar混合气氛下,用磁控溅射制备了Ti-DLC薄膜。探讨了Ti掺入量对DLC薄膜性能的影响。强碳化物形成元素Ti在碳膜中的存在形式和其浓度有关,将Ti的浓度控制在很低的水平以保证掺杂的Ti以金属状态存在是使DLC薄膜具有优异摩擦学性能的关键因素。 0.41%的Ti掺杂使DLC薄膜在保持硬度的同时降低了内应力,并赋予DLC薄膜较低的摩擦因数和优异的耐磨性。当Ti含量超过6.7%时会形成TiC纳米晶粒造成磨粒磨损,DLC薄膜摩擦学性能恶化。 GUO等[44] 采用线性离子束沉积了Ti4at.%-DLC和Ti27at.%-DLC薄膜, 分别在干摩擦和PAO油中进行了摩擦实验,研究了不同含量的金属掺杂DLC薄膜在贫油和富油条件下具有不同的润滑效果。发现在干摩擦条件下, Ti4at.%-DLC由于形成了附着在钢球上转移膜和石墨化碳层,摩擦磨损较小;在PAO油中,两种膜均表现出相似的低摩擦和磨损。 PAO油可以抑制转移膜的形成,并将TiO2 和TiC硬粒子从滑动界面中逐出。 WANG等[45]研究了不同浓度Ti-DLC在水润滑条件下的摩擦性能,发现当Ti以Ti-C键存在时具有较低的摩擦因数和较好的耐磨性,以硬质TiC纳米晶形式存在时,会造成磨粒磨损,导致摩擦磨损性能下降。

  • 图2 DLC薄膜的摩擦机理示意图

  • Fig.2 Schematics diagram of frictional mechanism for the films(a) DLC (b) Ti-DLC with micro doping (c) Ti-DLC with macro doping

  • SANTIAGO等[46] 通过低频HiPIMS沉积Cr-DLC薄膜并对其摩擦学性能进行了研究。少量的Cr掺入,不会破坏sp 3 网络,并且降低了DLC薄膜内应力,使Cr-DLC具有更好的力学性能以及更好的高温耐摩性能。 ZOU等[47] 证明在室温下不同浓度Cr-DLC的摩擦因数均高于纯DLC薄膜,而在400℃高温时,未掺杂DLC薄膜具有较高的摩擦因数其容易失效,而低Cr-DLC薄膜稳定的摩擦因数而不失效。这是由于低Cr掺杂DLC薄膜具有较低的内应力和相对较高的硬度综合保护。 ZHU等[48]采用非平衡磁控溅射技术制备了各种Cr掺杂量的DLC薄膜。得出适当的Cr掺杂可以有效地改善DLC薄膜的力学性能。通过Cr掺杂形成的金属碳化物,氧化物和金属纳米晶颗粒均匀地分布在DLC薄膜的三维网络的间隙中,以减小表面粗糙度。当掺杂含量小于15at.%时,掺入Cr主要以硬质金属化合物形式存在,硬度和韧性比纯DLC薄膜好。随着掺杂含量的继续增加,掺入Cr主要以金属元素形式存在,并且力学性能严重降低。 Cr掺杂过量,由于sp 3 相的生成以及硬质碳化物和氧化物的形成, 导致DLC薄膜自润滑性能下降,摩擦因数增加。这是因为过量掺杂引起过度可塑性不仅破坏了DLC薄膜的力学性能,而且还极大降低了DLC薄膜的耐磨性。 DAI等[49]验证了低浓度(<0.3at.%)Cr掺杂的DLC薄膜具有优异的摩擦性能,其摩擦因数和磨损率略高于纯DLC膜。与纯DLC薄膜相比,由于Cr掺入引起原子键变形和Cr离子轰击引起吸附原子迁移率提高,薄膜的残余应力显著降低。在低金属掺杂态下,由于掺杂的金属原子分散溶解在DLC基体中,呈现非晶态微观结构。掺杂的金属原子不会通过破坏碳网的连续性而影响微观结构,而是会造成局部原子键的扭曲,从而保留了依赖于碳网络的DLC薄膜优异的力学性能。

  • 3.2 非碳化物形成金属

  • DAI等[50]探究了Al掺入对DLC薄膜性能的影响。通过调控Al掺入量制备出了同时具有高硬度和低内应力的Al-DLC薄膜。 Al-DLC薄膜具有非晶结构特征,掺入的Al原子溶解在基体中,不与碳原子结合。随着Al原子的加入,DLC薄膜的结构无序度有降低的趋势,这导致DLC薄膜内应力明显降低。与纯DLC薄膜相比,所有的Al-DLC薄膜都表现出较低的摩擦因数,这是由于转移层的形成和摩擦引起的石墨化。 XU等[51] 在不同偏压下制备了Al-DLC薄膜。发现与纯DLC薄膜相比,Al-DLC薄膜的残余应力显著降低。 Al-DLC薄膜表现出非晶态特征,碳基体中的Al原子主要以氧化铝的形式存在,不与碳原子形成键合。在-50V偏置电压下沉积的DLC薄膜具较大的表面粗糙度,有类似聚合物的结构,硬度极低(2.3GPa),摩擦学性能差。另一方面,在-100V偏置电压下沉积的薄膜具有较光滑的表面,高硬度、低摩擦因数和良好的耐磨性。过高的偏压具有过量的离子能量,会促进sp 3 向sp 2 的石墨化转变。通过调节外加偏置电压,在偏置电压为-150V,DLC薄膜具有较好的综合性能,残余应力为-1.23GPa, 高硬度为16.9GPa, 摩擦因数为0.045,磨损率为2.7×10-7 mm 3 N-1·m-1

  • GONG等[52]通过HiPiMS制备了不同Cu含量的Cu-DLC薄膜,研究了Cu-DLC薄膜摩擦界面磨屑的形成以及Cu含量对Cu-DLC薄膜摩擦性能的影响。如图3所示,Cu掺杂改善了DLC薄膜的摩擦性能,随着Cu掺入量的增加,磨损轨迹深度和磨损率逐渐降低, 薄膜耐磨性得到改善。 Cu含量为3.19at.%和8.21at.%时,Cu在DLC薄膜中分布均匀。对于Cu含量为11.28at.%的Cu-DLC薄膜, 纳米晶Cu被无定形碳基质包围。 Cu-DLC薄膜的耐磨性优于不含纯DLC薄膜。此外,Cu-DLC薄膜摩擦界面上形成了棒状磨屑,Cu在磨屑中积累,可以提高摩擦界面上磨屑的石墨化程度,进而提高了Cu-DLC薄膜的耐磨性。 KHAMSEH等[53] 发现Cu-DLC薄膜的内应力值随着Cu/C比的增加而降低。金属Cu在碳基质中的结合会导致薄膜内应力下降以及更好的薄膜粘附。在DLC薄膜中加入少量的Cu,提高了复合薄膜的硬度和H 3/E 2 比。然而,具有较高Cu含量的Cu-DLC薄膜呈现出较高的sp 2 团簇的聚集,薄膜具有较低的sp 3 键合,硬度下降,摩擦学性能恶化。

  • 图3 不同Cu含量Cu-DLC薄膜的(a)摩擦因数、(b)磨损轨迹和(c)磨损率

  • Fig.3 COF (a), wear tracks (b) and wear rate (c) of Cu-DLC films with different Cu contents

  • JING等[54]使用结合了HiPIMS和PECVD的复合沉积技术,系统地研究了Ag掺杂对DLC薄膜的微观结构,化学键合,力学性能和黏附稳定性的影响。 Ag掺杂可以加速沉积原子的表面和层间扩散, 填充了DLC薄膜中的孔和缺陷,从而改善了DLC薄膜的柱状结构。随着Ag浓度的增加,DLC薄膜中的残余应力降低,抑制了裂纹的生成和传播,有效地改善了薄膜与基材之间的粘附性。 sp 3 键的分数随着Ag浓度的增加而降低, 当Ag浓度高于3.2at.%时,导致膜硬度降低。 Ag-DLC薄膜耐磨性的改善归因于摩擦过程中产生了棒状磨屑,将滑动摩擦转变为了滚动摩擦。可以通过调节Ag掺入量,获得具有低的摩擦因数和较好耐磨性的DLC薄膜。 CLOUTIER等[55] 通过PECVD方法制备了Ag-DLC薄膜,深入研究了关键等离子体沉积参数对Ag-DLC薄膜中金属分布的影响。金属团簇的形成主要归因于银对碳基体的亲和力低和内聚能高。 Ag在DLC薄膜中的结合被证明是由表面能、表面偏析和聚集所控制的。偏压可以控制Ag在Ag-DLC薄膜中的存在形式,偏压较低时,薄膜特征是小的,稀疏的扁球形球状团簇,当偏压较高时,Ag形成紧密度堆积的Ag纳米颗粒。偏压同时也控制了DLC薄膜硬度及sp 3 的含量。随着偏压增大薄膜从柔软的类聚合物薄膜(0V)转变为坚硬的DLC薄膜 (>50V)。 MANNINEN等[40] 通过直流磁控溅射制备了不同含量的Ag-DLC薄膜。在Ag含量小于6.1at.%时薄膜呈现无定型碳结构,并且不能通过XRD检测出。随着Ag的含量为13.1at.%时,形成了2~3nm的Ag结晶相,这导致薄膜中环形的石墨状键(sp 2)的增加,薄膜内应力下降,膜基结合力增强。 DCL薄膜结构的变化与力学性能的变化密切相关,只有13.1at.%的Ag促进了DLC薄膜结构变化,降低了压缩残余应力和硬度。 Ag在摩擦过程中易于在DLC薄膜表面偏析,这在Ag-DLC薄膜的摩擦学行为中起着主要作用,从而掩盖了结构和化学性质对摩擦学行为的内在影响。 GAYATHRI等[56-57]发现Ag的掺入促进了大量sp 2 相的形成,掺入纳米晶Ag的DLC薄膜表现出了低摩擦行为。 PATNAIK等[58]采用阴极电弧沉积技术沉积了含Cr中间层,掺有Ag的DLC薄膜(Ag-DLC/Cr)。沉积Cr中间层上可改善基材与DLC薄膜的结合力。此外,Ag掺杂会在碳基质中形成延性桥,使其在变形过程中吸收更多能量。 DLC薄膜表现出较高的应变硬化指数和较低的塑性,从而有助于提高划痕硬度,降低变形。摩擦过程中由于Ag团簇的分散,导致较低的摩擦因数。

  • PAUL等[59]采用化学气相沉积的方法制备了Ni-DLC膜,随着Ni纳米晶的加入sp 2 相含量增加且薄膜变得更加致密, 摩擦性能得到改善。 ZHOU等[60]采用阴极电弧沉积,通过过滤大的中性颗粒获得致密Ni-DLC膜。 MIYAKE等[61] 对Fe-DLC薄膜在润滑剂中边界摩擦性能的影响,发现金属Fe的掺入可以改善DLC薄膜的边界润滑性能,含Fe的DLC薄膜具有在摩擦条件下与极压添加剂反应的活性位点,故随着摩擦循环次数的增加,Fe-DLC薄膜摩擦因数会变低。 REN等[62] 通过离子源制备了多层DLC/Fe-DLC薄膜,Ar +的轰击使得掺杂的DLC薄膜具有相对光滑的表面。 Fe离子注入改善了DLC薄膜的力学性能,与未掺杂DLC薄膜相比,应力降低, 硬度保持不变, 摩擦因数降低。 SHEN等[63]对Ni离子注入后的a-C和ta-C薄膜的摩擦学性能进行了探讨。 Ni离子的注入导致ta-C薄膜的ID/IG 比增加,但导致a-C薄膜的ID/IG 比减少。 Ni注入的a-C薄膜比未注入a-C薄膜具有更好的耐磨性,这主要归因于改性层中的高弹性回复率。

  • 单一元素掺入虽然改善了DLC薄膜摩擦学性能,但在不同程度上牺牲DLC薄膜的力学性能。碳化物形成元素掺入,在DLC薄膜中会形成硬质碳化物纳米晶,造成磨粒磨损。非碳化物形成元素掺入, 会提高DLC薄膜韧性,降低了DLC薄膜内应力,提高了膜基结合力,但同时DLC薄膜硬度降低,较易磨穿。因此单一元素掺杂难以制备处满足复杂工程应用的DLC薄膜。

  • 3.3 双金属掺杂对DLC膜摩擦性能的影响

  • 单一金属掺杂对DLC薄膜性能的改善受到所掺杂元素种类的限制,很难满足实际工程应用中对综合性能的要求,双金属掺杂通过不同元素之间的互补可以使这一问题得到解决。

  • 双金属掺杂根据掺杂种类的不同,又可分为三大类:两种非碳化物形成金属共掺杂;一种碳化物形成金属与一种非碳化物形成金属共掺杂;两种碳化物形成金属共掺杂。其中,两种非碳化物形成金属共掺杂的非晶碳膜报道较少。两种碳化物形成金属共掺杂的非晶碳薄膜,显微结构与掺入金属含量和沉积温度相联。当微量掺杂或沉积温度较低时,金属原子不与碳原子发生反应,DLC薄膜仍保持原有非晶状态;当掺杂金属较多或沉积温度较高时,两种掺杂金属与碳原子发生反应,以纳米晶的形式镶嵌在非晶碳膜中;最为常见的,因为共掺杂金属之间的相互抑制作用,更易与碳原子发生反应的金属以纳米晶碳化物形式存在并被非晶碳化物或非晶碳包裹。

  • XU等[64]采用混合离子束沉积技术制备了Al/Ti-DLC薄膜,系统研究了Al/Ti-DLC薄膜在3.5%NaCl溶液中的摩擦腐蚀性能与Al/Ti比的关系。 Al的掺入削弱了TiC晶粒的形成。通过调整Al/Ti比率可以调整DLC薄膜中的碳结构和TiC晶粒的大小。随着Al/Ti比从6.6降至2.0时,由于DLC薄膜中TiC和sp 2 的含量增加,DLC薄膜的硬度和弹性模量等力学性能得到改善,薄膜的摩擦因数和磨损率明显降低。电化学腐蚀中机械磨损和腐蚀侵蚀之间的协同效应对材料损失的贡献随着Al/Ti比的下降而增加, 这是由于腐蚀诱发的磨损。 KONG等[65]采用混合离子束系统制备了不同金属浓度的Al/Ti-DLC薄膜。共掺杂Al/Ti金属对DLC薄膜的摩擦学行为起着重要作用。在2.5A ( Ti10.06at.% Al4.78at.%)下沉积的DLC薄膜显示出约0.05的最低摩擦因数和磨损率。如图4所示,在摩擦过程中,适当的Al浓度有利于在磨损轨迹中形成石墨化转移膜。转移层中的Al主要以金属铝和氧化铝的团簇形式存在。金属Al纳米晶在高温下溶解于TiC基体中,并产生将碳化物颗粒从DLC薄膜中分离的驱动力,导致了交联的无定形碳网络和结晶纳米颗粒的双重纳米结构(主要是TiC和氧化铝)。这种特殊的双纳米结构提供了更多界面,促进了剪切滑移, 生成较厚的转移层,使DLC薄膜具有优异的摩擦性能。其次DLC薄膜表面富集的金属碳化物和氧化物层防止了O侵入破坏交联碳网络,使其抗氧化性提高。 GUO等[66] 采用混合离子束系统制备Al/Ti-DLC薄膜。 Al的掺入在很大程度上抑制了薄膜中形成的TiC相的出现。残余应力是由碳离子引起的结构弛豫的主要结果,而力学性能主要由TiC的特征决定。当电流小于1.5A时,Ti、Al原子溶解在非晶碳网络中降低了残余应力,电流增加至2.5A时, 掺杂的Al原子以纯的和氧化的铝团簇的形式存在, 而Ti原子形成硬的TiC纳米晶体并嵌入非晶碳网络中,导致较高的残余应力和硬度,由于高浓度Al的协同作用薄膜在不降低韧性的情况下获得了更高的残余应力和硬度。当电流达到3A时,Al2O3 纳米晶与DLC基体的分离导致残余应力降低。 JI等[67]以Ar和CH4 为源气体,制备了Ag/Ti-DLC薄膜。在掺杂Ag的含量和形式保持不变的情况下, 研究了Ti靶溅射电流对薄膜显微组织、力学性能和摩擦性能的影响。薄膜中的TiC硬质相增加了DLC薄膜的硬度。 Ag晶体可以增加DLC薄膜的韧性, 小尺寸的TiC纳米晶体嵌入非晶碳基体中可以防止滑动和晶粒错位。随着Ti靶溅射电流的增加,DLC薄膜中的Ti浓度和sp 2 含量增加。此外,随着Ti浓度的增加,掺杂的Ti从金属相转变为TiC,薄膜的硬度和内应力先降低后升高,这与微量Ti的引入导致的微结构变化有关。最后,1.6at.%Ti掺杂的双纳米复合膜表现出相对较高的硬度和H/E以及H 3/E 2,这是其优越的摩擦学性能的主要原因。 ZHOU等[68]通过磁控溅射和阴极电弧沉积Ni和Cr共掺杂的DLC薄膜并对其结构和力学性能进行了讨论。其中Cr以CrC的形式存在,Ni以金属形式存在于DLC薄膜中,Cr、Ni可以通过调控原子之间的比例来调控形成的结构。 Ni和Cr共掺杂的DLC薄膜的sp 3/sp 2 比降低,共掺杂具有较低的磨损率。

  • 图4 大气环境下Ti/Al-DLC薄膜对钢球的摩擦机理示意图[65]

  • Fig.4 Schematic representation of tribological mechanism of Ti/Al-DLC film against steel ball under atmospheric environment condition [65]

  • 4 金属与非金属共掺杂对DLC膜摩擦学性能的影响

  • ZHANG Y G等[69] 用电化学方法合成了Ni/B-DLC薄膜。与Ni-DLC薄膜相比Ni/B-DLC薄膜具有光滑且致密的形态。 Ni/B-DLC膜中的芳香环簇的数量和大小均较小,并且可以减少sp 2 对sp 3 位点的取代。 B掺杂有助于碳原子的sp 3 杂化,降低了Ni/B-DLC薄膜的键合畸变和固有应力,有效地提高了膜基结合力。 B4C硬质相的存在,使DLC薄膜硬度增加。在滑动摩擦过程中易于形成石墨化转移膜,使其具有较低的摩擦因数。 B4C的硬质相可以起到支撑作用,减少了DLC薄膜与其对应物之间的接触面积,并提高了薄膜的耐磨性。 LIU等[70] 用射频磁控溅射法,在不同负偏压下,沉积了Si/Al-DLC薄膜。通过偏压控制了DLC薄膜表面形貌和力学性能。在“零”偏压下沉积的DLC薄膜高度氢化,薄膜表面粗糙,摩擦性能较差。在-400V高压下DLC薄膜发生了显著的石墨化和厚度减小,也不利于薄膜的沉积。而-200V偏压可以得到光滑的表面,尽管它显示出相对较低的硬度,但在高赫兹接触应力 (高达1.6kPa)下,在空气环境中表现出超低摩擦行为 ( 0.008 5) 和长磨损寿命 (> 10 5 转)。 RODRIGUEZ等[71]通过非平衡磁控溅射研究了Si/Cr-DLC薄膜高温摩擦学性能的影响。随着Cr含量的增加,H/E比降低。少量的Si(<1.3at.%)掺杂减小了sp 3 团簇的尺寸,并对薄膜的热稳定性产生了积极的影响,而Cr的添加增强了sp 3 团簇,抵消了Si的影响,并且降低了热稳定性。两种元素之间形成了一种动态平衡。通过调控Si、Cr掺入量调控薄膜的高温摩擦学性能。

  • 5 结语与展望

  • 元素掺杂对DLC薄膜摩擦性能的影响是多种因素共同作用的结果。其研究内容从单一元素、双元素向更多元掺杂发展,碳薄膜结构也从非晶向多元多相结构转变,期望不同元素间的协同耦合以获得综合性能更为优异的碳薄膜。随着计算机模拟技术的发展,从原子角度出发,研究不同元素与原子键合方式在优化改进碳薄膜性能方面发挥着越来越重要的作用。

  • 目前而言, 单一元素掺杂理论体系并不完善,双元素及多元素掺杂元素间的协同耦合机理也不清楚,这些有待于从杂化键等物理角度进一步去研究。在应用研究方面,通过元素掺杂探索具有多种结构的或可同时适用于多种环境的自适应自修复DLC薄膜也越来越引起人们的广泛关注。

  • 总之,对单元素或元素共掺杂组合来说,材料组合和沉积参数的优化是一个具有挑战性的课题。通过调控不同的掺杂组合和沉积参数制备出适用于不同应用环境的润滑性薄膜在海洋, 航空航天,医疗设备,各种机械领域具有广阔的应用前景。

  • 参考文献

    • [1] GHADAI R K,SINGH K,SHARMA A,et al.Mechanical and tribological properties of metal incorporated DLC thin film[M]//Nanostructured Materials and their Applications.Singapore:Springer:229-263.

    • [2] SHARIFAHMADIAN O,MAHBOUBI F,OSKOUIE A.Structural evolution and tribological behavior of nitrogen-doped DLC coatings deposited by pulsed DC PACVD method [J].Diamond and Related Materials,2019,91:74-83.

    • [3] TOKUTA Y,ITOH T,SHIOZAKI T,et al.Low friction mechanism of chlorine-doped amorphous carbon films sliding against an aluminium alloy[J].Tribology International,2017,115:573-579.

    • [4] ERDEMIR A,FONTAINE J,DONNET C.An overview of superlubricity in diamond-like carbon films[ M]//DONNET C,ERDEMIR A.Tribology of Diamond-Like Carbon Films:Fundamentals and Applications.Boston:Springer US,2008:237-262.

    • [5] BOUABIBSA I,LAMRI S,SANCHETTE F.Structure,mechanical and tribological properties of Me-doped diamond-like carbon(DLC)(Me = Al,Ti,or Nb)hydrogenated amorphous carbon coatings[J].Coatings,2018,8(10):370.

    • [6] BROITMAN E,HULTMAN L.Tribology of carbon-based coatings:Past,present,and future [ M ].2nd International Workshop of Tribology Tribaries,May 7-9,Cuidad de Buenos Aries,Argentina.2013:7-10.

    • [7] 代明江.类金刚石薄膜掺杂作用机理及其摩擦学性能[D].广州:华南理工大学,2016.DAI M J.Doping mechanism and tribological properties of diamond-like carbon films [ D ].Guangzhou:South China University of Technology,2016.(in Chinese)

    • [8] 孙德恩,董洪铭,ZHANG Sam,等.元素掺杂类金刚石碳膜降内应力研究综述[J].表面技术,2018,47(6):95-103.SUN D E,DAONG H M,ZHANG S,et al.Internal stress reduction in diamond-like carbon coatings via elemental doping:A Review[J].Surface Technology,2018,47(6):95-103.(in Chinese)

    • [9] 张婷,何娟,任瑛,等.类金刚石薄膜残余应力的研究进展 [J].材料导报,2016,30(1):84-87,95.ZHANG T,HE J,REN Y,et al.Progress and perspectives of the residual stress of diamond-like carbon thin film[J].Materials Reports,2016,30(1):84-87,95.(in Chinese)

    • [10] LI A,CHEN Q,WU G,et al.Probing the lubrication mechanism of multilayered Si-DLC coatings in water and air environments[J].Diamond and Related Materials,2020,105:107772.

    • [11] XU P,WANG Y,CAO X,et al.The tribological properties of DLC/SiC and DLC/Si3N4 under different relative humidity:The transition from abrasive wear to tribo-chemical reaction [J].Ceramics International,2021,47(3):3901-3910.

    • [12] SHARIFAHMADIAN O,MAHBOUBI F,OSKOUIE A.Structural evolution and tribological behavior of nitrogen-doped DLC coatings deposited by pulsed DC PACVD method [J].Diamond and Related Materials,2019,91:74-83.

    • [13] HE D,SHANG L,LU Z,et al.Tailoring the mechanical and tribological properties of B4C/a-C coatings by controlling the boron carbide content [J].Surface and Coatings Technology,2017,329:11-18.

    • [14] SHARIFAHMADIAN O,MAHBOUBI F.A comparative study of microstructural and tribological properties of N-DLC/DLC double layer and single layer coatings deposited by DC-pulsed PACVD process [J].Ceramics International,2019,45(6):7736-7742.

    • [15] BOOTKUL D,SUPSERMPOL B,SAENPHINIT N,et al.Nitrogen doping for adhesion improvement of DLC film deposited on Si substrate by Filtered Cathodic Vacuum Arc(FCVA)technique[J].Applied Surface Science,2014,310:284-292.

    • [16] ZHANG N,LIN L,LIU B,et al.Tribological properties improvement of H-DLC films through reconstruction of microstructure and surface morphology by low-energy helium ion irradiation[J].Diamond and Related Materials,2020,109:108080.

    • [17] ZHANG R,SHEN M,HE Z.The unusual tribological behavior of diamond-like carbon films under high vacuum[J].Surface and Interface Analysis,2020,52(6):339-347.

    • [18] ALMEIDA L S,SOUZA A R M,COSTA L H,et al.Effect of nitrogen in the properties of diamond-like carbon(DLC)coating on Ti6Al4V substrate [J].Materials Research Express,2020,7(6):065601.

    • [19] SALIMON I A,TEMIROV A A,KUBASOV I V,et al.Characterization of Si-DLC films synthesized by low cost plasmaenhanced chemical vapor deposition [J].Materials Today:Proceedings,2020.

    • [20] MILEWSKI K,MADEJ M.Structure and mechanical properties of diamond-like carbon(DLC)coatings doped with silicon[J].Metalurgija,2020,59(4):481-484.

    • [21] GUO C Q,LIN S S,GAO D,et al.Modulation of Si on microstructure and tribo-mechanical properties of hydrogen-free DLC films prepared by magnetron sputtering[J].Applied Surface Science,2020,509:145381.

    • [22] LAN H,KATO T,LIU C.Molecular dynamics simulations of atomic-scale tribology between amorphous DLC and Si-DLC films [J].Tribology International,2011,44(11):1329-1332.

    • [23] ZHANG M,XIE T,QIAN X,et al.Mechanical properties and biocompatibility of Ti-doped diamond-like carbon films[J].ACS Omega,2020,5(36):22772-22777.

    • [24] BEAKE B D,MCMASTER S J,LISKIEWICZ T W,et al.Influence of Si-and W-doping on micro-scale reciprocating wear and impact performance of DLC coatings on hardened steel[J].Tribology International,2021:107063.

    • [25] YU W,WANG J,HUANG W,et al.Improving high temperature tribological performances of Si doped diamond-like carbon by using W interlayer[J].Tribology International,2020,146:106241.

    • [26] DAI W,LIU J,GENG D,et al.Microstructure and property of diamond-like carbon films with Al and Cr co-doping deposited using a hybrid beams system [J].Applied Surface Science,2016,388:503-509.

    • [27] CAO H,YE X,LI H,et al.Microstructure,mechanical and tribological properties of multilayer Ti-DLC thick films on Al alloys by filtered cathodic vacuum arc technology[J].Materials & Design,2021,198:109320.

    • [28] HUANG L,YUAN J,LI C,et al.Microstructure,tribological and cutting performance of Ti-DLC/α-C:H multilayer film on cemented carbide[J].Surface and Coatings Technology,2018,353:163-170.

    • [29] ZHOU Y,LI L,SHAO W,et al.Mechanical and tribological behaviors of Ti-DLC films deposited on 304 stainless steel:Exploration with Ti doping from micro to macro [J].Diamond and Related Materials,2020,107:107870.

    • [30] DUMINICA F D,BELCHI R,LIBRALESSO L,et al.Investigation of Cr(N)/DLC multilayer coatings elaborated by PVD for high wear resistance and low friction applications[J].Surface and Coatings Technology,2018,337:396-403.

    • [31] AMANOV A,WATABE T,TSUBOI R,et al.Fretting wear and fracture behaviors of Cr-doped and non-doped DLC films deposited on Ti-6Al-4V alloy by unbalanced magnetron sputtering [J].Tribology International,2013,62:49-57.

    • [32] KHADEM M,KIM D-E.Friction and wear behaviors of bare and diamond-like carbon/chromium bi-layer coated SKH51 steel at low temperatures[J].Surface and Coatings Technology,2021,412:127018.

    • [33] VITU T,ESCUDEIRO A,POLCAR T,et al.Sliding properties of Zr-DLC coatings:The effect of tribolayer formation [J].Surface and Coatings Technology,2014,258:734-745.

    • [34] MA G,LIN G,SUN G,et al.Characteristics of DLC containing Ti and Zr films deposited by reactive magnetron sputtering[J].Physics Procedia,2011,18:9-15.

    • [35] CAO L,LIU J,WAN Y,et al.Corrosion and tribocorrosion behavior of W doped DLC coating in artificial seawater [J].Diamond and Related Materials,2020,109:108019.

    • [36] GHASEMI M H,GHASEMI B,SEMNANI H R M.Wear performance of DLC coating on plasma nitrided astaloy Mo[J].Diamond and Related Materials,2019,93:8-15.

    • [37] TANG X S,WANG H J,FENG L,et al.Mo doped DLC nanocomposite coatings with improved mechanical and blood compatibility properties [J].Applied Surface Science,2014,311:758-762.

    • [38] ZHOU B,XU B,XU Y,et al.Selective bonding effect on microstructure and mechanical properties of(Al,N)-DLC composite films by ion beam-assisted cathode arc evaporation[J].Applied Physics A,2018,125(1):34.

    • [39] GOTO M.Preparations and tribological properties of soft-metal/DLC composite coatings by RF magnetron sputter using composite targets[J].International Journal of Mechanics and Materials in Design,2018,14(3):313-327.

    • [40] MANNINEN N K,RIBEIRO F,ESCUDEIRO A,et al.Influence of Ag content on mechanical and tribological behavior of DLC coatings[J].Surface and Coatings Technology,2013,232:440-446.

    • [41] DIMIGEN H,KLAGES C-P.Microstructure and wear behavior of metal-containing diamond-like coatings[J].Surface and Coatings Technology,1991,49(1):543-547.

    • [42] CHEN C,TANG W,LI X,et al.Structure and cutting performance of Ti-DLC films prepared by reactive magnetron sputtering[J].Diamond and Related Materials,2020,104:107735.

    • [43] CUI J,QIANG L,ZHANG B,et al.Mechanical and tribological properties of Ti-DLC films with different Ti content by magnetron sputtering technique [J].Applied Surface Science,2012,258(12):5025-5030.

    • [44] GUO Y,GUO P,SUN L,et al.Tribological properties of Tidoped diamond-like carbon coatings under dry friction and PAO oil lubrication [J].Surface and Interface Analysis,2019,51(3):361-370.

    • [45] WANG Q,ZHOU F,ZHOU Z,et al.Influence of Ti content on the structure and tribological properties of Ti-DLC coatings in water lubrication [J].Diamond and Related Materials,2012,25:163-175.

    • [46] SANTIAGO J A,FERNÁNDEZ-MARTÍNEZ I,SÁNCHEZLÓPEZ J C,et al.Tribomechanical properties of hard Cr-doped DLC coatings deposited by low-frequency HiPIMS [J].Surface and Coatings Technology,2020,382:124899.

    • [47] ZOU C W,WANG H J,FENG L,et al.Effects of Cr concentrations on the microstructure,hardness,and temperaturedependent tribological properties of Cr-DLC coatings [J].Applied Surface Science,2013,286:137-141.

    • [48] ZHU L N,LI J C,KANG J J,et al.Different Cr contents on the microstructure and tribomechanical properties of multi-layered diamond-like carbon films prepared by unbalanced magnetron sputtering [J].Journal of Materials Engineering and Performance,2020,29(11):7131-7140.

    • [49] DAI W,WANG A.Synthesis,characterization and properties of the DLC films with low Cr concentration doping by a hybrid linear ion beam system[J].Surface and Coatings Technology,2011,205(8-9):2882-2886.

    • [50] DAI W,WANG A.Deposition and properties of Al-containing diamond-like carbon films by a hybrid ion beam sources [J].Journal of Alloys and Compounds,2011,509(13):4626-4631.

    • [51] XU W,LIN S,DAI M,et al.Effects of bias voltage on the microstructure and properties of Al-doped hydrogenated amorphous carbon films synthesized by a hybrid deposition technique[J].Vacuum,2018,154:159-166.

    • [52] GONG Y L,JING P P,ZHOU Y J,et al.Formation of rodshaped wear debris and the graphitization tendency of Cu-doped hydrogenated diamond-like carbon films [J].Diamond and Related Materials,2020,102:107654.

    • [53] KHAMSEH S,ALIBAKHSHI E,MAHDAVIAN M,et al.Magnetron-sputtered copper/diamond-like carbon composite thin films with super anti-corrosion properties [J].Surface and Coatings Technology,2018,333:148-157.

    • [54] JING P P,MA D L,GONG Y L,et al.Influence of Ag doping on the microstructure,mechanical properties,and adhesion stability of diamond-like carbon films[J].Surface and Coatings Technology,2020:126542.

    • [55] CLOUTIER M,TURGEON S,BUSBY Y,et al.Controlled distribution and clustering of silver in Ag-DLC nanocomposite coatings using a hybrid plasma approach [J].ACS Applied Materials & Interfaces,2016,8(32):21020-21027.

    • [56] GAYATHRI S,KUMAR N,KRISHNAN R,et al.Influence of transition metal doping on the tribological properties of pulsed laser deposited DLC films[J].Ceramics International,2015,41(1):1797-1805.

    • [57] MARCIANO F R,BONETTI L F,SANTOS L V,et al.Antibacterial activity of DLC and Ag-DLC films produced by PECVD technique[J].Diamond and Related Materials,2009,18(5-8):1010-1014.

    • [58] PATNAIK L,MAITY S R,KUMAR S.Comprehensive structural,nanomechanical and tribological evaluation of silver doped DLC thin film coating with chromium interlayer(Ag-DLC/Cr)for biomedical application [J].Ceramics International,2020,46(14):22805-22818.

    • [59] PAUL R,PAL A K.Ni-DLC composite films prepared by CVD technique:Synthesis and characterization[J].Advanced Science Letters,2010,3(3):323-332.

    • [60] ZHOU H,HOU Q,XIAO T,et al.The composition,microstructure and mechanical properties of Ni/DLC nanocomposite films by filtered cathodic vacuum arc deposition [J].Diamond and Related Materials,2017,75:96-104.

    • [61] MIYAKE S,SAITO T,YASUDA Y,et al.Improvement of boundary lubrication properties of diamond-like carbon(DLC)films due to metal addition[J].Tribology International,2004,37(9):751-761.

    • [62] REN N,MA Z J,ZHAO D C,et al.Preparation and property of a Fe-Doped DLC multilayer by ion sources[J].Materials Science Forum,2010,654-656:1908-1911.

    • [63] SHEN Y,ZHANG Z,LIAO B,et al.Comparative study on effects of Ni ion implantation on amorphous carbon(a-C)coating and tetrahedral amorphous carbon(ta-C)coating[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2020,467:1-8.

    • [64] XU X,GUO P,ZUO X,et al.Understanding the effect of Al/Ti ratio on the tribocorrosion performance of Al/Ti co-doped diamond-like carbon films for marine applications [J].Surface and Coatings Technology,2020,402:126347.

    • [65] KONG C,GUO P,SUN L,et al.Tribological mechanism of diamond-like carbon films induced by Ti/Al co-doping [J].Surface and Coatings Technology,2018,342:167-177.

    • [66] GUO T,KONG C,LI X,et al.Microstructure and mechanical properties of Ti/Al co-doped DLC films:Dependence on sputtering current,source gas,and substrate bias[J].Applied Surface Science,2017,410:51-59.

    • [67] JI L,WU Y,LI H,et al.The role of trace Ti concentration on the evolution of microstructure and properties of duplex doped Ti(Ag)/DLC films[J].Vacuum,2015,115:23-30.

    • [68] ZHOU B,PILIPTSOU D G,JIANG X,et al.Structure and mechanical properties of Ni and Cr binary doped amorphous carbon coatings deposited by magnetron sputtering and pulse cathodic arc[J].Thin Solid Films,2020,701:137942.

    • [69] ZHANG Y G,SUN W C,DONG Y R,et al.Electrodeposition and microstructure of Ni and B co-doped diamond-like carbon(Ni/B-DLC)films [J].Surface and Coatings Technology,2021,405:126713.

    • [70] LIU X,YANG J,HAO J,et al.Microstructure,mechanical and tribological properties of Si and Al co-doped hydrogenated amorphous carbon films deposited at various bias voltages [J].Surface and Coatings Technology,2012,206(19):4119-4125.

    • [71] RODRIGUEZ B J,SCHILLER T L,PROPRENTNER D,et al.Effect of chromium doping on high temperature tribological properties of silicon-doped diamond-like carbon films [J].Tribology International,2020,152:106546.

  • 参考文献

    • [1] GHADAI R K,SINGH K,SHARMA A,et al.Mechanical and tribological properties of metal incorporated DLC thin film[M]//Nanostructured Materials and their Applications.Singapore:Springer:229-263.

    • [2] SHARIFAHMADIAN O,MAHBOUBI F,OSKOUIE A.Structural evolution and tribological behavior of nitrogen-doped DLC coatings deposited by pulsed DC PACVD method [J].Diamond and Related Materials,2019,91:74-83.

    • [3] TOKUTA Y,ITOH T,SHIOZAKI T,et al.Low friction mechanism of chlorine-doped amorphous carbon films sliding against an aluminium alloy[J].Tribology International,2017,115:573-579.

    • [4] ERDEMIR A,FONTAINE J,DONNET C.An overview of superlubricity in diamond-like carbon films[ M]//DONNET C,ERDEMIR A.Tribology of Diamond-Like Carbon Films:Fundamentals and Applications.Boston:Springer US,2008:237-262.

    • [5] BOUABIBSA I,LAMRI S,SANCHETTE F.Structure,mechanical and tribological properties of Me-doped diamond-like carbon(DLC)(Me = Al,Ti,or Nb)hydrogenated amorphous carbon coatings[J].Coatings,2018,8(10):370.

    • [6] BROITMAN E,HULTMAN L.Tribology of carbon-based coatings:Past,present,and future [ M ].2nd International Workshop of Tribology Tribaries,May 7-9,Cuidad de Buenos Aries,Argentina.2013:7-10.

    • [7] 代明江.类金刚石薄膜掺杂作用机理及其摩擦学性能[D].广州:华南理工大学,2016.DAI M J.Doping mechanism and tribological properties of diamond-like carbon films [ D ].Guangzhou:South China University of Technology,2016.(in Chinese)

    • [8] 孙德恩,董洪铭,ZHANG Sam,等.元素掺杂类金刚石碳膜降内应力研究综述[J].表面技术,2018,47(6):95-103.SUN D E,DAONG H M,ZHANG S,et al.Internal stress reduction in diamond-like carbon coatings via elemental doping:A Review[J].Surface Technology,2018,47(6):95-103.(in Chinese)

    • [9] 张婷,何娟,任瑛,等.类金刚石薄膜残余应力的研究进展 [J].材料导报,2016,30(1):84-87,95.ZHANG T,HE J,REN Y,et al.Progress and perspectives of the residual stress of diamond-like carbon thin film[J].Materials Reports,2016,30(1):84-87,95.(in Chinese)

    • [10] LI A,CHEN Q,WU G,et al.Probing the lubrication mechanism of multilayered Si-DLC coatings in water and air environments[J].Diamond and Related Materials,2020,105:107772.

    • [11] XU P,WANG Y,CAO X,et al.The tribological properties of DLC/SiC and DLC/Si3N4 under different relative humidity:The transition from abrasive wear to tribo-chemical reaction [J].Ceramics International,2021,47(3):3901-3910.

    • [12] SHARIFAHMADIAN O,MAHBOUBI F,OSKOUIE A.Structural evolution and tribological behavior of nitrogen-doped DLC coatings deposited by pulsed DC PACVD method [J].Diamond and Related Materials,2019,91:74-83.

    • [13] HE D,SHANG L,LU Z,et al.Tailoring the mechanical and tribological properties of B4C/a-C coatings by controlling the boron carbide content [J].Surface and Coatings Technology,2017,329:11-18.

    • [14] SHARIFAHMADIAN O,MAHBOUBI F.A comparative study of microstructural and tribological properties of N-DLC/DLC double layer and single layer coatings deposited by DC-pulsed PACVD process [J].Ceramics International,2019,45(6):7736-7742.

    • [15] BOOTKUL D,SUPSERMPOL B,SAENPHINIT N,et al.Nitrogen doping for adhesion improvement of DLC film deposited on Si substrate by Filtered Cathodic Vacuum Arc(FCVA)technique[J].Applied Surface Science,2014,310:284-292.

    • [16] ZHANG N,LIN L,LIU B,et al.Tribological properties improvement of H-DLC films through reconstruction of microstructure and surface morphology by low-energy helium ion irradiation[J].Diamond and Related Materials,2020,109:108080.

    • [17] ZHANG R,SHEN M,HE Z.The unusual tribological behavior of diamond-like carbon films under high vacuum[J].Surface and Interface Analysis,2020,52(6):339-347.

    • [18] ALMEIDA L S,SOUZA A R M,COSTA L H,et al.Effect of nitrogen in the properties of diamond-like carbon(DLC)coating on Ti6Al4V substrate [J].Materials Research Express,2020,7(6):065601.

    • [19] SALIMON I A,TEMIROV A A,KUBASOV I V,et al.Characterization of Si-DLC films synthesized by low cost plasmaenhanced chemical vapor deposition [J].Materials Today:Proceedings,2020.

    • [20] MILEWSKI K,MADEJ M.Structure and mechanical properties of diamond-like carbon(DLC)coatings doped with silicon[J].Metalurgija,2020,59(4):481-484.

    • [21] GUO C Q,LIN S S,GAO D,et al.Modulation of Si on microstructure and tribo-mechanical properties of hydrogen-free DLC films prepared by magnetron sputtering[J].Applied Surface Science,2020,509:145381.

    • [22] LAN H,KATO T,LIU C.Molecular dynamics simulations of atomic-scale tribology between amorphous DLC and Si-DLC films [J].Tribology International,2011,44(11):1329-1332.

    • [23] ZHANG M,XIE T,QIAN X,et al.Mechanical properties and biocompatibility of Ti-doped diamond-like carbon films[J].ACS Omega,2020,5(36):22772-22777.

    • [24] BEAKE B D,MCMASTER S J,LISKIEWICZ T W,et al.Influence of Si-and W-doping on micro-scale reciprocating wear and impact performance of DLC coatings on hardened steel[J].Tribology International,2021:107063.

    • [25] YU W,WANG J,HUANG W,et al.Improving high temperature tribological performances of Si doped diamond-like carbon by using W interlayer[J].Tribology International,2020,146:106241.

    • [26] DAI W,LIU J,GENG D,et al.Microstructure and property of diamond-like carbon films with Al and Cr co-doping deposited using a hybrid beams system [J].Applied Surface Science,2016,388:503-509.

    • [27] CAO H,YE X,LI H,et al.Microstructure,mechanical and tribological properties of multilayer Ti-DLC thick films on Al alloys by filtered cathodic vacuum arc technology[J].Materials & Design,2021,198:109320.

    • [28] HUANG L,YUAN J,LI C,et al.Microstructure,tribological and cutting performance of Ti-DLC/α-C:H multilayer film on cemented carbide[J].Surface and Coatings Technology,2018,353:163-170.

    • [29] ZHOU Y,LI L,SHAO W,et al.Mechanical and tribological behaviors of Ti-DLC films deposited on 304 stainless steel:Exploration with Ti doping from micro to macro [J].Diamond and Related Materials,2020,107:107870.

    • [30] DUMINICA F D,BELCHI R,LIBRALESSO L,et al.Investigation of Cr(N)/DLC multilayer coatings elaborated by PVD for high wear resistance and low friction applications[J].Surface and Coatings Technology,2018,337:396-403.

    • [31] AMANOV A,WATABE T,TSUBOI R,et al.Fretting wear and fracture behaviors of Cr-doped and non-doped DLC films deposited on Ti-6Al-4V alloy by unbalanced magnetron sputtering [J].Tribology International,2013,62:49-57.

    • [32] KHADEM M,KIM D-E.Friction and wear behaviors of bare and diamond-like carbon/chromium bi-layer coated SKH51 steel at low temperatures[J].Surface and Coatings Technology,2021,412:127018.

    • [33] VITU T,ESCUDEIRO A,POLCAR T,et al.Sliding properties of Zr-DLC coatings:The effect of tribolayer formation [J].Surface and Coatings Technology,2014,258:734-745.

    • [34] MA G,LIN G,SUN G,et al.Characteristics of DLC containing Ti and Zr films deposited by reactive magnetron sputtering[J].Physics Procedia,2011,18:9-15.

    • [35] CAO L,LIU J,WAN Y,et al.Corrosion and tribocorrosion behavior of W doped DLC coating in artificial seawater [J].Diamond and Related Materials,2020,109:108019.

    • [36] GHASEMI M H,GHASEMI B,SEMNANI H R M.Wear performance of DLC coating on plasma nitrided astaloy Mo[J].Diamond and Related Materials,2019,93:8-15.

    • [37] TANG X S,WANG H J,FENG L,et al.Mo doped DLC nanocomposite coatings with improved mechanical and blood compatibility properties [J].Applied Surface Science,2014,311:758-762.

    • [38] ZHOU B,XU B,XU Y,et al.Selective bonding effect on microstructure and mechanical properties of(Al,N)-DLC composite films by ion beam-assisted cathode arc evaporation[J].Applied Physics A,2018,125(1):34.

    • [39] GOTO M.Preparations and tribological properties of soft-metal/DLC composite coatings by RF magnetron sputter using composite targets[J].International Journal of Mechanics and Materials in Design,2018,14(3):313-327.

    • [40] MANNINEN N K,RIBEIRO F,ESCUDEIRO A,et al.Influence of Ag content on mechanical and tribological behavior of DLC coatings[J].Surface and Coatings Technology,2013,232:440-446.

    • [41] DIMIGEN H,KLAGES C-P.Microstructure and wear behavior of metal-containing diamond-like coatings[J].Surface and Coatings Technology,1991,49(1):543-547.

    • [42] CHEN C,TANG W,LI X,et al.Structure and cutting performance of Ti-DLC films prepared by reactive magnetron sputtering[J].Diamond and Related Materials,2020,104:107735.

    • [43] CUI J,QIANG L,ZHANG B,et al.Mechanical and tribological properties of Ti-DLC films with different Ti content by magnetron sputtering technique [J].Applied Surface Science,2012,258(12):5025-5030.

    • [44] GUO Y,GUO P,SUN L,et al.Tribological properties of Tidoped diamond-like carbon coatings under dry friction and PAO oil lubrication [J].Surface and Interface Analysis,2019,51(3):361-370.

    • [45] WANG Q,ZHOU F,ZHOU Z,et al.Influence of Ti content on the structure and tribological properties of Ti-DLC coatings in water lubrication [J].Diamond and Related Materials,2012,25:163-175.

    • [46] SANTIAGO J A,FERNÁNDEZ-MARTÍNEZ I,SÁNCHEZLÓPEZ J C,et al.Tribomechanical properties of hard Cr-doped DLC coatings deposited by low-frequency HiPIMS [J].Surface and Coatings Technology,2020,382:124899.

    • [47] ZOU C W,WANG H J,FENG L,et al.Effects of Cr concentrations on the microstructure,hardness,and temperaturedependent tribological properties of Cr-DLC coatings [J].Applied Surface Science,2013,286:137-141.

    • [48] ZHU L N,LI J C,KANG J J,et al.Different Cr contents on the microstructure and tribomechanical properties of multi-layered diamond-like carbon films prepared by unbalanced magnetron sputtering [J].Journal of Materials Engineering and Performance,2020,29(11):7131-7140.

    • [49] DAI W,WANG A.Synthesis,characterization and properties of the DLC films with low Cr concentration doping by a hybrid linear ion beam system[J].Surface and Coatings Technology,2011,205(8-9):2882-2886.

    • [50] DAI W,WANG A.Deposition and properties of Al-containing diamond-like carbon films by a hybrid ion beam sources [J].Journal of Alloys and Compounds,2011,509(13):4626-4631.

    • [51] XU W,LIN S,DAI M,et al.Effects of bias voltage on the microstructure and properties of Al-doped hydrogenated amorphous carbon films synthesized by a hybrid deposition technique[J].Vacuum,2018,154:159-166.

    • [52] GONG Y L,JING P P,ZHOU Y J,et al.Formation of rodshaped wear debris and the graphitization tendency of Cu-doped hydrogenated diamond-like carbon films [J].Diamond and Related Materials,2020,102:107654.

    • [53] KHAMSEH S,ALIBAKHSHI E,MAHDAVIAN M,et al.Magnetron-sputtered copper/diamond-like carbon composite thin films with super anti-corrosion properties [J].Surface and Coatings Technology,2018,333:148-157.

    • [54] JING P P,MA D L,GONG Y L,et al.Influence of Ag doping on the microstructure,mechanical properties,and adhesion stability of diamond-like carbon films[J].Surface and Coatings Technology,2020:126542.

    • [55] CLOUTIER M,TURGEON S,BUSBY Y,et al.Controlled distribution and clustering of silver in Ag-DLC nanocomposite coatings using a hybrid plasma approach [J].ACS Applied Materials & Interfaces,2016,8(32):21020-21027.

    • [56] GAYATHRI S,KUMAR N,KRISHNAN R,et al.Influence of transition metal doping on the tribological properties of pulsed laser deposited DLC films[J].Ceramics International,2015,41(1):1797-1805.

    • [57] MARCIANO F R,BONETTI L F,SANTOS L V,et al.Antibacterial activity of DLC and Ag-DLC films produced by PECVD technique[J].Diamond and Related Materials,2009,18(5-8):1010-1014.

    • [58] PATNAIK L,MAITY S R,KUMAR S.Comprehensive structural,nanomechanical and tribological evaluation of silver doped DLC thin film coating with chromium interlayer(Ag-DLC/Cr)for biomedical application [J].Ceramics International,2020,46(14):22805-22818.

    • [59] PAUL R,PAL A K.Ni-DLC composite films prepared by CVD technique:Synthesis and characterization[J].Advanced Science Letters,2010,3(3):323-332.

    • [60] ZHOU H,HOU Q,XIAO T,et al.The composition,microstructure and mechanical properties of Ni/DLC nanocomposite films by filtered cathodic vacuum arc deposition [J].Diamond and Related Materials,2017,75:96-104.

    • [61] MIYAKE S,SAITO T,YASUDA Y,et al.Improvement of boundary lubrication properties of diamond-like carbon(DLC)films due to metal addition[J].Tribology International,2004,37(9):751-761.

    • [62] REN N,MA Z J,ZHAO D C,et al.Preparation and property of a Fe-Doped DLC multilayer by ion sources[J].Materials Science Forum,2010,654-656:1908-1911.

    • [63] SHEN Y,ZHANG Z,LIAO B,et al.Comparative study on effects of Ni ion implantation on amorphous carbon(a-C)coating and tetrahedral amorphous carbon(ta-C)coating[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2020,467:1-8.

    • [64] XU X,GUO P,ZUO X,et al.Understanding the effect of Al/Ti ratio on the tribocorrosion performance of Al/Ti co-doped diamond-like carbon films for marine applications [J].Surface and Coatings Technology,2020,402:126347.

    • [65] KONG C,GUO P,SUN L,et al.Tribological mechanism of diamond-like carbon films induced by Ti/Al co-doping [J].Surface and Coatings Technology,2018,342:167-177.

    • [66] GUO T,KONG C,LI X,et al.Microstructure and mechanical properties of Ti/Al co-doped DLC films:Dependence on sputtering current,source gas,and substrate bias[J].Applied Surface Science,2017,410:51-59.

    • [67] JI L,WU Y,LI H,et al.The role of trace Ti concentration on the evolution of microstructure and properties of duplex doped Ti(Ag)/DLC films[J].Vacuum,2015,115:23-30.

    • [68] ZHOU B,PILIPTSOU D G,JIANG X,et al.Structure and mechanical properties of Ni and Cr binary doped amorphous carbon coatings deposited by magnetron sputtering and pulse cathodic arc[J].Thin Solid Films,2020,701:137942.

    • [69] ZHANG Y G,SUN W C,DONG Y R,et al.Electrodeposition and microstructure of Ni and B co-doped diamond-like carbon(Ni/B-DLC)films [J].Surface and Coatings Technology,2021,405:126713.

    • [70] LIU X,YANG J,HAO J,et al.Microstructure,mechanical and tribological properties of Si and Al co-doped hydrogenated amorphous carbon films deposited at various bias voltages [J].Surface and Coatings Technology,2012,206(19):4119-4125.

    • [71] RODRIGUEZ B J,SCHILLER T L,PROPRENTNER D,et al.Effect of chromium doping on high temperature tribological properties of silicon-doped diamond-like carbon films [J].Tribology International,2020,152:106546.

  • 手机扫一扫看