en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李杰,男,1979年出生,博士,高级工程师。主要研究方向为机械类金属材料。E-mail:jetlee@126.com

中图分类号:TH117

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210305001

参考文献 1
WANG C Y,LI X D,CHANG Y,et al.Comparison of three-body impact abrasive wear behaviors for quenching-partitioning-tempering and quenching-tempering 20Si2Ni3 steels[J].Wear,2016,362-363:121-128.
参考文献 2
CAO J,YIN Z,LI H,et al.Tribological studies of soft and hard alternated composite coatings with different layer thicknesses[J].Tribology International,2017,110:326-332.
参考文献 3
唐彩,陈波.渗氮温度对40Cr钢 QPQ 组织与性能的影响 [J].金属热处理,2020,45(3):174-177.TANG C,CHEN B.Effect of nitriding temperature on microstructure and properties of QPQ treated 40Cr alloy steel [J].Heat Treatment of Metals,2020,45(3):174-177.(in Chinese)
参考文献 4
KATSUYA H,MASAYASU N,WATARU T,et al.Effect of Al-based oxide layer on frictional properties of hot-dip galvanized steel sheets[J].ISIJ International,2017,57(5):895-904.
参考文献 5
LEE S,JOUN M,KIM D,et al.Effect of elastic-plastic behavior of coating layer on drawability and frictional characteristic of galvannealed steel sheets [J].Journal of Mechanical Science and Technology,2016,30(7):3313-3319.
参考文献 6
MISHRA T,GANZENMÜLLER G C,ROOIJ M D,et al.Modelling of ploughing in a single-asperity sliding contact using material point method[J].Wear,2019,418:180-190.
参考文献 7
MISHRA T,ROOIJ M D,SHISODE M,et al.Analytical,numerical and experimental studies on ploughing behaviour in soft metallic coatings[J].Wear,2020,203219,448-449:1-16.
参考文献 8
MISHRA T,ROOIJ M D,SHISODE M,et al.A material point method based ploughing model to study the effect of asperity geometry on the ploughing behaviour of an elliptical asperity[J].Tribology International,2020,106017,142:1-17.
参考文献 9
雷临苹,叶宏,崔文语.QPQ 处理后H13钢的组织与性能 [J].金属热处理,2018,43(5):124-127.LEI L P,YE H,CUI W Y.Microstructure and properties of H13 steel after QPQ treatment[J].Heat Treatment of Metals,2018,43(5):124-127.(in Chinese)
参考文献 10
XIANG H L,WU GX,LIU D,et al.Effect of quench polish quench nitriding temperature on the microstructure and wear resistance of SAF2906 duplex stainless steel[J].Metals,2019,9(8):848-857.
参考文献 11
ALBERTO CAMPAGNOLO,MANUELE DABALÀ,GIOVANNI MENEGHETTI.Effect of salt bath nitro carburizing and post-oxidation on static and fatigue behaviours of a construction steel [J].Metals,2019,9(12):1306-1324.
参考文献 12
LIU Y J,SUN Y F,ZHANG W L,et al.Effect of QPQ nitriding parameters on properties of pearlite ductile cast iron [J].International Journal of Metal Casting,2020,14(2):556-563.
参考文献 13
LU S J,MENG F N,CAI W,et al.Effect of QPQ treatment on the performance for H13 die steel [J].Acta Metallurgica Slovaca,2017,23(3):251-256.
参考文献 14
HUTT S,CLARKE A,EVANS H P.Generation of Acoustic Emission from the running-in and subsequent micropitting of a mixed-elastohydrodynamic contact [J].Tribology International,2018,119:270-280.
参考文献 15
HIROO TAURA,KAZUKI NAKAYAMA.Behavior of acoustic emissions at the onset of sliding friction [J].Tribology International,2018,123:155-160.
参考文献 16
FENG P P,BORGHESANI P,SMITH W A,et al.A review on the relationships between acoustic emission,friction and wear in mechanical systems[J].Applied Mechanics Reviews,2020,72(2):020801.
参考文献 17
HAO Q SH,SHEN Y,WANG Y,et al.A fractal model of acoustic emission signals in sliding friction [J].Tribology Letters,2019,67(1):31.
参考文献 18
NOUSHIN MOKHTARI,JONATHAN GERALD PELHAM,SEBASTIAN NOWOISKY,et al.Friction and wear monitoring methods for journal bearings of geared turbofans based on acoustic emission signals and machine learning[J].Lubricants,2020,8(3):29-55.
参考文献 19
袭晟堃,李强.四点弯曲条件下热障涂层断裂模式的声发射表征[J].中国表面工程,2019,32(3):138-153.XI S K,LI Q.Characterization of fracture modes for thermal barrier coatings by acoustic emission under four-point bending [J].China Surface Engineering,2019,32(3):138-153.(in Chinese)
参考文献 20
THAWHID K,YUKIO T,HIROSHI Y,et al.Friction and wear mechanisms in boundary lubricated oxy-nitrided treated samples [J].Wear,2016,368:101-115.
参考文献 21
温诗铸,黄平,田煜,等.摩擦学原理[M].北京:清华大学出版社,2018.WEN S Z,HUANG P,TIAN Y,et al.Principles of tribology [M].Beijing:Tsinghua University Press,2018.(in Chinese)
参考文献 22
薛进进,孙琨,方亮,等.30CrMnSiNi2A 钢干滑动摩擦磨损特性研究[J].摩擦学学报,2016,36(5):614-621.XUE J J,SUN K,FANG L,et al.Friction and wear characteristics of 30CrMnSiNi2A steel at dry sliding condition [J].Tribology,2016,36(5):614-621.(in Chinese)
参考文献 23
ZHONG H,DAI L,YUE Y,et al.Tribological properties of plasma-nitrided AISI 4340 steel in vacuum [J].Materials Science and Technology,2016,32(4):275-281.
参考文献 24
MICHELA F,CANDIDA P,MATTEO L,et al.Effect of desert sand on wear and rolling contact fatigue behaviour of various railway wheel steels[J].Wear,2018,396-397:146-161.
参考文献 25
陆宝山,王雷刚,季业益,等.镀锌板的摩擦磨损特性及微观机理研究[J].热加工工艺,2018,47(16):41-43.LU B S,WANG L G,JI Y Y,et al.Research on friction wear characters and microcosmic mechanism of galvanized sheets[J].Hot Working Technology,2018,47(16):41-43.(in Chinese)
参考文献 26
THAWHID K,SHUNSUKE K,YUKIO T,et al.Effects of using alternative extreme pressure(EP)and antiwear(AW)additives with Oxy nitrided samples[J].Tribology Letters,2018,66(1):43-56.
参考文献 27
ZHANG L,REN C,YU Q,et al.Microstructure and properties of 1Cr12Ni2WMoVNb(GX-8)steel bored barrels with and without QPQ treatment [J].Surface and Coatings Technology,2017,315:95-104.
参考文献 28
RASTEGAEV A,MERSON D L,DANYUK A V,et al.Using acoustic emission signal categorization for reconstruction of wear development timeline in tribosystems:Case studies and application examples[J].Wear,2018,410-411:83-92.
参考文献 29
ZHE G,DEBASHIS P,TOM R.Using acoustic emission to characterize friction and wear in dry sliding steel contacts [J].Tribology International,2019,134:394-407.
参考文献 30
CLARKE A,WEEKS I J J,SNIDLE R W,et al.Running-in and micropitting behavior of steel surfaces under mixed lubrication conditions[J].Tribology International,2016,101:59-68.
目录contents

    摘要

    表面处理是提高机械零部件耐磨性能和使用寿命的有效方法。 针对某型号石油装备产品机械手抓手上使用的 40Cr 钢销轴,对表面分别采用镀锌处理和盐浴复合处理(Quench-polish-quench, QPQ),对比研究基体材料及两种不同表面处理后试样的球-平板往复干摩擦磨损行为,并对摩擦过程中产生的声发射信号进行记录和分析。 试验结果表明,QPQ 处理后表面硬度显著提高,深度方向的硬度分布满足设计要求,有效硬化层深度为 0. 3 mm。 各试样基体均为细小均匀的回火索氏体组织, 镀锌试样表面镀层厚度 25 μm,QPQ 处理的试样表面形成了氧化层+化合物层+扩散层组织。 两者摩擦因数曲线变化规律有一定差别,先上升后下降,随后达到稳定值。 镀锌试样摩擦因数更高,最大达到 0. 50,随后逐步稳定于 0. 36;而 QPQ 试样最高仅为 0. 18,并迅速达到稳定阶段至 0. 16。 同时,镀锌试样摩擦曲线上的微小波动更明显,摩擦过程不稳定程度更大。 镀锌试样表面磨痕的最大深度比 QPQ 试样稍小,但最大宽度更大,磨损体积更大。 声发射信号事件计数与摩擦因数之间存在相同的变化规律,即摩擦因数越高,声发射信号事件计数越多,信号数量与摩擦磨损的各阶段存在对应关系。 相对来说,镀锌试样的声发射信号事件计数更多,信号能量也更大。

    Abstract

    As an effective way to improve the wear resistant property and service life of mechanical components, surface treatment has been widely used in industrial fields. Pins made of 40Cr steel, used on the grab of a certain type of petroleum equipment product manipulator, were galvanized and Quench-Polish-Quench (QPQ) treated, respectively. Then, dry friction behaviors in ball-on-plate reciprocating mode of base metal and two different surface treated samples were studied comparatively, and acoustic emission (AE) signals produced in the friction process were also recorded and analyzed. The results showed that the surface hardness of QPQ treated sample was significantly increased and the hardness distribution in depth direction met the design requirements, with effective hardening layer depth of 0. 3mm. Fine and uniform tempered sorbite were observed in base metal of all samples, with coating thickness of 25 μm for galvanized sample, and oxide layer+compound layer+diffusion layer for QPQ treated sample. The curves of coefficient of friction (CoF) vs. time of all samples illustrated different changing laws, increasing first and then decreasing to a stable value. The CoF of galvanized sample was higher, and the maximum value is 0. 50, then gradually stabilized at 0. 36; while the maximum value of QPQ treated sample was only 0. 18, and rapidly reached the stable stage to 0. 16. At the same time, the micro fluctuations on the friction curve of the galvanized sample was more obvious, showing greater instability in the friction process. The maximum depth of wear track of galvanized sample was slightly smaller than that of QPQ ones, with bigger maximum width and larger wear volume. The higher the CoF was, the more AE signal events were counted, demonstrating a corresponding relationship between the number of AE signal events and each stage of friction and wear. Relatively more AE signals and higher energy signals were monitored in friction process of galvanized sample than QPQ treated ones.

  • 0 前言

  • 现代工程机械的服役条件往往非常恶劣,摩擦磨损是零部件常见的失效形式之一,给工程机械产品带来了大量问题,例如力学性能恶化、设备精度降低、使用寿命缩短等[1]。为减轻摩擦磨损实际工况对产品的影响,研究人员对零件表面进行多种处理(例如涂镀层),以提高耐磨性能和防腐蚀性能,进而显著提高使用寿命,其中镀锌处理和QPQ处理是两种常见的处理方法[2-3]

  • 镀锌是一种在硬质的钢铁基体表面附上一层软质金属的工艺,由于抗腐蚀性能优异,镀锌钢板在汽车和机械工业领域获得广泛应用[4]。 LEE等[5] 研究表明,镀锌层的厚度和硬度都影响产品耐磨性能。 MISHRA等[6]提出了“材料点方法”(Material point method, MPM)模型用于研究钢板摩擦过程,并使用该模型和“分析犁耕”(Analytical ploughing)模型对比研究了镀锌层厚度和硬度[7]、上压头尺寸和滑动方向[8]对摩擦行为的影响。

  • 盐浴复合处理(Quench-polish-quench, QPQ)是一种新兴的表面热处理技术,实质是钢材盐浴碳氮共渗后再进行盐浴氧化,在金属表面渗入一定量的其他元素(N、C、O等)而形成化合物层,能够大幅度提高钢材的耐蚀性、耐磨性和抗疲劳性能[9],技术核心为氮化和氧化过程[10-11]。作为一种有效的表面处理方法,QPQ技术广泛应用于制造领域,以提高零部件耐磨和抗腐蚀性能。近年来,各国学者研究了QPQ处理中的氮化温度[10,12]、氮化时间[12-13] 等参数对多种材料性能的影响。

  • 声发射(Acoustic emission,AE)检测技术是快速发展的一种高灵敏度在线无损检测技术。 AE是由能量释放而造成的超声应力波释放,通常在材料塑性变形、裂纹扩展、摩擦磨损等过程中发生[14]。作为一种动态监测方法,声发射技术在工程领域的检测和监控方面具有很大的应用潜力,有学者将其应用于摩擦磨损研究[15]。 FENG等[16] 总结了摩擦学参数、试验参数和声发射信号特征之间关系的理论模型和试验研究。 HAO等[17]提出了基于弹塑性变形过程的分形理论模型,用于研究摩擦过程的声发射信号。NOUSHIN等[18]提出了基于声发射信号机器学习算法判断磨损阶段的智能系统。此外,还有学者将声发射技术应用于热障涂层断裂模式的相关研究[19]

  • 目前,针对40Cr钢销轴不同表面处理后的摩擦磨损性能对比报道不多见,特别是缺乏结合声发射技术的对比研究。本工作以某型号石油装备产品机械手抓手上使用的销轴为对象,针对镀锌和QPQ两种不同的表面处理工艺,研究其在球-平板往复运动形式下的干摩擦磨损行为,同时研究声发射信号与摩擦过程的对应关系,为表面处理工艺的合理选用提供试验依据。

  • 1 试验样件及试验方法

  • 1.1 试验样件

  • 试验样件为销轴,基体材料为调质处理的40Cr钢( 满足GB/T3077-2015要求), 硬度280~320HBW,化学成分见表1。

  • 表1 试验样件的化学成分

  • Table1 Chemical composition of tested sample(w/%)

  • 对基体材料采用QPQ工艺进行表面处理,相关设备均为企业自制装置。处理时先对销轴基体使用丙酮超声清洗并风干,然后将其放在570℃ 氮化盐浴中保温120min,随后在400℃ 氧化盐浴中保温60min,得到QPQ处理试样,其具体工艺过程为:去油清洗-预热-盐浴渗氮-盐浴氧化-抛光-二次氧化-清洗-干燥。 QPQ处理样件要求表面硬度大于500HV,有效硬化深度大于0.1mm。镀锌处理销轴从市场购买。图1为试验样件实物,黄色为镀锌处理样件,黑色为QPQ处理样件。

  • 1.2 理化检验

  • 使用美国Wilson公司402MVD型显微硬度计测试试验样件心部硬度和表面硬度分布,压头载荷2.94N(即为HV0.3)。测试镀层硬度时压头载荷0.98N(即为HV0.1 )。试验前对试样横截面进行机械抛光。

  • 将试验样件进行线切割取样并预磨抛光后,采用4%硝酸酒精溶液擦拭,并使用日本Olympus公司GX51型金相显微镜观察微观组织。

  • 图1 试验销轴(黄色为镀锌处理,黑色为QPQ处理)

  • Fig.1 Tested pins, galvanized sample in yellow, and QPQ treated sample in black

  • 1.3 摩擦磨损

  • 摩擦磨损试验在美国CETR公司UMT-3H型摩擦磨损试验机上进行,按照ASTM G133试验标准,采用球-平板往复摩擦模式,其中上试样为设备厂商提供的WC球,直径9.5mm。下试样为待测样件,正向载荷50N,往复距离2mm,频率5Hz,试验时间10min,实时记录摩擦因数。试验后对试样进行超声波清洗, 无水酒精擦拭吹干并使用美国Bruker公司NPFLEX-LA型非接触式三维表面光学形貌仪对试样表面磨痕进行观察。

  • 1.4 声发射信号监测

  • 将声发射传感器放置在上压头夹具上,在摩擦磨损试验时实时测试声发射信号。试验使用日本富士公司AE144S型声发射传感器(谐振频率140 ± 20%kHz,灵敏度(70±3) dB),并使用长沙鹏翔电子科技有限公司的PXDAQ24260B型声发射仪(输入量程±100mV,采样分辨率24bit) 对信号进行采集和处理。试验采样频率为1250kHz,信号波形门槛值设置为35dB。放置传感器时,必须保证连接处表面清洁,并涂上专用的耦合剂。试验前,断铅试验结果表明传感器接触良好。

  • 2 结果与分析

  • 2.1 硬度

  • 镀锌处理的销轴,镀层硬度为(94±3) HV0.1,基体硬度为(297±4) HV0.3 。 QPQ处理的销轴表面硬度为(555± 5) HV0.3,心部硬度为(301 ± 3) HV0.3 。图2为QPQ处理试样从表面到心部的硬度分布,参考“GB/T11354--2005钢铁零件渗氮层深度测定和金相组织检验” 的试验方法,采用硬度法进行判定,结果表明有效硬化层深度为0.3mm。硬度试验结果达到技术条件要求。

  • 图2 QPQ处理试样从表面到心部的硬度分布

  • Fig.2 Distribution of hardness from surface to core of QPQ treated sample

  • 2.2 微观组织

  • 图3 为试验销轴的微观组织,基体均为细小均匀的回火索氏体组织,表明基体材料经过了合适的调质热处理。图3a镀锌处理试样表面镀层厚度约25 μm。图3b为QPQ处理试样,表面存在化合物层,主要为弥散分布的硬质氮化物( 例如CrN、 Fe2-3N等) [10],形成了氧化层+化合物层+扩散层组织[13]

  • 图3 销轴微观组织

  • Fig.3 Microstructure of tested pins

  • 2.3 摩擦磨损

  • 图4 为基体材料和两种表面处理后销轴的摩擦因数曲线,可以看出,其变化规律有差别。随着摩擦试验过程的进行,基体材料摩擦因数迅速增大到0.62,随后又迅速降低并稳定在0.28。镀锌销轴摩擦系数逐步增大,在80s时达到最高0.50,保持约15s,随后逐渐减小,在170s后稳定在0.36。 QPQ处理销轴的摩擦因数在试验开始后上升较快,在30s时即达到峰值0.18,随后下降并稳定在0.16。试验结果证实了QPQ处理降低摩擦因数的作用[20]。此外,QPQ处理销轴的摩擦因数曲线在微小时间尺度范围内较平滑,而镀锌处理销轴的摩擦因数出现较大起伏,曲线在小尺度上出现较大振动,如图4中放大方框所示。

  • 图4 不同表面处理销轴的摩擦因数

  • Fig.4 Coefficient of friction vs.experimental time of different surface treated sample

  • 由滑动摩擦理论可知,摩擦因数的变化规律同表面状态、磨损形式的转化、接触点的大小、变形状态等因素相关[21]。初始磨损阶段(即跑合阶段), 摩擦副之间实际上是表面微凸体之间的接触,摩擦主要出现在摩擦副表面微凸体之间,实际接触面积远小于表观接触面积,因此开始磨损时,摩擦因数急剧增大,见图4。随着摩擦磨损的进行,微凸体产生变形,逐渐磨平甚至直接被磨掉,表面趋于光滑,摩擦面之间由点接触变为面接触,接触面积增大,摩擦面的接触应力减小,摩擦副之间的接触状态得以改善,使摩擦因数降低,进入稳定磨损期,呈现出典型的干滑动摩擦磨损特征[22]

  • MISHRA等[7]认为,镀层试样上的摩擦因数与镀层和基体的材料性能、接触面的剪切强度和镀层厚度有关。 QPQ处理后摩擦因数减小,主要是由于表面复合层[20]。由于镀锌层较软,摩擦过程中发生黏着以及锌的分层[4],同时,试样表面金属-氧化物摩擦副(QPQ处理)接触的阻力小于金属-金属摩擦副(镀锌), 因此镀锌试样的摩擦因数高于QPQ试样。

  • 由图4还可以看出,试验过程中摩擦因数均出现不同程度的波动,表明摩擦过程不稳定。摩擦磨损过程中,往往是多种磨损形式共存并相互作用的过程,磨损形式的转化必然引起摩擦因数的变化[23]。往复式干摩擦运动是一种断续的滑动,摩擦过程中积聚大量的热量使接触点间产生黏着,在摩擦力作用下被剪切而发生转移,黏着点的形成与剪切脱落交替进行,从而导致摩擦因数出现波动。镀锌试样表层硬度比QPQ试样低,微观上接触点的变形、黏着和剪切脱落更明显,因此曲线波动更严重(即镀锌试样的摩擦因数在微小时间范围内变化程度更大),见图4中曲线局部放大所示。

  • 2.4 磨痕三维形貌

  • 图5 为销轴表面磨痕的三维形貌。可以看到, 基体金属原始表面存在一定的起伏,镀锌处理后表面更加平整,而QPQ处理后表面出现较多较深的凹坑。摩擦试验后,磨痕形状规则,呈中部较深的沟槽状,两侧塑性变形较小。此外,QPQ处理试样的磨痕内部还有部分凹坑尚未磨平,如图5c箭头所示。

  • 图5 销轴表面磨痕三维形貌

  • Fig.5 3D surface profiles of wear tracks

  • 表2 列出了3种状态下试样表面磨痕中部横截面实测的最大宽度和最大深度。按照上压头理想压入的几何关系[7],压入深度d p 与压头半径 r、接触半径 a 存在如下关系

  • dp=r-r2-a2
    (1)
  • 由于磨痕两侧塑性变形较小,假定其最大宽度即为接触半径的2倍,则根据实测最大宽度由上式可计算压入深度d p,列入表2中。结果表明,镀锌试样磨痕的最大深度比QPQ试样的稍小,但最大宽度更大,与基体材料的磨痕宽度相当,磨损体积比QPQ试样的更大。同时,实测的最大深度均小于计算得到的压入深度,并且镀锌试样的差值比QPQ试样的更大。

  • 表2 表面磨痕横截面尺寸

  • Table2 Dimensions of cross section of wear tracks

  • 刚性球形压头在塑性镀层表面摩擦时会有两种接触条件,第一阶段压头只与镀层接触,第二阶段压头与镀层和基体均接触,取决于犁耕深度与镀层厚度的关系[7]。金属摩擦副的滑动摩擦是一个复杂的动态过程。往复滑动过程中,对磨球对试件表面起拉力作用,引起表层和亚表层材料中的剪切应力, 当剪切应力超过材料的屈服强度时,开始出现塑性变形,并在往复载荷作用下剪切变形累积,并在某些位置产生应力集中(如材料微观缺陷、硬质颗粒物处等) [21]。镀锌试样的金属镀层硬度较低,塑性变形更严重。塑性变形的不断累积使局部材料塑性逐渐丧失[24],从而易于剥落,形成更大的磨痕。陆宝山等[25]研究表明,在干摩擦条件下,镀锌板的磨损经历了磨合磨损、磨粒磨损和黏着磨损3个阶段,锌镀层发生脱落直至完全失去效用。同时,摩擦接触面的化学元素影响局部摩擦薄膜的厚度,QPQ试样摩擦处为铁氮化物而不是新暴露的基体金属,会降低活跃程度和薄膜厚度,同时摩擦表面形成短链的聚磷酸盐,改善表面的力学性能和流变性能,从而提高耐磨性能[20,26]。此外,QPQ处理试样表面形成的微观凹坑形貌可以进一步提高耐磨性能,一方面减小了接触面积,另一方面凹坑中还可以保存一定的氧化物磨屑作为润滑剂,降低磨损,见图5c。

  • 因此,正是QPQ处理后试样表面形成了高硬度的化合物层和紧密渗透层,使工件的耐磨性能和使用寿命显著提高[27],同时产生了表面压应力,还能提高零件的疲劳性能[11]

  • 2.5 摩擦声发射信号

  • 两种表面处理的销轴在摩擦试验过程中的声发射信号见图6。作为对比,将图4中的摩擦因数也列出。结果表明,声发射信号爆发阶段与摩擦因数迅速增大阶段相对应,即伴随着摩擦因数的迅速增大并短暂保持在一个较高水平,高能量的摩擦声发射信号也会突然增加,随后进入稳定磨损阶段,摩擦因数降低,声发射信号能量也降低并保持稳定。相对来说,镀锌样件的摩擦因数更高,其声发射信号事件计数更多,信号能量也更大。

  • 图6 摩擦声发射信号、摩擦因数随试验时间的变化

  • Fig.6 AE signals and Cofficient vs.experimental time

  • 摩擦磨损过程中材料的弹性或塑性变形、微裂纹扩展等都会产生弹性应力波,即声发射信号,与摩擦磨损的进程相关[16]。监测摩擦损伤发生、发展的不同阶段和研究磨损机制及起始时间点是将声发射测试技术引入摩擦磨损领域的主要目的[28]。很多声发射信号参数都能用于分析摩擦过程,例如时域分析中的声发射事件数、幅度等[29]。摩擦因数和声发射信号的变化规律与接触面粗糙度、温度、颗粒物等多种因素有关[14]。在最初的磨合阶段,由于接触表面存在大量微观起伏,相互接触、碰撞并造成大量的微观塑性变形[30],产生大量高能量信号,声发射事件计数迅速增加,因此摩擦因数和声发射信号均出现极短暂的高峰。随着摩擦磨损进入稳定阶段, 局部接触表面磨平光滑,粗糙度下降,摩擦因数下降,应力的作用也相对稳定,声发射事件计数也进入稳定期。研究表明,声发射事件率与磨损速率(或声发射累计事件数与磨损体积)成正比[16],而声发射信号的能量与摩擦功成正比[15]。总体来说,镀锌试样塑性变形更严重,与上压头接触面积更大,因此声发射信号能量更高。

  • 需要注意的是,试验过程中摩擦声发射信号很容易被系统背景噪声掩盖, 但其频率范围不一致[18]。背景噪声频率在人耳可以听见的范围,而摩擦信号为高频范围,例如100~300kHz。图7为某一帧幅度58.24dB的摩擦声发射信号时域图和频域图。右上角时域瞬时波形图,由其经快速傅里叶变换FFT得到的频域图,其频率为84kHz。可见, 摩擦声发射信号为突发型信号,且频率较高。

  • 图7 摩擦声发射信号的时域图、频域图

  • Fig.7 Frictional AE signal in time domainand frequency domain(transformed by FFT)

  • 由试验结果可知,声发射信号与摩擦磨损的各阶段存在对应关系。与传统的摩擦和磨损体积测试方法相比,声发射测试对材料变形机制更敏感,包含了更多的信息[29]。声发射技术能有效的实时监测摩擦磨损过程[28],实现故障的早期报警,对于降低维护成本与停工损失十分有用。

  • 3 结论

  • (1) 分别使用镀锌和QPQ两种方法处理40Cr钢销轴试样,其硬度及硬度分布满足设计要求。基体均为细小均匀的回火索氏体组织,QPQ处理的试样形成氧化层+化合物层+扩散层组织。

  • (2) 在球-平板往复干摩擦条件下,两种试样摩擦因数随时间先上升后下降,随后达到稳定值。镀锌试样摩擦因数更高,稳定于0.36,QPQ试样为0.16,并且前者摩擦曲线上的微小波动更明显。

  • (3) 磨痕尺寸方面,镀锌试样磨痕的最大深度比QPQ试样的稍小,但最大宽度更大,磨损体积更大。磨痕形状规则,呈中部较深的沟槽状,两侧塑性变形较小。此外,QPQ处理试样的磨痕内部还有部分凹坑尚未磨平。

  • (4) 声发射信号事件计数与摩擦因数存在相同的变化规律,即伴随着摩擦因数而增大或者减小,最后进入稳定阶段。相对来说,镀锌试样的声发射信号事件计数更多,信号能量也更大。

  • 参考文献

    • [1] WANG C Y,LI X D,CHANG Y,et al.Comparison of three-body impact abrasive wear behaviors for quenching-partitioning-tempering and quenching-tempering 20Si2Ni3 steels[J].Wear,2016,362-363:121-128.

    • [2] CAO J,YIN Z,LI H,et al.Tribological studies of soft and hard alternated composite coatings with different layer thicknesses[J].Tribology International,2017,110:326-332.

    • [3] 唐彩,陈波.渗氮温度对40Cr钢 QPQ 组织与性能的影响 [J].金属热处理,2020,45(3):174-177.TANG C,CHEN B.Effect of nitriding temperature on microstructure and properties of QPQ treated 40Cr alloy steel [J].Heat Treatment of Metals,2020,45(3):174-177.(in Chinese)

    • [4] KATSUYA H,MASAYASU N,WATARU T,et al.Effect of Al-based oxide layer on frictional properties of hot-dip galvanized steel sheets[J].ISIJ International,2017,57(5):895-904.

    • [5] LEE S,JOUN M,KIM D,et al.Effect of elastic-plastic behavior of coating layer on drawability and frictional characteristic of galvannealed steel sheets [J].Journal of Mechanical Science and Technology,2016,30(7):3313-3319.

    • [6] MISHRA T,GANZENMÜLLER G C,ROOIJ M D,et al.Modelling of ploughing in a single-asperity sliding contact using material point method[J].Wear,2019,418:180-190.

    • [7] MISHRA T,ROOIJ M D,SHISODE M,et al.Analytical,numerical and experimental studies on ploughing behaviour in soft metallic coatings[J].Wear,2020,203219,448-449:1-16.

    • [8] MISHRA T,ROOIJ M D,SHISODE M,et al.A material point method based ploughing model to study the effect of asperity geometry on the ploughing behaviour of an elliptical asperity[J].Tribology International,2020,106017,142:1-17.

    • [9] 雷临苹,叶宏,崔文语.QPQ 处理后H13钢的组织与性能 [J].金属热处理,2018,43(5):124-127.LEI L P,YE H,CUI W Y.Microstructure and properties of H13 steel after QPQ treatment[J].Heat Treatment of Metals,2018,43(5):124-127.(in Chinese)

    • [10] XIANG H L,WU GX,LIU D,et al.Effect of quench polish quench nitriding temperature on the microstructure and wear resistance of SAF2906 duplex stainless steel[J].Metals,2019,9(8):848-857.

    • [11] ALBERTO CAMPAGNOLO,MANUELE DABALÀ,GIOVANNI MENEGHETTI.Effect of salt bath nitro carburizing and post-oxidation on static and fatigue behaviours of a construction steel [J].Metals,2019,9(12):1306-1324.

    • [12] LIU Y J,SUN Y F,ZHANG W L,et al.Effect of QPQ nitriding parameters on properties of pearlite ductile cast iron [J].International Journal of Metal Casting,2020,14(2):556-563.

    • [13] LU S J,MENG F N,CAI W,et al.Effect of QPQ treatment on the performance for H13 die steel [J].Acta Metallurgica Slovaca,2017,23(3):251-256.

    • [14] HUTT S,CLARKE A,EVANS H P.Generation of Acoustic Emission from the running-in and subsequent micropitting of a mixed-elastohydrodynamic contact [J].Tribology International,2018,119:270-280.

    • [15] HIROO TAURA,KAZUKI NAKAYAMA.Behavior of acoustic emissions at the onset of sliding friction [J].Tribology International,2018,123:155-160.

    • [16] FENG P P,BORGHESANI P,SMITH W A,et al.A review on the relationships between acoustic emission,friction and wear in mechanical systems[J].Applied Mechanics Reviews,2020,72(2):020801.

    • [17] HAO Q SH,SHEN Y,WANG Y,et al.A fractal model of acoustic emission signals in sliding friction [J].Tribology Letters,2019,67(1):31.

    • [18] NOUSHIN MOKHTARI,JONATHAN GERALD PELHAM,SEBASTIAN NOWOISKY,et al.Friction and wear monitoring methods for journal bearings of geared turbofans based on acoustic emission signals and machine learning[J].Lubricants,2020,8(3):29-55.

    • [19] 袭晟堃,李强.四点弯曲条件下热障涂层断裂模式的声发射表征[J].中国表面工程,2019,32(3):138-153.XI S K,LI Q.Characterization of fracture modes for thermal barrier coatings by acoustic emission under four-point bending [J].China Surface Engineering,2019,32(3):138-153.(in Chinese)

    • [20] THAWHID K,YUKIO T,HIROSHI Y,et al.Friction and wear mechanisms in boundary lubricated oxy-nitrided treated samples [J].Wear,2016,368:101-115.

    • [21] 温诗铸,黄平,田煜,等.摩擦学原理[M].北京:清华大学出版社,2018.WEN S Z,HUANG P,TIAN Y,et al.Principles of tribology [M].Beijing:Tsinghua University Press,2018.(in Chinese)

    • [22] 薛进进,孙琨,方亮,等.30CrMnSiNi2A 钢干滑动摩擦磨损特性研究[J].摩擦学学报,2016,36(5):614-621.XUE J J,SUN K,FANG L,et al.Friction and wear characteristics of 30CrMnSiNi2A steel at dry sliding condition [J].Tribology,2016,36(5):614-621.(in Chinese)

    • [23] ZHONG H,DAI L,YUE Y,et al.Tribological properties of plasma-nitrided AISI 4340 steel in vacuum [J].Materials Science and Technology,2016,32(4):275-281.

    • [24] MICHELA F,CANDIDA P,MATTEO L,et al.Effect of desert sand on wear and rolling contact fatigue behaviour of various railway wheel steels[J].Wear,2018,396-397:146-161.

    • [25] 陆宝山,王雷刚,季业益,等.镀锌板的摩擦磨损特性及微观机理研究[J].热加工工艺,2018,47(16):41-43.LU B S,WANG L G,JI Y Y,et al.Research on friction wear characters and microcosmic mechanism of galvanized sheets[J].Hot Working Technology,2018,47(16):41-43.(in Chinese)

    • [26] THAWHID K,SHUNSUKE K,YUKIO T,et al.Effects of using alternative extreme pressure(EP)and antiwear(AW)additives with Oxy nitrided samples[J].Tribology Letters,2018,66(1):43-56.

    • [27] ZHANG L,REN C,YU Q,et al.Microstructure and properties of 1Cr12Ni2WMoVNb(GX-8)steel bored barrels with and without QPQ treatment [J].Surface and Coatings Technology,2017,315:95-104.

    • [28] RASTEGAEV A,MERSON D L,DANYUK A V,et al.Using acoustic emission signal categorization for reconstruction of wear development timeline in tribosystems:Case studies and application examples[J].Wear,2018,410-411:83-92.

    • [29] ZHE G,DEBASHIS P,TOM R.Using acoustic emission to characterize friction and wear in dry sliding steel contacts [J].Tribology International,2019,134:394-407.

    • [30] CLARKE A,WEEKS I J J,SNIDLE R W,et al.Running-in and micropitting behavior of steel surfaces under mixed lubrication conditions[J].Tribology International,2016,101:59-68.

  • 参考文献

    • [1] WANG C Y,LI X D,CHANG Y,et al.Comparison of three-body impact abrasive wear behaviors for quenching-partitioning-tempering and quenching-tempering 20Si2Ni3 steels[J].Wear,2016,362-363:121-128.

    • [2] CAO J,YIN Z,LI H,et al.Tribological studies of soft and hard alternated composite coatings with different layer thicknesses[J].Tribology International,2017,110:326-332.

    • [3] 唐彩,陈波.渗氮温度对40Cr钢 QPQ 组织与性能的影响 [J].金属热处理,2020,45(3):174-177.TANG C,CHEN B.Effect of nitriding temperature on microstructure and properties of QPQ treated 40Cr alloy steel [J].Heat Treatment of Metals,2020,45(3):174-177.(in Chinese)

    • [4] KATSUYA H,MASAYASU N,WATARU T,et al.Effect of Al-based oxide layer on frictional properties of hot-dip galvanized steel sheets[J].ISIJ International,2017,57(5):895-904.

    • [5] LEE S,JOUN M,KIM D,et al.Effect of elastic-plastic behavior of coating layer on drawability and frictional characteristic of galvannealed steel sheets [J].Journal of Mechanical Science and Technology,2016,30(7):3313-3319.

    • [6] MISHRA T,GANZENMÜLLER G C,ROOIJ M D,et al.Modelling of ploughing in a single-asperity sliding contact using material point method[J].Wear,2019,418:180-190.

    • [7] MISHRA T,ROOIJ M D,SHISODE M,et al.Analytical,numerical and experimental studies on ploughing behaviour in soft metallic coatings[J].Wear,2020,203219,448-449:1-16.

    • [8] MISHRA T,ROOIJ M D,SHISODE M,et al.A material point method based ploughing model to study the effect of asperity geometry on the ploughing behaviour of an elliptical asperity[J].Tribology International,2020,106017,142:1-17.

    • [9] 雷临苹,叶宏,崔文语.QPQ 处理后H13钢的组织与性能 [J].金属热处理,2018,43(5):124-127.LEI L P,YE H,CUI W Y.Microstructure and properties of H13 steel after QPQ treatment[J].Heat Treatment of Metals,2018,43(5):124-127.(in Chinese)

    • [10] XIANG H L,WU GX,LIU D,et al.Effect of quench polish quench nitriding temperature on the microstructure and wear resistance of SAF2906 duplex stainless steel[J].Metals,2019,9(8):848-857.

    • [11] ALBERTO CAMPAGNOLO,MANUELE DABALÀ,GIOVANNI MENEGHETTI.Effect of salt bath nitro carburizing and post-oxidation on static and fatigue behaviours of a construction steel [J].Metals,2019,9(12):1306-1324.

    • [12] LIU Y J,SUN Y F,ZHANG W L,et al.Effect of QPQ nitriding parameters on properties of pearlite ductile cast iron [J].International Journal of Metal Casting,2020,14(2):556-563.

    • [13] LU S J,MENG F N,CAI W,et al.Effect of QPQ treatment on the performance for H13 die steel [J].Acta Metallurgica Slovaca,2017,23(3):251-256.

    • [14] HUTT S,CLARKE A,EVANS H P.Generation of Acoustic Emission from the running-in and subsequent micropitting of a mixed-elastohydrodynamic contact [J].Tribology International,2018,119:270-280.

    • [15] HIROO TAURA,KAZUKI NAKAYAMA.Behavior of acoustic emissions at the onset of sliding friction [J].Tribology International,2018,123:155-160.

    • [16] FENG P P,BORGHESANI P,SMITH W A,et al.A review on the relationships between acoustic emission,friction and wear in mechanical systems[J].Applied Mechanics Reviews,2020,72(2):020801.

    • [17] HAO Q SH,SHEN Y,WANG Y,et al.A fractal model of acoustic emission signals in sliding friction [J].Tribology Letters,2019,67(1):31.

    • [18] NOUSHIN MOKHTARI,JONATHAN GERALD PELHAM,SEBASTIAN NOWOISKY,et al.Friction and wear monitoring methods for journal bearings of geared turbofans based on acoustic emission signals and machine learning[J].Lubricants,2020,8(3):29-55.

    • [19] 袭晟堃,李强.四点弯曲条件下热障涂层断裂模式的声发射表征[J].中国表面工程,2019,32(3):138-153.XI S K,LI Q.Characterization of fracture modes for thermal barrier coatings by acoustic emission under four-point bending [J].China Surface Engineering,2019,32(3):138-153.(in Chinese)

    • [20] THAWHID K,YUKIO T,HIROSHI Y,et al.Friction and wear mechanisms in boundary lubricated oxy-nitrided treated samples [J].Wear,2016,368:101-115.

    • [21] 温诗铸,黄平,田煜,等.摩擦学原理[M].北京:清华大学出版社,2018.WEN S Z,HUANG P,TIAN Y,et al.Principles of tribology [M].Beijing:Tsinghua University Press,2018.(in Chinese)

    • [22] 薛进进,孙琨,方亮,等.30CrMnSiNi2A 钢干滑动摩擦磨损特性研究[J].摩擦学学报,2016,36(5):614-621.XUE J J,SUN K,FANG L,et al.Friction and wear characteristics of 30CrMnSiNi2A steel at dry sliding condition [J].Tribology,2016,36(5):614-621.(in Chinese)

    • [23] ZHONG H,DAI L,YUE Y,et al.Tribological properties of plasma-nitrided AISI 4340 steel in vacuum [J].Materials Science and Technology,2016,32(4):275-281.

    • [24] MICHELA F,CANDIDA P,MATTEO L,et al.Effect of desert sand on wear and rolling contact fatigue behaviour of various railway wheel steels[J].Wear,2018,396-397:146-161.

    • [25] 陆宝山,王雷刚,季业益,等.镀锌板的摩擦磨损特性及微观机理研究[J].热加工工艺,2018,47(16):41-43.LU B S,WANG L G,JI Y Y,et al.Research on friction wear characters and microcosmic mechanism of galvanized sheets[J].Hot Working Technology,2018,47(16):41-43.(in Chinese)

    • [26] THAWHID K,SHUNSUKE K,YUKIO T,et al.Effects of using alternative extreme pressure(EP)and antiwear(AW)additives with Oxy nitrided samples[J].Tribology Letters,2018,66(1):43-56.

    • [27] ZHANG L,REN C,YU Q,et al.Microstructure and properties of 1Cr12Ni2WMoVNb(GX-8)steel bored barrels with and without QPQ treatment [J].Surface and Coatings Technology,2017,315:95-104.

    • [28] RASTEGAEV A,MERSON D L,DANYUK A V,et al.Using acoustic emission signal categorization for reconstruction of wear development timeline in tribosystems:Case studies and application examples[J].Wear,2018,410-411:83-92.

    • [29] ZHE G,DEBASHIS P,TOM R.Using acoustic emission to characterize friction and wear in dry sliding steel contacts [J].Tribology International,2019,134:394-407.

    • [30] CLARKE A,WEEKS I J J,SNIDLE R W,et al.Running-in and micropitting behavior of steel surfaces under mixed lubrication conditions[J].Tribology International,2016,101:59-68.

  • 手机扫一扫看