en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

贺涵,男,1995年出生,博士生。主要研究方向为耐磨材料及复合材料。E-mail:hehan1008@foxmail.com;

蒋业华,男,1968年出生,教授,博士。主要研究方向为耐磨材料及复合材料。E-mail:jiangyehua@kmust.edu.cn

中图分类号:TQ153

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210107001

参考文献 1
ALTINKOK N,DEMIR A,OZSERT I.Processing of Al2O3/SiC ceramic cake preforms and their liquid Al metal infiltration[J].Composites Part A Applied Science & Manufacturing,2003,34(7):577-582.
参考文献 2
李祖来,蒋业华,周荣,等.WC/铁基表面复合材料的热疲劳裂纹形成过程[J].复合材料学报,2008,25(2):21-24.LI Z L,JIANG Y H,ZHOU R,et al.Process of thermal fatigue crack formation and expansion of WC/iron matrix surface composites[J].Acta Materiae Compositae Sinica,2008,25(2):21-24.(in Chinese)
参考文献 3
ROSSO M.Ceramic and metal matrix composites:Routes and properties [J].Journal of Materials Processing Technology,2006,175(1-3):364-375.
参考文献 4
LIU Z,XU R,TAN P,et al.Effects of preform aperture/hole wall ratio on the microstructure and properties of ZTAp/HCCI matrix honeycomb structure composites[J].Materials Research Express,2019,6(12):1265d9.
参考文献 5
QIU B,XING S,DONG Q,et al.Comparison of properties and impact abrasive wear performance of ZrO2-Al2O3/Fe composite prepared by pressure casting and infiltration casting process[J].Tribology International,2019,142:105979.
参考文献 6
SUI Y,ZHOU M,JIANG Y.Characterization of interfacial layer of ZTA ceramic particles reinforced iron matrix composites[J].Journal of Alloys and Compounds,2018,741:1169-1174.
参考文献 7
LEÓN C A,DREW R A L.The influence of nickel coating on the wettability of aluminum on ceramics[J].Composites Part A Applied Science & Manufacturing,2002,33(10):1429-1432.
参考文献 8
RU J,HE H,JIANG Y,et al.Wettability and interaction mechanism for Ni-modified ZTA particles reinforced iron matrix composites[J].Journal of Alloys and Compounds,2019,786:321-329.
参考文献 9
YANG D,QIU F,ZHAO W,et al.Effects of Ti-coating layer on the distribution of SiCP in the SiCP/2014Al composites [J].Materials & Design,2015,87:1100-1106.
参考文献 10
曹新建,金剑锋,张跃波,等.陶瓷颗粒表面镀铜对陶瓷颗粒增强铁基复合材料性能的影响[J].材料研究学报,2015,29(1):17-24.CAO X J,JIN J F,ZHANG Y B,et al.Electroless copper plating on different types of ceramic particles and its effects on mechanical properties of particulate reinforced iron matrix composites[J].Chinese Journal of Materials Research,2015,29(1):17-24.(in Chinese)
参考文献 11
OLGUN U,GÜLFEN M,GÖÇMEZ H,et al.Synthesis and room temperature coating of nano ZrB2 on copper using mechanical roll-milling [J].Advanced Powder Technology,2017,28(9):2044-2051.
参考文献 12
RU J,JIANG Y,ZHOU R,et al.Preparation of Niencapsulated ZTA particles as precursors to reinforce iron-based composites [J].Advanced Engineer ing Materials,2017,19(11):1700268.
参考文献 13
TANG S,GAO Y,LI Y,et al.Preparation and interface investigation of Fe/Al2O3P composite activated by Ni and Ti + [J].Advanced Engineering Materials,2016,18:1913-1920.
参考文献 14
LIU C,YANG Y,LV P,et al.Fabrication of core-shell structured TiC-Fe composite powders by fluidized bed chemical vapor deposition[J].Journal of the American Ceramic Society,2019,102(8):4470-4479.
参考文献 15
孙跃,万喜伟,姜久兴,等.碳纤维表面化学镀镍前处理工艺研究[J].中国表面工程,2007,20(5):41-44,49.SUN Y,WAN X W,JIANG J X,et al.Study on technique of pretreatment for electroless nickel plating on carbon fiber[J].China Surface Engineering,2007,20(5):41-44,49.(in Chinese)
参考文献 16
孙华,马洪芳,刘科高,等.前处理工艺对铝基 Ni-P 化学镀层性能的影响[J].化工学报,2010,61(12):3200-3204.SUN H,MA H F,LIU K G,et al.Influence of pretreatment on property of electroless plating of Ni-P on aluminum surface[J].CIESC Journal,2010,61(12):3200-3204.(in Chinese)
参考文献 17
刘静,张涛,张曰涛,等.AZ91D 镁合金 Ni-W-P 多层化学镀层的摩擦磨损及耐腐蚀性能[J].中国表面工程,2019,32(4):53-62.LIU J,ZHANG T,ZHANG Y T,et al.Friction,wear and corrosion resistance of multi-layer electroless Ni-W-P coating on AZ91D magnesium alloy[J].China Surface Engineering,2019,32(4):53-62.(in Chinese)
参考文献 18
方东升,孙勇,段永华,等.芳纶纤维 Ni-P/Ni-Cu-P 双层化学镀的结构与形貌[J].化工学报,2012,63(12):4003-4009.FANG D S,SUN Y,DUAN Y H,et al.Structure and appearance of double electroless Ni-P/Ni-Cu-P plating of Kevlar fibers[J].CIESC Journal,2012,63(12):4003-4009.(in Chinese)
参考文献 19
YANG D,QIU F,ZHAO Q,et al.Excellent compressive strength and ductility of Ti5 Si3-coated SiCP/Al2014 composites [J].Journal of Alloys and Compounds,2016,698:1086-1093.
参考文献 20
YANG D,QIU F,ZHAO W,et al.Effects of Ti-coating layer on the distribution of SiCP in the SiCP/2014Al composites [J].Materials & Design,2015,87:1100-1106.
参考文献 21
FRATARI R Q,ROBIN A.Production and character izeation of electrolytic nickel-niobium composite coatings[J].Surface and Coatings Technology,2006,200(12-13):4082-4090.
参考文献 22
HASANNAEIMI V,SHAHRABI T,SANJABI S.Fabrication of NiTi layer via co-electrodeposition of nickel and titanium [J].Surface and Coatings Technology,2012,210:10-14.
参考文献 23
PANEK J,BUDNIOK A.Production and electro chemical characterization of Ni-based composite coatings containing titanium,vanadium or molybdenum powders [J].Surface and Coatings Technology,2007,201(14):6478-6483.
参考文献 24
RU J,HUA Y,XU C,et al.Preparation of porous lead from shape-controlled PbO bulk by in situ electrochemical reduction in ChCl-EG deep eutectic solvent [J].Applied Surface Science,2015,357:2094-2102.
参考文献 25
ABBOTT A P,BOOTHBY D,CAPPER G,et al.Deep eutectic solvents formed between choline chloride and carboxylic acids:versatile alternatives to ionic liquids[J].Journal of the American Chemical Society,2004,126(29):9142-9147.
参考文献 26
SEBASTIAN P,GIANNOTTII M I,GOMEZ E,et al.Surface sensitive nickel electrodeposition in deep eutectic solvent [J].ACS Applied Energy Materials,2018,1(3):1016-1028.
参考文献 27
SRIKOMOL S,JANETAISONG P,BOONYONG MANEERAT Y,et al.Morphology and hardness of electrochemically-codeposited Ti-dispersed Ni-matrix composite coatings [J].Archives of Metallurgy and Materials,2014,59(4):1287-1292.
目录contents

    摘要

    为了解决氧化锆增韧氧化铝( ZTA)陶瓷颗粒增强铁基复合材料制备过程中,ZTA 陶瓷颗粒与铁基体润湿性差的问题,在 ZTA 陶瓷颗粒表面镀覆 Ni-TiB2 镀层。 通过化学镀镍及电镀 Ni-TiB2 两步法,先在 ZTA 陶瓷颗粒表面化学镀镍得到具有导电性的 ZTA@ Ni 颗粒,再在 ZTA@ Ni 颗粒表面电镀均匀的 Ni-TiB2 复合镀层。 采用 XRD 对 ZTA、ZTA@ Ni 和 ZTA@ Ni-TiB2 颗粒进行物相分析;使用数码相机和 SEM 分别对 ZTA、ZTA@ Ni 和 ZTA@ Ni-TiB2 颗粒进行宏观及微观形貌观察;并利用 EDS 分析镀层中各个元素的质量百分比。 分别研究电镀液中 TiB2 粉末浓度、氯化胆碱 -乙二醇 ( ChCl-EG)浓度及沉积电压 3 种因素对 Ni-TiB2 复合镀层的成分及表面形貌的影响。 结果表明,在 1. 8 V 的沉积电压下,TiB2 粉末掺杂浓度为 6 g / L,ChCl-EG 的浓度为 9 g / L 时,Ni-TiB2 复合镀层平整均匀,无孔洞产生,镀层中的 TiB2 质量百分数可以达到 58. 22% ~ 64. 79%。

    Abstract

    In order to solve the problem of poor wettability between the zirconia toughened alumina (ZTA) particles and the iron matrix during the preparation of ZTA particles reinforced iron matrix composite, the surface of ZTA particles is plated with Ni-TiB2 coating. The Ni-TiB2 coating is prepared by the two-step method of electroless nickel plating and Ni-TiB2 electroplating. Firstly, the nickel coating is electroless plated on the surface of ZTA particles to obtain conductive ZTA@ Ni particles, and then the uniform Ni-TiB2 composite coating is electroplated on the surface of ZTA@ Ni particles. The phases of ZTA, ZTA@ Ni and ZTA@ Ni-TiB2 particles were analyzed by X-ray diffraction (XRD). In addition, the macro and micro morphologies of ZTA, ZTA@ Ni and ZTA@ Ni-TiB2 particles are observed by digital camera and scanning electron microscope ( SEM). Moreover, the element contents in Ni-TiB2 coating are investigated by energy disperse spectroscopy (EDS). The effects of TiB2 powder concentration, choline chloride glycol (ChCl-EG) concentration and deposition voltage in the electroplating bath on the composition and surface morphology of Ni-TiB2 composite coating are studied, respectively. When the TiB2 pouder doping concentration is 6 g / L, the ChCl-EG concentration is 9 g / L and the deposition voltage is 1. 8 V, the flat and uniform coating without pores is obtained, and the weight percentage of TiB2 in the coating can reach 58. 22%-64. 79%.

  • 0 前言

  • 近些年来,陶瓷增强金属基复合材料因其良好的耐磨性和抗疲劳性能已广泛用于矿物加工和水泥制造等众多领域[1-3]。相比于氧化铝,氧化锆增韧氧化铝(ZTA)陶瓷具有更好的断裂韧性,常被用作铁基体的增强材料[4-6]。但是ZTA陶瓷颗粒与铁基体的润湿性较差[7-8],使高温下的液态金属无法均匀包覆ZTA陶瓷颗粒,且在不良界面反应的共同作用下, 严重影响基体-陶瓷颗粒的界面强度[9-10],甚至在界面处出现孔洞等缺陷。使材料在使用过程中发生陶瓷颗粒脱落的现象,降低复合材料的使用寿命。

  • 通过对陶瓷颗粒表面进行金属化可以有效地解决上述问题[11-14]。其中,化学镀因其操作简单且施镀温度低,可以直接在活化后的非导电表面进行镀覆已经得到普遍应用[15-16]。然而,由于催化活性和还原能力的影响,化学镀仅可以制备镍基和铜基等合金镀层[17-18],并且镀层中对铁基体有益的元素较少。而电镀可以镀覆的金属及合金种类更多,但要求镀覆的基体必须具有良好的导电性。因此,将化学镀和电镀进行结合,首先利用化学镀在陶瓷颗粒表面镀覆一层金属,再对化学镀覆的陶瓷颗粒进行电镀,可以使陶瓷这类非导体镀覆的种类大大增加。近些年有研究表明[19-20],不易熔于高温金属的镀层,可以有效地保持陶瓷增强体在复合材料中的分散均匀性。而复合镀层不仅可以满足这一要求,且可以通过共沉积的方法简单制备[21-23],该方法是在电镀液中加入陶瓷粉末,在电镀过程中使陶瓷粉末嵌入正在生长的镀层中,形成复合材料镀层。而在镀覆过程中,常会出现金属晶粒过大,镀层厚度不均等问题。添加剂的加入可以有效改善镀层质量,而低共熔溶剂(DES)作为一种具有低熔点,良好电导率和水化学惰性的绿色环保溶剂,近年来在镀层制备研究中得到广泛应用[24-26]

  • 文中针对ZTA陶瓷颗粒与铁基体之间润湿性较差的问题,先将ZTA化学镀得到ZTA@Ni颗粒, 再在ChCl-EG DES作为添加剂的TiB2 悬浮镍镀液中电镀制备ZTA@Ni-TiB2。系统地研究了TiB2 粉末浓度、ChCl-EG浓度及沉积电压3种因素对Ni-TiB2 复合镀层的成分及表面形貌的影响。并对TiB2 与Ni共沉积原理进行了分析。

  • 1 试验准备

  • 1.1 试验材料

  • ZTA陶瓷颗粒( 颗粒牌号: ZA40),平均粒径2.2~2.8mm(圣戈班( Saint Gobain) 集团生产); TiB2 粉体,平均粒径5~10 μm(上海水田材料科技有限公司); 乙二醇( 西陇化工股份有限公司, 98%);其他所有药品纯度均>99%,购自上海阿拉丁生化科技股份有限公司。

  • 将干燥(T=343K,t=12h)后的氯化胆碱和乙二醇按照摩尔比(ChCl ∶EG=1 ∶2)进行混合,放置于油浴锅中,在343K恒温,搅拌速率400r/min的条件下搅拌24h,得到无色透明的氯化胆碱-乙二醇低共熔溶剂(ChCl-EG)。最后真空干燥,密封备用。

  • 1.2 试验步骤

  • ZTA@Ni-TiB2 的制备分为4个步骤:除油、表面预处理、化学镀镍、电镀Ni-TiB2。工艺流程如图1所示。

  • 图1 ZTA@Ni-TiB2 工艺流程简图

  • Fig.1 Process diagram of ZTA@Ni-TiB2

  • 1.2.1 ZTA陶瓷颗粒的清洗及表面预处理

  • 首先将ZTA陶瓷颗粒用丙酮清洗去除表面油污。然后采用Ni(Ac)2 活化法[8] 对ZTA陶瓷颗粒进行表面预处理( 即活化与粗化),比例如下:Ni(Ac)2 ∶ NaH2PO2 ∶ H2O ∶ C2H6O ∶ ZTA=5 ∶ 6 ∶ 4 ∶ 30 ∶ 90g,温度控制在458K,保温25min。

  • 1.2.2 ZTA陶瓷颗粒表面化学镀镍

  • 表1 展示了化学镀镍溶液组成及参数。将20g/L活化后的ZTA陶瓷颗粒加入到pH值为10的化学镀镍溶液中,镀液的主要成分是硫酸镍、次亚磷酸钠、硼酸、柠檬酸钠以及氯化胆碱-乙二醇(ChCl-EG)。在338K,150r·min-1的条件下进行化学镀镍,最终得到具有导电性的ZTA@Ni颗粒,以便进行电镀试验。

  • 表1 化学镀镍溶液组成及参数

  • Table1 Chemical composition of the electroless nickel plating bath and operating parameters

  • 1.2.3 ZTA@Ni陶瓷颗粒表面电镀Ni-TiB2

  • 表2 和图2分别展示了电镀液组成和参数以及电镀设备示意图。镍板作为阳极材料,而ZTA@Ni颗粒作为阴极,将颗粒放入不锈钢网中,一方面可以起到增强导电性的作用,另一方面很好的将陶瓷颗粒固定,极间距为3cm。镀液的主要成分是硫酸镍、硼酸、 TiB2 以及氯化胆碱-乙二醇(ChCl-EG)。将镀液搅拌并超声振荡5h,使TiB2 悬浮在溶液中。

  • 表2 电镀Ni/TiB2 溶液组成及参数

  • Table2 Chemical composition of the electroplate Ni/TiB2 plating bath and operating parameters

  • 图2 电镀装置示意图

  • Fig.2 Schematic diagram of electroplating setup

  • 1.3 试样的表征

  • 采用XRD(Bruker D8,德国)以Cu-Kα 靶为激发源,以10°min-1 的扫描速率在2θ=20~90°的范围内对ZTA、ZTA@Ni和ZTA@Ni-TiB2 颗粒进行物相分析; 并使用数码相机( Nikon COOLPIX P6000) 和SEM( VEGA3TESCAN, 瑞士) 分别对ZTA、ZTA@Ni和ZTA@Ni-TiB2 颗粒进行宏观及微观形貌分析。

  • 2 结果与讨论

  • 2.1 Ni-TiB2 镀层形貌及物相分析

  • 图3 展示了ZTA、ZTA@Ni和ZTA@Ni-TiB2 颗粒的宏观及微观形貌。从宏观来看,如图3a~3c所示,未镀覆的ZTA陶瓷颗粒呈灰白色;经过化学镀镍后,ZTA陶瓷颗粒表面被镍镀层均匀包覆,因此ZTA@Ni颗粒呈银灰色,并带有金属光泽;而经过电镀Ni-TiB2 复合镀层后,受TiB2 粉末颜色所影响, ZTA@Ni-TiB2 颗粒呈棕黄色。从微观来看, ZTA陶瓷颗粒表面较为光滑,有些许的凹坑和凹痕。经过化学镀镍后,表面被大小为1 μm左右的球状Ni颗粒均匀包裹。从截面也可以看出,Ni镀层均匀包覆在ZTA陶瓷颗粒的表面,可以使原本不导电的ZTA颗粒具有导电性。再在ZTA@Ni的表面上进行电镀Ni-TiB2 复合镀层,经过电镀后的表面如图3c′所示。 ZTA@Ni的表面被TiB2 粉体和Ni均匀包裹,从截面图3c′′及图4中Ni-TiB2 镀层各个元素分布的线扫描结果中可以看出,TiB2 嵌入Ni镀层。

  • ZTA、ZTA@Ni和ZTA@Ni-TiB2 颗粒的XRD图谱如图5所示。由XRD图谱可以进一步分析ZTA@Ni-TiB2 的制备过程,其中图5a是ZTA陶瓷的衍射峰,与t-ZrO2( PDF#50-1089)、m-ZrO2( PDF #78-1807) 及Al2O3( PDF#10-0173) 的标准衍射峰相对应。经过化学镀镍后,仅有微弱的ZrO2 和Al2O3 衍射峰,主峰为Ni( PDF#04-0850) 的衍射峰,如图5b所示。说明X射线很难穿透Ni镀层, 证明Ni镀层具有一定的厚度。再经过电镀Ni-TiB2 复合镀层后,如图5c所示,只有Ni和TiB2(PDF#35-0741) 的衍射峰,ZrO2 和Al2O3 的衍射峰消失。同时由于TiB2 的存在,Ni的衍射峰强相应有所减弱,说明TiB2 与Ni在ZTA@Ni表面实现了共沉积。

  • 图3 ZTA、ZTA@Ni和ZTA@Ni-TiB2 颗粒的宏观及微观形貌

  • Fig.3 Macro and micro morphologies of ZTA, ZTA@Ni and ZTA@Ni-TiB2 particles

  • 图4 Ni-TiB2 镀层的截面形貌及线扫描能谱

  • Fig.4 Cross-section morphologies and EDS results of Ni-TiB2 coating

  • 图5 ZTA、ZTA@Ni和ZTA@Ni-TiB2 颗粒的XRD图谱

  • Fig.5 XRD patterns of ZTA,ZTA@Ni and ZTA@Ni-TiB2 particles

  • 2.2 TiB2 粉末掺杂浓度对Ni-TiB2 复合镀层的影响

  • 图6 和图7分别显示了当TiB2 粉末掺杂浓度不同时,ZTA@Ni-TiB2 表面形貌的变化和镀层中TiB2 及Ni的质量百分比变化。当TiB2 粉含量从2g/L增加到6g/L时, 镀层中TiB2 含量由2 1.60%增加到58.22%;随着TiB2 粉的进一步增加,从6g/L增加到10g/L,镀层中TiB2 含量增加的趋势变得缓慢,由58.22%增加到65.83%。这主要由于当TiB2 含量为6g/L时,镀层表面已经基本被TiB2 粉所占据,如图6c所示。因此当TiB2 粉含量进一步增加时,会导致其在垂直于表面的方向生长,此时新的TiB2 粉沉积在原有TiB2 上, 一部分TiB2 粉滑落,而另一部分TiB2 粉由于来不及被Ni包裹而形成孔洞。并且过多的TiB2 被吸附在阴极,会导致其有效表面积的增加,从而使得阴极极化减少,电流集中在TiB2 的尖角处,极易导致枝晶生长[27]。因此当TiB2 含量大于6g/L时, 镀层中TiB2 含量增加不明显,甚至会影响镀层的质量。

  • 图6 不同TiB2 粉末掺杂浓度的ZTA@Ni-TiB2 表面形貌(C ChCl-EG=9g/L,1.8V)

  • Fig.6 Surface morphologies of ZTA@Ni-TiB2 with different TiB2 powder doping concentrations(C ChCl-EG=9g/L, 1.8V)

  • 图7 不同TiB2 粉末掺杂浓度时,镀层中TiB2 及Ni的质量百分比变化(C ChCl-EG=9g/L,1.8V)

  • Fig.7 TiB2 and Ni content in Ni-TiB2 composite coating with different TiB2 powder doping concentrations(C ChCl-EG=9g/L, 1.8V)

  • 2.3 沉积电压对Ni-TiB2 复合镀层的影响

  • 图8 和图9为不同沉积电压下,ZTA@Ni-TiB2 的表面形貌和镀层中TiB2 及Ni的质量百分比变化。当沉积电压为1.8V时,镀层中TiB2 质量百分比达到最大值,达到62.02%,且TiB2 粉末在镀层表面分布均匀且密集,如图8c所示;从截面来看,如图10a所示,TiB2 粉末被Ni紧密地包覆,形成致密的镀层。当沉积电压的持续增加时,Ni-TiB2 镀层中TiB2 质量百分比不断下降。这是因为当沉积电压过小时,Ni2+ 只有极少被还原为Ni且还原速率缓慢,无法及时地将运动到阴极的TiB2 包覆,使TiB2 在阴极沉积较少。而当沉积电压过大时,TiB2 同时在电压及机械搅拌作用下向阴极运动,但Ni2+向阴极表面移动的速度更快[22],导致其有效浓度增加, 放电反应的电化学速率升高,共沉积镀层中时Ni的含量增加,TiB2 含量相应减少。此外,由图8d和e可以看出,TiB2 沉积的并不均匀,这是因为在同等条件下,高电压电流密度过高,易形成高孔隙沉积, 易产生孔洞,如图10b所示。

  • 2.4 ChCl-EG浓度对Ni-TiB2 复合镀层的影响

  • 图11 和图12分别显示了当ChCl-EG浓度不同时,ZTA@Ni-TiB2 表面形貌的变化和镀层中TiB2 及Ni的质量百分比变化。相同电压和TiB2 粉末掺杂浓度下, 当ChCl-EG的浓度为6g/L时, 电流为150mA远小于9g/L时的195mA。因此向阴极运动的Ni2+减小,导致Ni被还原的速率降低,无法及时地包覆粒径较大的TiB2 粉末,导致镀层中TiB2 含量较低,仅有24.48%。而当ChCl-EG的浓度增加到12g/L时,电流并没有进一步的增加,基本与9g/L一致,因此TiB2 含量基本没有变化,分别为62.98%及64.79%。但是当ChCl-EG的浓度为12g/L时,前期电流的增长速率变慢,当其稳定在190mA时,需要更长的时间,尽管镀层的表面形貌相似,但其厚度具有明显差别, 如图11b′ 和11c′ 所示。

  • 图8 不同沉积电压下ZTA@Ni-TiB2 的表面形貌(C ChCl-EG=9g/L,C TiB2=6g/L)

  • Fig.8 Surface morphologies of ZTA@Ni-TiB2 under different deposition voltage(C ChCl-EG=9g/L,C TiB2=6g/L)

  • 图9 不同沉积电压下,镀层中TiB2 及Ni的质量百分比变化(C ChCl-EG=9g/L,C TiB2=6g/L)

  • Fig.9 TiB2 and Ni content in Ni-TiB2 composite coating under different deposition voltages(C ChCl-EG=9g/L,C TiB2=6g/L)

  • 图10 均匀生长和高孔隙率生长镀层的截面形貌

  • Fig.10 Cross-sectional morphologies of uniformly growth and highly porous growth coatings

  • 2.5 TiB2 与Ni共沉积原理

  • 第一阶段:在施加电压及搅拌作用下时,TiB2 与Ni2+都向阴极ZTA@Ni的表面运动。而Ni2+运动速率要更快,优先接受电子在阴极被还原成Ni原子,TiB2 粉体也随之沉积在刚刚被还原的Ni原子上,此时的TiB2 粉体表面光滑,如图13a所示。

  • 图11 不同ChCl-EG浓度的ZTA@Ni-TiB2 表面及截面形貌(C TiB 2=6g/L, 1.8V)

  • Fig.11 Surface and cross-section morphdogies of ZTA@Ni-TiB2 with different ChCl-EG concentrations(C TiB 2 =6g/L, 1.8V)

  • 图12 不同ChCl-EG浓度时,镀层中TiB2 及Ni的质量百分比变化(C TiB 2=6g/L, 1.8V)

  • Fig.12 TiB2 and Ni content in Ni-TiB2 composite coating with different ChCl-EG concentrations(C TiB 2=6g/L, 1.8V)

  • 图13 TiB2 与Ni共沉积原理图

  • Fig.13 Schematic diagram of TiB2 and Ni co-deposition

  • 第二阶段:当TiB2 粉体一端嵌入Ni原子中,成为阴极的一部分。此时Ni2+ 在TiB2 粉体表面开始还原,如图13b所示。

  • 第三阶段:随着反应的不断进行,Ni2+ 不断被还原,Ni原子不断包覆TiB2 粉体,并在相邻TiB2 粉体的间隙中沉积,而此时ChCl-EG添加剂吸附在这些更加凸出的位点之上,进而减慢此区域镍的形核和生长速度,使镍在其他位置加速沉积。通过不断改变的ChCl-EG择优吸附位点和金属镍的沉积速度,最终得到均匀、致密、平整镀层,如图13c所示。

  • 随着反应不断进行,3个阶段不断循环,Ni-TiB2 复合镀层的厚度也不断增加。

  • 3 结论

  • (1) 将活化后的ZTA颗粒化学镀得到具有导电性的ZTA@Ni颗粒,再在ChCl-EG作为添加剂的TiB2 悬浮镀液中对ZTA@Ni颗粒进行电镀,两步法制备ZTA@Ni-TiB2 颗粒。

  • (2) 在1.8V的沉积电压下,TiB2 粉末掺杂浓度为6g/L,ChCl-EG的浓度为9g/L时,Ni-TiB2 镀层平整均匀,无孔洞产生,镀层中的TiB2 质量百分数可以达到58.22%~64.79%。

  • (3) ChCl-EG倾向于吸附在TiB2 粉末表面凸起处,阻止金属镍的持续快速形核和生长,最终生成包覆层连续、均匀且致密的Ni-TiB2 复合镀层。

  • 参考文献

    • [1] ALTINKOK N,DEMIR A,OZSERT I.Processing of Al2O3/SiC ceramic cake preforms and their liquid Al metal infiltration[J].Composites Part A Applied Science & Manufacturing,2003,34(7):577-582.

    • [2] 李祖来,蒋业华,周荣,等.WC/铁基表面复合材料的热疲劳裂纹形成过程[J].复合材料学报,2008,25(2):21-24.LI Z L,JIANG Y H,ZHOU R,et al.Process of thermal fatigue crack formation and expansion of WC/iron matrix surface composites[J].Acta Materiae Compositae Sinica,2008,25(2):21-24.(in Chinese)

    • [3] ROSSO M.Ceramic and metal matrix composites:Routes and properties [J].Journal of Materials Processing Technology,2006,175(1-3):364-375.

    • [4] LIU Z,XU R,TAN P,et al.Effects of preform aperture/hole wall ratio on the microstructure and properties of ZTAp/HCCI matrix honeycomb structure composites[J].Materials Research Express,2019,6(12):1265d9.

    • [5] QIU B,XING S,DONG Q,et al.Comparison of properties and impact abrasive wear performance of ZrO2-Al2O3/Fe composite prepared by pressure casting and infiltration casting process[J].Tribology International,2019,142:105979.

    • [6] SUI Y,ZHOU M,JIANG Y.Characterization of interfacial layer of ZTA ceramic particles reinforced iron matrix composites[J].Journal of Alloys and Compounds,2018,741:1169-1174.

    • [7] LEÓN C A,DREW R A L.The influence of nickel coating on the wettability of aluminum on ceramics[J].Composites Part A Applied Science & Manufacturing,2002,33(10):1429-1432.

    • [8] RU J,HE H,JIANG Y,et al.Wettability and interaction mechanism for Ni-modified ZTA particles reinforced iron matrix composites[J].Journal of Alloys and Compounds,2019,786:321-329.

    • [9] YANG D,QIU F,ZHAO W,et al.Effects of Ti-coating layer on the distribution of SiCP in the SiCP/2014Al composites [J].Materials & Design,2015,87:1100-1106.

    • [10] 曹新建,金剑锋,张跃波,等.陶瓷颗粒表面镀铜对陶瓷颗粒增强铁基复合材料性能的影响[J].材料研究学报,2015,29(1):17-24.CAO X J,JIN J F,ZHANG Y B,et al.Electroless copper plating on different types of ceramic particles and its effects on mechanical properties of particulate reinforced iron matrix composites[J].Chinese Journal of Materials Research,2015,29(1):17-24.(in Chinese)

    • [11] OLGUN U,GÜLFEN M,GÖÇMEZ H,et al.Synthesis and room temperature coating of nano ZrB2 on copper using mechanical roll-milling [J].Advanced Powder Technology,2017,28(9):2044-2051.

    • [12] RU J,JIANG Y,ZHOU R,et al.Preparation of Niencapsulated ZTA particles as precursors to reinforce iron-based composites [J].Advanced Engineer ing Materials,2017,19(11):1700268.

    • [13] TANG S,GAO Y,LI Y,et al.Preparation and interface investigation of Fe/Al2O3P composite activated by Ni and Ti + [J].Advanced Engineering Materials,2016,18:1913-1920.

    • [14] LIU C,YANG Y,LV P,et al.Fabrication of core-shell structured TiC-Fe composite powders by fluidized bed chemical vapor deposition[J].Journal of the American Ceramic Society,2019,102(8):4470-4479.

    • [15] 孙跃,万喜伟,姜久兴,等.碳纤维表面化学镀镍前处理工艺研究[J].中国表面工程,2007,20(5):41-44,49.SUN Y,WAN X W,JIANG J X,et al.Study on technique of pretreatment for electroless nickel plating on carbon fiber[J].China Surface Engineering,2007,20(5):41-44,49.(in Chinese)

    • [16] 孙华,马洪芳,刘科高,等.前处理工艺对铝基 Ni-P 化学镀层性能的影响[J].化工学报,2010,61(12):3200-3204.SUN H,MA H F,LIU K G,et al.Influence of pretreatment on property of electroless plating of Ni-P on aluminum surface[J].CIESC Journal,2010,61(12):3200-3204.(in Chinese)

    • [17] 刘静,张涛,张曰涛,等.AZ91D 镁合金 Ni-W-P 多层化学镀层的摩擦磨损及耐腐蚀性能[J].中国表面工程,2019,32(4):53-62.LIU J,ZHANG T,ZHANG Y T,et al.Friction,wear and corrosion resistance of multi-layer electroless Ni-W-P coating on AZ91D magnesium alloy[J].China Surface Engineering,2019,32(4):53-62.(in Chinese)

    • [18] 方东升,孙勇,段永华,等.芳纶纤维 Ni-P/Ni-Cu-P 双层化学镀的结构与形貌[J].化工学报,2012,63(12):4003-4009.FANG D S,SUN Y,DUAN Y H,et al.Structure and appearance of double electroless Ni-P/Ni-Cu-P plating of Kevlar fibers[J].CIESC Journal,2012,63(12):4003-4009.(in Chinese)

    • [19] YANG D,QIU F,ZHAO Q,et al.Excellent compressive strength and ductility of Ti5 Si3-coated SiCP/Al2014 composites [J].Journal of Alloys and Compounds,2016,698:1086-1093.

    • [20] YANG D,QIU F,ZHAO W,et al.Effects of Ti-coating layer on the distribution of SiCP in the SiCP/2014Al composites [J].Materials & Design,2015,87:1100-1106.

    • [21] FRATARI R Q,ROBIN A.Production and character izeation of electrolytic nickel-niobium composite coatings[J].Surface and Coatings Technology,2006,200(12-13):4082-4090.

    • [22] HASANNAEIMI V,SHAHRABI T,SANJABI S.Fabrication of NiTi layer via co-electrodeposition of nickel and titanium [J].Surface and Coatings Technology,2012,210:10-14.

    • [23] PANEK J,BUDNIOK A.Production and electro chemical characterization of Ni-based composite coatings containing titanium,vanadium or molybdenum powders [J].Surface and Coatings Technology,2007,201(14):6478-6483.

    • [24] RU J,HUA Y,XU C,et al.Preparation of porous lead from shape-controlled PbO bulk by in situ electrochemical reduction in ChCl-EG deep eutectic solvent [J].Applied Surface Science,2015,357:2094-2102.

    • [25] ABBOTT A P,BOOTHBY D,CAPPER G,et al.Deep eutectic solvents formed between choline chloride and carboxylic acids:versatile alternatives to ionic liquids[J].Journal of the American Chemical Society,2004,126(29):9142-9147.

    • [26] SEBASTIAN P,GIANNOTTII M I,GOMEZ E,et al.Surface sensitive nickel electrodeposition in deep eutectic solvent [J].ACS Applied Energy Materials,2018,1(3):1016-1028.

    • [27] SRIKOMOL S,JANETAISONG P,BOONYONG MANEERAT Y,et al.Morphology and hardness of electrochemically-codeposited Ti-dispersed Ni-matrix composite coatings [J].Archives of Metallurgy and Materials,2014,59(4):1287-1292.

  • 参考文献

    • [1] ALTINKOK N,DEMIR A,OZSERT I.Processing of Al2O3/SiC ceramic cake preforms and their liquid Al metal infiltration[J].Composites Part A Applied Science & Manufacturing,2003,34(7):577-582.

    • [2] 李祖来,蒋业华,周荣,等.WC/铁基表面复合材料的热疲劳裂纹形成过程[J].复合材料学报,2008,25(2):21-24.LI Z L,JIANG Y H,ZHOU R,et al.Process of thermal fatigue crack formation and expansion of WC/iron matrix surface composites[J].Acta Materiae Compositae Sinica,2008,25(2):21-24.(in Chinese)

    • [3] ROSSO M.Ceramic and metal matrix composites:Routes and properties [J].Journal of Materials Processing Technology,2006,175(1-3):364-375.

    • [4] LIU Z,XU R,TAN P,et al.Effects of preform aperture/hole wall ratio on the microstructure and properties of ZTAp/HCCI matrix honeycomb structure composites[J].Materials Research Express,2019,6(12):1265d9.

    • [5] QIU B,XING S,DONG Q,et al.Comparison of properties and impact abrasive wear performance of ZrO2-Al2O3/Fe composite prepared by pressure casting and infiltration casting process[J].Tribology International,2019,142:105979.

    • [6] SUI Y,ZHOU M,JIANG Y.Characterization of interfacial layer of ZTA ceramic particles reinforced iron matrix composites[J].Journal of Alloys and Compounds,2018,741:1169-1174.

    • [7] LEÓN C A,DREW R A L.The influence of nickel coating on the wettability of aluminum on ceramics[J].Composites Part A Applied Science & Manufacturing,2002,33(10):1429-1432.

    • [8] RU J,HE H,JIANG Y,et al.Wettability and interaction mechanism for Ni-modified ZTA particles reinforced iron matrix composites[J].Journal of Alloys and Compounds,2019,786:321-329.

    • [9] YANG D,QIU F,ZHAO W,et al.Effects of Ti-coating layer on the distribution of SiCP in the SiCP/2014Al composites [J].Materials & Design,2015,87:1100-1106.

    • [10] 曹新建,金剑锋,张跃波,等.陶瓷颗粒表面镀铜对陶瓷颗粒增强铁基复合材料性能的影响[J].材料研究学报,2015,29(1):17-24.CAO X J,JIN J F,ZHANG Y B,et al.Electroless copper plating on different types of ceramic particles and its effects on mechanical properties of particulate reinforced iron matrix composites[J].Chinese Journal of Materials Research,2015,29(1):17-24.(in Chinese)

    • [11] OLGUN U,GÜLFEN M,GÖÇMEZ H,et al.Synthesis and room temperature coating of nano ZrB2 on copper using mechanical roll-milling [J].Advanced Powder Technology,2017,28(9):2044-2051.

    • [12] RU J,JIANG Y,ZHOU R,et al.Preparation of Niencapsulated ZTA particles as precursors to reinforce iron-based composites [J].Advanced Engineer ing Materials,2017,19(11):1700268.

    • [13] TANG S,GAO Y,LI Y,et al.Preparation and interface investigation of Fe/Al2O3P composite activated by Ni and Ti + [J].Advanced Engineering Materials,2016,18:1913-1920.

    • [14] LIU C,YANG Y,LV P,et al.Fabrication of core-shell structured TiC-Fe composite powders by fluidized bed chemical vapor deposition[J].Journal of the American Ceramic Society,2019,102(8):4470-4479.

    • [15] 孙跃,万喜伟,姜久兴,等.碳纤维表面化学镀镍前处理工艺研究[J].中国表面工程,2007,20(5):41-44,49.SUN Y,WAN X W,JIANG J X,et al.Study on technique of pretreatment for electroless nickel plating on carbon fiber[J].China Surface Engineering,2007,20(5):41-44,49.(in Chinese)

    • [16] 孙华,马洪芳,刘科高,等.前处理工艺对铝基 Ni-P 化学镀层性能的影响[J].化工学报,2010,61(12):3200-3204.SUN H,MA H F,LIU K G,et al.Influence of pretreatment on property of electroless plating of Ni-P on aluminum surface[J].CIESC Journal,2010,61(12):3200-3204.(in Chinese)

    • [17] 刘静,张涛,张曰涛,等.AZ91D 镁合金 Ni-W-P 多层化学镀层的摩擦磨损及耐腐蚀性能[J].中国表面工程,2019,32(4):53-62.LIU J,ZHANG T,ZHANG Y T,et al.Friction,wear and corrosion resistance of multi-layer electroless Ni-W-P coating on AZ91D magnesium alloy[J].China Surface Engineering,2019,32(4):53-62.(in Chinese)

    • [18] 方东升,孙勇,段永华,等.芳纶纤维 Ni-P/Ni-Cu-P 双层化学镀的结构与形貌[J].化工学报,2012,63(12):4003-4009.FANG D S,SUN Y,DUAN Y H,et al.Structure and appearance of double electroless Ni-P/Ni-Cu-P plating of Kevlar fibers[J].CIESC Journal,2012,63(12):4003-4009.(in Chinese)

    • [19] YANG D,QIU F,ZHAO Q,et al.Excellent compressive strength and ductility of Ti5 Si3-coated SiCP/Al2014 composites [J].Journal of Alloys and Compounds,2016,698:1086-1093.

    • [20] YANG D,QIU F,ZHAO W,et al.Effects of Ti-coating layer on the distribution of SiCP in the SiCP/2014Al composites [J].Materials & Design,2015,87:1100-1106.

    • [21] FRATARI R Q,ROBIN A.Production and character izeation of electrolytic nickel-niobium composite coatings[J].Surface and Coatings Technology,2006,200(12-13):4082-4090.

    • [22] HASANNAEIMI V,SHAHRABI T,SANJABI S.Fabrication of NiTi layer via co-electrodeposition of nickel and titanium [J].Surface and Coatings Technology,2012,210:10-14.

    • [23] PANEK J,BUDNIOK A.Production and electro chemical characterization of Ni-based composite coatings containing titanium,vanadium or molybdenum powders [J].Surface and Coatings Technology,2007,201(14):6478-6483.

    • [24] RU J,HUA Y,XU C,et al.Preparation of porous lead from shape-controlled PbO bulk by in situ electrochemical reduction in ChCl-EG deep eutectic solvent [J].Applied Surface Science,2015,357:2094-2102.

    • [25] ABBOTT A P,BOOTHBY D,CAPPER G,et al.Deep eutectic solvents formed between choline chloride and carboxylic acids:versatile alternatives to ionic liquids[J].Journal of the American Chemical Society,2004,126(29):9142-9147.

    • [26] SEBASTIAN P,GIANNOTTII M I,GOMEZ E,et al.Surface sensitive nickel electrodeposition in deep eutectic solvent [J].ACS Applied Energy Materials,2018,1(3):1016-1028.

    • [27] SRIKOMOL S,JANETAISONG P,BOONYONG MANEERAT Y,et al.Morphology and hardness of electrochemically-codeposited Ti-dispersed Ni-matrix composite coatings [J].Archives of Metallurgy and Materials,2014,59(4):1287-1292.

  • 手机扫一扫看