en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张晓民(通信作者),男,1975年出生,博士,教授,硕士研究生导师。主要研究方向为薄膜材料。E-mail:xmzhang@xauat.edu.cn

中图分类号:TB43

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20201220004

参考文献 1
ZHU X K,JOYCE J A.Review of fracture toughness(G,K,J,CTOD,CTOA)testing and standardization [J].Engineering Fracture Mechanics,2012,85:1-46.
参考文献 2
ZHANG S,SUN D E,FU Y Q,et al.Toughness measurement of thin films:A critical review [J].Surface & Coatings Technology,2005,198(1-3):74-84.
参考文献 3
GUO Y,STAEDLER T,JULIAN MULLER,et al.A detailed analysis of the determination of fracture toughness by nanoindentation induced radial cracks [J].Journal of the European Ceramic Society,2020,40(2):276-289.
参考文献 4
MICHEL M D,MUHLEN L V,ACHETE C A,et al.Fracture toughness,hardness and elastic modulus of hydrogenated amorphous carbon films deposited by chemical vapor deposition [J].Thin Solid Films,2006,496(2):481-488.
参考文献 5
ZHANG X M,ZHANG S.Rethinking the role that the “step” in the load-displacement curves can play in measurement of fracture toughness for hard coatings[J].Thin Solid Films,2012,520:3423-3428.
参考文献 6
CHASIOTIS I,KNAUSS W G.A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy [J].Experimental Mechanics,2002,42(1):51-57.
参考文献 7
JONNALAGADDA K,CHO S W,CHASIOTIS I,et al.Effect of intrinsic stress gradient on the effective mode-I fracture toughness of amorphous diamond-like carbon films for MEMS[J].Journal of the Mechanics and Physics of Solids,2008,56(2):388-401.
参考文献 8
CHO S W,JONNALAGADDA K,CHASIOTIS I.Mode I and mixed mode fracture of polysilicon for MEMS [J].Fatigue & Fracture of Engineering Materials & Structures,2010,30(1):21-31.
参考文献 9
ESPINOSA H D,PROROK B C,FISCHER M.A methodology for determining mechanical properties of freestanding thin films and MEMS materials[J].Journal of the Mechanics and Physics of Solids,2003,51(1):47-67.
参考文献 10
PENG B,PUGNO N,ESPINOSA H D.An analysis of the membrane deflection experiment used in the investigation of mechanical properties of freestanding submicron thin films[J].International Journal of Solids and Structures,2005,43(11):3292-3305.
参考文献 11
ESPINOSA H D,PENG B,MOLDOVAN N,et al.Elasticity,strength,and toughness of single crystal silicon carbide,ultrananocrystalline diamond,and hydrogen-free tetrahedral amorphous carbon[J].Applied Physics Letters,2006,89(7):1-1.
参考文献 12
KAHN H,BALLARINI R,BELLANTE J J,et al.Fatigue failure in polysilicon not due to simple stress corrosion cracking [J].Science,2002,298(5596):1215-1218.
参考文献 13
BELLANTE J J,KAHN H,BALLARINI R,et al.Fracture toughness of polycrystalline silicon carbide thin films [J].Applied Physics Letters,2005,86(7):071920.
参考文献 14
HATTY V,KAHN H,TREVINO J,et al.Fracture toughness of low-pressure chemical-vapor-deposited polycrystalline silicon carbide thin films [J].Journal of Applied Physics,2006,99(1):013517.
参考文献 15
XIANG Y,CHEN X,VLASSAK J J.Plane-strain bulge test for thin films[J].Journal of Materials Research,2005,20(9):2360-2370.
参考文献 16
XIANG Y,MCKINNELL J,ANG W M,et al.Measuring the fracture toughness of ultra-thin films with application to AlTa coatings[J].International Journal of Fracture,2007,144(3):173-179.
参考文献 17
ZHANG X M,ZHANG S.A microbridge method in tensile testing of substrate for fracture toughness of thin films [J].Nanoence & Nanotechnology Letters,2011,3(6):735-743.
参考文献 18
ZHANG S,ZHANG X M.Toughness evaluation of hard coatings and thin films [J].Thin Solid Films,2012,520(7):2375-2389.
参考文献 19
ZHANG S.Thin films and coatings:Toughening and toughness characterization[M].Los Angeles:CRC Press,2015.
参考文献 20
EVANS A G.A method for evaluating the time-dependent failure characteristics of brittle materials and its application to polycrystalline alumina[J].Journal of Materials Science,1972,7(10):1137-1146.
参考文献 21
XIN Y B,HSIA K J.A technique to generate straight through thickness surface cracks and its application to studying dislocation nucleation in Si[J].Acta Materialia,1996,44(3):845-853.
参考文献 22
HASHIMOTO A,KOVAR D.Controlled precracking of fracture mechanics specimens using contact stresses[J].Journal of the American Ceramic Society,2002,85(9):2251-2255.
参考文献 23
沈成康.断裂力学[M].上海:同济大学出版社,1996.SHEN C K.Fracture mechanics [ M ].Shanghai:Tongji University Press,1996.(in Chinese)
参考文献 24
鄢锉,李力钧,李娟,等.激光切割板材表面质量研究综述 [J].激光技术,2005,29(3):270-274.YAN C,LI L J,LI J,et al.A review of the research on the surface quality of laser cutting plates [J].Laser Technology,2005,29(3):270-274.(in Chinese)
参考文献 25
李海鸥,韦春荣,王晓峰,等.晶圆激光切割技术的研究进展[J].半导体技术,2017,42(8):561-568.LI H O,WEI C R,WANG X F,et al.Research progress of wafer laser cutting technology [J].Semiconductor Technology,2017,42(8):561-568.(in Chinese)
参考文献 26
TADA H,PARIS P C,IRWIN G R.The stress analysis of cracks handbook[M].Del Research Corp,1973.
参考文献 27
KIES J A,CLARK A B J.Fracture propagation rates and times to fail following proof stress in bulk glass[C]//Proceedings of the 2nd International Conference on Fracture.London:Chapman and Hall Ltd,1969:483.
目录contents

    摘要

    16 mm×32 mm 单晶硅片基体紧凑拉伸测试样品上尖锐裂纹的可控制备,及其在拉伸载荷作用下的稳态扩展,是微桥法薄膜断裂韧性测试得以实现的关键。 相较于紫外激光切割,采用红外激光切割方法在基体背面制备出锯齿状的背槽,并通过控制位移加载步幅和球形压头均衡加载,实现了三点弯曲法基体尖锐裂纹的可控制备。 该基体裂纹具有梯度形貌特征,对加载过程中的“载荷-位移”曲线以及表面裂纹扩展过程进行了考察,揭示了梯度形貌对裂纹失稳扩展的抑制作用。 基体尖锐裂纹的可控制备及其在拉伸测试中的稳态扩展,为微桥法的标准化测试奠定了基础。

    Abstract

    Compact tension (CT) specimen of 16 mm×32 mm rectangular silicon wafer was used as the substrate for the microbridge tensile testing method. A proper way is required to produce a sharp pre-crack in the CT specimen. And a stable extension of the crack is also desired during the tensile testing for fracture toughness of thin films. However, both of them have not been successfully achieved yet since microbridge tensile testing method was proposed in 2011. In this paper, a narrow groove with a serration morphology was produced with infrared laser cutting method along central line of the silicon wafer CT specimen. And then three-point bending test was conducted to prepared a sharp crack with a self-made mini device. A linear actuator was adopted serving as the loading bar. Load are applied through aϕ0. 8mm spherical indenter mounting on the tip of the loading bar. The balance loading was studied, and a sharp crack of desired length can then be produced in a standard procedure. More importantly, the substrate crack possesses a type of gradient morphology. That is, there is a long distance that silicon wafer fractures along the groove, while instead of a visible crack, a crease mark appear on the surface. Tensile testing of the CT specimen with the gradient substrate crack was then conducted. Results showed that the gradient crack extends a short distance of about 474μm in average in a single increment step of 0. 5μm of the actuator. Though the crack extends to a distance varying in a wide range, it is evidently not catastrophic. Theoretical analysis showed that the gradient substrate crack consumes an ever increasing energy during its fracture, which restrains a sudden extension of substrate crack to a long distance. Innovations that have been made in this paper, a special laser cutting procedure, the serration morphology of the groove, a gradient crack as well as its stable extension within a single displacement increment of the loading, provide the base of the microbridge tensile testing method for fracture toughness of thin films.

  • 0 前言

  • 韧性是材料的基本力学性能之一,材料的断裂韧性测量对结构材料的研究及其应用具有非常重要的意义。对于块体材料,已有三点弯曲等标准化的断裂韧性测试方法[1]。但薄膜材料的厚度往往在微米和亚微米尺寸,制约了断裂韧性的有效测量。迄今为止,还缺乏标准化的测量方法及其成熟的商业化设备。

  • 对于沉积在基体表面的硬质薄膜,纳米压入和纳米划擦方法常用来对材料的韧性进行定性评价[2]。纳米压入过程中,薄膜材料沿着压头的棱角出现径向裂纹[3],甚至环形剥落[4],根据薄膜开裂方式,学者提出不同的薄膜断裂韧性计算模型。然而,由于界面两侧材料性能的差异性,膜/基体系的压入和划擦力学状态过于复杂,上述简化力学模型的有效性缺乏合理的论证[5]

  • 借鉴块体材料的单轴拉伸测试方法,近年来有学者尝试针对微小自由薄膜样品进行单轴拉伸和断裂韧性测试。 CHASIOTIS等[6-8] 采用MEMS掩膜光刻技术制备出条形薄膜,将薄膜样品从基体上剥离, 采用静电吸附的方法对薄膜样品进行钳制后,采用配备有高精度力和位移加载单元的拉伸装置实现薄膜断裂韧性的拉伸测量。 ESPINOSA等[9-11] 避开了微小自由薄膜夹持的难题,采用MEMS技术进行准确定位后,从基体背部穿透刻蚀出矩形窗口,裸露出薄膜样品的测试区域,进而采用纳米压入仪对悬空薄膜进行法向加载,使其承受轴向拉伸作用,从而实现薄膜断裂韧性的拉伸测试。 KAHN等[12-14]提出一个非常巧妙的方法,利用薄膜从基体表面释放后的残余拉应力对薄膜的拉伸作用实现了薄膜断裂韧性的测量。该方法避开了对自由薄膜进行微小力加载的难题,但对薄膜应力有特殊要求,仅限于特定的薄膜体系。 XIANG等[15-16] 采用鼓泡法实现薄膜断裂韧性的测量,采用离子刻蚀方法在悬空薄膜表面制备切缝,鼓泡时薄膜从切缝前端开裂,从而获得薄膜的断裂应力和应变。

  • 作者最近提出自由薄膜的微桥拉伸法[17-19]。如图1所示,在单晶硅片紧凑拉伸测试样品基体表面沉积薄膜,并采用MEMS掩膜光刻技术使其图案化。然后采用维氏硬度计压入法在薄膜上制备单侧尖锐裂纹,刻蚀掉牺牲层使测试区域悬空。进而对基体施加位移载荷,使其初始裂纹扩展并穿过微桥薄膜底部。薄膜在基体裂纹张开的过程中承受单轴拉伸作用,测量薄膜断裂时的临界应力和应变,即可获得薄膜断裂韧性。该方法通过对基体样品的加载,来实现对薄膜的间接测试,既避开了微小自由薄膜样品的直接夹持,也避免了对薄膜单轴拉伸微小力和位移的精确测试的难题。然而,在操作层面,单晶硅片基体紧凑拉伸测试样上尖锐初始裂纹的制备及其在拉伸作用下的稳态扩展;在计算层面,将基体裂纹张开量转化为薄膜应变进而计算裂纹扩展应力强度因子,是该方法得以实现的关键。

  • 在16mm×32mm单晶硅片上制备一定长度的尖锐裂纹具有很大的难度。单晶硅脆性很大,常用的疲劳弯曲方法无法触发单晶硅材料微裂纹的产生,而裂纹一旦产生又很容易脆性断裂。文献报道,采用划擦或压入方法在陶瓷薄片边缘触发尖锐裂纹[20-21],将陶瓷薄片两侧覆盖韧性材料以延缓裂纹生成后的脆性断裂[22]。作者前期采用采用金刚石笔手动划刻的办法在单晶硅片边缘触发尖锐裂纹, 实现了紧凑拉伸基体样品初始裂纹的制备[17],但手动方法稳定性差, 失误率高, 依赖操作者的熟练程度。

  • 图1 薄膜微桥拉伸法测试方法示意图

  • Fig.1 Schematic diagram of the microbridge tensile testing method

  • 对于紧凑拉伸样品在拉伸载荷作用下的裂纹扩展,应力强度因子KI=f(a/W)P/tW1/2( a 为裂纹长度,W 为加载位置距样品边缘的距离,f( a/W) 为形状系数,P 为拉伸载荷,t 为样品厚度) [23],可以看出,对于半无限宽裂纹,形状系数 f(a/W)=1,在恒定载荷下,应力强度因子为常量。因此,一旦达到临界应力,裂纹将失稳扩展。而在恒定加载位移条件下,裂纹的扩展将引起加载力的降低[24],应力强度因子减小,裂纹停止扩展。作者前期研究中,采用测微仪(精度0.5 μm)简易装置实现了单晶硅片紧凑拉伸样品拉伸测试的位移加载。然而,实践中发现,对于实际紧凑拉伸样品,边界条件作用下形状系数 f(a/W)随裂纹长度 a 增加而增加,应力强度因子K I 呈现逐渐增加的趋势。同时,由于材料存在缺陷等原因,单晶硅片基体在沿着晶面扩展过程中,经常出现裂纹偏转、裂纹卡顿、以及突发性裂纹扩展甚至断裂等现象。如果能够制备出倾斜的单晶硅片基底,则由于薄膜厚度逐渐增加,裂纹扩展能耗逐渐递增,可以抑制基体裂纹的失稳扩展。然而,该想法在实践上不具有可行性。

  • 文中开展了探索性研究,提出激光切割方法制备锯齿状基体背槽,该样品在三点弯曲过程中形成梯度形貌的基体裂纹,从而实现了裂纹扩展过程中断裂能耗的逐渐增加。采用位移加载模式和梯度裂纹能耗机制,实现了基体裂纹的稳态扩展,为微桥法的标准化测试奠定了基础。

  • 1 试验方法

  • 激光切割加工是一种先进的制造技术,具有紧密制造、柔性切割、一次成型等特点[24],采用高精度激光切割设备制备基体背槽的同时,也可以实现样品边界、止裂孔、加载孔等的精确制备,从而实现单晶硅基体样品几何尺寸及其制备工艺的标准化[25]。激光切割前先将单晶硅表面涂覆一层光刻胶作为保护,防止在激光切割加工过程中对表面的损伤,影响后续的镀膜及测量过程。基体背槽的激光切割,采用紫外和红外两种方法,参数列入表1。采用INNO 17W紫外纳秒的激光器时的参数为频率100kHz,速度100mm/s,功率6W,加工进给10次,每次进给0.03mm,总共0.3mm;采用TRUMPF100W红外皮秒的激光器时的参数为频率200kHz,速度1 000mm/s,功率25W,加工进给7次,每次进给0.05mm,总共0.35mm。

  • 表1 两种不同激光切割方法的工艺参数

  • Table1 Parameters of two kinds of laser cutting methods

  • 基体样品的三点弯曲试验,采用如图2所示的自制装置, 主要组件为: 线性促动器( 精度0.5 μm)、角位台、X-Y 轴移动平台。测试在显微镜原位观测下进行:将测试样品放置于相互平行的两个支撑柱上,调节 X-Y 轴移动平台进行加载定位,旋转角位台调节加载角度;设定促动器加载速率对测试样品施加位移载荷,基体弯曲过程中在背槽处萌生裂纹并形成一定长度的贯穿基体厚度的初始裂纹。

  • 图2 三点弯曲装置示意图

  • Fig.2 Three-point bending device Schematic diagram

  • 基体样品的拉伸采用自制装置,如图3所示,主要包括线性促动器( 精度50nm)、测微头( 精度1 μm)、轴向线性位移台、样品台、加载柱。两个加载柱对称装配在左右两个样品台表面,样品台固定于轴向线性位移台,线性促动器和测微头分别带动两个轴向线性位移台的轴向移动。测试在显微镜原位观测下进行:调节线性促动器和测微头调节两个加载柱的距离,使加载柱穿过测试样品的两个加载孔。然后,调节促动器向左移动,对样品施加拉伸位移载荷。

  • 图3 紧凑拉伸装置示意图

  • Fig.3 Schematic diagram of the tensile loading device

  • 2 结果与讨论

  • 2.1 激光切割试验结果

  • 图4a和图4b分别采用激光切割方法1和方法2制备的背槽形貌断面图。可以看出, 对于基体厚度为480 μm的单晶硅片,对应于方法1的背槽较为平滑,切面较为光滑,切割深度约为230 μm; 而方法2制备的背槽深度相同(~230 μm),但切面粗糙,具有锯齿状形貌,锯齿高度约为135 μm,锯齿间距38~60 μm不等,呈现一定程度的周期性。紫外切割的切面相对光滑,是因为硅对紫外光吸收率高,紫外光只能在硅表面进行能量吸收,对硅切割只能一层一层切割,形成较为平滑的背槽切面。对于红外切割,硅对红外光吸收率低,红外波段激光可以透过硅,对材料的内部组织进行破坏。高能激光对单晶硅的扫描过程中,硅原子的排布方式发生变化,产生应力,而这种应力的释放造成激光烧灼深度的周期性变化,形成锯齿状形貌。

  • 图4 激光切割的背槽断面及其对应的基体裂纹表面形貌光学显微镜照片

  • Fig.4 Optical microscope photos of cross section of laser cutting grooves andcorresponding cracking phenomenon on the substrate surface

  • 2.2 基体的三点弯曲实验结果

  • 2.2.1 平滑状背槽

  • 采用三点弯曲法制备基体裂纹,如图5a所示, 采用线性促动器施加法向载荷,并采用光学显微镜原位观测基体在压入过程中的变化。为了便于观察基体在压入过程中裂纹的生成规律,设定一定的位移增量进行间断式加载。经过大量试验,发现基体的裂纹制备包含3个阶段。

  • 阶段Ⅰ:压头向下移动,开始和样品接触,则显微镜观测的聚焦度发生变化,视域变模糊。

  • 阶段Ⅱ:继续施加位移载荷,达到临界点后,单晶硅片样品在背槽处断裂,裂纹延伸至表面,开始出现表面裂纹。该环节具有明显的突发性,与硅片在背槽处裂纹形成的失稳性有关。

  • 阶段Ⅲ:继续增加位移载荷,裂纹以间断性扩展的模式沿着背槽方向延伸,直至到达止裂孔。该过程具有一定的可控性,每次加载,裂纹突发性扩展一定距离,随即停止;下一个位移增量,又扩展一定距离。

  • 图5 三点弯曲基体裂纹制备示意图

  • Fig.5 Schematic diagrams of the preparation of the substrate crack

  • 对于阶段 Ⅱ中基体断裂的突发性,涉及到基体在背槽处的开裂过程。图5b中三点弯曲应力强度因子K I[26] :

  • KI=σπcf(c/t)
    (1)
  • 式中,c 为初始裂纹长度(背槽深度);t 为样品厚度; f(c/t) 为形状系数,随着裂纹长度的增加表现为单调上升的趋势;σ 为弯曲应力(σ=6M/t 2,M=P b S/4,P b=k y,M 为弯矩;P b 为外加载荷;S 为跨矩;k 为一个与样品尺寸和加载条件有关的常量;y 为压入深度)。

  • 由式(1)可知,对于位移加载模式,随着球形压头压入深度y增加,载荷P b 增大,弯矩M和弯曲应力 σ 也逐渐增大。当应力强度因子K I>K IC时,裂纹 c 开始扩展。由于K I 随着裂纹的扩展呈现上升的趋势,硅片在背槽处的开裂为失稳过程,表现为突发性的材料断裂。此外,背槽属于钝化型初始裂纹,单晶硅片基体裂纹萌生需要更大的临界载荷,加剧了基体断裂的失稳过程。

  • 然而,阶段Ⅲ中基体裂纹扩展的间断性裂纹扩展,可以用图5a示意图进行解释。背槽处贯穿基体厚度的尖锐裂纹出现后,继续增加法向位移载荷,裂纹沿着背槽方向纵向扩展,裂纹扩展驱动力[27]

  • G=8Eτt2y23Sa2
    (2)
  • 式中,Eτ为基体剪切模量;t 为基体厚度;y 为球形压头压入深度;S 为跨距;a 为基体裂纹长度。

  • 由式(2)可知,在压入深度 y 恒定条件下,基体裂纹扩展时,a 增加,G 减小。因此,采用位移加载模式,控制基体裂纹的长度。

  • 2.2.2 锯齿状背槽

  • 对于锯齿状背槽,基体裂纹制备过程中也存在类似的3个阶段。但在裂纹形貌方面呈现完全不同的特征。图4c、4d分别为图4a平滑状背槽和图4b锯齿状背槽基体裂纹制备后的表面形貌。图4c显示出清晰的基体裂纹,而图4d基体表面没有出现裂纹,但显现出明显的折痕,表明基体背槽一侧已经开裂,但裂纹没有延伸到表面。另外,试验中发现,对于锯齿状背槽,阶段Ⅱ中基体表面的折痕出现时,突发性减弱,同时阶段Ⅲ中折痕的阶段性扩展也相对较为平缓。因此,锯齿状背槽对基体裂纹的可控制备具有明显的促进作用。

  • 图6 为平滑状背槽和锯齿状背槽基体裂纹形貌的示意图。对于平滑状背槽,Δa/( t-c) ≈ 5 [21],可以算出 Δa=5 ×(0.480-0.230)=1.250mm。而试验测试发现,对于锯齿状背槽,Δa/( t-c)≫5。试验证实,通过改变激光切割能量,调整锯齿状背槽形貌及其残留厚度,可以使该梯度裂纹端 Δa 达到16mm,甚至更长(样品长度为32mm)。

  • 图6c、6d分别为图6a、6b中虚线区域的放大图。可以看出,对于锯齿状背槽,锯齿尖端处 W1 + W2W,基体开裂时,涉及的面积很小,因此断裂能耗很小,在较小的弯矩作用下即可实现开裂。同时, 在相同的弯曲载荷作用下,背槽一侧的基体裂纹传播更远。当背槽裂纹向材料表面逐渐扩展,横断面阴影面积逐渐增大,裂纹扩展能耗迅速加大,最终形成斜坡状梯度形貌,Δa/( t-c) ≫5,简称梯度裂纹(图6b)。

  • 2.2.3 加载的均衡性

  • 试验发现,对紧凑拉伸样品的单侧进行三点弯曲加载时,裂纹两侧加载的均衡性对基体裂纹的可控制备具有非常大的影响。采用点加载,需要严格的加载定位,并且容易嵌入裂纹缝隙,造成样品的损坏。采用平面压头平行于样品表面进行加载,则裂纹两,侧加载均衡,但实现起来难度大。本文研究采用大直径球形压头模拟平面压头以实现加载的均衡性(图7)。

  • 图6 平滑状背槽和锯齿状背槽对应的基体裂纹形貌示意图

  • Fig.6 Schematic diagram of the cracking morphology during bending test

  • 图7 球形压头压入硅片示意图

  • Fig.7 Schematic diagram of spherical indenter pressing into silicon wafer

  • 表2 列入了4次平行测试基体样品在压头接触样品、基体表面出现折痕、折痕延伸至止裂孔3个事件的促动器读数。进而计算出从接触到出现折痕的压入深度差,以及出现折痕到延伸至止裂孔的促动器读数的差值(也就是压头在垂直方向的压入深度差)。可以看出,样品的加载相应存在较大的波动性,压头接触样品到出现折痕的压入深度差为175~254 μm,出现折痕到延伸至止裂孔的压入深度差为34~50 μm。

  • 表2 三点弯曲测试过程中基体的不同阶段响应对应的促进器读数

  • Table2 Readings of linear actuator at different substrate response during the three point bending tests

  • Action-1: indenter contacts substrate, action-2: crease mark appears on the substrate surface, action-3: crease mark extends to the arresting hole

  • 试验发现,上述4次试验结果的差异性,与加载位置的准确定位有关。试验中采用10 μm移动精度的 X-Y 轴移动台实现加载定位,则定位偏差 D=5~10 μm,试验中采用半径 R=0.4mm的钢球压头,则加载时裂纹两侧垂直方向的高度差H=R-(R 2-D 2 ) 1/2=0.031~0.125 μm。由此可见,加载过程中,压头在样品表面的定位偏差引起裂纹两侧高差的微小变化,对基体裂纹的产生的过程具有很大的影响。

  • 鉴于上述原因,需要采用分阶段调节加载步幅的手段,来实现基体裂纹制备过程的有效可控。实践中,第Ⅰ阶段采用10 μm/步的步幅,第Ⅱ阶段采用5 μm/步的步幅,第Ⅲ阶段采用1 μm/步的步幅。

  • 2.3 基体拉伸测试实验结果

  • 为了考察该梯度基体样品在拉伸载荷作用下的力学响应,在线性促动器和拉伸部件之间加入一个精度1mN的微型传感器, 设定线性促动器以0.5 μm/s的速度进行连续加载,考察“促动器位移载荷”曲线特征,并观察基体表面裂纹扩展情况。

  • 2.3.1 平滑状背槽

  • 平滑状背槽基体样品在三点弯曲过程中制备的贯穿基体厚度初始裂纹(图6a),在拉伸测试中裂纹扩展情况与无背槽的基体初始裂纹具有相似的情况,裂纹扩展可控性较差,存在裂纹偏转、裂纹卡顿、以及突发性裂纹扩展甚至断裂等现象。图8为较为典型的裂纹扩展卡顿情况。加载前,表面裂纹尖端到止裂孔距离2.5mm,在加载的起始阶段,载荷迅速增大, 达到350mN时突然大幅度降低至130mN,然后略微上升后,又回落至80mN;随后为平缓线性上升过程。该曲线中的第一个峰值,是裂纹卡顿,促动器位移的增加,载荷不断上升,累加到临界值后,裂纹的增加,载荷不断上升,累加到临界值后,裂纹突然大幅度扩展,引起载荷的迅速回落; 由于载荷过大,裂纹直接失稳扩展到止裂孔,随后的线性平滑上升,是基体裂纹达到止裂孔后,裂纹面脱离接触后的裂纹张开过程(曲线最后载荷的回落为断裂过程)。

  • 图8 平滑状背槽基体裂纹扩展时卡顿现象对应的“位移-载荷”曲线

  • Fig.8 Displacement-load curve of crack stuck of a CT specimen with smooth groove during tensile testing

  • 2.3.2 止裂孔边缘的弧形裂纹

  • 平滑状背槽基体样品在三点弯曲过程中不断增加载荷使基体裂纹背面扩展到止裂孔,由于存在 Δa/(t-c) ≈5的弧形裂纹尖端(图6a),样品表面止裂孔附近1mm区域出现折痕。对该样品进行拉伸测试, 如图9所示。可以看出,该弧形裂纹尖端区域,裂纹的扩展具有非常好的可控性,位移加载0~5 μm区间,载荷呈现跳跃式增加的趋势,为梯形基体开裂过程,图中曲线的小峰值及其迅速回落,代表裂纹的一次扩展,可以看出,一共经历约10次裂纹扩展。

  • 图9 平滑状背槽止裂孔边缘弧形裂纹尖端基体样品拉伸时的“位移-载荷”曲线

  • Fig.9 Displacement-load curve of arc crack tip near arresting hole of a CT specimen with smooth groove during tensile testing

  • 位移加载> 5 μm的区域,载荷随着位移的增加而呈现单调增加的趋势,曲线具有良好的光滑性。该区域止裂孔边缘基体裂纹的两侧脱离接触,为单一的裂纹张开过程。值得注意的是,在拉伸位移5 μm左右,曲线出现较大的跳跃( 图9中虚线区域)。这是由于基体裂纹达到止裂孔时,基体刚度突然降低,引起载荷较大幅度跌落所致。

  • 2.3.3 锯齿状背槽形成的梯度裂纹

  • 拉伸测试样品为图6b示意图所示的梯度裂纹, 该样品在三点弯曲过程中,控制压入载荷,使得折痕扩展到止裂孔。测试前,测量折痕长度(裂纹尖端到止裂孔距离)11.1mm(~1/3样品长度)。表3列出了采用间断式位移加载时测量的样品裂纹扩展情况。第1-9次加载时,加载步幅为1 μm/步,裂纹扩展长度分布范围为88.4~1 931.2 μm;第10~20次加载时,加载步幅为0.5 μm/步,除第11次加载时裂纹扩展长度为1 516.4 μm外,裂纹扩展长度分布范围为119.0~805.8 μm,表明0.5 μm/步加载步幅条件下裂纹扩展长度可控性更强。第20次加载后, 基体表面裂纹扩展至止裂孔, 裂纹扩展长度为489.6 μm,远大于第17、18、19次加载的裂纹扩展长度,与止裂孔引起的裂纹扩展约束力减弱有关。1~9次加载裂纹扩展长度的平均值为652.4 μm/次; 10-20次加载裂纹扩展长度的平均值为474.9 μm/次。图10a和图10b为分别为第0~4次和第16~20次加载后基体裂纹表面形貌,可以看出,随着促动器拉伸位移逐步增大,基体裂纹缓慢延伸,呈现良好的可控性;采用0.5 μm/步的加载步幅,裂纹扩展长度要小于1 μm/步的加载步幅,与统计结果一致。

  • 表3 紧凑拉伸测试样品在1和0.5 μm增量间断式拉伸测试过程中的裂纹扩展

  • Table3 Crack extension of CT specimen with gradient initial crack during testing with 1and 0.5 μm displacement increment

  • 图10 紧凑拉伸测试样品在拉伸过程中的裂纹扩展形貌

  • Fig.10 Optical photograph of the crack of CT specimen with gradient crack during step by step tensile loading

  • 由以上结果可知,梯度裂纹可以确保基体裂纹在拉伸测试过程中稳态扩展的可控性。裂纹扩展所消耗的能量

  • U=GICA
    (3)
  • 式中,G IC 为基体材料的断裂韧性(单位面积裂纹扩展能耗);A 为裂纹开裂的面积。

  • A=a2tanα2
    (4)
  • 式中,a 为裂纹长度;α 为梯度裂纹的角度,如图6b所示。

  • 裂纹扩展单位长度所消耗的能量

  • dUda=GICdAda=GICatanα
    (5)
  • 可以看出,随着裂纹扩展,裂纹长度 a 逐渐增大,裂纹扩展单位长度的能耗不断增加,有效抑制了基体裂纹的失稳扩展。

  • 3 结论

  • 采用紫外和红外激光切割的方法,分别在单晶硅片上制备出了平滑状和锯齿状的基体背槽。对两种背槽的紧凑拉伸基体样品进行了三点弯曲试验, 通过球形压头均衡加载,考察加载过程中的基体响应,发现有锯齿状背槽的样品可以实现基体初始裂纹的可控制备。锯齿状背槽在弯曲过程中形成较长区域的梯度裂纹,表现为表面的折痕。该梯度裂纹使测试样品在拉伸测试时裂纹扩展能耗逐渐增加, 有效抑制了基体裂纹的失稳扩展,实现了基体裂纹的稳态扩展,为微桥法薄膜断裂韧性的标准化测试奠定了基础。

  • 参考文献

    • [1] ZHU X K,JOYCE J A.Review of fracture toughness(G,K,J,CTOD,CTOA)testing and standardization [J].Engineering Fracture Mechanics,2012,85:1-46.

    • [2] ZHANG S,SUN D E,FU Y Q,et al.Toughness measurement of thin films:A critical review [J].Surface & Coatings Technology,2005,198(1-3):74-84.

    • [3] GUO Y,STAEDLER T,JULIAN MULLER,et al.A detailed analysis of the determination of fracture toughness by nanoindentation induced radial cracks [J].Journal of the European Ceramic Society,2020,40(2):276-289.

    • [4] MICHEL M D,MUHLEN L V,ACHETE C A,et al.Fracture toughness,hardness and elastic modulus of hydrogenated amorphous carbon films deposited by chemical vapor deposition [J].Thin Solid Films,2006,496(2):481-488.

    • [5] ZHANG X M,ZHANG S.Rethinking the role that the “step” in the load-displacement curves can play in measurement of fracture toughness for hard coatings[J].Thin Solid Films,2012,520:3423-3428.

    • [6] CHASIOTIS I,KNAUSS W G.A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy [J].Experimental Mechanics,2002,42(1):51-57.

    • [7] JONNALAGADDA K,CHO S W,CHASIOTIS I,et al.Effect of intrinsic stress gradient on the effective mode-I fracture toughness of amorphous diamond-like carbon films for MEMS[J].Journal of the Mechanics and Physics of Solids,2008,56(2):388-401.

    • [8] CHO S W,JONNALAGADDA K,CHASIOTIS I.Mode I and mixed mode fracture of polysilicon for MEMS [J].Fatigue & Fracture of Engineering Materials & Structures,2010,30(1):21-31.

    • [9] ESPINOSA H D,PROROK B C,FISCHER M.A methodology for determining mechanical properties of freestanding thin films and MEMS materials[J].Journal of the Mechanics and Physics of Solids,2003,51(1):47-67.

    • [10] PENG B,PUGNO N,ESPINOSA H D.An analysis of the membrane deflection experiment used in the investigation of mechanical properties of freestanding submicron thin films[J].International Journal of Solids and Structures,2005,43(11):3292-3305.

    • [11] ESPINOSA H D,PENG B,MOLDOVAN N,et al.Elasticity,strength,and toughness of single crystal silicon carbide,ultrananocrystalline diamond,and hydrogen-free tetrahedral amorphous carbon[J].Applied Physics Letters,2006,89(7):1-1.

    • [12] KAHN H,BALLARINI R,BELLANTE J J,et al.Fatigue failure in polysilicon not due to simple stress corrosion cracking [J].Science,2002,298(5596):1215-1218.

    • [13] BELLANTE J J,KAHN H,BALLARINI R,et al.Fracture toughness of polycrystalline silicon carbide thin films [J].Applied Physics Letters,2005,86(7):071920.

    • [14] HATTY V,KAHN H,TREVINO J,et al.Fracture toughness of low-pressure chemical-vapor-deposited polycrystalline silicon carbide thin films [J].Journal of Applied Physics,2006,99(1):013517.

    • [15] XIANG Y,CHEN X,VLASSAK J J.Plane-strain bulge test for thin films[J].Journal of Materials Research,2005,20(9):2360-2370.

    • [16] XIANG Y,MCKINNELL J,ANG W M,et al.Measuring the fracture toughness of ultra-thin films with application to AlTa coatings[J].International Journal of Fracture,2007,144(3):173-179.

    • [17] ZHANG X M,ZHANG S.A microbridge method in tensile testing of substrate for fracture toughness of thin films [J].Nanoence & Nanotechnology Letters,2011,3(6):735-743.

    • [18] ZHANG S,ZHANG X M.Toughness evaluation of hard coatings and thin films [J].Thin Solid Films,2012,520(7):2375-2389.

    • [19] ZHANG S.Thin films and coatings:Toughening and toughness characterization[M].Los Angeles:CRC Press,2015.

    • [20] EVANS A G.A method for evaluating the time-dependent failure characteristics of brittle materials and its application to polycrystalline alumina[J].Journal of Materials Science,1972,7(10):1137-1146.

    • [21] XIN Y B,HSIA K J.A technique to generate straight through thickness surface cracks and its application to studying dislocation nucleation in Si[J].Acta Materialia,1996,44(3):845-853.

    • [22] HASHIMOTO A,KOVAR D.Controlled precracking of fracture mechanics specimens using contact stresses[J].Journal of the American Ceramic Society,2002,85(9):2251-2255.

    • [23] 沈成康.断裂力学[M].上海:同济大学出版社,1996.SHEN C K.Fracture mechanics [ M ].Shanghai:Tongji University Press,1996.(in Chinese)

    • [24] 鄢锉,李力钧,李娟,等.激光切割板材表面质量研究综述 [J].激光技术,2005,29(3):270-274.YAN C,LI L J,LI J,et al.A review of the research on the surface quality of laser cutting plates [J].Laser Technology,2005,29(3):270-274.(in Chinese)

    • [25] 李海鸥,韦春荣,王晓峰,等.晶圆激光切割技术的研究进展[J].半导体技术,2017,42(8):561-568.LI H O,WEI C R,WANG X F,et al.Research progress of wafer laser cutting technology [J].Semiconductor Technology,2017,42(8):561-568.(in Chinese)

    • [26] TADA H,PARIS P C,IRWIN G R.The stress analysis of cracks handbook[M].Del Research Corp,1973.

    • [27] KIES J A,CLARK A B J.Fracture propagation rates and times to fail following proof stress in bulk glass[C]//Proceedings of the 2nd International Conference on Fracture.London:Chapman and Hall Ltd,1969:483.

  • 参考文献

    • [1] ZHU X K,JOYCE J A.Review of fracture toughness(G,K,J,CTOD,CTOA)testing and standardization [J].Engineering Fracture Mechanics,2012,85:1-46.

    • [2] ZHANG S,SUN D E,FU Y Q,et al.Toughness measurement of thin films:A critical review [J].Surface & Coatings Technology,2005,198(1-3):74-84.

    • [3] GUO Y,STAEDLER T,JULIAN MULLER,et al.A detailed analysis of the determination of fracture toughness by nanoindentation induced radial cracks [J].Journal of the European Ceramic Society,2020,40(2):276-289.

    • [4] MICHEL M D,MUHLEN L V,ACHETE C A,et al.Fracture toughness,hardness and elastic modulus of hydrogenated amorphous carbon films deposited by chemical vapor deposition [J].Thin Solid Films,2006,496(2):481-488.

    • [5] ZHANG X M,ZHANG S.Rethinking the role that the “step” in the load-displacement curves can play in measurement of fracture toughness for hard coatings[J].Thin Solid Films,2012,520:3423-3428.

    • [6] CHASIOTIS I,KNAUSS W G.A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy [J].Experimental Mechanics,2002,42(1):51-57.

    • [7] JONNALAGADDA K,CHO S W,CHASIOTIS I,et al.Effect of intrinsic stress gradient on the effective mode-I fracture toughness of amorphous diamond-like carbon films for MEMS[J].Journal of the Mechanics and Physics of Solids,2008,56(2):388-401.

    • [8] CHO S W,JONNALAGADDA K,CHASIOTIS I.Mode I and mixed mode fracture of polysilicon for MEMS [J].Fatigue & Fracture of Engineering Materials & Structures,2010,30(1):21-31.

    • [9] ESPINOSA H D,PROROK B C,FISCHER M.A methodology for determining mechanical properties of freestanding thin films and MEMS materials[J].Journal of the Mechanics and Physics of Solids,2003,51(1):47-67.

    • [10] PENG B,PUGNO N,ESPINOSA H D.An analysis of the membrane deflection experiment used in the investigation of mechanical properties of freestanding submicron thin films[J].International Journal of Solids and Structures,2005,43(11):3292-3305.

    • [11] ESPINOSA H D,PENG B,MOLDOVAN N,et al.Elasticity,strength,and toughness of single crystal silicon carbide,ultrananocrystalline diamond,and hydrogen-free tetrahedral amorphous carbon[J].Applied Physics Letters,2006,89(7):1-1.

    • [12] KAHN H,BALLARINI R,BELLANTE J J,et al.Fatigue failure in polysilicon not due to simple stress corrosion cracking [J].Science,2002,298(5596):1215-1218.

    • [13] BELLANTE J J,KAHN H,BALLARINI R,et al.Fracture toughness of polycrystalline silicon carbide thin films [J].Applied Physics Letters,2005,86(7):071920.

    • [14] HATTY V,KAHN H,TREVINO J,et al.Fracture toughness of low-pressure chemical-vapor-deposited polycrystalline silicon carbide thin films [J].Journal of Applied Physics,2006,99(1):013517.

    • [15] XIANG Y,CHEN X,VLASSAK J J.Plane-strain bulge test for thin films[J].Journal of Materials Research,2005,20(9):2360-2370.

    • [16] XIANG Y,MCKINNELL J,ANG W M,et al.Measuring the fracture toughness of ultra-thin films with application to AlTa coatings[J].International Journal of Fracture,2007,144(3):173-179.

    • [17] ZHANG X M,ZHANG S.A microbridge method in tensile testing of substrate for fracture toughness of thin films [J].Nanoence & Nanotechnology Letters,2011,3(6):735-743.

    • [18] ZHANG S,ZHANG X M.Toughness evaluation of hard coatings and thin films [J].Thin Solid Films,2012,520(7):2375-2389.

    • [19] ZHANG S.Thin films and coatings:Toughening and toughness characterization[M].Los Angeles:CRC Press,2015.

    • [20] EVANS A G.A method for evaluating the time-dependent failure characteristics of brittle materials and its application to polycrystalline alumina[J].Journal of Materials Science,1972,7(10):1137-1146.

    • [21] XIN Y B,HSIA K J.A technique to generate straight through thickness surface cracks and its application to studying dislocation nucleation in Si[J].Acta Materialia,1996,44(3):845-853.

    • [22] HASHIMOTO A,KOVAR D.Controlled precracking of fracture mechanics specimens using contact stresses[J].Journal of the American Ceramic Society,2002,85(9):2251-2255.

    • [23] 沈成康.断裂力学[M].上海:同济大学出版社,1996.SHEN C K.Fracture mechanics [ M ].Shanghai:Tongji University Press,1996.(in Chinese)

    • [24] 鄢锉,李力钧,李娟,等.激光切割板材表面质量研究综述 [J].激光技术,2005,29(3):270-274.YAN C,LI L J,LI J,et al.A review of the research on the surface quality of laser cutting plates [J].Laser Technology,2005,29(3):270-274.(in Chinese)

    • [25] 李海鸥,韦春荣,王晓峰,等.晶圆激光切割技术的研究进展[J].半导体技术,2017,42(8):561-568.LI H O,WEI C R,WANG X F,et al.Research progress of wafer laser cutting technology [J].Semiconductor Technology,2017,42(8):561-568.(in Chinese)

    • [26] TADA H,PARIS P C,IRWIN G R.The stress analysis of cracks handbook[M].Del Research Corp,1973.

    • [27] KIES J A,CLARK A B J.Fracture propagation rates and times to fail following proof stress in bulk glass[C]//Proceedings of the 2nd International Conference on Fracture.London:Chapman and Hall Ltd,1969:483.

  • 手机扫一扫看