en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张振宇,男,1976年出生,教授,博士。主要研究方向为机械制造及其自动化。E-mail:zzy@dlut.edu.cn

中图分类号:TG174

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210201002

参考文献 1
BARTHLOTT W,SCHIMMEL T,WIERSCH S,et al.The salvinia paradox:Superhydrophobic surfaces with hydrophilic pins for air retention under water [J].Advanced Materials,2010,22(21):2325-2328.
参考文献 2
QING Y,SHI S,LÜ C,et al.Microskeleton ‐ nanofiller composite with mechanical super ‐ robust superhydrophobicity against abrasion and impact[J].Advanced Functional Materials,2020,30(39):1910665.
参考文献 3
LEI J.Bio-inspired,smart,multiscale interfacial materials[J].Advanced Materials,2008,20:2842-2858.
参考文献 4
宋金龙.工程金属材料极端润湿性表面制备及应用研究 [D].大连:大连理工大学,2015.SONG J L.Fabrication and application of extreme wettability surfaces on engineering metal materials [ D].Dalian:Dalian University of Technology,2015.(in Chinese)
参考文献 5
SU B,TIAN Y,JIANG L,et al.Bioinspired interfaces with superwettability:from materials to chemistry[J].Journal of the American Chemical Society,2016,138(6):1727-1748.
参考文献 6
毕向阳,明平美,申继文,等.超亲水/超疏水镍-纳米三氧化钨复合镀层的制备及特性分析[J].中国表面工程,2018,31(5):125-133.BI X Y,MING P M,SHEN J W,et al.Preparation and characteristic analysis of superhydrophilic/superhydrophobic Ni/nano-WO3 composites[J].China Surface Engineering,2018,31(5):125-133.(in Chinese)
参考文献 7
LU X,CAI H,WU Y,et al.Peach skin effect:a quasi-superhydrophobic state with high adhesive force [J].Science Bulletin,2015,60(4):453-459.
参考文献 8
WANG Y T,HAN M,LIU L,et al.Beneficial carbon nanotube intermediate layer for membrane fluorination towards robust superhydrophobicity and wetting resistance in membrane distillation [J].ACS Applied Materials & Interfaces,2020,12(18):20942-20954.
参考文献 9
GU Y,ZHANG W,MOU J,et al.Research progress of biomimetic superhydrophobic surface characteristics,fabrication,and application [J].Advances in Mechanical Engineering,2017,9(12):1-13.
参考文献 10
宋美艳,赵曼,石淑先,等.微球构筑防污减阻涂层的制备 [J].中国表面工程,2018,31(5):134-141.SONG M Y,ZHAO M,SHI S X,et al.Preparation of anti-fouling and drag reduction coating constructed by microspheres [J].China Surface Engineering,2018,31(5):134-141.(in Chinese)
参考文献 11
李杰,黄镑敏,王超磊,等.仿生微织构与氟硅烷修饰对6061铝合金浸润性的影响[J].中国表面工程,2020,33(2):29-36.LI J,HUANG R M,WANG C L,et al.Effects of biomimetic microtexture and fluoroalkylsilane modification on wettability of 6061 aluminum alloy[J].China Surface Engineering,2020,33(2):29-36.(in Chinese)
参考文献 12
ZHANG Z,GU Q,JIANG W,et al.Achieving of bionic superhydrophobicity by electrodepositing nano-Ni-pyramids on the picosecond laser-ablated micro-Cu-cone surface[J].Surface and Coatings Technology,2019,363:170-178.
参考文献 13
BAI X,YANG Q,FANG Y,et al.Anisotropic,adhesion-switchable,and thermal-responsive superhydrophobicity on the femtosecond laser-structured shape-memory polymer for droplet manipulation[J].Chemical Engineering Journal,2020,400:125930.
参考文献 14
顾秦铭,张朝阳,周晖,等.激光-电化学沉积制备超疏水铜表面及其Cassie状态稳定性研究[J].机械工程学报,2020,56(1):223-232.GU Q M,ZHANG Z Y,ZHOU H,et al.An investigation into peparation and cassie state stability analysis of superhydrophobic copper surface produced by laser ablation and electrodeposition [J].2020,Journal of Mechanical Engineering,56(1):223-232.(in Chinese)
参考文献 15
YONG J,CHEN F,LI M,et al.Remarkably simple achievement of superhydrophobicity,superhydrophilicity,underwater superoleophobicity,underwater superoleophilicity,underwater superaerophobicity,and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces [J].Journal of Materials Chemistry A,2017,5:25249-25257.
参考文献 16
林澄.皮秒激光制备大面积金属类荷叶结构及其超疏水压印研究[D].北京:清华大学,2014.LIN D.Large-area metal lotus-like structures fabricated by picosecond laser for superhydrophobic surface replication [ D].Beijing:Tsinghua University,2014.
参考文献 17
WANG X C,WANG B,XIE H,et al.Picosecond laser micro/nano surface texturing of nickel for superhydrophobicity [J].Journal of Physics D:Applied Physics,2018,51:115305.
参考文献 18
GENG W Y,HU A M,LI M.Super-hydrophilicity to superhydrophobicity transition of a surface with Ni micro-nano cones array[J].Applied Surface Science,2012,15:821-824.
参考文献 19
肖强,徐睿.超快激光制备材料表面微纳结构的研究进展 [J].中国表面工程,2020,33(1):1-17.XIAO Q,XU R.Research progress in surface micro-nano structure of materials prepared by ultrafast laser [J].China Surface Engineering,2020,33(1):1-17.(in Chinese)
参考文献 20
LUO X,PAN R,CAI M,et al.Atto-molar Raman detection on patterned superhydrophilic superhydrophobic platform via localizable evaporation enrichment[J].Sensors and Actuators B Chemical,2021,326:128826.
参考文献 21
CAI M,LIU W,LUO X,et al.Three-dimensional and in-situ activated spinel oxide nanoporous clusters derived from stainless steel for efficient and durable water oxidation[J].ACS Applied Materials & Interfaces,2020,12(16):19243.
参考文献 22
LONG J Y,ZHONG M,ZHANG H,et al.Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air[J].Journal of Colloid & Interface Science,2015,441:1-9.
参考文献 23
ZHEN Y,LIU X P,TIAN Y L,et al.Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure[J].Journal of Colloid & Interface Science,2019,533:268-277.
参考文献 24
FAN P X,PAN R,ZHONG M L,et al.Ultrafast laser enabling hierarchical structures for versatile superhydrophobicity with enhanced Cassie-Baxter stability and durability[J].Langmuir,2019,35(51):16693-16711.
参考文献 25
WANG G,ZHANG T Y.Oxygen adsorption induced superhydrophilic-to-superhydrophobic transition on hierarchical nanostructured CuO surface[J].Journal of Colloid & Interface Science,2012,377(1):438-441.
目录contents

    摘要

    无修饰的金属疏水表面受到广泛关注,尤其是具有超高疏水性表面的制备方法逐渐被重视。 通过皮秒激光烧蚀、电化学抛光和电化学沉积的顺序加工方法在铜表面制备一系列具有不同微观特征的乳突织构。 系统研究激光功率、重复频率、扫描速度和扫描次数对乳突织构表面形貌及疏水性的影响,并分析表面润湿性的转化机理。 研究结果表明,激光功率 9 W、重复频率 2 MHz、扫描速度 200 mm/ s、扫描次数 20 次时,跨尺度乳突织构表面静置 30 d 后可获得超高疏水性(接触角 161°,滚动角 1°)。 储存 30 d 后,亲水性的 Ni、CuO 转化为疏水性的 NiO、Ni(OH)2 、Cu2O,以及含 C 有机物的吸附促成了乳突织构表面润湿性的转化。

    Abstract

    Unmodified metal hydrophobic surfaces are extensively reported, and especially, the preparing methods of superhydrophobic surfaces attract tremendous attention. Matoid-like texture surfaces with different microstructures are fabricated by the sequential methods, which contains laser ablation, electropolishing and electro-deposition. The effects of laser power, repetition frequency, scanning speed and scanning times on surface morphology and wettability of mastoid-like texture are systematically studied, and then, the transformation mechanism of surface wettability is analyzed. The ultra-high hydrophobicity of cross-scale mastoid-like texture surface can be reached after 30 days when laser power is 9 W, the repetition frequency is 2 MHz, the scanning speed is 200 mm/ s and the scanning is 20 times. The highest contact angle is 161° and the lowest sliding angle is 1°. After being stored for 30 days, the wettability conversion benefites from the transformation of hydrophilic Ni and CuO into hydrophobic NiO, Ni(OH)2 and Cu2O, and the adsorption of C-containing organics.

  • 0 前言

  • 数十亿年来,生物为了适应复杂、恶劣的自然气候环境,进化出许多独特的结构和性能。荷叶能在水滴滴落时自清洁,槐叶萍浮叶能在水流中稳定空气薄膜维持呼吸,鲨鱼能在海洋中快速游行,蝴蝶能在阴雨天保持翅膀干燥自由飞行都得益于表面特殊的微观形貌和化学组分[1-6]。受生物学启发,具有微纳结构和低表面能物质的仿生超疏水表面已经广泛应用于金属防腐、流体减阻、防雾、防结冰、油水分离等领域[7-10]。近年来,如何提高金属材料表面疏水性也成为了研究热点。

  • 激光加工、阳极氧化、电化学沉积、化学气相沉积等特种加工技术常被应用于制备超疏水表面的微纳结构[11-15]。就激光加工而言,皮秒激光虽然难以制备精确定义的纳米结构,但具有优异的微米结构加工能力, 可制备复合结构中的微米结构[16]。 Wang采用皮秒激光在镍表面制备出直径为25 μm的凸起阵列,在空气中放置1d,水的接触角达到140° [17]。电化学沉积可以高效制备纳米结构,Geng等30s内在铜基底上电化学沉积出丰富致密的镍锥,空气中放置15d后,水的接触角为150° [18]。然而,这些无修饰的单一制备方法难以在金属表面制备出接触角大于160°的超高疏水性。

  • 文中在铜基板上,采用激光烧蚀、电化学抛光、电化学沉积的顺序加工方法,制备了一系列具有优异疏水性的跨尺度乳突织构表面。着重讨论了激光功率、重复频率、扫描速度和次数对乳突阵列表面形貌、三维形貌、截面高度及疏水性的影响,并分析了储存后润湿性转变机理。为实现无修饰、超高疏水性的金属表面提供了制备方法和试验基础。

  • 1 试验

  • 1.1 试验设备与试剂

  • 微米乳突阵列采用Edgewave的皮秒激光系统制备,脉宽为13ps,聚焦光斑直径约25 μm。电化学抛光和沉积过程中使用的电源为优利德(UTG4082A)信号发生器。润湿性测量采用DCAT11型(德国Data Physics) 接触角测量仪;表面形貌分析采用JSM-7800F型场发射扫描电子显微镜(日本JEOL);三维形貌分析采用VK-X250型激光共聚焦显微镜(日本Keyence);表面化学元素分析采用X射线能谱仪(EDS,美国EDAX)和X射线光电子能谱分析仪(XPS,美国Thermo Scientific)。

  • 基底材料为99.9%(质量分数)的工业纯铜。电化学抛光溶液为Na2CO3( 70g/L)、 KOH(10g/L)、C12H25NaO4 S(10g/L)的水溶液,阴极为铅块。电化学沉积的溶液为NiCl2·6H2O(238g/L)、 H3BO3(30g/L)和C2H10Cl2N2(200g/L)的水溶液, 阳极为镍块。

  • 1.2 激光烧蚀微米乳突阵列

  • 首先将厚度为1mm铜试样按400、800、1 000、 1 200号粒度SiC砂纸研磨处理后抛光,然后超声清洗10min。激光束透过振镜和聚焦透镜后投射在试样表面,按方形网格矩阵轨迹(扫描面积为10mm × 10mm,网格间距为20 μm)扫描形成规则分布的微乳突阵列。试验中分别通过改变激光功率、重复频率、扫描速度和扫描次数来改变仿生跨尺度乳突织构表面的润湿性。

  • 1.3 电化学沉积亚微米-纳米棱锥

  • 电化学沉积前,以铅块为电化学抛光阴极,激光纹理化后的铜试样为阳极,在25mA/cm 2 电流密度下,抛光60s。电化学抛光可以去除激光烧蚀时溅射在微米乳突阵列上零星分布的纳米熔渣、颗粒。然后将试样静置在10%HCl溶液中20s,进行活化处理。电化学抛光及活化处理均可以增强后续电化学沉积的纳米镍棱锥和微米乳突阵列的结合力。

  • 电化学沉积时,以镍块为阳极,电化学抛光后铜试样为阴极,在65℃ 的沉积液中,先以18mA/cm 2 的电流密度沉积300s,生长亚微米大棱锥。然后, 以50mA/cm 2 的电流密度沉积50s,生长纳米小棱锥。最终,以顺序加工的方式(激光扫描、电化学抛光和电化学沉积)在铜试样表面覆盖微米乳突-亚微米大棱锥-纳米小棱锥的仿生跨尺度阵列织构。制备好的试样在空气中静置30d,实现润湿性转变。

  • 2 试验结果与讨论

  • 2.1 激光功率对微乳突织构表面润湿性的影响

  • 图1 中为激光功率不同时顺序加工制备的跨尺度乳突织构表面形貌、三维形貌及对应的横截面轮廓图。当激光功率从9W增加到15W时,整齐的微乳突阵列织构逐渐变得随机、混乱,微乳突的平均截面高度增加。功率9W时,微米乳突表面环绕着周期约3 μm的波纹(图1a),而功率增加到15W时,微米乳突表面的波纹被溅射的团簇、颗粒取代。研究中采用高斯光束,当脉冲激光作用于金属表面时,引起材料内部自由电子振荡,激发了沿金属表面传播的等离子激元,形成瞬时高温,烧蚀出V型沟槽[19-21]。而微米乳突表面环绕的波纹则是入射光束在V型槽表面多次反射的结果。高能量密度的激光束辐照在金属表面时,诱导出的物质(原子、颗粒及团簇等) 获得较高的初始动能,消散到自由空间,其中一些则在空气阻力和自身重力作用下沉积回金属表面(如图2所示),形成了微米乳突表面的颗粒。

  • 图1 激光功率不同时试样表面形貌、三维形貌和截面轮廓

  • Fig.1 Surface morphologies, 3D topographies and profiles of samples at different laser power

  • 图2 脉冲激光与金属材料作用机理

  • Fig.2 Mechanism of pulse laser working on metal materials

  • 图3a中统计出了微乳突阵列织构的平均直径、平均高度以及高度直径比与激光功率的关系,激光功率从9W增大到15W时,微乳突平均直径均为20 μm,平均高度逐渐增加,所以,微乳突平均高度直径比增大。相反,顺序加工的跨尺度阵列织构表面接触角逐渐减小、滚动角逐渐增大。激光功率9W时,顺序加工制备的跨尺度乳突织构表面疏水性最好,接触角达到160°,滚动角仅为1°。激光单脉冲能量密度和功率的关系可表示为

  • f=4PπFD2
    (1)
  • 式中: f 为单脉冲能量密度,P 为激光功率,F 为重复频率,D 为光斑直径。由式(1), fP,所以,增大激光功率将增大单脉冲能量密度,烧蚀出的微乳突高度增加,但微乳突阵列织构的一致性变差。在仅使用激光烧蚀微乳突阵列织构时,高激光功率可以增加微乳突的高度直径比并在乳突表面溅射更多的颗粒、团簇,或许可以增大表面粗糙度从而获得更好的疏水性。而按照顺序制备方案,激光烧蚀制备均匀、整齐的微米结构,丰富的纳米结构由电化学沉积制备,所以在较小的激光功率(9W),均匀致密的跨尺度乳突织构表面疏水性最佳。

  • 图3 不同激光功率下乳突高度、直径、高度直径比、接触角和滚动角

  • Fig.3 Diameter, height, aspect ratio, contact angle and sliding angle of mastoids at different laser power

  • 2.2 重复频率对微乳突织构表面润湿性的影响

  • 图4 为激光重复频率不同时获得的乳突织构, 当重复频率为0.5MHz时,微乳突大小不一,而当激光频率为1.5MHz和2.5MHz时,微乳突阵列结构整齐、均匀。同时,如图4、5a所示,随着重复频率增加,微乳突高度先缓慢增大后减小。就单个微米乳突而言,重复频率为0.5MHz时,乳突表面覆盖着粒径1~4 μm溅射的颗粒,类似一朵微米花儿。激光频率为1.5和2.5MHz时,乳突表面被波纹结构环绕。由式(1),单脉冲能量密度 f ∝1/F,当重复频率较小时,单个脉冲的能量密度较大,即单位时间内较少的脉冲作用在铜表面,但较大的单脉冲能量密度使材料单次被大量蚀除,并溅射形成大颗粒和团簇,重新沉积回材料表面。相反,当重复频率大于1.5MHz时,单位时间内大量激光脉冲作用于铜材料表面,但单脉冲能量密度小,试样基底被均匀蚀除,并在V型沟槽形成过程中,激光束被多次反射, 加工出乳突表面环绕的波纹结构。

  • 图4 重复频率不同时试样表面形貌、三维形貌和截面轮廓

  • Fig.4 Surface morphologies, 3D topographies and profiles of samples at different laser repeat frequency

  • 重复频率从0.5MHz增加至3MHz时,微乳突的底部直径不变,均为20 μm,但其平均高度先增大后减小,在重复频率为2MHz时,高度约32.4 μm。所以,微乳突的高度直径比也随着重复频率的增加先增大后减小。微乳突织构表面在重复频率为2MHz时疏水性最高,接触角为161°,滚动角为1°(图5b)。此时,跨尺度乳突织构表面优异的疏水性得益于排列整齐、有序的凸起,有相对较大的高度直径比,同时,电化学沉积后的乳突表面覆盖了密集分布的纳米镍棱锥结构,可以使水滴“架” 在乳突表面,从而在下方截留空气,形成稳定的固-液-气三相接触。

  • 图5 不同重复频率下乳突高度、直径、高度直径比、接触角和滚动角

  • Fig.5 Diameter, height, aspect ratio, contact angle and sliding angle of mastoids at different laser repeat frequency

  • 2.3 扫描速度对微乳突织构表面润湿性的影响

  • 扫描速度不同时,顺序加工的微乳突织构表面形貌、三维形貌和截面轮廓如图6所示,当扫描速度从25mm/s增加到1 000mm/s时,试样表面都呈现为相对整齐、均匀的微乳突阵列结构。扫描速度较低, 25mm/s时,单位时间内辐照到材料表面能量较多, 更多的基底材料被蚀除,所以微乳突的截面轮廓高度最大,约为30.4 μm。然而,此时的微乳突阵列存在零星的瑕点,一些乳突较小,会影响乳突织构表面整体的疏水性。而当扫描速度很大,达到1 000mm/s时,单位时间内较少的能量作用在基底材料表面,所以,微米乳突的高度较小,仅为7.5 μm,乳突表面也尚未能环绕波纹。扫描速度为200mm/s时,微乳突阵列整齐、一致,微乳突的平均高度较高,约为28.1 μm。

  • 扫描速度从25mm/s增大至1 000mm/s时,微乳突直径均为20 μm,平均高度逐渐减小,所以微乳突的高度直径比逐渐减小(图7a)。就润湿性而言, 随着扫描速度的增大,接触角先增大后减小,滚动角先减小后增大,两者均在扫描速度为200mm/s时取得最值。图7b中的插图为纯牛奶滴在激光扫描速度为200mm/s时顺序加工微乳突织构表面的光学照片,其对纯牛奶表现出很好的疏液性,纯牛奶呈现圆球型,试样下面增加一片载玻片(厚1mm),纯牛奶立即滚落,被表面未激光纹理化区域黏附。在优化重复频率的试验中,通过改变激光重复频率调控微乳突形貌从而优化超疏水性。微乳突阵列的高度直径比较大的时,疏水性更好。而在探讨扫描速度对润湿性的影响时,扫描速度为25mm/s时,微乳突高度直径比最大高达1.51,却没有获得最优的疏水性。这是因为其表面一部分微乳突个体存在缺陷, 微乳突阵列不均匀(如图6a所示),影响了微乳突织构表面的疏水性。相反,扫描速度为200mm/s, 微乳突阵列织构整齐、统一,高度直径比约为1.4, 相对较高, 微乳突织构表面疏水性最好, 接触角为161°。

  • 2.4 扫描次数对微乳突织构表面润湿性的影响

  • 激光扫描次数不同时,仅激光烧蚀的微乳突结构如图8所示,在电化学抛光和沉积前,皮秒激光烧蚀微乳突阵列整齐、均匀,电化学沉积镍棱锥仅增大了其纳米结构的致密性和丰富性并在微乳突结构间形成局部凹角[ 14]。随着扫描次数由4次增加到20次时, 微乳突的高度由7.56 μm增加到27.58 μm,表面波纹数量随之增加。同时,微乳突的波纹表面相对光滑,几乎没有激光烧蚀溅射的颗粒。本节中采用的激光功率为9W、重复频率为2MHz、扫描速度为200mm/s均符合本研究的设计思路:皮秒激光烧蚀制备精细的微米结构,电化学沉积制备致密的纳米结构。

  • 图6 扫描速度不同时试样表面形貌、三维形貌和截面轮廓

  • Fig.6 Surface morphologies, 3D topographies and profiles of samples at different scanning speed

  • 图7 不同扫描速度时乳突高度、直径、高度直径比、接触角和滚动角

  • Fig.7 Diameter, height, aspect ratio, contact angle and sliding angle of mastoids at different scanning speed

  • 扫描次数增加时,微乳突直径不变,高度先快速增加后缓慢增加,所以高度直径比的变化趋势和高度变化趋势相同(图9a)。扫描次数增加时,更多的能量沉积到材料表面,被蚀除的材料增多,所以微乳突的高度增加。接触角随扫描次数的变化趋势与高度直径比的变化趋势相似,但扫描次数达到24次时,微乳突阵列织构表面疏水性稍微降低(图9b), 这与扫描次数不低于24次,微乳突阵列一致性变差有关(图8c)。

  • 图8 扫描次数不同时仅激光烧蚀的试样表面形貌、三维形貌和截面轮廓

  • Fig.8 Surface morphologies, 3D topographies and profiles of samples only fabricated by laser ablation with different scanning times

  • 图9 不同扫描速度时乳突高度、直径、高度直径比、接触角及滚动角

  • Fig.9 Diameter, height, aspect ratio, contact angle and sliding angle of mastoids with different scanning times

  • 2.5 跨尺度乳突织构表面润湿性转变机理分析

  • 经顺序加工新制备的试样具有超亲水性,水滴在微乳突织构表面完全铺展,接触角为0°。在空气中静置时,逐渐向疏水性转变,30d后,以激光功率9W、重复频率2MHz,200mm/s的扫描速度作用20次时,跨尺度乳突织构表面接触角可达161°,滚动角为1°,如图10a~10d所示。

  • 图10 试样在空气中储存30d前后的接触角、滚动角、表面化学元素及疏水表面光学照片

  • Fig.10 The contact angle, sliding angle and surface chemical elements of the sample before and after storing in the air for 30days and the hydrophobic surface photos

  • 对比发现,储存前后微乳突织构表面形貌、三维形貌并没有明显变化,因此,润湿性的变化可能源于表面化学成分的改变。图10e和10f分别给出了储存前后微乳突织构表面检测到的元素成分及其含量。新制备的样品表面仅含电化学沉积的Ni、基底Cu、和O这3种元素,储存30d后,微乳突织构表面检测出C元素,并且O元素含量有所提升。

  • 为了进一步明确储存后试样表面化学成分如何变化,采用X射线光电子能谱仪(XPS) 分别检测在空气中储存4d和30d后的试样,各元素的含量(原子%)列于表1中。与储存4d的试样相比,储存30d后,试样表面C元素含量显著上升,由50.52%上升至75.05%,如表1和图11a、11d所示。在储存4d后,微乳突织构表面已经吸附了大量的非极性含C有机物。 XPS元素分析测试结果与EDS测试结果不同是由于其在样品表面的测试深度不同,XPS的分析深度仅为几纳米,因此微乳突织构表面检测到更多的C元素,少量的镀层Ni元素以及极少量基底层的Cu元素。

  • 表1 存储4d、30d后试样表面元素含量

  • Table1 Elements concentrations(atom%) after storing4and 30days

  • 图11 储存4d和30d后试样表面的XPS谱图

  • Fig.11 XPS spectra of the sample surface after storing4and 30days

  • 通过采集储存30d后试样表面C 1s、O 1s、Cu 2p和Ni2p的高分辨率XPS谱图并进行分峰拟合, 分析其各自的化学状态。如图11b所示,结合能284.7eV附近的主峰为烃链或石墨结构( C-C/C-H),286.1eV附近的峰为C与O单键键合的峰(C-O),常见于醇或醚基团中,288.7eV附近的峰则为C与O双键键合的峰(C=O),如醛或酮中[22-23]。对O元素而言, 三个峰的结合能值分别为529.7、 531.3和532.3eV,529.7eV处的峰来自NiO中的氧,531.3eV处的氧来自Ni(OH)2,532.3eV处的氧来自吸附的有机物中的羟基[17,24]。 Cu 2p双峰为分别为932.4eV附近的Cu 2p3/2峰和952.5eV附近的Cu 2p1/2峰,Cu 2p对应的化学态为Cu2O [23]。 Ni2p3/2峰处的结合能分别为855.3和856.5eV处的两个峰,对应化学物质为Ni(OH)2 和NiO [17]

  • C元素的出现并随着储存时间的延长含量增加,是因为微乳突织构表面逐渐吸附空气中的含C有机物[23],有机物中的C-C/C-H键是非极性疏水的。并且,金属Ni表面能较高,具有亲水性,但Ni棱锥在空气中会被氧化形成疏水性NiO,进一步形成疏水性Ni(OH)2,降低了其表面能。同时,致密的NiO层还具有热力学稳定性,可以保护下层Ni棱锥[17-18]。同样,激光烧蚀Cu基底时,形成亲水且不稳定的CuO会在储存后逐渐转变为疏水性的Cu2O [22,25]。综上所述,微乳突织构表面储存前后润湿性的变化归因于疏水性NiO、Ni(OH)2、Cu2O的形成以及非极性含C有机物的吸附。

  • 3 结论

  • 通过激光烧蚀、电化学抛光和电化学沉积的顺序加工方式在铜试样表面制备了跨尺度乳突织构超疏水表面。优化皮秒激光烧蚀参数,当激光功率9W、重复频率2MHz、扫描速度200mm/s、扫描次数20次时,顺序加工制备的乳突复合结构表面疏水性最好,最大接触角为161°,最小滚动角仅为1°。储存30d后,跨尺度乳突织构表面润湿性转变得益于亲水性的Ni、 CuO转化为疏水性的NiO、 Ni(OH)2、Cu2O以及含C有机物的吸附。

  • 参考文献

    • [1] BARTHLOTT W,SCHIMMEL T,WIERSCH S,et al.The salvinia paradox:Superhydrophobic surfaces with hydrophilic pins for air retention under water [J].Advanced Materials,2010,22(21):2325-2328.

    • [2] QING Y,SHI S,LÜ C,et al.Microskeleton ‐ nanofiller composite with mechanical super ‐ robust superhydrophobicity against abrasion and impact[J].Advanced Functional Materials,2020,30(39):1910665.

    • [3] LEI J.Bio-inspired,smart,multiscale interfacial materials[J].Advanced Materials,2008,20:2842-2858.

    • [4] 宋金龙.工程金属材料极端润湿性表面制备及应用研究 [D].大连:大连理工大学,2015.SONG J L.Fabrication and application of extreme wettability surfaces on engineering metal materials [ D].Dalian:Dalian University of Technology,2015.(in Chinese)

    • [5] SU B,TIAN Y,JIANG L,et al.Bioinspired interfaces with superwettability:from materials to chemistry[J].Journal of the American Chemical Society,2016,138(6):1727-1748.

    • [6] 毕向阳,明平美,申继文,等.超亲水/超疏水镍-纳米三氧化钨复合镀层的制备及特性分析[J].中国表面工程,2018,31(5):125-133.BI X Y,MING P M,SHEN J W,et al.Preparation and characteristic analysis of superhydrophilic/superhydrophobic Ni/nano-WO3 composites[J].China Surface Engineering,2018,31(5):125-133.(in Chinese)

    • [7] LU X,CAI H,WU Y,et al.Peach skin effect:a quasi-superhydrophobic state with high adhesive force [J].Science Bulletin,2015,60(4):453-459.

    • [8] WANG Y T,HAN M,LIU L,et al.Beneficial carbon nanotube intermediate layer for membrane fluorination towards robust superhydrophobicity and wetting resistance in membrane distillation [J].ACS Applied Materials & Interfaces,2020,12(18):20942-20954.

    • [9] GU Y,ZHANG W,MOU J,et al.Research progress of biomimetic superhydrophobic surface characteristics,fabrication,and application [J].Advances in Mechanical Engineering,2017,9(12):1-13.

    • [10] 宋美艳,赵曼,石淑先,等.微球构筑防污减阻涂层的制备 [J].中国表面工程,2018,31(5):134-141.SONG M Y,ZHAO M,SHI S X,et al.Preparation of anti-fouling and drag reduction coating constructed by microspheres [J].China Surface Engineering,2018,31(5):134-141.(in Chinese)

    • [11] 李杰,黄镑敏,王超磊,等.仿生微织构与氟硅烷修饰对6061铝合金浸润性的影响[J].中国表面工程,2020,33(2):29-36.LI J,HUANG R M,WANG C L,et al.Effects of biomimetic microtexture and fluoroalkylsilane modification on wettability of 6061 aluminum alloy[J].China Surface Engineering,2020,33(2):29-36.(in Chinese)

    • [12] ZHANG Z,GU Q,JIANG W,et al.Achieving of bionic superhydrophobicity by electrodepositing nano-Ni-pyramids on the picosecond laser-ablated micro-Cu-cone surface[J].Surface and Coatings Technology,2019,363:170-178.

    • [13] BAI X,YANG Q,FANG Y,et al.Anisotropic,adhesion-switchable,and thermal-responsive superhydrophobicity on the femtosecond laser-structured shape-memory polymer for droplet manipulation[J].Chemical Engineering Journal,2020,400:125930.

    • [14] 顾秦铭,张朝阳,周晖,等.激光-电化学沉积制备超疏水铜表面及其Cassie状态稳定性研究[J].机械工程学报,2020,56(1):223-232.GU Q M,ZHANG Z Y,ZHOU H,et al.An investigation into peparation and cassie state stability analysis of superhydrophobic copper surface produced by laser ablation and electrodeposition [J].2020,Journal of Mechanical Engineering,56(1):223-232.(in Chinese)

    • [15] YONG J,CHEN F,LI M,et al.Remarkably simple achievement of superhydrophobicity,superhydrophilicity,underwater superoleophobicity,underwater superoleophilicity,underwater superaerophobicity,and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces [J].Journal of Materials Chemistry A,2017,5:25249-25257.

    • [16] 林澄.皮秒激光制备大面积金属类荷叶结构及其超疏水压印研究[D].北京:清华大学,2014.LIN D.Large-area metal lotus-like structures fabricated by picosecond laser for superhydrophobic surface replication [ D].Beijing:Tsinghua University,2014.

    • [17] WANG X C,WANG B,XIE H,et al.Picosecond laser micro/nano surface texturing of nickel for superhydrophobicity [J].Journal of Physics D:Applied Physics,2018,51:115305.

    • [18] GENG W Y,HU A M,LI M.Super-hydrophilicity to superhydrophobicity transition of a surface with Ni micro-nano cones array[J].Applied Surface Science,2012,15:821-824.

    • [19] 肖强,徐睿.超快激光制备材料表面微纳结构的研究进展 [J].中国表面工程,2020,33(1):1-17.XIAO Q,XU R.Research progress in surface micro-nano structure of materials prepared by ultrafast laser [J].China Surface Engineering,2020,33(1):1-17.(in Chinese)

    • [20] LUO X,PAN R,CAI M,et al.Atto-molar Raman detection on patterned superhydrophilic superhydrophobic platform via localizable evaporation enrichment[J].Sensors and Actuators B Chemical,2021,326:128826.

    • [21] CAI M,LIU W,LUO X,et al.Three-dimensional and in-situ activated spinel oxide nanoporous clusters derived from stainless steel for efficient and durable water oxidation[J].ACS Applied Materials & Interfaces,2020,12(16):19243.

    • [22] LONG J Y,ZHONG M,ZHANG H,et al.Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air[J].Journal of Colloid & Interface Science,2015,441:1-9.

    • [23] ZHEN Y,LIU X P,TIAN Y L,et al.Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure[J].Journal of Colloid & Interface Science,2019,533:268-277.

    • [24] FAN P X,PAN R,ZHONG M L,et al.Ultrafast laser enabling hierarchical structures for versatile superhydrophobicity with enhanced Cassie-Baxter stability and durability[J].Langmuir,2019,35(51):16693-16711.

    • [25] WANG G,ZHANG T Y.Oxygen adsorption induced superhydrophilic-to-superhydrophobic transition on hierarchical nanostructured CuO surface[J].Journal of Colloid & Interface Science,2012,377(1):438-441.

  • 参考文献

    • [1] BARTHLOTT W,SCHIMMEL T,WIERSCH S,et al.The salvinia paradox:Superhydrophobic surfaces with hydrophilic pins for air retention under water [J].Advanced Materials,2010,22(21):2325-2328.

    • [2] QING Y,SHI S,LÜ C,et al.Microskeleton ‐ nanofiller composite with mechanical super ‐ robust superhydrophobicity against abrasion and impact[J].Advanced Functional Materials,2020,30(39):1910665.

    • [3] LEI J.Bio-inspired,smart,multiscale interfacial materials[J].Advanced Materials,2008,20:2842-2858.

    • [4] 宋金龙.工程金属材料极端润湿性表面制备及应用研究 [D].大连:大连理工大学,2015.SONG J L.Fabrication and application of extreme wettability surfaces on engineering metal materials [ D].Dalian:Dalian University of Technology,2015.(in Chinese)

    • [5] SU B,TIAN Y,JIANG L,et al.Bioinspired interfaces with superwettability:from materials to chemistry[J].Journal of the American Chemical Society,2016,138(6):1727-1748.

    • [6] 毕向阳,明平美,申继文,等.超亲水/超疏水镍-纳米三氧化钨复合镀层的制备及特性分析[J].中国表面工程,2018,31(5):125-133.BI X Y,MING P M,SHEN J W,et al.Preparation and characteristic analysis of superhydrophilic/superhydrophobic Ni/nano-WO3 composites[J].China Surface Engineering,2018,31(5):125-133.(in Chinese)

    • [7] LU X,CAI H,WU Y,et al.Peach skin effect:a quasi-superhydrophobic state with high adhesive force [J].Science Bulletin,2015,60(4):453-459.

    • [8] WANG Y T,HAN M,LIU L,et al.Beneficial carbon nanotube intermediate layer for membrane fluorination towards robust superhydrophobicity and wetting resistance in membrane distillation [J].ACS Applied Materials & Interfaces,2020,12(18):20942-20954.

    • [9] GU Y,ZHANG W,MOU J,et al.Research progress of biomimetic superhydrophobic surface characteristics,fabrication,and application [J].Advances in Mechanical Engineering,2017,9(12):1-13.

    • [10] 宋美艳,赵曼,石淑先,等.微球构筑防污减阻涂层的制备 [J].中国表面工程,2018,31(5):134-141.SONG M Y,ZHAO M,SHI S X,et al.Preparation of anti-fouling and drag reduction coating constructed by microspheres [J].China Surface Engineering,2018,31(5):134-141.(in Chinese)

    • [11] 李杰,黄镑敏,王超磊,等.仿生微织构与氟硅烷修饰对6061铝合金浸润性的影响[J].中国表面工程,2020,33(2):29-36.LI J,HUANG R M,WANG C L,et al.Effects of biomimetic microtexture and fluoroalkylsilane modification on wettability of 6061 aluminum alloy[J].China Surface Engineering,2020,33(2):29-36.(in Chinese)

    • [12] ZHANG Z,GU Q,JIANG W,et al.Achieving of bionic superhydrophobicity by electrodepositing nano-Ni-pyramids on the picosecond laser-ablated micro-Cu-cone surface[J].Surface and Coatings Technology,2019,363:170-178.

    • [13] BAI X,YANG Q,FANG Y,et al.Anisotropic,adhesion-switchable,and thermal-responsive superhydrophobicity on the femtosecond laser-structured shape-memory polymer for droplet manipulation[J].Chemical Engineering Journal,2020,400:125930.

    • [14] 顾秦铭,张朝阳,周晖,等.激光-电化学沉积制备超疏水铜表面及其Cassie状态稳定性研究[J].机械工程学报,2020,56(1):223-232.GU Q M,ZHANG Z Y,ZHOU H,et al.An investigation into peparation and cassie state stability analysis of superhydrophobic copper surface produced by laser ablation and electrodeposition [J].2020,Journal of Mechanical Engineering,56(1):223-232.(in Chinese)

    • [15] YONG J,CHEN F,LI M,et al.Remarkably simple achievement of superhydrophobicity,superhydrophilicity,underwater superoleophobicity,underwater superoleophilicity,underwater superaerophobicity,and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces [J].Journal of Materials Chemistry A,2017,5:25249-25257.

    • [16] 林澄.皮秒激光制备大面积金属类荷叶结构及其超疏水压印研究[D].北京:清华大学,2014.LIN D.Large-area metal lotus-like structures fabricated by picosecond laser for superhydrophobic surface replication [ D].Beijing:Tsinghua University,2014.

    • [17] WANG X C,WANG B,XIE H,et al.Picosecond laser micro/nano surface texturing of nickel for superhydrophobicity [J].Journal of Physics D:Applied Physics,2018,51:115305.

    • [18] GENG W Y,HU A M,LI M.Super-hydrophilicity to superhydrophobicity transition of a surface with Ni micro-nano cones array[J].Applied Surface Science,2012,15:821-824.

    • [19] 肖强,徐睿.超快激光制备材料表面微纳结构的研究进展 [J].中国表面工程,2020,33(1):1-17.XIAO Q,XU R.Research progress in surface micro-nano structure of materials prepared by ultrafast laser [J].China Surface Engineering,2020,33(1):1-17.(in Chinese)

    • [20] LUO X,PAN R,CAI M,et al.Atto-molar Raman detection on patterned superhydrophilic superhydrophobic platform via localizable evaporation enrichment[J].Sensors and Actuators B Chemical,2021,326:128826.

    • [21] CAI M,LIU W,LUO X,et al.Three-dimensional and in-situ activated spinel oxide nanoporous clusters derived from stainless steel for efficient and durable water oxidation[J].ACS Applied Materials & Interfaces,2020,12(16):19243.

    • [22] LONG J Y,ZHONG M,ZHANG H,et al.Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air[J].Journal of Colloid & Interface Science,2015,441:1-9.

    • [23] ZHEN Y,LIU X P,TIAN Y L,et al.Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure[J].Journal of Colloid & Interface Science,2019,533:268-277.

    • [24] FAN P X,PAN R,ZHONG M L,et al.Ultrafast laser enabling hierarchical structures for versatile superhydrophobicity with enhanced Cassie-Baxter stability and durability[J].Langmuir,2019,35(51):16693-16711.

    • [25] WANG G,ZHANG T Y.Oxygen adsorption induced superhydrophilic-to-superhydrophobic transition on hierarchical nanostructured CuO surface[J].Journal of Colloid & Interface Science,2012,377(1):438-441.

  • 手机扫一扫看