en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

宋巍,女,1982年出生,硕士,副研究员。主要研究方向为材料表面工程技术。E-mail:songwei9305@sohu.com

中图分类号:TG174

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210309004

参考文献 1
BOOATANI A,YAZDANI S,MOUSAVIAN R,et al.Strengthening mechanisms of graphene sheets in aluminum matrix nanocomposites[J].Materials and Design,2015,88:938-989.
参考文献 2
TIAN W M,LI S M,WANG B,et al.Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering [J].International Journal of Minerals,Metallurgy and Materials,2016,23(6):723-729.
参考文献 3
张玉林,于佩航,冯作菊,等.石墨烯添加剂对微弧氧化陶瓷层耐蚀性能的影响[J].材料热处理学报,2017,38(2):158-167.ZHANG Y L,YU P H,FENG Z J,et al.Influence of graphene additives on corrosion resistance of microarc oxidation coatings on magnesium-lithium alloy[J].Transactions of Materials and Heat Treatment,2017,38(2):158-163.(in Chinese)
参考文献 4
邱小林,邱震钰.石墨烯掺杂对镁锂合金微弧氧化膜 Cl- 腐蚀敏感性的研究 [J].失效分析与预防,2019,14(2):106-110.QIU X L,QIU Z Y.Corrosion sensitivity of graphene doped micro-arc oxidation film of magnesium-lithium alloy in Cl- solution [J].Failure Analysis and Prevention,2019,14(2):106-110.(in Chinese)
参考文献 5
黄小威,张晓燕,闫洪达,等.纳米ZnO和纳米 SiO2 添加剂对铝合金微弧氧化膜层组织及性能的影响[J].热加工工艺,2016,45(4):160-164.HUANG X W,ZHANG X Y,YAN H D,et al.Influence of nanometer ZnO and SiO2 additives on microstructure and performance of Al alloy micro-arc oxide film layer [J].Hot Working Technology,2016,45(4):160-164.(in Chinese)
参考文献 6
WANG Y,WEI D B,YU J,et al.Effects of Al2O3 nano-additive on performance of micro-arc cross oxidation coatings formed on AZ91D Mg alloy[J].Journal of Materials Science and Technology,2014,30(10):984-990.
参考文献 7
常立民,田利丰,刘伟.添加剂在镁合金微弧氧化中的研究进展[J].腐蚀与防护,2013,34(8):718-722.CHANG L M,TIAN L F,LIU W.Research progress of additives in micro-arc oxidation of magnesium alloys [J].Corrosion & Protection,2013,34(8):718-722.(in Chinese)
参考文献 8
ZHU L Y,ZHANG W,ZHANG T,et al.Effect of the Cu content on the microstructure and corrosion behavior of PEO coatings on Al-xCu alloys [J].Journal of The Electrochemical Society,2018,165(9):469-483.
参考文献 9
周小淞,雷源源,张晓燕,等.纳米ZnO添加剂对铸造铝合金微弧氧化膜层的影响[J].兵器材料科学与工程,2013,36(3):63-65.ZHOU X S,LEI Y Y,ZHANG X Y,et al.Effects of nano-ZnO additive on ceramic coating formed by micro-arc oxidation process on new casting aluminum alloy[J].Ordnance Material Science and Engineerings,2013,36(3):63-65.(in Chinese)
参考文献 10
穆明,梁军,肖乾,等.钛合金微弧氧化一步制备含石墨的减摩涂层[J].材料科学与工艺,2013,21(1):18-23.MU M,LIANG J,XIAO Q,et al.One-step preparation of graphite-containing antifriction coating on Ti alloy by plasma electrolytic oxidation [J].Materials Science & Technology,2013,21(1):18-23.(in Chinese)
参考文献 11
LAO X S,ZHAO X F,LIU Y,et al.Study on friction characteristics of micro-arc oxidation modification layer of titanium alloy surface in seawater environment [J].IOP Conference Series:Materials Science and Engineering,2019,631:22-38.
参考文献 12
YE F X,DAI J,LI L,et al.The influence of carbon on tribological properties of micro-arc oxidation ceramic coating[J].Science of Advanced Materials,2019,11(4):563-568.
参考文献 13
CHEN Q,LI W,LING K,et al.Effect of Na2WO4 addition on formation mechanism and microstructure of micro-arc oxidation coating on Al-Ti double-layer composite plate [J].Materials & Design,2020,190:108558.
参考文献 14
GAO Y,YANG W,XU D P,et al.Microstructure and properties of graphene oxide-doped TiO2 coating on titanium by micro arc oxidation [J].Journal of Wuhan University of Technology-Mater Sci Ed,2018,33(6):1524-1529.
参考文献 15
董世运,徐滨士,王玉汪,等.石墨烯制备和应用中的表面科学与技术[J].中国表面工程,2013,26(6):1-8.DONG S Y,XU B S,WANG Y J,et al.Surface science and technology on preparation and applications of graphene [J].China Surface Engineering,2013,26(6):1-8.(in Chinese)
参考文献 16
LEE C G,WEI X D,KYSAR W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene [J].Science,2008,321(5887):385-388.
参考文献 17
HUA Y L,ZHANG Z G,LI W.Microstructure and degradation properties of C-containing composite coatings on magnesium alloy wires treated with micro-arc oxidation [J].Surface& Coatings Technology,2016,291:70-78.
参考文献 18
MA K J,BOSTAM M S A,WU W T.Preparation of self-lubricating composite coatings through a micro-arc plasma oxidation with graphite in electrolyte solution [J].Surface & Coatings Technology,2014,259:318-324.
参考文献 19
刘婉颖,刘颖,陈龙,等.石墨烯纳米片对D16T铝合金微弧氧化膜层结构与性能的影响[J].表面技术,2020,49(5):237-250.LIU W Y,LIU Y,CHEN L,et al.Effect of graphene nanosheets on structure and properties of micro-arc oxide films formed on D16T aluminum alloy[J].Surface Technology,2020,49(5):237-250.(in Chinese)
参考文献 20
ZHANG Y L,YU P H,WEI Y H,et al.Influence of graphene additive on wear resistance and corrosion resistance of micro arc oxidation coating formed on LY12 aluminium alloy surface[J].Transactions of Materials and Heat Treatment,2017,38(8):103-109.
参考文献 21
CHEN Q Z,JIANG Z Q,TANG S G,et al.Influence of graphene particles on the micro-arc oxidation behaviors of 6063 aluminum alloy and the coating properties[J].Applied Surface Science,2017,423:939-950.
参考文献 22
CHEN F.Effect of graphene on micro-structure and properties of MAO coating prepared on Mg-Li alloy[J].International Journal of Electrochemical Science,2017,12(7):6081-6091.
参考文献 23
HUA Y,ZHANG Z,LI W.Microstructure and degradation properties of C-containing composite coatings on magnesium alloy wires treated with micro-arc oxidation [J].Surface & Coatings Technology,2016,291:70-78.
参考文献 24
LI Z Y,CAI Z B,DING Y,et al.Characterization of graphene oxide/ZrO2 composite coatings deposited on zirconium alloy by micro-arc oxidation[J].Applied Surface Science,2020,506:144928.
参考文献 25
陈宏,李佩,朱晓宇,等.石墨烯浓度对镁基陶瓷膜生长及耐蚀性的影响[J].表面技术,2020,49(5):285-307.CHEN H,LI P,ZHU X Y,et al.Effect of graphene concentration on growth and corrosion resistance of magnesium based ceramic coating[J].Surface Technology,2020,49(5):285-307.(in Chinese)
参考文献 26
宗玙,宋仁国,花天顺,等.石墨烯对7050高强铝合金微弧氧化陶瓷膜层组织性能的影响[J].兵工学报,2020,41(6):1210-1218.ZONG Y,SONG R G,HUA T S,et al.Effect of graphene additive on microstructure and properties of MAO ceramic coatings formed on 7050 aluminum alloy [J].Acta ArmamentarII,2020,41(6):1210-1218.(in Chinese)
参考文献 27
LEE K M,SHIN K R,NAMGUNG S,et al.Electro-chemical response of ZrO2-incorporated oxide layer on AZ91 Mg alloy processed by plasma electrolytic oxidation[J].Surface & Coatings Technology,2011,205(13-14):3779.
参考文献 28
CHEN F,ZHANG Y L,ZHANG Y,et al.Effect of graphene on micro-structure and properties of MAO coating prepared on Mg-Li alloy [J].International Journal of Electrochemical Science,2017,12:6081-6091.
参考文献 29
VATAN H N,ADABI M.Investigation of tribological behavior of ceramic-graphene composite coating produced by plasma electrolytic oxidation[J].Transactions of the Indian Institute of Metals,2018,71(7):1643-1652.
参考文献 30
曾云.镁及镁合金表面含碳微弧氧化陶瓷层性能的研究 [D].北京:北京化工大学,2016.ZENG Y.Properties research of containing carbon micro-arc oxidation ceramic coating on pure Mg and Mg alloy [ M ].Beijing:Beijing University of Chemical Technology,2016.(in Chinese)
参考文献 31
PEI S,CHENG H M.The reduction of grapheme oxide [J].Carbon,2012,50(9):3210-3228.
参考文献 32
谢雄.氧化石墨烯对AZ31镁合金微弧氧化膜层耐蚀性的影响[D].北京:北京化工大学,2016.XIE X.Effect of graphene oxide additive on the corrosion resistance of the plasma electrolytic oxidation coating of the AZ31 magnesium alloy [ M].Beijing:Beijing University of Chemical Technology,2016.(in Chinese)
参考文献 33
杜培,闫淑芳,陈伟东,等.石墨烯浓度对 ZrH1.8 表面微弧氧化陶瓷层的影响[J].无机材料学报,2019,34(11):1175-1180.DU P,YAN S F,CHEN W D,et al.Graphene concentration on micro-arc oxidation ceramic layer of ZrH1.8 surface[J].Journal of Inorganic Materials,2019,34(11):1175-1180.(in Chinese)
参考文献 34
张志莲,张玉林,陈飞.氧化石墨烯对 Mg-Li 合金微弧氧化陶瓷层微观结构及耐蚀性的影响[J].表面技术,2019,48(6):306-313.ZHANG Z L,ZHANG Y L,CHEN F.Effect of graphene oxide on microstructure and corrosion resistance of micro-arc oxidation coatings on Mg-Li alloy[J].Surface Technology,2019,48(6):306-313.(in Chinese)
参考文献 35
SHANG W,WU F,WANG Y Y,et al.Corrosion resistance of micro-arc oxidation/graphene oxide composite coatings on magnesium alloys[J].ACS Omega,2020,5(13):7262-7270.
参考文献 36
张玉林,陈佳欣,于佩航,等.石墨烯含量对陶瓷层微观结构及耐蚀性能的影响 [J].稀有金属,2018,42(10):1061-1067.ZHANG Y L,CHEN J X,YU P H,et al.Micro-structure and corrosion resistance of ceramic coatings with graphene addition [J].Chinese Journal of Rare Metals,2018,42(10):1061-1067.(in Chinese)
参考文献 37
LI H X,SONG R G,JI Z G,et al.Effects of nano-additive TiO2 on performance of micro-arc oxidation coatings formed on 6063 aluminum alloy[J].Transactions of Nonferrous Metals Society of China,2013,23(2):406-411.
参考文献 38
WEN C L,ZHAN X Z,HUANG X G,et al.Characterization and corrosion properties of hydroxyapatite/graphene oxide bio-composite coating on magnesium alloy by one-step micro-arc oxidation method[J].Surface and Coatings Technology,2017,317:125-133.
参考文献 39
HU J H,GUAN S K,CHEN J,et al.Fabrication and characterization of rod-like nano-hydroxyapatite on MAO coating supported on Mg-Zn-Ca alloy [J].Applied Surface Science,2011,257:2231-2237.
参考文献 40
LU G H,CHEN H,GU W C,et al.Effects of graphite additives in electrolytes on the microstructure and corrosion resistance of alumina PEO coatings[J].Current Applied Physics,2009,9(2):324.
参考文献 41
唐誉豪,向东,李东豪.含石墨烯纳米片电解液中电流密度对2024铝合金微弧氧化膜性能的影响 [J].表面技术,2018,47(7):203-209.TANG Y H,XIANG D,LI D H.Effects of current density in electrolyte containing graphene on properties of 2024 aluminum alloy micro-arc oxidation coating[J].Surface Technology,2018,47(7):203-209.(in Chinese)
参考文献 42
LI Z Y,CAI Z B,CUI Y.Effect of oxidation time on the impact wear of micro-arc oxidation coating on aluminum alloy [J].Wear,2019,426,285-295.
参考文献 43
克拉盖尔斯基 N B,等.摩擦磨损原理[M].北京:机械工业出版社,1982.Крагельский N B.Principles of friction and wear[M].Beijing:China Machine Press,1982.(in Chinese)
参考文献 44
CHEN X,LIAO D,ZHANG D,et al.Friction and wear behavior of graphene-modified titanium alloy micro-arc oxidation coatings [J].Transactions of the Indian Institute of Metals,2020,73(1).73-80.
参考文献 45
付肖肖,孙瑞雪.石墨烯对镁合金微弧氧化层结构和耐蚀性影响[J].青岛科技大学学报,2019,40(1):48-52.FU X X,SUN R X.Effect of graphene on microstructure and corrosion resistance of micro arc oxidation layer of magnesium alloy [J].Journal of Qingdao University of Science and Technology,2019,40(1):48-52.(in Chinese)
参考文献 46
TANG Y,ZHAO X,JIANG K,et al.The influences of duty cycle on the bonding strength of AZ31B magnesium alloy by microarc oxidation treatment [J].Surface and Coatings Technology,2010,205(6):1789.
参考文献 47
LIU J,PAN W,LIU Y,et al.Effect of graphene on corrosion resistance of Micro-arc oxidation coatings on 6061/7075 dissimilar laser-MIG hybrid welded joint[J].Materials Research Express,2019,6(6):066521.
参考文献 48
潘文驰.异种铝合金激光-MIG 复合焊接接头微弧氧化膜层的制备与耐蚀性研究[D].长春:吉林大学,2019.PAN W C.Preparation and corrosion resistance of micro-arc oxidation coatings on laser-MIG hybrid welded joint of dissimilar aluminum alloys [ M ].Changchun:Jilin University,China,2019.(in Chinese)
参考文献 49
朱利萍,鲁闯,王志锋,等.石墨烯对镁合金微弧氧化层结构及性能的影响[J].兵器材料科学与工程,2017,3(40):59-61.ZHU L P,LU C,WANG Z F,et al.Influence of graphene on structures and performance of micro-arc oxidation coating on magnesium alloy on magnesium alloy [J].Ordnance Material Science and Engineering,2017,3(40):59-61.(in Chinese)
参考文献 50
KIRKLANG N T,SCHILIER T,MEDHEKAR N,et al.Exploring graphene as a corrosion protection barrier [J].Corrosion Science,2012,56(3):1-4.
参考文献 51
顾林,丁纪恒,余海斌.石墨烯用于金属腐蚀防护的研究 [J].化学进展,2016,28(5):737-743.GU L,DING J H,YU H B.Research in graphene-based anticorrosion coatings[J].Progress in Chemistry,2016,28(5):737.(in Chinese)
参考文献 52
RICHARD PRABAKAR S J,HWANG Y H,BAE E G,et al.Graphene oxide as a corrosion inhibitor for the aluminum current collector of lithium ion batteries [J].Carbon,2013,52:128-136.
目录contents

    摘要

    微弧氧化是轻合金表面防腐的关键手段,复合涂层中石墨烯的防腐减摩潜能也被逐渐挖掘验证。 详细介绍了石墨烯添加剂对电解液和电参数,以及膜层结构和性能等方面影响作用的研究现状,阐述轻合金表面石墨烯复合微弧氧化层需要进一步探索的问题。 电解液中添加石墨烯后,降低了阳极绝缘层击穿电压,促进了膜层的生长和新相生成;微弧氧化层中石墨烯以填充和包覆的增强相形式存在,可明显改善膜层的致密度和厚度,促进膜层防腐耐磨性能进一步提升;结合轻合金表面碳元素、相位角和阻抗等特征参数的表征分析,可以较好地验证滑动摩擦和电化学腐蚀过程中石墨烯的增强作用机理,绘制的原理示意图也更具直观性。

    Abstract

    As a key surface treatment technology for light alloy, micro-arc oxidation(MAO) could effectively improve its anticorrosion performance. The graphene additive has been recognized in the method of MAO gradually and used for enhancing film’s anticorrosion and antifriction properties. In this paper, it was expounded for the research status about the graphene effects on the process parameters of electrolyte and electricity, and the structure and properties of MAO film. Meanwhile, it was indicated that its deepening research direction. In general, by the way of adding graphene in electrolyte, it could decrease the breakdown voltage of oxide film on the surface of anodize, and promote the oxide film growth and the new phase formation composited of oxide film. The graphene embedded in the form of filling and coating, and could enhance film’s microstructure and properties, including the intensity, thickness, antifriction and anticorrosion. With analyzing the characterization of the carbon existence, phase angle, impedance, and vivid schematic diagrams by modern analytical testing techniques, it could be well perceived for the strengthening mechanism of graphene composite MAO film in the processes of sliding friction and electrochemical corrosion.

  • 0 前言

  • 铝、镁、钛等轻合金材料在航空、航天、军事等领域得到广泛青睐,但因材料表面硬度低、电极电位较负等问题,影响了材料的表面防护性能,为提升服役可靠性和耐久性,适宜的表面处理十分必要。作为材料表面处理技术之一,微弧氧化技术是利用溶液中阳极电解氧化原理在金属表面原位构筑一层金属氧化膜,该膜层与基体间因冶金结合连接牢固,并且硬度、耐腐蚀和抗热震等性能优于基体,因而在轻合金表面处理中取得了很好的应用[1-3],但较多的微缺陷导致膜层结构脆性大、有效厚度不大,制约了膜层的性能和使用范围[4]。向电解液中添加二氧化硅、三氧化二铝等[5-6] 非离子型纳米颗粒添加剂[7], 可有效地改善膜层的致密性和韧性[8-10]。低维碳材料石墨烯具有结构稳定、电迁移率高等优异的理化特性[11-12],成为近年来微弧氧化技术的研究关注点之一[13-14]。文中综述了微弧氧化工艺中石墨烯添加剂对电解液和电参数的影响规律,以及石墨烯增强相在膜层的构效关系和作用机理分析方面的研究现状,为石墨烯在微弧氧化技术中的应用研究提供参考。

  • 1 石墨烯添加剂及其对反应参数的影响

  • 微弧氧化反应中,电极-电介质-电解液多相界面的交互作用引起阳极电解氧化、气体电离产生电火花、氧化膜击穿放电、熔融再冷却沉积等一系列理化现象,电解液和电参数是反应环境中物质与能量传递的重要反应参数,影响着膜层的生长速度、组织成分和结构形貌。电解液中石墨烯的添加工艺直接影响了反应环境中的溶液组成、状态和能量密度等反应参数。

  • 1.1 石墨烯及其添加工艺特点

  • 石墨烯作为碳材料的基本结构单元,可构建球状零维富勒烯、管状一维碳纳米管和多层叠加态三维石墨[ 15],具有密度小( 0.13g/cm 3)、片层薄( 0.335nm)、比表面积大、抗拉强度高( 达1 060GPa)等[ 16] 优异性能。

  • 文献研究表明,在电解液中添加石墨烯,可在铝、镁、钛等一些轻合金表面成功制备出含碳氧化层[17-19],表1中列举了轻合金表面石墨烯复合含碳氧化层的制备工艺参数[20-24]

  • 在石墨烯添加工艺的探索研究中,添加的材料种类包括石墨烯(Graphene nanosheets,GNPs)、氧化石墨烯(Graphene oxide,GO)和羟基磷灰石/氧化石墨烯粉体(HA/GO)等,一般多为固体颗粒相或液体分散相,粒径以微纳级小尺寸为主(因普通微弧氧化层的微孔直径约为1~10 μm),添加浓度较小。其中,添加材料以石墨烯及其衍生物氧化石墨烯单质相居多,而关于功能化复合型石墨烯添加材料(如HA/GO)研究报道较少。

  • 表1 轻合金表面石墨烯复合含碳氧化层的制备工艺参数[20-24]

  • Table1 Process parameters of micro-arc oxidation coating with graphene

  • 1.2 石墨烯对电解液组成及稳定性的影响

  • 电解液稳定性是电解液性能和使用寿命的重要影响因素。微弧氧化电解液较多选用磷酸盐、硅酸盐和铝酸盐等碱性水溶液,石墨烯耐强酸强碱,但不溶于水,即与电解液中的水溶剂相容性不好,一般以悬浮态存在,制约着溶液体系的均匀稳定性;氧化石墨烯的水溶性要好于石墨烯,但在强碱性溶液中,氧化石墨烯会因失去部分含氧官能团而易发生团聚, 溶解性降低。

  • 石墨烯在水溶液中的分散性是复合电解液稳定性控制的关键,分散性越好,均匀稳定性越好。实施微弧氧化过程中,为改善石墨烯在电解液中分散性, 常常选取的措施包括选用石墨烯分散液[20] 和氧化石墨烯[24]作为添加材料,加入前对石墨烯进行漂洗和超声处理,在电解液中复配一定量的分散剂[25], 增加超声和机械搅拌辅助装置[26] 等,但石墨烯的添加量仍普遍较低,寻找更合适的分散方法,提高电解液中石墨烯分散性仍需要试探。

  • 此外,石墨烯未参与膜层氧化相生成,颗粒相进入膜层的形式主要是电泳迁移和机械捕获[27],提高石墨烯的分散性,增大了阳极周围石墨烯的分散浓度,为石墨烯进入膜层创造了更大的几率。

  • 1.3 石墨烯对反应环境中电参数的影响

  • 微弧氧化采用电压和电流控制法,电压和电流参数与氧化反应能量密度和电极反应速度关系紧密,决定了膜层生长速度和结构形貌。与二氧化硅、三氧化二铝等非导电添加剂相比,添加石墨烯降低了阳极绝缘层击穿电压[28-30],促进了阳极氧化膜的生长速度[21],其优异的导电性和吸附性在降低反应能耗、提升反应效能方面表现出一定的优势。

  • 石墨烯可增加电解液中载流子电流密度和电迁移率。载流子是反应环境中能量传递的载体,添加石墨烯后,改变了电解液体系中载流子的种类和数量。不仅包括电解质电解的正、负离子,还新增加了石墨烯杂化碳原子周围的电子。

  • 颗粒相的电迁移率与溶液Zeta电位有关,石墨烯的Zeta电位随电解液pH值的增加而降低,当Zeta电位越负时,颗粒相越容易向金属阳极迁移并进入膜层[31-32]

  • 恒流模式下的电压-时间曲线呈马鞍型变化趋势,沿时间轴将反应历程分为普通阳极氧化、火花放电和弧光放电三个阶段,普通阳极氧化阶段持续时间较短,火花放电和弧光放电两个阶段持续时间相对较长。普通阳极氧化阶段,电解电路中电压电流关系符合欧姆定律,电流相同时阳极电压值的降低源于回路中电阻的变小。

  • 如图1 [21],样品曲线按电解液体系中石墨烯的4种添加量0g/L、0.1g/L、0.15g/L和0.2g/L分别标识为G0、G1、G2和G3。普通阳极氧化阶段,阳极金属与电解质离子发生电解氧化,表面附着一定量的气泡,电压值升高速率大,增加石墨烯对阴极电压没有影响,而阳极电压随石墨烯的添加量增加而降低,G0~G34种样品的击穿电压值分别为308~310V、300~305V、285~291V和286~288V,降低幅度依序变大,添加浓度为0.2g/L时,下降幅度最大,达25V。

  • 火花放电阶段,阳极表面电介质被击穿,电火花和微弧特征明显,未添加石墨烯样品的阳极电压曲线开始变缓,即升高速率降低,而添加石墨烯样品的阳极电压曲线仍保持相对较高的升高速率,且随石墨烯添加浓度的增加,升高速率依序增大。石墨烯的高电迁移率[28](约2×10 5 cm 2/(V·s))增加了回路中电解液的电流密度,石墨烯吸附作用促使更多的离子聚集在电极表面,二者共同作用下阳极电压持续保持较大的升高速率,击穿电压依序降低,促进了氧化反应中阳极表面击穿放电现象的发生,继而促进了膜层的生长速度[21]

  • 图1 恒流模式下不同含量石墨烯的电压-时间曲线[21]

  • Fig.1 Voltage vs.Time at constant current mode for vaiours addition of graphene [21]

  • 此外,对阳极表面离子运动阻力产生一定影响[23],主要表现在石墨烯阻碍了放电通道内电解液离子的流出(见2.1详细描述)。

  • 2 石墨烯对含碳氧化层组织结构的影响

  • 表征分析氧化层的成分组成和结构形貌特征有助于理解认知微弧氧化反应中物质与能量的演变规律,有助于更好地从反应机理上指导工艺与性能间的匹配性研究。

  • 2.1 含碳氧化层的成分组成特点

  • 膜层生长的反应物质来自于电解液和阳极金属,微弧氧化层由新生氧化相和颗粒增强相共同组成,铝合金表面氧化相为 α-Al2O3 和 γ-Al2O3 [21], 镁合金为MgO和Mg2 SiO4[23],钛合金为TiO2,锆合金为ZrO2[33],不同轻合金基体表面氧化相的主要组成各异,但都没有检测到碳元素,含碳氧化层中碳元素以石墨烯增强相形式存在[34]

  • 石墨烯在拉曼光谱中的特征峰为D(sp 2 杂化峰位于1 350cm-1 )和G(sp 2 振动峰位于1 580cm-1), 添加石墨烯后,含碳氧化层内出现了明显的D和G特征峰[23],如图2。

  • 图2 石墨烯、普通氧化层和含碳氧化层表面的拉曼光谱图[23]

  • Fig.2 the micro Raman spectra obtained from the surface of(a) the carbon nanoparticle powder,(b) the MAO-C-free coating, and(c) the MAO-C coating [23]

  • 添加石墨烯还促进了新生氧化相的生成[23]。与普通微弧氧化层相比较,发现镁合金表面含碳氧化层中新氧化相组成还包括MgSiO4F2 和MgAl2O4, 如图3,分析认为Na2 SiO3-NaF-KOH电解液体系中,放电通道中填充的石墨烯颗粒阻碍了放电通道中SiO32-和F- 负离子的流出,促进了MgSiO4F2 和MgAlO4 两种相对不稳定相的生成。

  • 图3 石墨烯、普通氧化层和含碳氧化层表面XRD图[23]

  • Fig.3 XRD patterns of(a) the uncoated Mg alloy wires and the MAO coating powders obtained in(b) carbon nanoparticle-free and(c) carbon nanoparticle-containing electrolytes [23]

  • 引入不同相结构的石墨烯,可改变含碳氧化层的组成,如电解液中添加材料为氧化石墨烯时,含碳氧化层中增加了少量的羟基和羰基等含氧官能团[34]。此外,引入的新官能团和氧化物新相增加了膜层结构的杂化度,而引入的这些新官能团和相对不稳定的氧化物新相对膜层性能和使用范围的影响还不十分明确,如其与酸性、碱性腐蚀介质间的反应活性。

  • 2.2 含碳氧化层的表面结构特征

  • 微弧氧化层的防护性能与硬度、厚度、粗糙度等结构特征相关,膜层内部氧化层沉积紧密,与基体间因冶金结合而连接稳固;外部氧化层因含有较多的微孔和微裂纹缺陷而呈疏松多孔结构。添加合适浓度的石墨烯增强相有助于改善膜层微孔尺寸和分布状态,降低膜层表面粗糙度,增大膜层厚度,并抑制微裂纹的萌生及扩展[35-36],石墨烯的这一改善作用与纳米复合微弧氧化层的SiO2 等添加剂的改效果一致[37]

  • 如图4,镁锂合金表面普通氧化层微孔和微裂纹较多,孔径约为2~5 μm,粗糙度为558.60nm, 厚度为13.5 μm;而含碳氧化层表面(图4b) 微孔尺寸减小为1.0 μm左右,且表面未见明显的微裂纹,粗糙度也降低为317.07nm, 厚度增大为19.1 μm。

  • 图4 石墨烯添加前后镁合金微弧氧化层表面形貌[22]

  • Fig.4 SEM morphologies of on a magnesium alloy [22]

  • WEN等[38] 将共沉积法改性获得的羟基磷灰石/氧化石墨烯粉体(HA/GO)引入到微弧氧化层中后,生物活性涂层表面结构缺陷获得了明显改善,孔隙率提高了40%,由11.51%提高到6.87%。

  • 膜层的成膜速度和孔隙的数量与大小同阳极击穿放电的数量和速度关系紧密,微裂纹源于熔融氧化层沉积时遇到冷却的电解液快速凝固产生的热应力, 微孔源于放电通道喷出的气泡[ 39],且孔径大小受放电瞬间阳极表面火花尺寸大小制约[ 40]

  • 同一电流密度时,含碳氧化涂层(石墨烯添加量为0.5g/L)的厚度和硬度都好于普通微弧氧化层[21];含碳氧化层的碳含量、厚度和硬度随电流密度升高而增加, 表面微孔数量减少、孔径尺寸增大[41]。通过微弧氧化工艺控制,SHANG等[35] 在镁合金表面还成功制备出表层由氧化石墨烯完全覆盖的含碳氧化层,有效改善了孔洞和裂纹等表面缺陷, 如图5。

  • 图5 Mg-GO/MAO复合涂层表面形貌和截面形貌[35]

  • Fig.5 Surface and cross-sectional SEM morphologies on a magnesium alloy [35]

  • 此外,击穿放电形成的微孔本身分布具有无规性[24,42],膜层中碳增强相的分布特征规律说法并不十分一致[22-23]

  • 3 石墨烯对含碳氧化层表面性能的影响作用

  • 大量文献表明,石墨烯增强相可明显提升多种轻合金的防腐耐磨性能,展示了石墨烯复合微弧氧化层较好的应用研究前景。基于对膜层构效关系的分析理解,增强相对膜层减摩和腐蚀抑制的机理得以明晰深化;在探究其机理的过程中,现代先进的测试手段发挥了分析表征和思路启发的优势作用,使得更直观的机理示意图和等效电路模型得以构建。

  • 3.1 含碳氧化层的耐磨性能

  • 含碳氧化层的摩擦因数-滑动时间曲线规律符合前苏联学者提出的摩擦二项式定律[43],即在干摩擦条件下,基体与钢球对偶之间发生摩擦磨损,促使二者间的接触面积逐渐增大,当法向载荷恒定时,基体的摩擦因数随之增大,曲线上升速率较大;随着磨屑量的增多,涂层初始态的动态平衡(形成-破坏-修复-形成)被打破,曲线斜率开始变缓。

  • 与普通微弧氧化层相比,无论添加剂采用石墨还是石墨烯,含碳氧化层的摩擦因数和磨损量都变小,耐磨性能都获得了不同程度地提升。氧化层中引入碳增强相,是含碳氧化层摩擦机制发生转变的重要影响因素,结构稳定的石墨和石墨烯都发挥出了较好的润滑减摩作用。

  • 3.1.1 石墨对含碳氧化层的减摩效果

  • 添加石墨后,钛合金微弧氧化层的摩擦因数由0.86变为0.56,下降了34.88%[10];含碳氧化层表面的起皮和脱落现象减少,其相对平滑致密的表面结构削弱了原有凹凸不平结构对钢球表面的犁铧和微切削作用;分析认为主要是在库仑力和范德华力的作用下,石墨会向钢球对偶面发生转移,并在对偶面形成一层润滑膜,如示意图6。

  • 图6 石墨复合层摩擦因数-时间曲线和减摩示意图[10]

  • Fig.6 The curve of coefficient-time and antifriction diagram for MAO coating composite of graphite [10]

  • 3.1.2 石墨烯对含碳氧化层的减摩效果

  • 锆合金基体的摩擦因数为0.565,其表面微弧氧化层的摩擦因数为0.626,引入石墨烯后,含碳氧化层的摩擦因数降为0.357,较前两者分别下降了36.81%和42.97%,明显改善了锆合金基体及其氧化层的摩擦因数[24];而且钛合金表面含碳氧化层磨痕宽度变窄,磨痕深度变浅,磨痕表面相对平整、无明显的犁削磨损或大面积脱落现象,石墨烯起到了一定的增强作用[44]

  • 在分析石墨烯对含碳氧化层的减摩作用时,结合拉曼光谱中不同往复周期时石墨烯特征峰的变化特点[24],进一步验证了表面摩擦力与石墨烯成分之间的关联性,如图7所示。往复周期为1 000时,含碳氧化层处于滑动摩擦初始期,石墨烯D和G两个特征峰的峰形变化不明显;当往复周期为2 000时, 峰形发生了较大的变化,两个特征峰的D/G比值增加,D/G比值反映了石墨烯结构的无序状态趋向, 即此时含碳氧化层的初始动态平衡被打破,石墨烯在新的动态平衡中无序状态趋于明显,摩擦磨损导致的结构缺陷增多;随着往复周期的增加,两个特征峰强度都呈现出较大幅度地减弱,说明在往复摩擦的剪切力作用下,石墨烯被磨损消耗。

  • 图7 含碳氧化层的摩擦因数-往复周期曲线[24]

  • Fig.7 The curve of coefficient of Zr-GO/MAO coating [24]

  • 3.2 含碳氧化层的耐腐蚀性能

  • 铝、镁等轻合金表面形成的纳米级自然氧化膜呈疏松多孔结构,在海水、高温、高压等环境中容易发生点蚀、缝隙腐蚀和氢损伤等腐蚀问题,耐蚀性较差。虽然微弧氧化层较好的致密性和微米级大厚度[45]对改善金属表面耐腐蚀性贡献较大,但是微孔、微裂纹等缺陷也增加了腐蚀介质侵入、渗透和穿透的几率[46]。嵌在氧化层中的固体颗粒相,延长了腐蚀介质扩散与渗透的路径,发挥的物理阻隔作用有助于改善膜层耐腐蚀性能,石墨烯增强相表现出与之相似的作用效果[47-48]

  • 添加石墨烯后,含碳氧化层表面致密度增大,锆合金基体表面氢及其同位素的渗透率降低,使得含碳氧化层阻氢性能得以提高[33]。如图8,在H3BO3-LiOH溶液中锆合金及其表面氧化层的极化曲线中, 锆合金基体的自腐蚀电位E corr 最小, 为-0.191V,随石墨烯添加浓度的增加,氧化层的E corr 依次增大,自腐蚀电流 i corr 下降;添加石墨烯促使疏松层和致密层的阻抗值增加,图8中分别标记为R pR b,结合EIS阻抗谱和分析绘制的等效电路模型[24],较好地解释了含碳氧化层的腐蚀抑制作用。

  • 图8 含碳氧化层的极化曲线和等效电路模型[24]

  • Fig.8 Potentiodynamic polarization curves and equivalent circuits physical model of composite MAO with graphene [24]

  • 含碳氧化层在抵抗腐蚀介质进入过程中,石墨烯的二维超密的网状晶体结构层层叠加,可形成致密且绝缘[49]的物理屏障,对腐蚀介质起到较好地阻隔作用,而对于氧化石墨烯,其网状结构表面和边缘的含氧官能团,能够吸附液相中的阴离子而显负电性,根据同性相斥原理,有利于排斥阴离子型腐蚀介质[50-52]

  • 4 结论

  • (1)大量研究表明,石墨烯复合微弧氧化技术在轻合金表面处理方法中具有可行性,石墨烯增强相可以较好地改善微弧氧化层的成分组成、致密度、孔隙率、厚度和硬度等组织结构特征,有效地提高铝、镁、钛等轻合金表面防腐耐磨性能,为拓宽石墨烯复合微弧氧化技术的应用范围,其在更多种轻合金表面处理的工艺、性能和机理方面的应用研究仍有待开发探索。

  • (2)石墨烯添加剂改变了电解液中的载流子种类、电解液体系的电迁移率和电极表面电量分布密度,由于氧化反应中载流子种类更多、能量转化更复杂,增加了膜层制备过程中石墨烯添加工艺的控制难度,因而进一步地解析石墨烯添加剂对氧化反应过程中反应物质输送速度、放电中心数量和分布特点的影响规律,揭示石墨烯材料对改善微弧氧化膜层性能方面的增强机理,将有助于更好地发挥出石墨烯添加剂的优异特性,从而实现石墨烯复合微弧氧化层制备工艺和结构质量间的高效调控。

  • (3)为提高轻合金表面防护性能,拓展石墨烯复合微弧氧化技术在工程应用中的实用性,还需要进一步考察石墨烯复合微弧氧化层在酸、碱等复杂工况中的环境适应性,以及耐高温和抗热震等性能; 同时,探寻具有协同作用的功能化复合型石墨烯添加剂材料,从而在降低能耗提高反应效能的同时获得更优质的微弧氧化膜,也将是石墨烯复合微弧氧化技术发展研究方向之一。

  • 参考文献

    • [1] BOOATANI A,YAZDANI S,MOUSAVIAN R,et al.Strengthening mechanisms of graphene sheets in aluminum matrix nanocomposites[J].Materials and Design,2015,88:938-989.

    • [2] TIAN W M,LI S M,WANG B,et al.Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering [J].International Journal of Minerals,Metallurgy and Materials,2016,23(6):723-729.

    • [3] 张玉林,于佩航,冯作菊,等.石墨烯添加剂对微弧氧化陶瓷层耐蚀性能的影响[J].材料热处理学报,2017,38(2):158-167.ZHANG Y L,YU P H,FENG Z J,et al.Influence of graphene additives on corrosion resistance of microarc oxidation coatings on magnesium-lithium alloy[J].Transactions of Materials and Heat Treatment,2017,38(2):158-163.(in Chinese)

    • [4] 邱小林,邱震钰.石墨烯掺杂对镁锂合金微弧氧化膜 Cl- 腐蚀敏感性的研究 [J].失效分析与预防,2019,14(2):106-110.QIU X L,QIU Z Y.Corrosion sensitivity of graphene doped micro-arc oxidation film of magnesium-lithium alloy in Cl- solution [J].Failure Analysis and Prevention,2019,14(2):106-110.(in Chinese)

    • [5] 黄小威,张晓燕,闫洪达,等.纳米ZnO和纳米 SiO2 添加剂对铝合金微弧氧化膜层组织及性能的影响[J].热加工工艺,2016,45(4):160-164.HUANG X W,ZHANG X Y,YAN H D,et al.Influence of nanometer ZnO and SiO2 additives on microstructure and performance of Al alloy micro-arc oxide film layer [J].Hot Working Technology,2016,45(4):160-164.(in Chinese)

    • [6] WANG Y,WEI D B,YU J,et al.Effects of Al2O3 nano-additive on performance of micro-arc cross oxidation coatings formed on AZ91D Mg alloy[J].Journal of Materials Science and Technology,2014,30(10):984-990.

    • [7] 常立民,田利丰,刘伟.添加剂在镁合金微弧氧化中的研究进展[J].腐蚀与防护,2013,34(8):718-722.CHANG L M,TIAN L F,LIU W.Research progress of additives in micro-arc oxidation of magnesium alloys [J].Corrosion & Protection,2013,34(8):718-722.(in Chinese)

    • [8] ZHU L Y,ZHANG W,ZHANG T,et al.Effect of the Cu content on the microstructure and corrosion behavior of PEO coatings on Al-xCu alloys [J].Journal of The Electrochemical Society,2018,165(9):469-483.

    • [9] 周小淞,雷源源,张晓燕,等.纳米ZnO添加剂对铸造铝合金微弧氧化膜层的影响[J].兵器材料科学与工程,2013,36(3):63-65.ZHOU X S,LEI Y Y,ZHANG X Y,et al.Effects of nano-ZnO additive on ceramic coating formed by micro-arc oxidation process on new casting aluminum alloy[J].Ordnance Material Science and Engineerings,2013,36(3):63-65.(in Chinese)

    • [10] 穆明,梁军,肖乾,等.钛合金微弧氧化一步制备含石墨的减摩涂层[J].材料科学与工艺,2013,21(1):18-23.MU M,LIANG J,XIAO Q,et al.One-step preparation of graphite-containing antifriction coating on Ti alloy by plasma electrolytic oxidation [J].Materials Science & Technology,2013,21(1):18-23.(in Chinese)

    • [11] LAO X S,ZHAO X F,LIU Y,et al.Study on friction characteristics of micro-arc oxidation modification layer of titanium alloy surface in seawater environment [J].IOP Conference Series:Materials Science and Engineering,2019,631:22-38.

    • [12] YE F X,DAI J,LI L,et al.The influence of carbon on tribological properties of micro-arc oxidation ceramic coating[J].Science of Advanced Materials,2019,11(4):563-568.

    • [13] CHEN Q,LI W,LING K,et al.Effect of Na2WO4 addition on formation mechanism and microstructure of micro-arc oxidation coating on Al-Ti double-layer composite plate [J].Materials & Design,2020,190:108558.

    • [14] GAO Y,YANG W,XU D P,et al.Microstructure and properties of graphene oxide-doped TiO2 coating on titanium by micro arc oxidation [J].Journal of Wuhan University of Technology-Mater Sci Ed,2018,33(6):1524-1529.

    • [15] 董世运,徐滨士,王玉汪,等.石墨烯制备和应用中的表面科学与技术[J].中国表面工程,2013,26(6):1-8.DONG S Y,XU B S,WANG Y J,et al.Surface science and technology on preparation and applications of graphene [J].China Surface Engineering,2013,26(6):1-8.(in Chinese)

    • [16] LEE C G,WEI X D,KYSAR W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene [J].Science,2008,321(5887):385-388.

    • [17] HUA Y L,ZHANG Z G,LI W.Microstructure and degradation properties of C-containing composite coatings on magnesium alloy wires treated with micro-arc oxidation [J].Surface& Coatings Technology,2016,291:70-78.

    • [18] MA K J,BOSTAM M S A,WU W T.Preparation of self-lubricating composite coatings through a micro-arc plasma oxidation with graphite in electrolyte solution [J].Surface & Coatings Technology,2014,259:318-324.

    • [19] 刘婉颖,刘颖,陈龙,等.石墨烯纳米片对D16T铝合金微弧氧化膜层结构与性能的影响[J].表面技术,2020,49(5):237-250.LIU W Y,LIU Y,CHEN L,et al.Effect of graphene nanosheets on structure and properties of micro-arc oxide films formed on D16T aluminum alloy[J].Surface Technology,2020,49(5):237-250.(in Chinese)

    • [20] ZHANG Y L,YU P H,WEI Y H,et al.Influence of graphene additive on wear resistance and corrosion resistance of micro arc oxidation coating formed on LY12 aluminium alloy surface[J].Transactions of Materials and Heat Treatment,2017,38(8):103-109.

    • [21] CHEN Q Z,JIANG Z Q,TANG S G,et al.Influence of graphene particles on the micro-arc oxidation behaviors of 6063 aluminum alloy and the coating properties[J].Applied Surface Science,2017,423:939-950.

    • [22] CHEN F.Effect of graphene on micro-structure and properties of MAO coating prepared on Mg-Li alloy[J].International Journal of Electrochemical Science,2017,12(7):6081-6091.

    • [23] HUA Y,ZHANG Z,LI W.Microstructure and degradation properties of C-containing composite coatings on magnesium alloy wires treated with micro-arc oxidation [J].Surface & Coatings Technology,2016,291:70-78.

    • [24] LI Z Y,CAI Z B,DING Y,et al.Characterization of graphene oxide/ZrO2 composite coatings deposited on zirconium alloy by micro-arc oxidation[J].Applied Surface Science,2020,506:144928.

    • [25] 陈宏,李佩,朱晓宇,等.石墨烯浓度对镁基陶瓷膜生长及耐蚀性的影响[J].表面技术,2020,49(5):285-307.CHEN H,LI P,ZHU X Y,et al.Effect of graphene concentration on growth and corrosion resistance of magnesium based ceramic coating[J].Surface Technology,2020,49(5):285-307.(in Chinese)

    • [26] 宗玙,宋仁国,花天顺,等.石墨烯对7050高强铝合金微弧氧化陶瓷膜层组织性能的影响[J].兵工学报,2020,41(6):1210-1218.ZONG Y,SONG R G,HUA T S,et al.Effect of graphene additive on microstructure and properties of MAO ceramic coatings formed on 7050 aluminum alloy [J].Acta ArmamentarII,2020,41(6):1210-1218.(in Chinese)

    • [27] LEE K M,SHIN K R,NAMGUNG S,et al.Electro-chemical response of ZrO2-incorporated oxide layer on AZ91 Mg alloy processed by plasma electrolytic oxidation[J].Surface & Coatings Technology,2011,205(13-14):3779.

    • [28] CHEN F,ZHANG Y L,ZHANG Y,et al.Effect of graphene on micro-structure and properties of MAO coating prepared on Mg-Li alloy [J].International Journal of Electrochemical Science,2017,12:6081-6091.

    • [29] VATAN H N,ADABI M.Investigation of tribological behavior of ceramic-graphene composite coating produced by plasma electrolytic oxidation[J].Transactions of the Indian Institute of Metals,2018,71(7):1643-1652.

    • [30] 曾云.镁及镁合金表面含碳微弧氧化陶瓷层性能的研究 [D].北京:北京化工大学,2016.ZENG Y.Properties research of containing carbon micro-arc oxidation ceramic coating on pure Mg and Mg alloy [ M ].Beijing:Beijing University of Chemical Technology,2016.(in Chinese)

    • [31] PEI S,CHENG H M.The reduction of grapheme oxide [J].Carbon,2012,50(9):3210-3228.

    • [32] 谢雄.氧化石墨烯对AZ31镁合金微弧氧化膜层耐蚀性的影响[D].北京:北京化工大学,2016.XIE X.Effect of graphene oxide additive on the corrosion resistance of the plasma electrolytic oxidation coating of the AZ31 magnesium alloy [ M].Beijing:Beijing University of Chemical Technology,2016.(in Chinese)

    • [33] 杜培,闫淑芳,陈伟东,等.石墨烯浓度对 ZrH1.8 表面微弧氧化陶瓷层的影响[J].无机材料学报,2019,34(11):1175-1180.DU P,YAN S F,CHEN W D,et al.Graphene concentration on micro-arc oxidation ceramic layer of ZrH1.8 surface[J].Journal of Inorganic Materials,2019,34(11):1175-1180.(in Chinese)

    • [34] 张志莲,张玉林,陈飞.氧化石墨烯对 Mg-Li 合金微弧氧化陶瓷层微观结构及耐蚀性的影响[J].表面技术,2019,48(6):306-313.ZHANG Z L,ZHANG Y L,CHEN F.Effect of graphene oxide on microstructure and corrosion resistance of micro-arc oxidation coatings on Mg-Li alloy[J].Surface Technology,2019,48(6):306-313.(in Chinese)

    • [35] SHANG W,WU F,WANG Y Y,et al.Corrosion resistance of micro-arc oxidation/graphene oxide composite coatings on magnesium alloys[J].ACS Omega,2020,5(13):7262-7270.

    • [36] 张玉林,陈佳欣,于佩航,等.石墨烯含量对陶瓷层微观结构及耐蚀性能的影响 [J].稀有金属,2018,42(10):1061-1067.ZHANG Y L,CHEN J X,YU P H,et al.Micro-structure and corrosion resistance of ceramic coatings with graphene addition [J].Chinese Journal of Rare Metals,2018,42(10):1061-1067.(in Chinese)

    • [37] LI H X,SONG R G,JI Z G,et al.Effects of nano-additive TiO2 on performance of micro-arc oxidation coatings formed on 6063 aluminum alloy[J].Transactions of Nonferrous Metals Society of China,2013,23(2):406-411.

    • [38] WEN C L,ZHAN X Z,HUANG X G,et al.Characterization and corrosion properties of hydroxyapatite/graphene oxide bio-composite coating on magnesium alloy by one-step micro-arc oxidation method[J].Surface and Coatings Technology,2017,317:125-133.

    • [39] HU J H,GUAN S K,CHEN J,et al.Fabrication and characterization of rod-like nano-hydroxyapatite on MAO coating supported on Mg-Zn-Ca alloy [J].Applied Surface Science,2011,257:2231-2237.

    • [40] LU G H,CHEN H,GU W C,et al.Effects of graphite additives in electrolytes on the microstructure and corrosion resistance of alumina PEO coatings[J].Current Applied Physics,2009,9(2):324.

    • [41] 唐誉豪,向东,李东豪.含石墨烯纳米片电解液中电流密度对2024铝合金微弧氧化膜性能的影响 [J].表面技术,2018,47(7):203-209.TANG Y H,XIANG D,LI D H.Effects of current density in electrolyte containing graphene on properties of 2024 aluminum alloy micro-arc oxidation coating[J].Surface Technology,2018,47(7):203-209.(in Chinese)

    • [42] LI Z Y,CAI Z B,CUI Y.Effect of oxidation time on the impact wear of micro-arc oxidation coating on aluminum alloy [J].Wear,2019,426,285-295.

    • [43] 克拉盖尔斯基 N B,等.摩擦磨损原理[M].北京:机械工业出版社,1982.Крагельский N B.Principles of friction and wear[M].Beijing:China Machine Press,1982.(in Chinese)

    • [44] CHEN X,LIAO D,ZHANG D,et al.Friction and wear behavior of graphene-modified titanium alloy micro-arc oxidation coatings [J].Transactions of the Indian Institute of Metals,2020,73(1).73-80.

    • [45] 付肖肖,孙瑞雪.石墨烯对镁合金微弧氧化层结构和耐蚀性影响[J].青岛科技大学学报,2019,40(1):48-52.FU X X,SUN R X.Effect of graphene on microstructure and corrosion resistance of micro arc oxidation layer of magnesium alloy [J].Journal of Qingdao University of Science and Technology,2019,40(1):48-52.(in Chinese)

    • [46] TANG Y,ZHAO X,JIANG K,et al.The influences of duty cycle on the bonding strength of AZ31B magnesium alloy by microarc oxidation treatment [J].Surface and Coatings Technology,2010,205(6):1789.

    • [47] LIU J,PAN W,LIU Y,et al.Effect of graphene on corrosion resistance of Micro-arc oxidation coatings on 6061/7075 dissimilar laser-MIG hybrid welded joint[J].Materials Research Express,2019,6(6):066521.

    • [48] 潘文驰.异种铝合金激光-MIG 复合焊接接头微弧氧化膜层的制备与耐蚀性研究[D].长春:吉林大学,2019.PAN W C.Preparation and corrosion resistance of micro-arc oxidation coatings on laser-MIG hybrid welded joint of dissimilar aluminum alloys [ M ].Changchun:Jilin University,China,2019.(in Chinese)

    • [49] 朱利萍,鲁闯,王志锋,等.石墨烯对镁合金微弧氧化层结构及性能的影响[J].兵器材料科学与工程,2017,3(40):59-61.ZHU L P,LU C,WANG Z F,et al.Influence of graphene on structures and performance of micro-arc oxidation coating on magnesium alloy on magnesium alloy [J].Ordnance Material Science and Engineering,2017,3(40):59-61.(in Chinese)

    • [50] KIRKLANG N T,SCHILIER T,MEDHEKAR N,et al.Exploring graphene as a corrosion protection barrier [J].Corrosion Science,2012,56(3):1-4.

    • [51] 顾林,丁纪恒,余海斌.石墨烯用于金属腐蚀防护的研究 [J].化学进展,2016,28(5):737-743.GU L,DING J H,YU H B.Research in graphene-based anticorrosion coatings[J].Progress in Chemistry,2016,28(5):737.(in Chinese)

    • [52] RICHARD PRABAKAR S J,HWANG Y H,BAE E G,et al.Graphene oxide as a corrosion inhibitor for the aluminum current collector of lithium ion batteries [J].Carbon,2013,52:128-136.

  • 参考文献

    • [1] BOOATANI A,YAZDANI S,MOUSAVIAN R,et al.Strengthening mechanisms of graphene sheets in aluminum matrix nanocomposites[J].Materials and Design,2015,88:938-989.

    • [2] TIAN W M,LI S M,WANG B,et al.Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering [J].International Journal of Minerals,Metallurgy and Materials,2016,23(6):723-729.

    • [3] 张玉林,于佩航,冯作菊,等.石墨烯添加剂对微弧氧化陶瓷层耐蚀性能的影响[J].材料热处理学报,2017,38(2):158-167.ZHANG Y L,YU P H,FENG Z J,et al.Influence of graphene additives on corrosion resistance of microarc oxidation coatings on magnesium-lithium alloy[J].Transactions of Materials and Heat Treatment,2017,38(2):158-163.(in Chinese)

    • [4] 邱小林,邱震钰.石墨烯掺杂对镁锂合金微弧氧化膜 Cl- 腐蚀敏感性的研究 [J].失效分析与预防,2019,14(2):106-110.QIU X L,QIU Z Y.Corrosion sensitivity of graphene doped micro-arc oxidation film of magnesium-lithium alloy in Cl- solution [J].Failure Analysis and Prevention,2019,14(2):106-110.(in Chinese)

    • [5] 黄小威,张晓燕,闫洪达,等.纳米ZnO和纳米 SiO2 添加剂对铝合金微弧氧化膜层组织及性能的影响[J].热加工工艺,2016,45(4):160-164.HUANG X W,ZHANG X Y,YAN H D,et al.Influence of nanometer ZnO and SiO2 additives on microstructure and performance of Al alloy micro-arc oxide film layer [J].Hot Working Technology,2016,45(4):160-164.(in Chinese)

    • [6] WANG Y,WEI D B,YU J,et al.Effects of Al2O3 nano-additive on performance of micro-arc cross oxidation coatings formed on AZ91D Mg alloy[J].Journal of Materials Science and Technology,2014,30(10):984-990.

    • [7] 常立民,田利丰,刘伟.添加剂在镁合金微弧氧化中的研究进展[J].腐蚀与防护,2013,34(8):718-722.CHANG L M,TIAN L F,LIU W.Research progress of additives in micro-arc oxidation of magnesium alloys [J].Corrosion & Protection,2013,34(8):718-722.(in Chinese)

    • [8] ZHU L Y,ZHANG W,ZHANG T,et al.Effect of the Cu content on the microstructure and corrosion behavior of PEO coatings on Al-xCu alloys [J].Journal of The Electrochemical Society,2018,165(9):469-483.

    • [9] 周小淞,雷源源,张晓燕,等.纳米ZnO添加剂对铸造铝合金微弧氧化膜层的影响[J].兵器材料科学与工程,2013,36(3):63-65.ZHOU X S,LEI Y Y,ZHANG X Y,et al.Effects of nano-ZnO additive on ceramic coating formed by micro-arc oxidation process on new casting aluminum alloy[J].Ordnance Material Science and Engineerings,2013,36(3):63-65.(in Chinese)

    • [10] 穆明,梁军,肖乾,等.钛合金微弧氧化一步制备含石墨的减摩涂层[J].材料科学与工艺,2013,21(1):18-23.MU M,LIANG J,XIAO Q,et al.One-step preparation of graphite-containing antifriction coating on Ti alloy by plasma electrolytic oxidation [J].Materials Science & Technology,2013,21(1):18-23.(in Chinese)

    • [11] LAO X S,ZHAO X F,LIU Y,et al.Study on friction characteristics of micro-arc oxidation modification layer of titanium alloy surface in seawater environment [J].IOP Conference Series:Materials Science and Engineering,2019,631:22-38.

    • [12] YE F X,DAI J,LI L,et al.The influence of carbon on tribological properties of micro-arc oxidation ceramic coating[J].Science of Advanced Materials,2019,11(4):563-568.

    • [13] CHEN Q,LI W,LING K,et al.Effect of Na2WO4 addition on formation mechanism and microstructure of micro-arc oxidation coating on Al-Ti double-layer composite plate [J].Materials & Design,2020,190:108558.

    • [14] GAO Y,YANG W,XU D P,et al.Microstructure and properties of graphene oxide-doped TiO2 coating on titanium by micro arc oxidation [J].Journal of Wuhan University of Technology-Mater Sci Ed,2018,33(6):1524-1529.

    • [15] 董世运,徐滨士,王玉汪,等.石墨烯制备和应用中的表面科学与技术[J].中国表面工程,2013,26(6):1-8.DONG S Y,XU B S,WANG Y J,et al.Surface science and technology on preparation and applications of graphene [J].China Surface Engineering,2013,26(6):1-8.(in Chinese)

    • [16] LEE C G,WEI X D,KYSAR W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene [J].Science,2008,321(5887):385-388.

    • [17] HUA Y L,ZHANG Z G,LI W.Microstructure and degradation properties of C-containing composite coatings on magnesium alloy wires treated with micro-arc oxidation [J].Surface& Coatings Technology,2016,291:70-78.

    • [18] MA K J,BOSTAM M S A,WU W T.Preparation of self-lubricating composite coatings through a micro-arc plasma oxidation with graphite in electrolyte solution [J].Surface & Coatings Technology,2014,259:318-324.

    • [19] 刘婉颖,刘颖,陈龙,等.石墨烯纳米片对D16T铝合金微弧氧化膜层结构与性能的影响[J].表面技术,2020,49(5):237-250.LIU W Y,LIU Y,CHEN L,et al.Effect of graphene nanosheets on structure and properties of micro-arc oxide films formed on D16T aluminum alloy[J].Surface Technology,2020,49(5):237-250.(in Chinese)

    • [20] ZHANG Y L,YU P H,WEI Y H,et al.Influence of graphene additive on wear resistance and corrosion resistance of micro arc oxidation coating formed on LY12 aluminium alloy surface[J].Transactions of Materials and Heat Treatment,2017,38(8):103-109.

    • [21] CHEN Q Z,JIANG Z Q,TANG S G,et al.Influence of graphene particles on the micro-arc oxidation behaviors of 6063 aluminum alloy and the coating properties[J].Applied Surface Science,2017,423:939-950.

    • [22] CHEN F.Effect of graphene on micro-structure and properties of MAO coating prepared on Mg-Li alloy[J].International Journal of Electrochemical Science,2017,12(7):6081-6091.

    • [23] HUA Y,ZHANG Z,LI W.Microstructure and degradation properties of C-containing composite coatings on magnesium alloy wires treated with micro-arc oxidation [J].Surface & Coatings Technology,2016,291:70-78.

    • [24] LI Z Y,CAI Z B,DING Y,et al.Characterization of graphene oxide/ZrO2 composite coatings deposited on zirconium alloy by micro-arc oxidation[J].Applied Surface Science,2020,506:144928.

    • [25] 陈宏,李佩,朱晓宇,等.石墨烯浓度对镁基陶瓷膜生长及耐蚀性的影响[J].表面技术,2020,49(5):285-307.CHEN H,LI P,ZHU X Y,et al.Effect of graphene concentration on growth and corrosion resistance of magnesium based ceramic coating[J].Surface Technology,2020,49(5):285-307.(in Chinese)

    • [26] 宗玙,宋仁国,花天顺,等.石墨烯对7050高强铝合金微弧氧化陶瓷膜层组织性能的影响[J].兵工学报,2020,41(6):1210-1218.ZONG Y,SONG R G,HUA T S,et al.Effect of graphene additive on microstructure and properties of MAO ceramic coatings formed on 7050 aluminum alloy [J].Acta ArmamentarII,2020,41(6):1210-1218.(in Chinese)

    • [27] LEE K M,SHIN K R,NAMGUNG S,et al.Electro-chemical response of ZrO2-incorporated oxide layer on AZ91 Mg alloy processed by plasma electrolytic oxidation[J].Surface & Coatings Technology,2011,205(13-14):3779.

    • [28] CHEN F,ZHANG Y L,ZHANG Y,et al.Effect of graphene on micro-structure and properties of MAO coating prepared on Mg-Li alloy [J].International Journal of Electrochemical Science,2017,12:6081-6091.

    • [29] VATAN H N,ADABI M.Investigation of tribological behavior of ceramic-graphene composite coating produced by plasma electrolytic oxidation[J].Transactions of the Indian Institute of Metals,2018,71(7):1643-1652.

    • [30] 曾云.镁及镁合金表面含碳微弧氧化陶瓷层性能的研究 [D].北京:北京化工大学,2016.ZENG Y.Properties research of containing carbon micro-arc oxidation ceramic coating on pure Mg and Mg alloy [ M ].Beijing:Beijing University of Chemical Technology,2016.(in Chinese)

    • [31] PEI S,CHENG H M.The reduction of grapheme oxide [J].Carbon,2012,50(9):3210-3228.

    • [32] 谢雄.氧化石墨烯对AZ31镁合金微弧氧化膜层耐蚀性的影响[D].北京:北京化工大学,2016.XIE X.Effect of graphene oxide additive on the corrosion resistance of the plasma electrolytic oxidation coating of the AZ31 magnesium alloy [ M].Beijing:Beijing University of Chemical Technology,2016.(in Chinese)

    • [33] 杜培,闫淑芳,陈伟东,等.石墨烯浓度对 ZrH1.8 表面微弧氧化陶瓷层的影响[J].无机材料学报,2019,34(11):1175-1180.DU P,YAN S F,CHEN W D,et al.Graphene concentration on micro-arc oxidation ceramic layer of ZrH1.8 surface[J].Journal of Inorganic Materials,2019,34(11):1175-1180.(in Chinese)

    • [34] 张志莲,张玉林,陈飞.氧化石墨烯对 Mg-Li 合金微弧氧化陶瓷层微观结构及耐蚀性的影响[J].表面技术,2019,48(6):306-313.ZHANG Z L,ZHANG Y L,CHEN F.Effect of graphene oxide on microstructure and corrosion resistance of micro-arc oxidation coatings on Mg-Li alloy[J].Surface Technology,2019,48(6):306-313.(in Chinese)

    • [35] SHANG W,WU F,WANG Y Y,et al.Corrosion resistance of micro-arc oxidation/graphene oxide composite coatings on magnesium alloys[J].ACS Omega,2020,5(13):7262-7270.

    • [36] 张玉林,陈佳欣,于佩航,等.石墨烯含量对陶瓷层微观结构及耐蚀性能的影响 [J].稀有金属,2018,42(10):1061-1067.ZHANG Y L,CHEN J X,YU P H,et al.Micro-structure and corrosion resistance of ceramic coatings with graphene addition [J].Chinese Journal of Rare Metals,2018,42(10):1061-1067.(in Chinese)

    • [37] LI H X,SONG R G,JI Z G,et al.Effects of nano-additive TiO2 on performance of micro-arc oxidation coatings formed on 6063 aluminum alloy[J].Transactions of Nonferrous Metals Society of China,2013,23(2):406-411.

    • [38] WEN C L,ZHAN X Z,HUANG X G,et al.Characterization and corrosion properties of hydroxyapatite/graphene oxide bio-composite coating on magnesium alloy by one-step micro-arc oxidation method[J].Surface and Coatings Technology,2017,317:125-133.

    • [39] HU J H,GUAN S K,CHEN J,et al.Fabrication and characterization of rod-like nano-hydroxyapatite on MAO coating supported on Mg-Zn-Ca alloy [J].Applied Surface Science,2011,257:2231-2237.

    • [40] LU G H,CHEN H,GU W C,et al.Effects of graphite additives in electrolytes on the microstructure and corrosion resistance of alumina PEO coatings[J].Current Applied Physics,2009,9(2):324.

    • [41] 唐誉豪,向东,李东豪.含石墨烯纳米片电解液中电流密度对2024铝合金微弧氧化膜性能的影响 [J].表面技术,2018,47(7):203-209.TANG Y H,XIANG D,LI D H.Effects of current density in electrolyte containing graphene on properties of 2024 aluminum alloy micro-arc oxidation coating[J].Surface Technology,2018,47(7):203-209.(in Chinese)

    • [42] LI Z Y,CAI Z B,CUI Y.Effect of oxidation time on the impact wear of micro-arc oxidation coating on aluminum alloy [J].Wear,2019,426,285-295.

    • [43] 克拉盖尔斯基 N B,等.摩擦磨损原理[M].北京:机械工业出版社,1982.Крагельский N B.Principles of friction and wear[M].Beijing:China Machine Press,1982.(in Chinese)

    • [44] CHEN X,LIAO D,ZHANG D,et al.Friction and wear behavior of graphene-modified titanium alloy micro-arc oxidation coatings [J].Transactions of the Indian Institute of Metals,2020,73(1).73-80.

    • [45] 付肖肖,孙瑞雪.石墨烯对镁合金微弧氧化层结构和耐蚀性影响[J].青岛科技大学学报,2019,40(1):48-52.FU X X,SUN R X.Effect of graphene on microstructure and corrosion resistance of micro arc oxidation layer of magnesium alloy [J].Journal of Qingdao University of Science and Technology,2019,40(1):48-52.(in Chinese)

    • [46] TANG Y,ZHAO X,JIANG K,et al.The influences of duty cycle on the bonding strength of AZ31B magnesium alloy by microarc oxidation treatment [J].Surface and Coatings Technology,2010,205(6):1789.

    • [47] LIU J,PAN W,LIU Y,et al.Effect of graphene on corrosion resistance of Micro-arc oxidation coatings on 6061/7075 dissimilar laser-MIG hybrid welded joint[J].Materials Research Express,2019,6(6):066521.

    • [48] 潘文驰.异种铝合金激光-MIG 复合焊接接头微弧氧化膜层的制备与耐蚀性研究[D].长春:吉林大学,2019.PAN W C.Preparation and corrosion resistance of micro-arc oxidation coatings on laser-MIG hybrid welded joint of dissimilar aluminum alloys [ M ].Changchun:Jilin University,China,2019.(in Chinese)

    • [49] 朱利萍,鲁闯,王志锋,等.石墨烯对镁合金微弧氧化层结构及性能的影响[J].兵器材料科学与工程,2017,3(40):59-61.ZHU L P,LU C,WANG Z F,et al.Influence of graphene on structures and performance of micro-arc oxidation coating on magnesium alloy on magnesium alloy [J].Ordnance Material Science and Engineering,2017,3(40):59-61.(in Chinese)

    • [50] KIRKLANG N T,SCHILIER T,MEDHEKAR N,et al.Exploring graphene as a corrosion protection barrier [J].Corrosion Science,2012,56(3):1-4.

    • [51] 顾林,丁纪恒,余海斌.石墨烯用于金属腐蚀防护的研究 [J].化学进展,2016,28(5):737-743.GU L,DING J H,YU H B.Research in graphene-based anticorrosion coatings[J].Progress in Chemistry,2016,28(5):737.(in Chinese)

    • [52] RICHARD PRABAKAR S J,HWANG Y H,BAE E G,et al.Graphene oxide as a corrosion inhibitor for the aluminum current collector of lithium ion batteries [J].Carbon,2013,52:128-136.

  • 手机扫一扫看