en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

杜昊(通信作者),男,1989年出生,博士,副教授。主要研究方向为物理气相沉积。E-mail:hdu3@gzu.edu.cn

中图分类号:TG156;TB114

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20201227002

参考文献 1
WALLIN E,MÜNGER E P,CHIRITA V,et al.Low-temperature alpha-alumina thin film growth:ab initiostudies of Al adatom surface migration[J].Journal of Physics D:Applied Physics,IOP Publishing,2009,42(12):125302.
参考文献 2
KOLLER C M,KIRNBAUER A,DALBAUER V,et al.On the oxidation behavior of cathodic arc evaporated Al-Cr-Fe and Al-CrFe-O coatings[J].Journal of Vacuum Science & Technology A,American Vacuum Society,2019,37(4):041503.
参考文献 3
LIN H C,CHANG Y L,HAN Y Y,et al.Atomic layer deposited Al2O3 films on NiTi shape memory alloys for biomedical applications[J].Procedia Manufacturing,2019,37:431-437.
参考文献 4
GITZEN W H.Alumina as a ceramic material[M].Columbus,Ohio:American Ceramic Society,1970.
参考文献 5
STUMPF H C,RUSSELL A S,NEWSOME J W,et al.Thermal transformations of aluminas and alumina hydrates-reaction with 44% technical acid[J].Industrial & Engineering Chemistry,American Chemical Society,1950,42(7):1398-1403.
参考文献 6
罗小秋,温吉利,刘炯,等.常压下MOCVD法制备 Al2O3 薄膜工艺的研究[J].中国表面工程,2007,20(3):47-50.LUO X Q,WEN J L,LIU J,et al.Study on the preparation of Al2O3 film by MOCVD under normal atmosphere[J].China Surface Engineering,2007,20(3):47-50.(in Chinese)
参考文献 7
FRENCH R H.Electronic band structure of Al2O3,with comparison to Alon and AIN[J].Journal of the American Ceramic Society,1990,73(3):477-489.
参考文献 8
TAY B K,ZHAO Z W,CHUA D H C.Review of metal oxide films deposited by filtered cathodic vacuum arc technique [J].Materials Science and Engineering:R:Reports,2006,52(1):1-48.
参考文献 9
NOHAVA J,DESSARZIN P,KARVANKOVA P,et al.Characterization of tribological behavior and wear mechanisms of novel oxynitride PVD coatings designed for applications at high temperatures[J].Tribology International,2015,81:231-239.
参考文献 10
STUEBER M,DIECHLE D,LEISTE H,et al.Synthesis of AlCr-O-N thin films in corundum and f.c.c.structure by reactive r.f.magnetron sputtering [J].Thin Solid Films,2011,519(12):4025-4031.
参考文献 11
JIN P,NAKAO S,WANG S X,et al.Localized epitaxial growth of α-Al2O3 thin films on Cr2O3 template by sputter deposition at low substrate temperature[J].Applied Physics Letters,American Institute of Physics,2003,82(7):1024-1026.
参考文献 12
ANDERSSON J M,CZIGÁNY Z,JIN P,et al.Microstructure of α-alumina thin films deposited at low temperatures on chromia template layers[J].Journal of Vacuum Science & Technology A,American Vacuum Society,2003,22(1):117-121.
参考文献 13
BONDIOLI F,FERRARI A M,LEONELLI C,et al.Reaction mechanism in Alumina/Chromia(Al2O3-Cr2O3)solid solutions obtained by coprecipitation[J].Journal of the American Ceramic Society,2000,83(8):2036-2040.
参考文献 14
KOLLER C M,KIRNBAUER A,KOLOZSVÁRI S,et al.Impact of morphology and phase composition on mechanical properties of α-structured(Cr,Al)2O3/(Al,Cr,X)2O3 multilayers [J].Scripta Materialia,2018,146:208-212.
参考文献 15
ANDERSSON J M,WALLIN E,CHIRITA V,et al.Ab initio calculations on the effects of additives on alumina phase stability [J].Physical Review B,American Physical Society,2005,71(1):014101.
参考文献 16
方文玉,王晓雯,郑勤,等.Co-Mo 共掺杂 Al2O3 电子结构及透射率的第一性原理计算[J].四川大学学报:自然科学版,2020,57:135-139.FANG W Y,WANG X W,ZHENG Q,et al.First principle calculation of electronic structure and transmittance of Co-Mo Codoped Al2O3 [J].Journal of Sichuan University(Natural Science Edition),2020,57:135-139.(in Chinese)
参考文献 17
KRESSE G,JOUBERT D.From ultrasoft pseudopotentials to the projector augmented-wave method [J].Physical Review B,American Physical Society,1999,59(3):1758-1775.
参考文献 18
KRESSE G,FURTHMÜLLER J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].Physical Review B,American Physical Society,1996,54(16):11169-11186.
参考文献 19
NAHIF F,MRÁZ S,MUSIC D,et al.Ab initio and experimental study on the effect of Y additions on the phase formation and thermal stability of Al2O3 thin films deposited by filtered cathodic arc evaporation [J].Surface and Coatings Technology,2014,257:333-337.
参考文献 20
WANG F,HOLEC D,ODÉN M,et al.Systematic ab initio investigation of the elastic modulus in quaternary transition metal nitride alloys and their coherent multilayers[J].Acta Materialia,2017,127:124-132.
参考文献 21
GAILLAC R,PULLUMBI P,COUDERT F X.ELATE:an open-source online application for analysis and visualization of elastic tensors[J].Journal of Physics:Condensed Matter,IOP Publishing,2016,28(27):275201.
参考文献 22
李亚敏,江璐,赵旺,等.铜掺杂对 γ′相影响的第一性原理研究[J].材料导报,2019,33(18):3085-3088.LI Y M,JIANG L,ZHAO W,et al.First principles study on the influence of copper doping on γ′ phase[J].Materials Reports,2019,33(18):3085-3088.(in Chinese)
参考文献 23
CHEN X Q,NIU H,LI D,et al.Modeling hardness of polycrystalline materials and bulk metallic glasses [J].Intermetallics,2011,19(9):1275-1281.
参考文献 24
DU H,WANG L,YOUNG M,et al.Structure and properties of lanthanum doped AlCrN coatings [J].Surface and Coatings Technology,2018,337:439-446.
参考文献 25
HUANG J,JU M.First-principle study of the microstructure and electronic properties for Cr 3+ doped yttrium orthoaluminate[J].Computational Materials Science,2020,174:109467.
参考文献 26
STEFANIUK I,RUDOWICZ C,GNUTEK P,et al.EPR study of Cr 3+ and Fe 3+ impurity ions in nominally pure and Co 2+-doped YAlO3 single crystals[J].Applied Magnetic Resonance,2009,2-4(36):371-380.
参考文献 27
赵宇宏,黄志伟,李爱红,等.Nb 在 Ni3Al 中取代行为及合金化效应的第一性原理研究 [J].物理学报,2011(4):564-570.ZHAO Y H,HUANG Z W,LI A H,et al.The first principle study on the substitution behavior and alloying effect of Nb in Ni3Al[J].Acta Physica Sinica,2011(4):564-570.(in Chinese)
参考文献 28
代永娟,刘帅帅,谭永军,et al.Fe-25Mn 合金的力学性能和电子结构的第一性原理计算 [J].热加工工艺,2020(18):56-59.DAI Y J,LIU S,TAN Y J,et al.Mechanical properties and electronic structure of Fe-25Mn alloy from first-principles theory calculation[J].Hot Working Technology,2020(18):56-59.(in Chinese)
参考文献 29
程奕天,邱万奇,周克崧,等.低温反应溅射 Al+α-Al2O3 复合靶沉积 α-Al2O3 薄膜 [J].无机材料学报,2019(8):862-866.CHENG Y T,QIU W Q,ZHOU K S,et al.Low-temperature deposition of α-Al2O3 films by reactive sputtering Al +α-Al2O3 target[J].Journal of Inorganic Materials,2019(8):862-866.(in Chinese)
参考文献 30
LUO Y R.Comprehensive handbook of chemical bond energies [M].Boca Raton:CRC Press,2007.
参考文献 31
陈志谦,林兴香,李春梅.硅化锆(ZrSi)弹性及其各向异性研究[J].西南大学学报(自然科学版),2016,38(3):1-8.CHEN Z Q,LIN X X,LI C M.Elasticity and anisotropy of zirconium silicide[J].Journal of Southwest University(Natural Science),2016,38(3):1-8.(in Chinese)
目录contents

    摘要

    采用第一性原理分别对 α-Al 2O3 、α-(Al 0. 75Cr0. 25 )2O3 、α-(Al 0. 75-xCr0. 25Fex)2O3 和 α-(Al 0. 75Cr0. 25-xFex)2O3 相晶胞体积、结合能、态密度和力学性能的变化进行计算。 研究表明:α-(Al 0. 75-xCr0. 25Fex )2O3 四元相的晶胞体积随着 Fe 原子置换数量的增加而缓慢增大,α-(Al 0. 75Cr0. 25-xFex)2O3 四元相晶胞的体积随着 Fe 原子数量的增加而迅速减小;相结合能结果显示,α-Al 2O3 、 α-(Al 0. 75Cr0. 25 )2O3 、α-(Al 0. 75-xCr0. 25Fex)2O3 和 α-(Al 0. 75Cr0. 25-xFex)2O3 相均为稳定结构,其中 α-Al 2O3 相的结合能最低,随着置换原子种类和数量的增加,结合能增大,相稳定性下降;当 Fe 元素原子数量占金属元素总原子数 0 ~ 3 at. % 时,α- (Al 0. 75-xCr0. 25Fex)2O3 和 α-(Al 0. 75Cr0. 25-xFex)2O3 四元相的硬度、H/ E 和 H 3 / E 2 较 α-(Al 0. 75Cr0. 25 )2O3 相有明显提升,但均低于 α-Al 2O3 相,仅 α-(Al 0. 63Cr0. 25Fe0. 12 )2O3 相的 H/ E 和 H 3 / E 2 值高于 α-Al 2O3 相。

    Abstract

    Comparable study regarding cell volume, binding energy, total electronic density, and mechanical properties were carried out for α-Al 2O3 , α-(Al 0. 75Cr0. 25 )2O3 , α-(Al 0. 75-xCr0. 25Fex )2O3 , and α-(Al 0. 75Cr0. 25-xFex )2O3 phases using first principles calculation. The results show that the volume of α-(Al 0. 75-xCr0. 25Fex)2O3 phase increases with the increasing Fe substitution of Al, while the volume of α-(Al 0. 75Cr0. 25-xFex)2O3 phase decreases as Fe content increases. The binding energy indicates that all the phases, including α-Al 2O3 , α-(Al 0. 75Cr0. 25 )2O3 , α-(Al 0. 75-xCr0. 25Fex )2O3 , and α-(Al 0. 75Cr0. 25-xFex )2O3 phases, are stable, among which αAl 2O3 is the most stable phase, whereas the stability decrease as the number of impurity atom increases. An increase of hardness, H/ E and H 3 / E 2 is detected for both α-( Al 0. 75-xCr0. 25Fex )2O3 and α-( Al 0. 75Cr0. 25-xFex )2O3 phases compared with α- (Al 0. 75Cr0. 25 )2O3 phase as determined by the increasing amount of Fe atoms with a range of 0-3 at. %. All the phases including α- (Al 0. 75Cr0. 25 )2O3 , α-(Al 0. 75-xCr0. 25Fex )2O3 , and α-( Al 0. 75Cr0. 25-xFex )2O3 show lower mechanical properties compared to α-Al 2O3 phase except for the α-(Al 0. 63Cr0. 25Fe0. 12 )2O3 phase that have higher H/ E and H 3 / E 2 .

  • 0 前言

  • Al2O3 具有高弹性模量、高硬度和优良的热力学稳定性等优点[1,3]。其中, α-Al2O3 相熔点约2 050℃ [4],弹性模量为409~411GPa [4-5],硬度可达28GPa [6],带隙约为8.8eV [7]。因此,α-Al2O3 相同时具备优良的热稳定性、力学性能和绝缘性,使其成为一种性能优越的刀具涂层材料。 α-Al2O3 刀具涂层一般由化学气沉积方法制备,制备温度为950~1 200℃,由于切削刀具基体在此高温下,会产生高温相变和脱碳的现象,如硬质合金、高速钢和金属陶瓷等,影响刀具强度。此外,化学气相沉积方法通常难以制备薄厚度涂层,在特殊结构涂层制备方面存在局限性,如超晶格涂层、纳米晶涂层等。因此,如何在低温条件下获得含有 α-Al2O3 相的涂层,成为了目前的研究热点。

  • 物理气相沉积(PVD)可在低温下(约500℃) 生长含 α-Al2O3 相的Al-Cr-O涂层[2]。此理论基于 α-Cr2O3 晶体与 α-Al2O3 晶体具有相同空间群,且 α-Cr2O3 与 α-Al2O3 在a轴和c轴上的晶格失配度只有4.0%和4.7%,可在450℃ 或更低的温度下获得的 α-Cr2O3 相通过形核和生长驱动 α-Al2O3 相的形成[8,10]。 Al-Cr-O涂层中获取 α-Al2O3 相的方法主要分为两种:在 α-Cr2O3 模板层上外延生长和Al-Cr-O元素固溶化。在 α-Cr2O3 模板层上外延生长的方法最先由JIN等[11] 发现, 该团队使用α-Cr2O3 模板层在400℃ 获得了 α-Al2O3 相, 随后ANDERSSON等[12]根据该理论使用射频磁控溅射纯氧化物靶材的方法在280℃ 获得了 α-Al2O3 相。但是,该方法的局限性在于对于外延生长的控制问题,即仅获得若干原子层厚度的 α-Al2O3 相并不能满足实用要求。同样,Al-Cr-O元素固溶化的制备方式也有对应的缺陷存在, 根据Al2O3-Cr2O3 相图[13],其在1 000~1 300℃ 下存在非固溶区,也就是说在低于此温度的区间,当Cr元素占总金属元素的比例低于75at.%时,(Al1-xCrx)2O3 相倾向于分解为Al2O3 和Cr2O3 相。因此,此方法需要较高含量的Cr才可以获得稳定的 α-(Al1-xCrx)2O3 结构, 故需要使用富Cr靶沉积 α-(Al1-xCrx)2O3 涂层[14]。由于 α-Cr2O3 的热稳定性和绝缘性低于 α-Al2O3,在 α-(Al1-xCrx)2O3 涂层成份设计时,应尽量降低Cr含量以提高涂层的整体性能。研究表明,掺杂含量为5at.%的Fe元素后,当涂层中Al含量高达70at.%时,仍可获得刚玉结构的 α 相。 Fe2O3 和 α-Al2O3 的结构均为刚玉结构,具有一定的相似性,提供了掺杂的可行性,且Fe元素被发现可以加速Al2O3 相由亚稳态向稳态结构的转变,即当Fe的原子百分比为5at.%时, 会形成不含有 α-Al2O3 组分的 α-( Al1-x-yCrxFey)2O3 固溶体[2,14-15]。在(Al1-x-yCrxFey)2O3 涂层中, Fe原子存在形成α-Fe2O3 相和进入 α-(Al1-xCrx)2O3 晶格形成置换固溶体的可能性, 以试验方法单独研究 α-(Al1-x-yCrxFey)2O3 相的稳定性和力学性能难度较大。使用第一性原理对 α-(Al1-x-yCrxFey)2O3 相的晶胞进行模拟和研究, 对探究Fe原子作为 α-( Al1-xCrx)2O3 相置换原子的作用和 α-(Al1-x-yCrxFey)2O3 相的力学性能有积极意义。因此,本文在 α-Al2O3 相结构的基础上,使用Cr原子置换部分Al原子,建立 α-(Al 0.75Cr0.25)2O3 三元基础相结构,并在此基础上使用原子百分比分别为1.3、2.5、3.8和5.0at.%的Fe原子分别置换晶胞中的Al原子和Cr原子, 并对 α-(Al 0.75-xCr0.25Fex)2O3 和 α-(Al 0.75Cr0.25-xFex)2O3 两种相结构的晶胞体积、结合能、态密度和力学性能的变化进行了计算和分析。本研究可为低温沉积 α-(Al1-xCrx)2O3 涂层和 α-(Al1-x-yCrxFey)2O3 涂层提供理论上的分析和指导。

  • 1 计算细节

  • 1.1 晶体模型

  • 刚玉型 α-Al2O3 的晶体结构属于三方晶系,其晶格常数 a=b=4.759 0 Å,c=12.991 0 Å,α=90°, β=90°,γ=120°,空间群结构为R-3C [16]。计算时可使用菱面体晶胞结构和六方晶胞结构,为方便确定原子置换位置,本文中使用含有80个原子的2×2×2菱面体 α-Al2O3 超晶胞(如图1中a) 进行DFT计算。将体系中8个Al原子置换为Cr原子,用以建立原子数量比Al ∶Cr=3 ∶1的 α-(Al 0.75Cr0.25)2O3 三元基础相超晶胞,如图1b所示,并分别以Fe原子置换三元相中的Al原子和Cr原子。一种置换方法为在三元基相的基础上将体系中的Al原子作为被置换对象进行1至4个Fe原子的置换, 形成 α-(Al 0.75-xCr0.25Fex) 2O3 相超晶胞,如图1c~1f所示; 另一种置换方法为将三元基础相体系中的Cr原子作为被置换对象进行置换, 形成 α-(Al 0.75Cr0.25-xFex) 2O3 相超晶胞,如图2a~2d所示。以上两种置换方式均实现Fe原子百分比分别为1.3、2.5、3.8和5.0at.%的 α-( Al1-x-yCrxFey) 2O3 四元相,若根据PVD靶材成分计算,Fe元素含量对应靶材中的原子百分比分别为3%、6%、9%和12%。

  • 图1 Fe原子置换Al原子而形成的超晶胞结构

  • Fig.1 Structure of supercells formed by replacing Al atoms by Fe atoms

  • 图2 Fe原子置换Cr原子而形成的超晶胞结构

  • Fig.2 Structure of supercells formed by replacing Cr atoms by Fe atoms

  • 1.2 计算方法

  • 采用本文中的方法通过Vienna从头模拟程序包(VASP)进行计算[17]。使用投影缀加波( PAW) 模拟了VASP中的离子-电子之间的相互作用,以广义梯度近似(GGA)作为交换关联函数[18]。采用1× 1×1的Monkhorst-Pack的k点网格对布里渊区进行求和,截断能设为500eV,本文中截断能和k点的选取参照文献[19]。由于本文中的计算涉及到Fe和Cr元素。同时,为了在弛豫计算和性质计算中得到较为精准的结果,在计算中设置ISPIN=2,自洽场能量收敛精度设置为1×10-5 eV,每个原子上的受力小于0.01eV/Å。在结构优化和计算弹性常数的过程中,参数的设置保持一致。

  • 弹性常数经过计算可以获得晶体的各个宏观模量,通过VRH近似方法可以得到较为精准的模量。各模量的上限通过Voigt近似来确定,Reuss近似确定了各模量的下限,最终由Hill平均法计算二者的算术平均值来确定最终的模量[20]。 α-Al2O3 的晶体结构属于三方晶系,它的独立刚度矩阵元只有6个,但是由于掺杂原子的引入,破坏了晶体结构的高对称性,使得它的独立刚度矩阵元增加到21个,本文借助ELATE [21] 将通过第一性原理计算获得的弹性常数换算为晶体宏观上表现出来的各个模量。

  • 晶体的结合能是分析及判断结构稳定性的一项重要依据。结合能( E bin)的计算公式如下[22] :

  • Ebin =1w+x+y+zEtot -wEatom A1-xEatom Cr -yEatom Fe -zEatom 0
    (1)
  • 式中,E tot 为晶体总能, Eatom A1Eatom Cr Eatom Fe Eatom 0 分别表示Al、Cr、Fe和O元素的自由单原子能量,w、x、y和z分别为对应元素在体系中的原子数量。

  • 采用CHEN等[23] 提出的经验性硬度公式进行晶体硬度计算:

  • Hv=2k2G0.585-3
    (2)
  • 式中,k=G/ K,G 代表剪切模量,K 代表体积模量,GKE 值均由ELATE [21]计算获得。

  • 用于计算 H 3/E ∗2 的有效弹性模量(杨氏模量) 的计算方法可由下式计算[24] :

  • E*=E/1-v2
    (3)
  • 式中,E 为涂层的弹性模量;v 是涂层的泊松比,Ev 值均由ELATE [21]计算获得。

  • 本文中计算的所有体系名称、体系中所含元素种类和体系中所含元素原子数量如表1所示,样品编号2~5为 α-(Al 0.75-xCr0.25Fex)2O3 相中所含的元素种类及各元素原子数量,样品编号6~9为 α-(Al 0.75Cr0.25-xFex)2O3 相中所含的元素种类及各元素原子数量。

  • 表1 样品编号、名称以及原子数量

  • Table1 Sample number, sample name and the number of atoms

  • 2 计算结果

  • 图3 为 α-Al2O3、α-(Al 0.75-xCr0.25Fex)2O3 和 α-(Al 0.75Cr0.25-xFex)2O3 的晶胞体积和总能。由图3可知,α-(Al 0.75Cr0.25)2O3 三元基础相的晶胞体积大于 α-Al2O3 相,总能低于 α-Al2O3 相。当Fe原子置换 α-(Al 0.75Cr0.25 )2O3 三元相中的Al原子时,形成 α-(Al 0.75-xCr0.25Fex)2O3 四元相;当Fe原子数量为0时,α-(Al 0.75Cr0.25)2O3 相的晶胞体积为724.29 Å 3。 α-(Al 0.75Cr0.25-xFex)2O3 相的晶胞体积随着Fe原子置换数量的增加未出现单一变化趋势,晶胞体积的最大值与最小值相差为1.513 Å 3,此畸变产生的晶胞体积变化仅占 α-(Al 0.75Cr0.25 )2O3 相晶胞体积的0.2%。与此同时,晶胞总能随Fe原子的置换数量的增加缓慢提升,当Fe原子置换数量为4时,晶胞总能累计提高1.55eV。与之不同的是,Fe原子置换 α-(Al 0.75Cr0.25)2O3 三元相中的Cr原子时, α-(Al 0.75Cr0.25-xFex)2O3 四元相晶胞的体积随着Fe原子数量的增加而减小,且变化趋势较置换Al原子时更加明显,Fe原子数量由0增加至4期间,体积累计降低8.784 Å 3,晶胞总能随着Fe原子的置换数量的增加不断提高,累计提升14.07eV。

  • 图3 α-Al2O3、α-(Al 0.75-xCr0.25Fex)2O3 和 α-(Al 0.75 Cr0.25-xFex)2O3 的晶胞体积和总能

  • Fig.3 Volume and total energy of α-Al2O3, α-(Al 0.75-xCr0.25Fex)2O3 and α-(Al 0.75Cr0.25-xFex)2O3 supercell

  • 图4 为 α-Al2O3、α-(Al 0.75-xCr0.25Fex)2O3 和 α-(Al 0.75Cr0.25-xFex)2O3 相的结合能。由图4可知,α-Al2O3 相和 α-(Al 0.75Cr0.25)2O3 三元基础相的结合能分别为-6.38eV和-6.15eV,与 α-Al2O3 相相比, α-(Al 0.75Cr0.25)2O3 三元基础相的结合能较高。两种四元相的结合能均为负值,但是,随着Fe原子置换数量的增加而增大,α-(Al 0.75-xCr0.25Fex)2O3 相的结合能相较于 α-(Al 0.75Cr0.25-xFex)2O3 相的结合能曲线斜率较低,因此增长较慢。

  • 图5a和5b为 α-(Al 0.75-xCr0.25Fex)2O3 相和 α-(Al 0.75Cr0.25-xFex)2O3 相的电子态密度图,由图可知,自旋向上轨道的态密度数与自旋向下轨道的态密度数表现不对称,当Fe原子的植入量由1逐渐增加到4时,在Ef下的低能级电子态亦逐渐增加,在Ef上的高能级电子态的峰值增大。在Ef下的成键峰数较Ef上的成键峰数更多。

  • 图4 α-Al2O3、α-(Al 0.75-xCr0.25Fex)2O3 和 α-(Al 0.75Cr0.25-xFex)2O3 相的结合能

  • Fig.4 Binding energy of α-Al2O3, α-(Al 0.75-xCr0.25Fex)2O3 and α-(Al 0.75Cr0.25-xFex)2O3 phases

  • 图5 α-(Al 0.75-xCr0.25Fex)2O3 和 α-(Al 0.75Cr0.25-xFex)2O3 相的总态密度

  • Fig.5 Total electronic density of α-(Al 0.75-xCr0.25Fex)2O3 and α-(Al 0.75Cr0.25-xFex)2O3 phases

  • 图6 为 α-Al2O3、α-(Al 0.75-xCr0.25Fex)2O3 和 α-(Al 0.75Cr0.25-xFex)2O3 相的硬度、弹性模量、H/E和H 3/E ∗2。 α-Al2O3 相的硬度和弹性模量分别为22.3GPa和344.04GPa, 其硬度高于 α-(Al 0.75Cr0.25)2O3 三元基础相,但弹性模量低于 α-(Al 0.75Cr0.25)2O3 三元基础相。由图6a可知,随着Fe原子置换数量的增加,α-(Al 0.75-xCr0.25Fex)2O3 和 α-(Al 0.75Cr0.25-xFex)2O3 相的弹性模量均呈现下降趋势,相比之下,α-(Al 0.75-xCr0.25Fex)2O3 相的下降比例更大。与之不同,α-(Al 0.75-xCr0.25Fex)2O3 和 α-(Al 0.75Cr0.25-x Fex)2O3 相的硬度均呈现先上升,后下降,最后急剧上升的趋势,当Fe原子置换数量为4时,两种四元相的硬度均达到最高。为了对比各相之间的力学性能差异, 对 α-Al2O3、 α-(Al 0.75-xCr0.25Fex)2O3 和 α-(Al 0.75Cr0.25-xFex)2O3 相进行了H/E和H 3/E ∗2 计算, 如图6b所示。其中,H/E可以反应块体/涂层材料抵抗弹性变形的能力,数值越高, 抵抗弹性变形的能力越强;H 3/E ∗2 则可以反应块体/涂层材料在产生塑性变形时所消耗的能量, 即H 3/E ∗2 值越高,产生塑性变形时所消耗的能量越多。由图6b可知,α-Al2O3 相的H/E和H 3/E ∗2 值仅低于置换原子数量为4的 α-(Al 0.75-xCr0.25Fex)2O3 相。 α-(Al 0.75-xCr0.25Fex)2O3 和 α-(Al 0.75Cr0.25-xFex)2O3 相的H/E和H 3/E 2 值随Fe置换原子数量的变化规律与两种四元相的硬度的变化趋势基本一致。

  • 图6 α-Al2O3、α-(Al 0.75-xCr0.25Fex)2O3 和 α-(Al 0.75Cr0.25-xFex)2O3 相的硬度、弹性模量、H/E和H 3/E ∗2

  • Fig.6 Estimated hardness, elastic modulus, H/E, and H 3/E ∗2 ratio of α-Al2O3, α-(Al 0.75-xCr0.25Fex)2O3 and α-(Al 0.75Cr0.25-xFex)2O3 phases

  • 3 讨论

  • 根据四元相的晶体结构可知,在置换原子时,晶体均出现了较大的晶格畸变,这在文献[25-26]的研究中也同样出现了。 Fe、Cr和Al的原子半径分别为156、166和118pm,Fe和Cr原子半径相近,而Al原子半径小于Fe,故在Fe原子置换Cr原子时,晶体的晶格畸变较小,而Fe原子置换Al原子时,晶体的晶格畸变较大。在Fe元素的原子百分比相同时, 根据Fe、 Cr和Al的原子半径估算, α-(Al 0.75-xCr0.25Fex)2O3 晶胞的体积变化应大于 α-(Al 0.75Cr0.25-xFex)2O3 晶胞的体积变化,然而,本研究得到的结果并非如此, 在图3中 α-(Al 0.75Cr0.25-xFex)2O3 晶胞的体积小于 α-(Al 0.75-xCr0.25Fex)2O3 晶胞的体积,且随Fe的原子数量的增加迅速下降,与之不同,Fe原子置换Al原子时,晶胞体积并未随Fe的原子数量的增加迅速改变。根据分子单键共价半径数据可知,Al原子的共价键半径为126pm,高于Cr原子的共价键半径122pm和Fe原子的共价键半径116pm。因此,当Fe原子置换Al原子时,较低的Fe原子共价键半径抵消了部分Fe原子置换Al原子带来的晶格畸变, α-(Al 0.75-xCr0.25Fex)2O3 晶胞的体积变化较小。当Fe原子置换Cr原子时,大原子半径被小原子半径取代,与此同时,大共价键半径被替换为小共价键半径,故 α-(Al 0.75Cr0.25-xFex)2O3 晶胞的体积随Fe原子数量的增加急剧下降。两种四元相的总能随Fe原子数量的增加而升高,但 α-(Al 0.75Cr0.25-xFex)2O3相的总能升高速度更快, 这也与 α-(Al 0.75Cr0.25-xFex)2O3 晶胞的体积急剧下降有关。

  • 晶体的结合能是分析及判断结构稳定性的一项重要依据。结合能为负值则可判断晶体为稳定结构,并且结合能的绝对值越大,那么所形成的晶体则越稳定[27]。因此, α-Al2O3 相、 α-( Al 0.75Cr0.25)2O3 三元基础相、 α-(Al 0.75-xCr0.25Fex)2O3 相和 α-(Al 0.75Cr0.25-xFex)2O3 相均为稳定体系。但是,与α-Al2O3 相相比, α-( Al 0.75Cr0.25)2O3 三元基础相的稳定性较低。此外,两种四元相的结合能均随着Fe原子置换数量的增加而增大,说明四元相的稳定性会随着Fe原子置换数量的增加而降低。与 α-(Al 0.75-xCr0.25Fex)2O3 相的结合能对比可知, α-(Al 0.75Cr0.25-xFex)2O3 相的结合能更低,说明Fe置换三元相中的Cr原子所形成的四元掺杂体系更稳定。结合晶体总能的变化, 相较于 α-(Al 0.75-xCr0.25Fex)2O3 相,Fe置换三元相中的Cr原子形成 α-(Al 0.75Cr0.25-xFex)2O3 相时,可以抑制四元相体系的稳定性能的急剧下降。总之,根据计算结果,α-Al2O3 相的理论热力学稳定性是最高的,随着置换原子种类和数量的增加,所形成的三元和四元相的理论热力学稳定性不断下降。

  • 根据电子态密度图, α-(Al 0.75-xCr0.25Fex)2O3 和 α-(Al 0.75Cr0.25-xFex)2O3 相的不同自旋方向的电子态密度(上线和下线)存在不对称性,此现象说明体系存在磁性。 Ef下的电子态随Fe原子植入数量的增加而增加,主要是由Fe原子的d态电子所贡献。 Ef下的成键峰高于Ef上的说明体系的价电子更多,而较多的价电子有利于体系结构的稳定,并且象征着体系的原子间的较强的结合能力[28]。随着Fe原子植入数目的增加,Ef上的成键峰增加,这也意味着结构稳定性的减弱,并且这也与结合能计算的结果相符。

  • 硬度是涂层性能的一项重要指标,本文通过第一性原理结合CHEN的计算模型对 α-Al2O3 相、α-( Al 0.75Cr0.25)2O3 三元基础相、 α-(Al 0.75-xCr0.25Fex)2O3 相和 α-(Al 0.75Cr0.25-xFex)2O3 相的硬度进行了计算,但要验证计算结果的准确性,需将计算结果与实际试验结果进行对比。根据文献[29] 的试验结果,使用物理气相沉积方法获得的 α-Al2O3 涂层的硬度为16.3~23.8GPa,其硬度指标基本与本文中的计算结果吻合。 KOLLER等[14] 使用阴极电弧的方法成功制备了 α-(Al 0.675Cr0.275Fe0.05)2O3 涂层, 该涂层硬度为13~17GPa,略高于(Al 0.75Cr0.25)2O3 涂层,其试验结果也与本文中的计算结果有较高的吻合度,但在文章中作者认为涂层的低硬度与涂层的密度高度相关,这是本文计算中未涉及的问题。本计算中晶胞单体的硬度仅与置换原子的数量相关,属于点缺陷引起的硬度变化,根据固溶强化理论,点缺陷密度的提高可使涂层硬度提高,但是在晶胞单体硬度的计算中,硬度并未随置换原子的数量的增加而增大,而是不论置换Al原子或Cr原子,硬度均出现先上升后下降,最后急剧上升的趋势,这是因为在单一晶胞预测硬度时,硬度的变化是由包括原子间键能、原子半径和键长在内的多方因素综合作用的结果,例如,在本计算中 α-( Al 0.75Cr0.25)2O3 三元基础相未表现出高于 α-Al2O3 相的硬度。关于原子半径和键长在晶胞体积部分已进行讨论,对于原子间的键能,Al-O、 Cr-O、和Fe-O键的键能分别为501.9±10.6、461±8.7和407±1.0kJ·mol-1[30],这些因素共同作用下, α-(Al 0.75-xCr0.25Fex)2O3 相和 α-(Al 0.75Cr0.25-xFex)2O3 相的硬度变化不具有单一趋势。另外,较高的弹性模量与晶体内原子之间的较强的定向键有关[31],因此,使用Cr原子置换α-Al2O3 相中的Al原子和使用Fe原子置换 α-( Al 0.75Cr0.25)2O3 三元基础相中的Al或Cr原子均会降低四元相的键能。总之, 对于 α-(Al 0.75-xCr0.25Fex)2O3 相和 α-(Al 0.75Cr0.25-xFex)2O3 相,当Fe元素原子数量占金属元素总原子数0~3at.%时,也就是以 α-(Al 0.72Cr0.25Fe0.03 )2O3 相和 α-(Al 0.75Cr0.22Fe0.03)2O3 相作为Fe元素含量界限时, α-(Al 0.75-xCr0.25Fex)2O3 和 α-(Al 0.75Cr0.25-xFex)2O3 四元相的硬度和耐磨性较 α-( Al 0.75Cr0.25)2O3 三元基础相有明显提升。但是, 必须承认, α-(Al 0.63Cr0.25Fe0.12)2O3 相的H/E和H 3/E ∗2 值已超过 α-Al2O3 相,但此时Fe元素的原子百分比已达到12at.%。需要说明的是,文中涂层硬度计算只考虑了涂层中晶胞单体的因素,并未将实际涂层生长过程中由于掺杂引起的其他缺陷考虑在内。

  • 4 总结

  • (1) Fe原子置换 α-(Al 0.75Cr0.25)2O3 三元相中的Cr原子时, α-(Al 0.75Cr0.25-xFex)2O3 四元相晶胞的体积随着Fe原子数量的增加而减小,且减小趋势较置换Al原子时更加明显,故会产生更大的晶格畸变。

  • ( 2) 与 α-Al2O3 相的结合能相比, α-( Al 0.75Cr0.25)2O3 三元基础相的结合能较高,因此具有更低的相稳定性,而且根据结合能和态密度计算结果, α-(Al 0.75-xCr0.25Fex)2O3 和 α-(Al 0.75Cr0.25-xFex)2O3 四元相的稳定性随Fe元素含量的增加而降低。

  • ( 3) α-( Al 0.75Cr0.25)2O3 三元相、 α-(Al 0.75-xCr0.25Fex)2O3 四元相和 α-(Al 0.75Cr0.25-xFex)2O3 四元相的硬度均低于 α-Al2O3 相,但是Fe元素原子数量占金属元素总原子数0~3at.%时, α-(Al 0.75-xCr0.25Fex)2O3 和 α-(Al 0.75Cr0.25-xFex)2O3 四元相的硬度、H/E和H 3/E ∗2 值高于 α-( Al 0.75Cr0.25)2O3 三元相,仅当Fe元素的原子百分比已达到12at.%时,α-(Al 0.63Cr0.25Fe0.12)2O3 相的理论硬模比高于α-Al2O3 相。

  • 参考文献

    • [1] WALLIN E,MÜNGER E P,CHIRITA V,et al.Low-temperature alpha-alumina thin film growth:ab initiostudies of Al adatom surface migration[J].Journal of Physics D:Applied Physics,IOP Publishing,2009,42(12):125302.

    • [2] KOLLER C M,KIRNBAUER A,DALBAUER V,et al.On the oxidation behavior of cathodic arc evaporated Al-Cr-Fe and Al-CrFe-O coatings[J].Journal of Vacuum Science & Technology A,American Vacuum Society,2019,37(4):041503.

    • [3] LIN H C,CHANG Y L,HAN Y Y,et al.Atomic layer deposited Al2O3 films on NiTi shape memory alloys for biomedical applications[J].Procedia Manufacturing,2019,37:431-437.

    • [4] GITZEN W H.Alumina as a ceramic material[M].Columbus,Ohio:American Ceramic Society,1970.

    • [5] STUMPF H C,RUSSELL A S,NEWSOME J W,et al.Thermal transformations of aluminas and alumina hydrates-reaction with 44% technical acid[J].Industrial & Engineering Chemistry,American Chemical Society,1950,42(7):1398-1403.

    • [6] 罗小秋,温吉利,刘炯,等.常压下MOCVD法制备 Al2O3 薄膜工艺的研究[J].中国表面工程,2007,20(3):47-50.LUO X Q,WEN J L,LIU J,et al.Study on the preparation of Al2O3 film by MOCVD under normal atmosphere[J].China Surface Engineering,2007,20(3):47-50.(in Chinese)

    • [7] FRENCH R H.Electronic band structure of Al2O3,with comparison to Alon and AIN[J].Journal of the American Ceramic Society,1990,73(3):477-489.

    • [8] TAY B K,ZHAO Z W,CHUA D H C.Review of metal oxide films deposited by filtered cathodic vacuum arc technique [J].Materials Science and Engineering:R:Reports,2006,52(1):1-48.

    • [9] NOHAVA J,DESSARZIN P,KARVANKOVA P,et al.Characterization of tribological behavior and wear mechanisms of novel oxynitride PVD coatings designed for applications at high temperatures[J].Tribology International,2015,81:231-239.

    • [10] STUEBER M,DIECHLE D,LEISTE H,et al.Synthesis of AlCr-O-N thin films in corundum and f.c.c.structure by reactive r.f.magnetron sputtering [J].Thin Solid Films,2011,519(12):4025-4031.

    • [11] JIN P,NAKAO S,WANG S X,et al.Localized epitaxial growth of α-Al2O3 thin films on Cr2O3 template by sputter deposition at low substrate temperature[J].Applied Physics Letters,American Institute of Physics,2003,82(7):1024-1026.

    • [12] ANDERSSON J M,CZIGÁNY Z,JIN P,et al.Microstructure of α-alumina thin films deposited at low temperatures on chromia template layers[J].Journal of Vacuum Science & Technology A,American Vacuum Society,2003,22(1):117-121.

    • [13] BONDIOLI F,FERRARI A M,LEONELLI C,et al.Reaction mechanism in Alumina/Chromia(Al2O3-Cr2O3)solid solutions obtained by coprecipitation[J].Journal of the American Ceramic Society,2000,83(8):2036-2040.

    • [14] KOLLER C M,KIRNBAUER A,KOLOZSVÁRI S,et al.Impact of morphology and phase composition on mechanical properties of α-structured(Cr,Al)2O3/(Al,Cr,X)2O3 multilayers [J].Scripta Materialia,2018,146:208-212.

    • [15] ANDERSSON J M,WALLIN E,CHIRITA V,et al.Ab initio calculations on the effects of additives on alumina phase stability [J].Physical Review B,American Physical Society,2005,71(1):014101.

    • [16] 方文玉,王晓雯,郑勤,等.Co-Mo 共掺杂 Al2O3 电子结构及透射率的第一性原理计算[J].四川大学学报:自然科学版,2020,57:135-139.FANG W Y,WANG X W,ZHENG Q,et al.First principle calculation of electronic structure and transmittance of Co-Mo Codoped Al2O3 [J].Journal of Sichuan University(Natural Science Edition),2020,57:135-139.(in Chinese)

    • [17] KRESSE G,JOUBERT D.From ultrasoft pseudopotentials to the projector augmented-wave method [J].Physical Review B,American Physical Society,1999,59(3):1758-1775.

    • [18] KRESSE G,FURTHMÜLLER J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].Physical Review B,American Physical Society,1996,54(16):11169-11186.

    • [19] NAHIF F,MRÁZ S,MUSIC D,et al.Ab initio and experimental study on the effect of Y additions on the phase formation and thermal stability of Al2O3 thin films deposited by filtered cathodic arc evaporation [J].Surface and Coatings Technology,2014,257:333-337.

    • [20] WANG F,HOLEC D,ODÉN M,et al.Systematic ab initio investigation of the elastic modulus in quaternary transition metal nitride alloys and their coherent multilayers[J].Acta Materialia,2017,127:124-132.

    • [21] GAILLAC R,PULLUMBI P,COUDERT F X.ELATE:an open-source online application for analysis and visualization of elastic tensors[J].Journal of Physics:Condensed Matter,IOP Publishing,2016,28(27):275201.

    • [22] 李亚敏,江璐,赵旺,等.铜掺杂对 γ′相影响的第一性原理研究[J].材料导报,2019,33(18):3085-3088.LI Y M,JIANG L,ZHAO W,et al.First principles study on the influence of copper doping on γ′ phase[J].Materials Reports,2019,33(18):3085-3088.(in Chinese)

    • [23] CHEN X Q,NIU H,LI D,et al.Modeling hardness of polycrystalline materials and bulk metallic glasses [J].Intermetallics,2011,19(9):1275-1281.

    • [24] DU H,WANG L,YOUNG M,et al.Structure and properties of lanthanum doped AlCrN coatings [J].Surface and Coatings Technology,2018,337:439-446.

    • [25] HUANG J,JU M.First-principle study of the microstructure and electronic properties for Cr 3+ doped yttrium orthoaluminate[J].Computational Materials Science,2020,174:109467.

    • [26] STEFANIUK I,RUDOWICZ C,GNUTEK P,et al.EPR study of Cr 3+ and Fe 3+ impurity ions in nominally pure and Co 2+-doped YAlO3 single crystals[J].Applied Magnetic Resonance,2009,2-4(36):371-380.

    • [27] 赵宇宏,黄志伟,李爱红,等.Nb 在 Ni3Al 中取代行为及合金化效应的第一性原理研究 [J].物理学报,2011(4):564-570.ZHAO Y H,HUANG Z W,LI A H,et al.The first principle study on the substitution behavior and alloying effect of Nb in Ni3Al[J].Acta Physica Sinica,2011(4):564-570.(in Chinese)

    • [28] 代永娟,刘帅帅,谭永军,et al.Fe-25Mn 合金的力学性能和电子结构的第一性原理计算 [J].热加工工艺,2020(18):56-59.DAI Y J,LIU S,TAN Y J,et al.Mechanical properties and electronic structure of Fe-25Mn alloy from first-principles theory calculation[J].Hot Working Technology,2020(18):56-59.(in Chinese)

    • [29] 程奕天,邱万奇,周克崧,等.低温反应溅射 Al+α-Al2O3 复合靶沉积 α-Al2O3 薄膜 [J].无机材料学报,2019(8):862-866.CHENG Y T,QIU W Q,ZHOU K S,et al.Low-temperature deposition of α-Al2O3 films by reactive sputtering Al +α-Al2O3 target[J].Journal of Inorganic Materials,2019(8):862-866.(in Chinese)

    • [30] LUO Y R.Comprehensive handbook of chemical bond energies [M].Boca Raton:CRC Press,2007.

    • [31] 陈志谦,林兴香,李春梅.硅化锆(ZrSi)弹性及其各向异性研究[J].西南大学学报(自然科学版),2016,38(3):1-8.CHEN Z Q,LIN X X,LI C M.Elasticity and anisotropy of zirconium silicide[J].Journal of Southwest University(Natural Science),2016,38(3):1-8.(in Chinese)

  • 参考文献

    • [1] WALLIN E,MÜNGER E P,CHIRITA V,et al.Low-temperature alpha-alumina thin film growth:ab initiostudies of Al adatom surface migration[J].Journal of Physics D:Applied Physics,IOP Publishing,2009,42(12):125302.

    • [2] KOLLER C M,KIRNBAUER A,DALBAUER V,et al.On the oxidation behavior of cathodic arc evaporated Al-Cr-Fe and Al-CrFe-O coatings[J].Journal of Vacuum Science & Technology A,American Vacuum Society,2019,37(4):041503.

    • [3] LIN H C,CHANG Y L,HAN Y Y,et al.Atomic layer deposited Al2O3 films on NiTi shape memory alloys for biomedical applications[J].Procedia Manufacturing,2019,37:431-437.

    • [4] GITZEN W H.Alumina as a ceramic material[M].Columbus,Ohio:American Ceramic Society,1970.

    • [5] STUMPF H C,RUSSELL A S,NEWSOME J W,et al.Thermal transformations of aluminas and alumina hydrates-reaction with 44% technical acid[J].Industrial & Engineering Chemistry,American Chemical Society,1950,42(7):1398-1403.

    • [6] 罗小秋,温吉利,刘炯,等.常压下MOCVD法制备 Al2O3 薄膜工艺的研究[J].中国表面工程,2007,20(3):47-50.LUO X Q,WEN J L,LIU J,et al.Study on the preparation of Al2O3 film by MOCVD under normal atmosphere[J].China Surface Engineering,2007,20(3):47-50.(in Chinese)

    • [7] FRENCH R H.Electronic band structure of Al2O3,with comparison to Alon and AIN[J].Journal of the American Ceramic Society,1990,73(3):477-489.

    • [8] TAY B K,ZHAO Z W,CHUA D H C.Review of metal oxide films deposited by filtered cathodic vacuum arc technique [J].Materials Science and Engineering:R:Reports,2006,52(1):1-48.

    • [9] NOHAVA J,DESSARZIN P,KARVANKOVA P,et al.Characterization of tribological behavior and wear mechanisms of novel oxynitride PVD coatings designed for applications at high temperatures[J].Tribology International,2015,81:231-239.

    • [10] STUEBER M,DIECHLE D,LEISTE H,et al.Synthesis of AlCr-O-N thin films in corundum and f.c.c.structure by reactive r.f.magnetron sputtering [J].Thin Solid Films,2011,519(12):4025-4031.

    • [11] JIN P,NAKAO S,WANG S X,et al.Localized epitaxial growth of α-Al2O3 thin films on Cr2O3 template by sputter deposition at low substrate temperature[J].Applied Physics Letters,American Institute of Physics,2003,82(7):1024-1026.

    • [12] ANDERSSON J M,CZIGÁNY Z,JIN P,et al.Microstructure of α-alumina thin films deposited at low temperatures on chromia template layers[J].Journal of Vacuum Science & Technology A,American Vacuum Society,2003,22(1):117-121.

    • [13] BONDIOLI F,FERRARI A M,LEONELLI C,et al.Reaction mechanism in Alumina/Chromia(Al2O3-Cr2O3)solid solutions obtained by coprecipitation[J].Journal of the American Ceramic Society,2000,83(8):2036-2040.

    • [14] KOLLER C M,KIRNBAUER A,KOLOZSVÁRI S,et al.Impact of morphology and phase composition on mechanical properties of α-structured(Cr,Al)2O3/(Al,Cr,X)2O3 multilayers [J].Scripta Materialia,2018,146:208-212.

    • [15] ANDERSSON J M,WALLIN E,CHIRITA V,et al.Ab initio calculations on the effects of additives on alumina phase stability [J].Physical Review B,American Physical Society,2005,71(1):014101.

    • [16] 方文玉,王晓雯,郑勤,等.Co-Mo 共掺杂 Al2O3 电子结构及透射率的第一性原理计算[J].四川大学学报:自然科学版,2020,57:135-139.FANG W Y,WANG X W,ZHENG Q,et al.First principle calculation of electronic structure and transmittance of Co-Mo Codoped Al2O3 [J].Journal of Sichuan University(Natural Science Edition),2020,57:135-139.(in Chinese)

    • [17] KRESSE G,JOUBERT D.From ultrasoft pseudopotentials to the projector augmented-wave method [J].Physical Review B,American Physical Society,1999,59(3):1758-1775.

    • [18] KRESSE G,FURTHMÜLLER J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].Physical Review B,American Physical Society,1996,54(16):11169-11186.

    • [19] NAHIF F,MRÁZ S,MUSIC D,et al.Ab initio and experimental study on the effect of Y additions on the phase formation and thermal stability of Al2O3 thin films deposited by filtered cathodic arc evaporation [J].Surface and Coatings Technology,2014,257:333-337.

    • [20] WANG F,HOLEC D,ODÉN M,et al.Systematic ab initio investigation of the elastic modulus in quaternary transition metal nitride alloys and their coherent multilayers[J].Acta Materialia,2017,127:124-132.

    • [21] GAILLAC R,PULLUMBI P,COUDERT F X.ELATE:an open-source online application for analysis and visualization of elastic tensors[J].Journal of Physics:Condensed Matter,IOP Publishing,2016,28(27):275201.

    • [22] 李亚敏,江璐,赵旺,等.铜掺杂对 γ′相影响的第一性原理研究[J].材料导报,2019,33(18):3085-3088.LI Y M,JIANG L,ZHAO W,et al.First principles study on the influence of copper doping on γ′ phase[J].Materials Reports,2019,33(18):3085-3088.(in Chinese)

    • [23] CHEN X Q,NIU H,LI D,et al.Modeling hardness of polycrystalline materials and bulk metallic glasses [J].Intermetallics,2011,19(9):1275-1281.

    • [24] DU H,WANG L,YOUNG M,et al.Structure and properties of lanthanum doped AlCrN coatings [J].Surface and Coatings Technology,2018,337:439-446.

    • [25] HUANG J,JU M.First-principle study of the microstructure and electronic properties for Cr 3+ doped yttrium orthoaluminate[J].Computational Materials Science,2020,174:109467.

    • [26] STEFANIUK I,RUDOWICZ C,GNUTEK P,et al.EPR study of Cr 3+ and Fe 3+ impurity ions in nominally pure and Co 2+-doped YAlO3 single crystals[J].Applied Magnetic Resonance,2009,2-4(36):371-380.

    • [27] 赵宇宏,黄志伟,李爱红,等.Nb 在 Ni3Al 中取代行为及合金化效应的第一性原理研究 [J].物理学报,2011(4):564-570.ZHAO Y H,HUANG Z W,LI A H,et al.The first principle study on the substitution behavior and alloying effect of Nb in Ni3Al[J].Acta Physica Sinica,2011(4):564-570.(in Chinese)

    • [28] 代永娟,刘帅帅,谭永军,et al.Fe-25Mn 合金的力学性能和电子结构的第一性原理计算 [J].热加工工艺,2020(18):56-59.DAI Y J,LIU S,TAN Y J,et al.Mechanical properties and electronic structure of Fe-25Mn alloy from first-principles theory calculation[J].Hot Working Technology,2020(18):56-59.(in Chinese)

    • [29] 程奕天,邱万奇,周克崧,等.低温反应溅射 Al+α-Al2O3 复合靶沉积 α-Al2O3 薄膜 [J].无机材料学报,2019(8):862-866.CHENG Y T,QIU W Q,ZHOU K S,et al.Low-temperature deposition of α-Al2O3 films by reactive sputtering Al +α-Al2O3 target[J].Journal of Inorganic Materials,2019(8):862-866.(in Chinese)

    • [30] LUO Y R.Comprehensive handbook of chemical bond energies [M].Boca Raton:CRC Press,2007.

    • [31] 陈志谦,林兴香,李春梅.硅化锆(ZrSi)弹性及其各向异性研究[J].西南大学学报(自然科学版),2016,38(3):1-8.CHEN Z Q,LIN X X,LI C M.Elasticity and anisotropy of zirconium silicide[J].Journal of Southwest University(Natural Science),2016,38(3):1-8.(in Chinese)

  • 手机扫一扫看