en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张渊,男,1996年出生,硕士研究生。主要研究方向为材料加工工程。E-mail:zywj0920f@163.Com;

雷旻(通信作者),男,1965年出生,学士,教授,硕士研究生导师。主要研究方向为金属材料。E-mail:mlei1@gzu.edu.cn

中图分类号:TG156;TG146

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210130002

参考文献 1
戈晓岚,仲奕颖,许晓静,等.TC4 钛合金表面激光合金化 Ti-Al-Nb 涂层的研究[J].稀有金属材料与工程,2017,46(8):2266-2270.GE Xiaolan,ZHONG Yiyin,XU Xiaojing,et al.Ti-Al-Nb coating by laser alloying on tc4 titanium alloy[J].Rare metal Materials and Engineering,2017,46(8):2266-2270.(in Chinese)
参考文献 2
ZHANG Kemin,ZOU Jianxin,LI Jun,et al.Surface modification of TC4 Ti alloy by laser cladding with TiC+Ti powders[J].Transactions of Nonferrous Metals Society of China,2010,20(11):2192-2197.
参考文献 3
XU Haiying,ZHANG Wei,FAN Kai,et al.TC4 titanium alloy microstructure and properties influenced by high frequency scan of electron beam [J].Rare Metal Materials and Engineering,2017,46(6):1457-1462.
参考文献 4
程晨.TC4 钛合金表面等离子熔覆Ni基复合涂层组织研究 [D].贵阳:贵州大学,2018.CHENG Chen.Microstructure of plasma cladding Ni based composite coating on TC4 titanium alloy[D].Guiyang:Guizhou University,2018.(in Chinese)
参考文献 5
陈飞,周海,潘俊德.钛合金表面辉光离子渗铝耐蚀性[J].稀有金属材料与工程,2008(10):1844-1846.CHEN Fei,ZHOU Hai,PAN Junde.Study on glow discharge plasma aluminizing on titanium alloy surface [J].Rare Metal Materials and Engineering,2008,37(10):1844-1846.(in Chinese)
参考文献 6
李秀燕,唐宾,潘俊德,等.Ti6Al4V 无氢离子渗氮摩擦学性能的研究 [J].稀有金属材料与工程,2003,32(7):506-509.LI Xiuyan,TANG Bing,PAN Junde,et al.Ion-nitrided TI6Al4V without hydrogen and its wearing performance[J].Rare Metal Materials and Engineering,2003,32(7):506-509.(in Chinese)
参考文献 7
王钧石,晏永华,陈桂容.钛合金等离子体源离子注入表面改性[J].稀有金属,2006,30(5):582-585.WANG Junshi,YAN Yonghua,CHEN Guirong.Plasma source ion implantation surface modification of titanium alloy [J].Chinese Journal of Rare Metal,2006,30(5):582-585.(in Chinese)
参考文献 8
刘洪喜,汤宝寅,王浪平,等.钛合金的等离子体浸没离子注入表面强化处理[J].稀有金属材料与工程,2005,34(8):1318-1321.LIU Hongxi,TANG Baoyin,WANG Langping,et al.Improvement on surface properties of titanium alloy by plasmaImmersion ion implantation wechnique[J].Rare Metal Materials and Engineering,2005,34(8):1318-1321.(in Chinese)
参考文献 9
刘静,颜志斌,祝园园,等.TC4 钛合金碳氮复合渗层的组织结构与性能 [J].材料热处理学报,2017,38(6):150-155.LIU Jing,YAN Zhibin,ZHU Yuanyuan,et al.Microstructure and properties of the C-N compound layer prepared on TC4 titanium alloy surface[J].Transactions of Materials and Heat Treatment,2017,38(6):150-155.(in Chinese)
参考文献 10
高广睿,李争显,杜继红.TC4 合金表面微弧氧化膜层耐蚀及摩擦性能研究[J].稀有金属材料与工程,2008,37(S4):602-605.GAO Guangrui,LI Zhengxian,DU Jihong.Wear and corrosion resistance properties of TC4 alloy micro-arc oxidized coating[J].Rare Metal Materials and Engineering,2008,37(4):602-605.(in Chinese)
参考文献 11
孙刚,陈学明,马国佳,等.基体温度对TC11钛合金EB-PVD 修复层组织及振动疲劳寿命的影响[J].中国表面工程,2015,28(2):59-64.SUN Gang,CHEN Xueming,MA Guojia,et al.Effects of substrate temperature on structure and vibration fatigue age of repairing layers on TC11 titanium alloy prepared by EB-PVD [J].China Surface Engineering,2015,28(2):59-64.(in Chinese)
参考文献 12
SELIVANOV K S,SMYSLOY A M,DYBLENKO Y M,et al.Erosive wear behavior of Ti/Ti(V,Zr)N multilayered PVD coatings for Ti-6Al-4V alloy[J].Wear,2018,418(1):160-166.
参考文献 13
SHUAI Jintao,ZUO Xiao,WANG Zhenyu,et al.Comparative study on crack resistance of TiAlN monolithic and Ti/TiAlN multilayer coatings [J].Ceramics International,2020,46(5):6672-6681.
参考文献 14
杨理京,张平祥,王少鹏,等.W1813N 无磁不锈钢表面激光熔覆Ni60与 WC-12Co/Ni25 涂层的组织结构和磨损行为 [J].稀有金属材料与工程,2019,48(11):3441-3447.YANG Lijing,ZHANG Pingxiang,WANG Shaopeng,et al.Microstructure and wear behavior of hard Ni60 and soft WC-12Co/Ni25 coatings prepared by laser cladding on W1813N non-magnetic stainless steel[J].Rare Metal Materials and Engineering,2019,48(11):3441-3447.(in Chinese)
参考文献 15
SIMUNOVIC Katica,SARIC Tomislav,SIMUNOVIC Goran.Different approaches to the investigation and testing of the Nibased self-fluxing alloy coatings—a review.Part 2:microstructure,adhesive strength,cracking behavior,and residual stresses investigations [J].Tribology Transactions,2014,57(6):980-1000.
参考文献 16
XUAN Huifeng,WANG Qinying,BAI Shulin,et al.A study on microstructure and flame erosion mechanism of a graded Ni-Cr-B-Si coating prepared by laser cladding [J].Surface & Coatings Technology[J],2014,244:203-209.
参考文献 17
王光,王洪福,赵文,等.Ni60-Cr3C2-WC/TiC 等离子堆焊层耐磨性能的研究[J].粉末冶金工业,2019,29(6):23-27.WANG Guang,WANG Hongfu,ZHAO Wen,et al.Study on the wear resistance of Ni60-Cr3C2-WC/TiC plasma surfacing layer [J].Powder Metallurgy Industry,2019,29(6):23-27.(in Chinese)
参考文献 18
张国栋,李莉,刘念,等.打壳锤头等离子堆焊镍基涂层组织和性能[J].机械工程学报,2014,50(20):70-76.ZHANG Guodong,LI Li,LIU Nian,et al.Structure and properties of nickel-based surfacing on crust breaker deposited by plasma arc welding[J].Journal of Mechanical Engineering,2014,50(20):70-76.(in Chinese)
参考文献 19
张松,张春华.铝合金表面激光熔覆NiCrBSi的空泡腐蚀性能[J].稀有金属材料与工程,2002,31(2):99-102.ZHANG Song,ZHANG Chunhua.Cavitation erosion behaviour on aluminium alloy by using laser surface cladding of NiCrBSi [J].Rare Metal Materials and Engineering.2002,31(2):99-102.(in Chinese)
参考文献 20
LIU X T,LEI W B,LI J,et al.Laser cladding of high-entropy alloy on H13 steel[J].Rare Metals,2014,33(6):727-730.
参考文献 21
余鹏程,刘秀波,陆小龙,等.Ti6Al4V 合金激光熔覆复合涂层的摩擦学和高温抗氧化性能研究[J].中国激光,2015(10):81-88.YU Pengcheng,LIU Xiubo,LU Xiaolong,et al.Study on tribology and high-temperature oxidation resistance of laser cladding composite coatings on Ti6Al4V alloy[J].Chinese Journal of Lasers,2015(10):81-88.(in Chinese)
参考文献 22
RUTTER J W,CHALMERS B.A prismatic substructure formed during solidification of metals[J].NRC Research Press Ottawa,1953,31(1):15-39.
参考文献 23
吴玉萍,林萍华,王泽华,等.多层预涂敷等离子熔覆TiC/Ni 梯度涂层研究[J].材料热处理学报,2004,25(3):74-77,98.WU Yuping,LIN Pinghua,WANG Zehua,et al.Research on gradient coating of TiC/Ni by plasma cladding with multi-preplaced layer[J].Transactions of Materials and Heat Treatment,2004,25(3):74-77,98.(in Chinese)
参考文献 24
李殿凯,李明喜,洪海峰.Y2O3 对等离子喷焊高铬铁基涂层组织和性能的影响[J].材料热处理学报,2013,34(6):153-157.LI Diankai,LI Mingxi,HONG Haifeng.Effect of Y2O3 on microstructure and properties of high-chromium Fe-base coating produced by plasma arc cladding process[J].Transactions of Materials and Heat Treatment,2013,34(6):153-157.(in Chinese)
参考文献 25
卢金斌,王志新,席艳君.Q235 钢等离子熔覆添加碳化钨铁基合金涂层的研究[J].材料热处理学报,2009,30(4):142-145.LU Jinbin,WANG Zhixin,XI Yanjun.Study on NiCrBSi steel WC composite coating prepared by plasma cladding on Q235 steel [J].Transactions of Materials and Heat Treatment,2009,30(4):142-145.(in Chinese)
参考文献 26
孙荣禄,牛伟,王成扬.钛合金表面激光熔覆 TiN-Ni 基合金复合涂层的组织和磨损性能[J].稀有金属材料与工程,2007,36(1):7-10.SUN Ronglu,NIU Wei1,WANG Chengyang.Microstructure and wear resistance of TiN-NiCrBSi laser clad layer on titanium alloy surface [J].Rare Metal Materials and Engineering,2007,36(1):7-10.(in Chinese)
参考文献 27
余鹏程,刘秀波,陆小龙,等.Ti6Al4V 合金表面激光熔覆复合涂层的高温摩擦学性能研究[J].摩擦学学报,2015,35(6):737-745.YU Pengcheng,LIU Xiubo,LU Xiaolong,et al.High-temperature tribological properties of laser clad composite coatings on Ti6Al4V alloy[J].Tribology,2015,35(6):737-745.(in Chinese)
参考文献 28
王成磊,张光耀,高原,等.稀土 Y2O3 对6063Al激光熔覆镍基熔覆层耐磨性的影响[J].焊接学报,2016,37(2):21-24.WANG Chenglei,ZHANG Guangyao,GAO Yuan,et al.Effect of rare earth Y2O3 on abrasion resistance of 6063 Al laser cladding Ni-based cladding layer [J].Transactions of the China Welding Institution,2016,37(2):21-24.(in Chinese)
参考文献 29
黄思睿,伍昊,朱和国.共晶高熵合金的研究进展[J].材料导报,2020,34(17):17077-17081,17088.HUANG Sirui,WU Hao,ZHU Heguo,et al.Research progress on eutectic high entropy alloys[J].Materials Reports,2020,34(17):17077-17081,17088.(in Chinese)
参考文献 30
李凤华,衣晓红,樊占国,等.硼稀土共渗钛合金的耐蚀性研究[J].东北大学学报(自然科学版),2013,34(2):261-264.LI Fenghuai,YI Xiaohong,FAN Zhanguo,et al.Corrosion resistance of rare earth-borided titanium alloy [J].Journal of Northeastern University(Natural Science),2013,34(2):261-264.(in Chinese)
参考文献 31
崔爱永,胡芳友,回丽,等.钛基梯度功能涂层组织和腐蚀行为研究[J].中国表面工程,2011,24(5):18-21.CUI Aiyong,HU Fangyou,HUI Li,et al.Microstructure and corrosion behavior of Ti-matrix functional gradient layer[J].China Surface Engineering,2011,24(5):18-21.(in Chinese)
目录contents

    摘要

    以等离子熔覆方式在 TC4 钛合金表面制备 Ni60 熔覆层,通过 X 射线衍射、扫描电镜和显微硬度测试等方法分析 Ni60 熔覆层凝固组织、成分及硬度的关系。 结果表明:在 Ni60 粉末熔覆层中,由基底依次凝固生长柱晶、枝晶、等轴晶和共晶组织, 在柱晶及枝晶主干等部位,Ti 优先选择固溶 N/ O 元素,将其他合金元素排挤到后凝固的等轴晶区,在最后凝固区形成富含 Ni 的共晶组织。 熔覆层中先凝固的柱晶及枝晶区,一次时效(600 ℃ / 1 h)后获得的强化效果最佳;而后凝固的等轴晶区与共晶区,富含多种合金元素,经三次时效后,表面等轴晶区硬度强化效果依次递增,最终硬度可达 800 HV。 与 TC4 钛合金相比, Ni60 熔覆层具有更优异的耐磨性和耐蚀性,三次时效后的 Ni60 涂层磨损失重从 0. 0574 g 降至 0. 0171 g ,耐磨性提高约 3 倍。

    Abstract

    Ni60 heat-resistant cladding layer was produced on the surface of TC4 titanium alloy by plasma cladding. X-ray diffraction, scanning electron microscope and micro-hardness test are applied to find out the relation between solidification structure, composition and hardness of Ni60 cladding layer. The results show that columnar crystals, dendrites, equiaxed crystals and eutectic structures are sequentially solidified and grown from the substrate of the Ni60 powder cladding layer. Ti preferentially selects solid solution N/ O elements in the trunk of dendritic and columnar crystals while push other alloying elements into the subsequently solidified equiaxed grain area, and forms a Ni-rich eutectic structure in the final solidification area. The firstly solidified columnar and dendritic zones, in the cladding layer, have the best strengthening effect after one time aging (600 ℃ / 1 h). While equiaxed crystal and eutectic zone, the final solidification area in the cladding layer, is rich in various alloy elements. The hardness strengthening effect of equiaxed crystal on the surface increases sequentially after three times of aging, and the final hardness can reach 800 HV. Compared with TC4 titanium alloy, Ni60 cladding layer has better wear resistance and corrosion resistance. After three times of aging, the wear loss of Ni60 coating decreases from 0. 0574 g to 0. 0171 g thus the wear resistance is nearly tripled.

    关键词

    等离子熔覆TC4 钛合金Ni60柱晶时效

  • 0 前言

  • 钛合金虽有比强度高、耐蚀性好等优点,广泛应用于航天航空、国防和化工等领域[1-4],但其有硬度相对偏低、耐磨性差,红硬性及耐高温腐蚀性不足等缺陷。为此国内外研究人员对钛合金进行了双层辉光离子渗金属技术、物理气相沉积( PVD)、离子注入、真空气体渗氮/碳、离子渗氮和微弧氧化等表面技术改性研究[5-11]。利用PVD技术,选择适当的涂层材料及结构可改善钛合金的性能缺陷,且与PVD单层结构涂层相比,多层结构涂层具有更高的塑性、抗裂性和承载能力[12-13]。 Ni基自熔性合金拥有出色的耐腐蚀性、耐高温性和耐磨性[14-16],可以通过冶金结合的方式将Ni60、WC、Cr3C2和TiC等混合粉末堆焊来提升材料的力学性能[17]

  • 等离子熔覆是一种新型的材料表面强化手段, 以高功率的等离子弧为热源,能量高度集中,加热速度极快。具有高的电热转换效率和传热效率,基体与合金粉末吸收能量后熔化产生熔池并快速凝固, 形成低稀释率且冶金结合良好的熔覆层[17]。等离子熔覆加工效率高、易于控制、成本低、熔覆层组织细小、熔覆层与基体呈良好冶金结合等优点,在碳钢、铝合金等表面改性上得到广泛应用[19-21]。等离子熔覆在钛合金中的应用鲜有报道。

  • 本文采用等离子方式在TC4钛合金表面熔覆Ni60涂层,在熔覆层中形成了多种硬质相,通过真空高温时效,对比时效前后的组织、硬度、耐磨性、耐蚀性的变化,分析熔覆层的红硬性与耐磨性,拓展TC4钛合金的应用领域。

  • 1 试验

  • 1.1 材料和等离子涂层制备

  • 基材为TC4钛合金(成分见表1),尺寸为100mm×70mm×50mm,用砂纸去除表面氧化层后用丙酮清洗去除油渍。

  • 表1 TC4钛合金化学成分

  • Table1 Chemical composition of TC4titanium alloy(wt%)

  • Ni60涂层配方:以Ni60粉末(成分组成见表2) 中加入少量乙醇溶液,以质量分数3%的聚乙酸乙烯酯(PVA)作为粘结剂,经球磨机1h充分混合后涂覆在基材表面,涂层厚度为0.5mm,室温放置24h。

  • 表2 Ni60合金粉末化学成分

  • Table2 Chemical composition of Ni60alloy powder(wt%)

  • 图1 为等离子熔覆示意图。熔覆试验工艺参数为:电流40A,喷距4mm,扫描速度450mm/min,气体流量2L/min。熔覆获得的样品进行真空时效, 工艺见图2,重复三次。

  • 图1 等离子熔覆示意图

  • Fig.1 Schematic of plasma cladding

  • 图2 样品热处理工艺示意

  • Fig.2 Schematic of samples heat treatment process

  • 熔覆试验分两种:TC4钛合金无涂层直接熔覆的单纯熔覆试样与添加Ni60粉末涂层的熔覆试样。

  • 1.2 硬度、耐磨性测试方式与熔覆层物相分析

  • 使用显微维式硬度计(HVS-1000),载荷大小为200g,保压时间为10s,平均两点间的距离为0.05mm,测量等离子熔覆式样横截面的显微硬度分布。每个样品的显微硬度值是横截面上三次平行测量的平均值。

  • 熔覆表层的耐磨性以摩擦磨损试验机(MMS2A)测试,载荷为180N,磨损时间为20min,对磨材料为淬火态45号钢,重复3次平行试验取平均值, 磨损量的误差范围为0.2~0.5mg。试样磨损前后均需超声波清洗,以电子天平称量。

  • 试样耐蚀性使用科斯特CS350电化学工作站测试,以测试样品为工作电极。测试参数为:接触面积为0.785cm 2;饱和甘汞电极为参比电极,辅助电极为铂片。试样经过3.5%NaCl溶液浸泡30min, 并等开路电位平稳后,再进行动态极化扫描。

  • 腐蚀液为HF ∶HNO3 ∶H2O=1 ∶3 ∶7的混合溶液, 以金相显微镜观测腐蚀过程中的组织形貌。

  • 熔覆层的成分分析在扫描电镜( SUPRA40, Germany)及其自带的能谱仪(EDS)上进行,熔覆层物相分析通过X射线衍射仪(D/MAX2500PC, JAPAN)检测。

  • 2 试验结果与讨论

  • 2.1 组织与物相分析

  • 图3 为TC4钛合金单纯熔覆层组织,在等离子熔覆层的凝固过程中,根据过冷准则[22],固液界面的温度梯度 G 和凝固速率 R 决定熔覆层晶体的组织结构。熔覆过程中,熔化层通过基体的散热而凝固。在熔覆凝固的初期、中期及后期,温度梯度 G 由高变低,凝固速率 R 由低增高,结晶参数 G/R 变小,液固界面先以平面或胞状界面方式生长,迅速过渡到柱晶及枝干发达的枝晶形态,最后在熔覆层次表面的最后凝固区形成等轴晶(图3a)。成分分析扫描发现:D点为基体TC4的成分,不含N/O元素(见表3),但随后在最先凝固的枝干C处,富含大量N/O元素(表3);然后依熔覆凝固的顺序,在枝晶B、表层A处,N/O元素含量逐渐降低。如图3b所示,熔覆层表面平整光滑无明显表面裂纹,无焊缝、气孔;熔覆层表面宽4.26mm;中心深色纹路是熔覆后液态金属凝固过程中,熔池表面上存在表面张力梯度,表面张力梯度使凝固后的液态金属表面产生凹凸不平的波纹褶皱。

  • 图3 TC4钛合金熔覆层

  • Fig.3 Cladding layer of TC4titanium alloy cladding layer

  • 表3 TC4钛合金单纯熔覆层EDS元素分析(%)

  • Table3 EDS element analysis of TC4titanium alloy cladding layer(wt%)

  • 图4 为TC4表面添加Ni60涂层后的等离子固溶熔覆层与600℃时效三次的组织的SEM图像,均为枝晶形貌,表4为其对应的EDS分析结果。两图中的枝晶枝干(a)图A点、(b)图D点仍然为富含N的Ti的化合物,除少量的硼B元素外,几乎不含其他合金元素(见表4);B、E为枝晶间存在的一些等轴晶,所含合金元素浓度基本为平均浓度,基本判断为Ti基含Al、V、Ni、Cr、B、Fe等合金元素的固溶体(表4);C为枝晶间存在的具有网状共晶形貌的组织,富含合金元素Ni(表4),XRD分析图5b得知该网状组织主要为NiTi相与钛基固溶体的共晶组织。

  • 图4 Ni60熔覆层SEM形貌

  • Fig.4 SEM morphology of Ni60cladding layer

  • 表4 Ni60熔覆层EDS元素分析(%)

  • Table4 EDS Elemental analysis of Ni60cladding layer(wt%)

  • 对熔覆层进行XRD分析(谱图见图5),其中图5a图为TC4钛合金单纯熔覆层的XRD图谱, 除了常规的 α-Ti和少量的 β-Ti相外,经等离子熔覆并600℃ 时效三次后,熔覆层出现了TiN、TiO2和Ti3Al析出相(图5a);图5b为添加Ni60涂层的TC4钛合金熔覆层XRD图谱,600℃ 时效后无新相析出,但TiN、TiB及M7C3相的析出量明显增加,M7C3相主要是Cr与C元素发生反应生成类Cr7C3相,其中有少量的Fe原子置换部分Cr原子形成。

  • 图5 熔覆层XRD图谱

  • Fig.5 XRD pattern of cladding layer

  • 试验结果表明,钛合金在等离子熔覆层的凝固过程中,由基底生长出来的柱状晶与枝晶主干,主要是富含N/O元素的Ti固溶体,并将其他合金元素排挤到枝晶外的间隙位置,即等轴晶区及最后凝固的共晶区;在600℃ 时效时,柱状晶及枝晶中析出TiN/TiO化合物为主,等轴晶中则析出Ti3Al、TiB及M7C3等合金相。

  • 2.2 熔覆层的时效红硬性与耐磨性测试

  • 图6 为由试验获得的两种熔覆层的显微硬度分布曲线。 TC4钛合金的单纯熔覆层的厚度约为800 μm,热影响区范围约1 800 μm;添加Ni60合金粉末的熔覆层厚度1 100 μm,热影响区范围2 200 μm。

  • TC4钛合金单纯熔覆层表面等轴晶区表面硬度为520HV,往内部枝晶区和柱晶区方向逐渐降低至410HV,进入TC4钛合金基材热影响区后迅速陡降至320~340HV;在600℃时效三次过程中,最后凝固的表面等轴晶及共晶区,因富含的合金元素的各相的析出,硬度随时效次数逐次提升到620HV;而熔覆层内层的柱晶与枝晶,在第一次时效后硬度达到最高(480~500HV),后两次的时效过程中,析出的Ti的N/O类化合物长大导致其共格界面被破坏,硬度反而有所下降(430~450HV)。热影响区相当于增加一次固溶处理,其时效后硬度也会高于基体硬度(图5a)。

  • 添加Ni60合金粉末的熔覆层在600℃ 时效三次过程中,具有同样规律(图5b)。但因其析出相种类及数量更多,其熔覆层表面等轴晶区硬度强化效果在三次时效后依次递增,最终达800HV;熔覆层的枝晶与柱晶区, 硬度在首次时效后由固溶的500HV以下迅速提高到550HV以上,随着时效次数的增多,虽然也呈现逐渐下降,但也仍然保持在500HV以上。由于有热影响区的再次固溶与时效,硬度有所提升,在熔覆层与TC4钛合金基体间提供了良好的硬度梯度过渡,降低了熔覆层与基体间的内应力,提高熔覆层与基体间的结合力,降低其熔覆层在工程应用中产生剥落[23]

  • 图6 熔覆层显微硬度

  • Fig.6 Microhardness of cladding layer

  • 表5 为四种试样磨损失重。可以看出,TC4钛合金单纯熔覆涂层相比钛合金基体磨损系数较低耐磨性较高;Ni60涂层相比TC4钛合金单纯熔覆涂层磨损系数降低耐磨性能提高;Ni60涂层经高温时效过后,摩擦因数较未时效Ni60涂层相比也略有降低,这是高温时效过后,由于颗粒增强相析出增多产生二次硬化现象,使耐磨性能提高。三次时效后的Ni60涂层相比TC4钛合金磨损失重从0.057 4g降至0.017 1g,耐磨性提高约3倍。

  • 表5 不同熔覆处理试样的磨损实验结果

  • Table5 Wear test results of samples with different cladding treatments

  • 图7a为钛合金基体磨损形貌,表面粗糙不平, 且有明显的犁削痕迹,表现为磨粒磨损。由于钛合金基体硬度低,在对磨材料的磨损下发生塑性变形, 进而发生黏着磨损。 TC4钛合金的磨损形式为黏着磨损与磨粒磨损共同作用的结果。图7c为Ni60涂层磨损形貌,表面平整光滑,有犁削痕迹,表现为磨粒磨损。 Ni60熔覆层中高硬度TiC、TiB、TiN等增强相作为磨损主体,起到抗磨骨架的作用,而良好韧性金属相基体对颗粒增强相起到支撑作用[24-26]。在磨损初期,较软熔覆层基体相先被磨损,使硬质陶瓷相裸露在基体相表面,继续磨损导致硬质陶瓷相脱落形成磨粒,磨粒作用于磨损基体形成一道道犁削痕迹[27],同时熔覆层硬度呈阶梯式下降,热影响区为熔覆层与基体间提供了良好的硬度过渡,减缓了熔覆层的内应力,防止由熔覆层硬度过高,内应力过大导致熔覆层崩损,所以熔覆层内未出现大面积剥落[28]。对磨损面进行EDS成分分析,如表6所示,只有微量Fe元素,基本来自合金粉末中Fe元素,没有 “金属转移”,不存在黏着磨损。图7e为高温时效后Ni60涂层磨损形貌,表面光滑平整,有轻微犁削痕迹, 结合EDS成分分析,高温时效后析出颗粒增强相增多,抵抗对磨材料磨损作用增强,使裸露颗粒增强相不易脱落,只产生轻微磨粒磨损。

  • 图7 熔覆层磨损形貌及EDS能谱分析

  • Fig.7 Wear morphology and EDS spectrum analysis of cladding layer

  • 表6 磨损面不同区域元素含量(%)

  • Table6 Element content in different areas of the wear surface(wt%)

  • 2.3 耐蚀性测试

  • 在极化曲线测试法中,相关的动力学参数腐蚀电位(Ecorr)越高,腐蚀电流密度( icorr)越小,极化电阻( R p) 越高, 表明材料的耐腐蚀性能越好[29]。图8为经时效后的TC4钛合金基体、单纯熔覆层、添加Ni60粉末熔覆层的极化曲线,通过Tafel拟合得出数据如表7所示。腐蚀电位分别为-0.424V、-0.333V、-0.260V,自腐蚀电位逐渐正移,腐蚀热力学稳定性增加,发生电化学腐蚀的可能性减小; TC4钛合金的自腐蚀电流密度为3.014 μA/cm 2,添加Ni60粉末熔覆层自腐蚀电流密度为2.194 μA/cm 2,说明添加Ni60粉末熔覆层更难被腐蚀,Ni60涂层耐蚀性提高;图9为经时效后的TC4钛合金基体、单纯熔覆层、添加Ni60粉末熔覆层的电化学阻抗谱的Nyquist图,表8为阻抗谱拟合后的结果。可以看出,极化电阻(Rp) 呈上升趋势,添加Ni60粉末熔覆层耐蚀性最好,这与极化曲线的结果相符合;这是由于涂层表层生成致密的TiN陶瓷相增强了涂层表面化学稳定性[30],使Ni60涂层自腐蚀电位高于TC4基体,即Ni60涂层更不易被腐蚀。 Ni60粉末涂层中含有Cr元素而使涂层的钝化能力增强,有利于钝化膜自动修复,提高耐蚀性能[31]

  • 图8 极化曲线

  • Fig.8 Polarization curve of cladding layer

  • 表7 TC4钛合金及其熔覆层电化学参数

  • Table7 Electrochemical parameters of TC4titanium alloy and its cladding layer

  • 图9 电化学阻抗Nyquist图

  • Fig.9 Electrochemical impedance Nyquist diagram

  • 表8 电化学阻抗谱极化电阻R p 拟合结果

  • Table8 Fitting values of the polarization resistance(R p) in EIS

  • 3 结论

  • (1) 钛合金的等离子熔覆层凝固时,由基底向表面依次凝固和生长顺序为柱晶、枝晶、等轴晶及共晶组织;在先凝固的柱晶及枝晶主干等部位,Ti优先选择固溶N/O元素,将其他合金元素排挤到后凝固的等轴晶区,在最后凝固区形成富含Ni元素的共晶组织。

  • (2) Ni60熔覆层中先凝固的柱晶及枝晶区,一次时效(600℃/1h)后获得的强化效果最佳,后两次的时效过程中,析出的Ti的N/O类化合物长大导致其共格界面被破坏,硬度反而有所下降;而后凝固的等轴晶区与共晶区,富含多种合金元素,经三次时效后,表面等轴晶区硬度强化效果依次递增,最终硬度可达800HV。

  • (3) 与TC4钛合金相比,Ni60熔覆层具有更优异的耐磨性和耐蚀性,三次时效后的Ni60涂层磨损失重从0.057 4g降至0.017 1g,耐磨性提高约3倍。

  • 参考文献

    • [1] 戈晓岚,仲奕颖,许晓静,等.TC4 钛合金表面激光合金化 Ti-Al-Nb 涂层的研究[J].稀有金属材料与工程,2017,46(8):2266-2270.GE Xiaolan,ZHONG Yiyin,XU Xiaojing,et al.Ti-Al-Nb coating by laser alloying on tc4 titanium alloy[J].Rare metal Materials and Engineering,2017,46(8):2266-2270.(in Chinese)

    • [2] ZHANG Kemin,ZOU Jianxin,LI Jun,et al.Surface modification of TC4 Ti alloy by laser cladding with TiC+Ti powders[J].Transactions of Nonferrous Metals Society of China,2010,20(11):2192-2197.

    • [3] XU Haiying,ZHANG Wei,FAN Kai,et al.TC4 titanium alloy microstructure and properties influenced by high frequency scan of electron beam [J].Rare Metal Materials and Engineering,2017,46(6):1457-1462.

    • [4] 程晨.TC4 钛合金表面等离子熔覆Ni基复合涂层组织研究 [D].贵阳:贵州大学,2018.CHENG Chen.Microstructure of plasma cladding Ni based composite coating on TC4 titanium alloy[D].Guiyang:Guizhou University,2018.(in Chinese)

    • [5] 陈飞,周海,潘俊德.钛合金表面辉光离子渗铝耐蚀性[J].稀有金属材料与工程,2008(10):1844-1846.CHEN Fei,ZHOU Hai,PAN Junde.Study on glow discharge plasma aluminizing on titanium alloy surface [J].Rare Metal Materials and Engineering,2008,37(10):1844-1846.(in Chinese)

    • [6] 李秀燕,唐宾,潘俊德,等.Ti6Al4V 无氢离子渗氮摩擦学性能的研究 [J].稀有金属材料与工程,2003,32(7):506-509.LI Xiuyan,TANG Bing,PAN Junde,et al.Ion-nitrided TI6Al4V without hydrogen and its wearing performance[J].Rare Metal Materials and Engineering,2003,32(7):506-509.(in Chinese)

    • [7] 王钧石,晏永华,陈桂容.钛合金等离子体源离子注入表面改性[J].稀有金属,2006,30(5):582-585.WANG Junshi,YAN Yonghua,CHEN Guirong.Plasma source ion implantation surface modification of titanium alloy [J].Chinese Journal of Rare Metal,2006,30(5):582-585.(in Chinese)

    • [8] 刘洪喜,汤宝寅,王浪平,等.钛合金的等离子体浸没离子注入表面强化处理[J].稀有金属材料与工程,2005,34(8):1318-1321.LIU Hongxi,TANG Baoyin,WANG Langping,et al.Improvement on surface properties of titanium alloy by plasmaImmersion ion implantation wechnique[J].Rare Metal Materials and Engineering,2005,34(8):1318-1321.(in Chinese)

    • [9] 刘静,颜志斌,祝园园,等.TC4 钛合金碳氮复合渗层的组织结构与性能 [J].材料热处理学报,2017,38(6):150-155.LIU Jing,YAN Zhibin,ZHU Yuanyuan,et al.Microstructure and properties of the C-N compound layer prepared on TC4 titanium alloy surface[J].Transactions of Materials and Heat Treatment,2017,38(6):150-155.(in Chinese)

    • [10] 高广睿,李争显,杜继红.TC4 合金表面微弧氧化膜层耐蚀及摩擦性能研究[J].稀有金属材料与工程,2008,37(S4):602-605.GAO Guangrui,LI Zhengxian,DU Jihong.Wear and corrosion resistance properties of TC4 alloy micro-arc oxidized coating[J].Rare Metal Materials and Engineering,2008,37(4):602-605.(in Chinese)

    • [11] 孙刚,陈学明,马国佳,等.基体温度对TC11钛合金EB-PVD 修复层组织及振动疲劳寿命的影响[J].中国表面工程,2015,28(2):59-64.SUN Gang,CHEN Xueming,MA Guojia,et al.Effects of substrate temperature on structure and vibration fatigue age of repairing layers on TC11 titanium alloy prepared by EB-PVD [J].China Surface Engineering,2015,28(2):59-64.(in Chinese)

    • [12] SELIVANOV K S,SMYSLOY A M,DYBLENKO Y M,et al.Erosive wear behavior of Ti/Ti(V,Zr)N multilayered PVD coatings for Ti-6Al-4V alloy[J].Wear,2018,418(1):160-166.

    • [13] SHUAI Jintao,ZUO Xiao,WANG Zhenyu,et al.Comparative study on crack resistance of TiAlN monolithic and Ti/TiAlN multilayer coatings [J].Ceramics International,2020,46(5):6672-6681.

    • [14] 杨理京,张平祥,王少鹏,等.W1813N 无磁不锈钢表面激光熔覆Ni60与 WC-12Co/Ni25 涂层的组织结构和磨损行为 [J].稀有金属材料与工程,2019,48(11):3441-3447.YANG Lijing,ZHANG Pingxiang,WANG Shaopeng,et al.Microstructure and wear behavior of hard Ni60 and soft WC-12Co/Ni25 coatings prepared by laser cladding on W1813N non-magnetic stainless steel[J].Rare Metal Materials and Engineering,2019,48(11):3441-3447.(in Chinese)

    • [15] SIMUNOVIC Katica,SARIC Tomislav,SIMUNOVIC Goran.Different approaches to the investigation and testing of the Nibased self-fluxing alloy coatings—a review.Part 2:microstructure,adhesive strength,cracking behavior,and residual stresses investigations [J].Tribology Transactions,2014,57(6):980-1000.

    • [16] XUAN Huifeng,WANG Qinying,BAI Shulin,et al.A study on microstructure and flame erosion mechanism of a graded Ni-Cr-B-Si coating prepared by laser cladding [J].Surface & Coatings Technology[J],2014,244:203-209.

    • [17] 王光,王洪福,赵文,等.Ni60-Cr3C2-WC/TiC 等离子堆焊层耐磨性能的研究[J].粉末冶金工业,2019,29(6):23-27.WANG Guang,WANG Hongfu,ZHAO Wen,et al.Study on the wear resistance of Ni60-Cr3C2-WC/TiC plasma surfacing layer [J].Powder Metallurgy Industry,2019,29(6):23-27.(in Chinese)

    • [18] 张国栋,李莉,刘念,等.打壳锤头等离子堆焊镍基涂层组织和性能[J].机械工程学报,2014,50(20):70-76.ZHANG Guodong,LI Li,LIU Nian,et al.Structure and properties of nickel-based surfacing on crust breaker deposited by plasma arc welding[J].Journal of Mechanical Engineering,2014,50(20):70-76.(in Chinese)

    • [19] 张松,张春华.铝合金表面激光熔覆NiCrBSi的空泡腐蚀性能[J].稀有金属材料与工程,2002,31(2):99-102.ZHANG Song,ZHANG Chunhua.Cavitation erosion behaviour on aluminium alloy by using laser surface cladding of NiCrBSi [J].Rare Metal Materials and Engineering.2002,31(2):99-102.(in Chinese)

    • [20] LIU X T,LEI W B,LI J,et al.Laser cladding of high-entropy alloy on H13 steel[J].Rare Metals,2014,33(6):727-730.

    • [21] 余鹏程,刘秀波,陆小龙,等.Ti6Al4V 合金激光熔覆复合涂层的摩擦学和高温抗氧化性能研究[J].中国激光,2015(10):81-88.YU Pengcheng,LIU Xiubo,LU Xiaolong,et al.Study on tribology and high-temperature oxidation resistance of laser cladding composite coatings on Ti6Al4V alloy[J].Chinese Journal of Lasers,2015(10):81-88.(in Chinese)

    • [22] RUTTER J W,CHALMERS B.A prismatic substructure formed during solidification of metals[J].NRC Research Press Ottawa,1953,31(1):15-39.

    • [23] 吴玉萍,林萍华,王泽华,等.多层预涂敷等离子熔覆TiC/Ni 梯度涂层研究[J].材料热处理学报,2004,25(3):74-77,98.WU Yuping,LIN Pinghua,WANG Zehua,et al.Research on gradient coating of TiC/Ni by plasma cladding with multi-preplaced layer[J].Transactions of Materials and Heat Treatment,2004,25(3):74-77,98.(in Chinese)

    • [24] 李殿凯,李明喜,洪海峰.Y2O3 对等离子喷焊高铬铁基涂层组织和性能的影响[J].材料热处理学报,2013,34(6):153-157.LI Diankai,LI Mingxi,HONG Haifeng.Effect of Y2O3 on microstructure and properties of high-chromium Fe-base coating produced by plasma arc cladding process[J].Transactions of Materials and Heat Treatment,2013,34(6):153-157.(in Chinese)

    • [25] 卢金斌,王志新,席艳君.Q235 钢等离子熔覆添加碳化钨铁基合金涂层的研究[J].材料热处理学报,2009,30(4):142-145.LU Jinbin,WANG Zhixin,XI Yanjun.Study on NiCrBSi steel WC composite coating prepared by plasma cladding on Q235 steel [J].Transactions of Materials and Heat Treatment,2009,30(4):142-145.(in Chinese)

    • [26] 孙荣禄,牛伟,王成扬.钛合金表面激光熔覆 TiN-Ni 基合金复合涂层的组织和磨损性能[J].稀有金属材料与工程,2007,36(1):7-10.SUN Ronglu,NIU Wei1,WANG Chengyang.Microstructure and wear resistance of TiN-NiCrBSi laser clad layer on titanium alloy surface [J].Rare Metal Materials and Engineering,2007,36(1):7-10.(in Chinese)

    • [27] 余鹏程,刘秀波,陆小龙,等.Ti6Al4V 合金表面激光熔覆复合涂层的高温摩擦学性能研究[J].摩擦学学报,2015,35(6):737-745.YU Pengcheng,LIU Xiubo,LU Xiaolong,et al.High-temperature tribological properties of laser clad composite coatings on Ti6Al4V alloy[J].Tribology,2015,35(6):737-745.(in Chinese)

    • [28] 王成磊,张光耀,高原,等.稀土 Y2O3 对6063Al激光熔覆镍基熔覆层耐磨性的影响[J].焊接学报,2016,37(2):21-24.WANG Chenglei,ZHANG Guangyao,GAO Yuan,et al.Effect of rare earth Y2O3 on abrasion resistance of 6063 Al laser cladding Ni-based cladding layer [J].Transactions of the China Welding Institution,2016,37(2):21-24.(in Chinese)

    • [29] 黄思睿,伍昊,朱和国.共晶高熵合金的研究进展[J].材料导报,2020,34(17):17077-17081,17088.HUANG Sirui,WU Hao,ZHU Heguo,et al.Research progress on eutectic high entropy alloys[J].Materials Reports,2020,34(17):17077-17081,17088.(in Chinese)

    • [30] 李凤华,衣晓红,樊占国,等.硼稀土共渗钛合金的耐蚀性研究[J].东北大学学报(自然科学版),2013,34(2):261-264.LI Fenghuai,YI Xiaohong,FAN Zhanguo,et al.Corrosion resistance of rare earth-borided titanium alloy [J].Journal of Northeastern University(Natural Science),2013,34(2):261-264.(in Chinese)

    • [31] 崔爱永,胡芳友,回丽,等.钛基梯度功能涂层组织和腐蚀行为研究[J].中国表面工程,2011,24(5):18-21.CUI Aiyong,HU Fangyou,HUI Li,et al.Microstructure and corrosion behavior of Ti-matrix functional gradient layer[J].China Surface Engineering,2011,24(5):18-21.(in Chinese)

  • 参考文献

    • [1] 戈晓岚,仲奕颖,许晓静,等.TC4 钛合金表面激光合金化 Ti-Al-Nb 涂层的研究[J].稀有金属材料与工程,2017,46(8):2266-2270.GE Xiaolan,ZHONG Yiyin,XU Xiaojing,et al.Ti-Al-Nb coating by laser alloying on tc4 titanium alloy[J].Rare metal Materials and Engineering,2017,46(8):2266-2270.(in Chinese)

    • [2] ZHANG Kemin,ZOU Jianxin,LI Jun,et al.Surface modification of TC4 Ti alloy by laser cladding with TiC+Ti powders[J].Transactions of Nonferrous Metals Society of China,2010,20(11):2192-2197.

    • [3] XU Haiying,ZHANG Wei,FAN Kai,et al.TC4 titanium alloy microstructure and properties influenced by high frequency scan of electron beam [J].Rare Metal Materials and Engineering,2017,46(6):1457-1462.

    • [4] 程晨.TC4 钛合金表面等离子熔覆Ni基复合涂层组织研究 [D].贵阳:贵州大学,2018.CHENG Chen.Microstructure of plasma cladding Ni based composite coating on TC4 titanium alloy[D].Guiyang:Guizhou University,2018.(in Chinese)

    • [5] 陈飞,周海,潘俊德.钛合金表面辉光离子渗铝耐蚀性[J].稀有金属材料与工程,2008(10):1844-1846.CHEN Fei,ZHOU Hai,PAN Junde.Study on glow discharge plasma aluminizing on titanium alloy surface [J].Rare Metal Materials and Engineering,2008,37(10):1844-1846.(in Chinese)

    • [6] 李秀燕,唐宾,潘俊德,等.Ti6Al4V 无氢离子渗氮摩擦学性能的研究 [J].稀有金属材料与工程,2003,32(7):506-509.LI Xiuyan,TANG Bing,PAN Junde,et al.Ion-nitrided TI6Al4V without hydrogen and its wearing performance[J].Rare Metal Materials and Engineering,2003,32(7):506-509.(in Chinese)

    • [7] 王钧石,晏永华,陈桂容.钛合金等离子体源离子注入表面改性[J].稀有金属,2006,30(5):582-585.WANG Junshi,YAN Yonghua,CHEN Guirong.Plasma source ion implantation surface modification of titanium alloy [J].Chinese Journal of Rare Metal,2006,30(5):582-585.(in Chinese)

    • [8] 刘洪喜,汤宝寅,王浪平,等.钛合金的等离子体浸没离子注入表面强化处理[J].稀有金属材料与工程,2005,34(8):1318-1321.LIU Hongxi,TANG Baoyin,WANG Langping,et al.Improvement on surface properties of titanium alloy by plasmaImmersion ion implantation wechnique[J].Rare Metal Materials and Engineering,2005,34(8):1318-1321.(in Chinese)

    • [9] 刘静,颜志斌,祝园园,等.TC4 钛合金碳氮复合渗层的组织结构与性能 [J].材料热处理学报,2017,38(6):150-155.LIU Jing,YAN Zhibin,ZHU Yuanyuan,et al.Microstructure and properties of the C-N compound layer prepared on TC4 titanium alloy surface[J].Transactions of Materials and Heat Treatment,2017,38(6):150-155.(in Chinese)

    • [10] 高广睿,李争显,杜继红.TC4 合金表面微弧氧化膜层耐蚀及摩擦性能研究[J].稀有金属材料与工程,2008,37(S4):602-605.GAO Guangrui,LI Zhengxian,DU Jihong.Wear and corrosion resistance properties of TC4 alloy micro-arc oxidized coating[J].Rare Metal Materials and Engineering,2008,37(4):602-605.(in Chinese)

    • [11] 孙刚,陈学明,马国佳,等.基体温度对TC11钛合金EB-PVD 修复层组织及振动疲劳寿命的影响[J].中国表面工程,2015,28(2):59-64.SUN Gang,CHEN Xueming,MA Guojia,et al.Effects of substrate temperature on structure and vibration fatigue age of repairing layers on TC11 titanium alloy prepared by EB-PVD [J].China Surface Engineering,2015,28(2):59-64.(in Chinese)

    • [12] SELIVANOV K S,SMYSLOY A M,DYBLENKO Y M,et al.Erosive wear behavior of Ti/Ti(V,Zr)N multilayered PVD coatings for Ti-6Al-4V alloy[J].Wear,2018,418(1):160-166.

    • [13] SHUAI Jintao,ZUO Xiao,WANG Zhenyu,et al.Comparative study on crack resistance of TiAlN monolithic and Ti/TiAlN multilayer coatings [J].Ceramics International,2020,46(5):6672-6681.

    • [14] 杨理京,张平祥,王少鹏,等.W1813N 无磁不锈钢表面激光熔覆Ni60与 WC-12Co/Ni25 涂层的组织结构和磨损行为 [J].稀有金属材料与工程,2019,48(11):3441-3447.YANG Lijing,ZHANG Pingxiang,WANG Shaopeng,et al.Microstructure and wear behavior of hard Ni60 and soft WC-12Co/Ni25 coatings prepared by laser cladding on W1813N non-magnetic stainless steel[J].Rare Metal Materials and Engineering,2019,48(11):3441-3447.(in Chinese)

    • [15] SIMUNOVIC Katica,SARIC Tomislav,SIMUNOVIC Goran.Different approaches to the investigation and testing of the Nibased self-fluxing alloy coatings—a review.Part 2:microstructure,adhesive strength,cracking behavior,and residual stresses investigations [J].Tribology Transactions,2014,57(6):980-1000.

    • [16] XUAN Huifeng,WANG Qinying,BAI Shulin,et al.A study on microstructure and flame erosion mechanism of a graded Ni-Cr-B-Si coating prepared by laser cladding [J].Surface & Coatings Technology[J],2014,244:203-209.

    • [17] 王光,王洪福,赵文,等.Ni60-Cr3C2-WC/TiC 等离子堆焊层耐磨性能的研究[J].粉末冶金工业,2019,29(6):23-27.WANG Guang,WANG Hongfu,ZHAO Wen,et al.Study on the wear resistance of Ni60-Cr3C2-WC/TiC plasma surfacing layer [J].Powder Metallurgy Industry,2019,29(6):23-27.(in Chinese)

    • [18] 张国栋,李莉,刘念,等.打壳锤头等离子堆焊镍基涂层组织和性能[J].机械工程学报,2014,50(20):70-76.ZHANG Guodong,LI Li,LIU Nian,et al.Structure and properties of nickel-based surfacing on crust breaker deposited by plasma arc welding[J].Journal of Mechanical Engineering,2014,50(20):70-76.(in Chinese)

    • [19] 张松,张春华.铝合金表面激光熔覆NiCrBSi的空泡腐蚀性能[J].稀有金属材料与工程,2002,31(2):99-102.ZHANG Song,ZHANG Chunhua.Cavitation erosion behaviour on aluminium alloy by using laser surface cladding of NiCrBSi [J].Rare Metal Materials and Engineering.2002,31(2):99-102.(in Chinese)

    • [20] LIU X T,LEI W B,LI J,et al.Laser cladding of high-entropy alloy on H13 steel[J].Rare Metals,2014,33(6):727-730.

    • [21] 余鹏程,刘秀波,陆小龙,等.Ti6Al4V 合金激光熔覆复合涂层的摩擦学和高温抗氧化性能研究[J].中国激光,2015(10):81-88.YU Pengcheng,LIU Xiubo,LU Xiaolong,et al.Study on tribology and high-temperature oxidation resistance of laser cladding composite coatings on Ti6Al4V alloy[J].Chinese Journal of Lasers,2015(10):81-88.(in Chinese)

    • [22] RUTTER J W,CHALMERS B.A prismatic substructure formed during solidification of metals[J].NRC Research Press Ottawa,1953,31(1):15-39.

    • [23] 吴玉萍,林萍华,王泽华,等.多层预涂敷等离子熔覆TiC/Ni 梯度涂层研究[J].材料热处理学报,2004,25(3):74-77,98.WU Yuping,LIN Pinghua,WANG Zehua,et al.Research on gradient coating of TiC/Ni by plasma cladding with multi-preplaced layer[J].Transactions of Materials and Heat Treatment,2004,25(3):74-77,98.(in Chinese)

    • [24] 李殿凯,李明喜,洪海峰.Y2O3 对等离子喷焊高铬铁基涂层组织和性能的影响[J].材料热处理学报,2013,34(6):153-157.LI Diankai,LI Mingxi,HONG Haifeng.Effect of Y2O3 on microstructure and properties of high-chromium Fe-base coating produced by plasma arc cladding process[J].Transactions of Materials and Heat Treatment,2013,34(6):153-157.(in Chinese)

    • [25] 卢金斌,王志新,席艳君.Q235 钢等离子熔覆添加碳化钨铁基合金涂层的研究[J].材料热处理学报,2009,30(4):142-145.LU Jinbin,WANG Zhixin,XI Yanjun.Study on NiCrBSi steel WC composite coating prepared by plasma cladding on Q235 steel [J].Transactions of Materials and Heat Treatment,2009,30(4):142-145.(in Chinese)

    • [26] 孙荣禄,牛伟,王成扬.钛合金表面激光熔覆 TiN-Ni 基合金复合涂层的组织和磨损性能[J].稀有金属材料与工程,2007,36(1):7-10.SUN Ronglu,NIU Wei1,WANG Chengyang.Microstructure and wear resistance of TiN-NiCrBSi laser clad layer on titanium alloy surface [J].Rare Metal Materials and Engineering,2007,36(1):7-10.(in Chinese)

    • [27] 余鹏程,刘秀波,陆小龙,等.Ti6Al4V 合金表面激光熔覆复合涂层的高温摩擦学性能研究[J].摩擦学学报,2015,35(6):737-745.YU Pengcheng,LIU Xiubo,LU Xiaolong,et al.High-temperature tribological properties of laser clad composite coatings on Ti6Al4V alloy[J].Tribology,2015,35(6):737-745.(in Chinese)

    • [28] 王成磊,张光耀,高原,等.稀土 Y2O3 对6063Al激光熔覆镍基熔覆层耐磨性的影响[J].焊接学报,2016,37(2):21-24.WANG Chenglei,ZHANG Guangyao,GAO Yuan,et al.Effect of rare earth Y2O3 on abrasion resistance of 6063 Al laser cladding Ni-based cladding layer [J].Transactions of the China Welding Institution,2016,37(2):21-24.(in Chinese)

    • [29] 黄思睿,伍昊,朱和国.共晶高熵合金的研究进展[J].材料导报,2020,34(17):17077-17081,17088.HUANG Sirui,WU Hao,ZHU Heguo,et al.Research progress on eutectic high entropy alloys[J].Materials Reports,2020,34(17):17077-17081,17088.(in Chinese)

    • [30] 李凤华,衣晓红,樊占国,等.硼稀土共渗钛合金的耐蚀性研究[J].东北大学学报(自然科学版),2013,34(2):261-264.LI Fenghuai,YI Xiaohong,FAN Zhanguo,et al.Corrosion resistance of rare earth-borided titanium alloy [J].Journal of Northeastern University(Natural Science),2013,34(2):261-264.(in Chinese)

    • [31] 崔爱永,胡芳友,回丽,等.钛基梯度功能涂层组织和腐蚀行为研究[J].中国表面工程,2011,24(5):18-21.CUI Aiyong,HU Fangyou,HUI Li,et al.Microstructure and corrosion behavior of Ti-matrix functional gradient layer[J].China Surface Engineering,2011,24(5):18-21.(in Chinese)

  • 手机扫一扫看