en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王金斌(通信作者),男,1972年出生,博士,教授,博士研究生导师。主要研究方向为铁电薄膜、稀磁半导体、铁电体/稀磁半导体异质结、铁电铁磁复合材料和相关器件的制备与改性、结构表征与性能分析等。E-mail:jbwang@xtu.edu.cn

中图分类号:TG156;TB114

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210121001

参考文献 1
GAO Y,CAI F,ZHANG L,et al.Structure optimization and cutting performance of gradient multilayer AlCrSiN films with ion source etching pretreatment[J].Journal of Materials Engineering and Performance,2020,29(2):997-1006.
参考文献 2
WU W W,CHEN W L,YANG S B.Design of AlCrSiN multilayers and nanocomposite coating for HSS cutting tools[J].Applied Surface Science,2015,351:803-810.
参考文献 3
JÄGER N,MEINDLHUMER M,SPOR S,et al.Microstructural evolution and thermal stability of AlCr(Si)N hard coatings revealed by in-situ high-temperature high-energy grazing incidence transmission X-ray diffraction[J].Acta Materialia,2020,186:545-554.
参考文献 4
LI P,CHEN L,WANG S Q.Microstructure,mechanical and thermal properties of TiAlN/CrAlN multilayer coatings[J].International Journal of Refractory Metals and Hard Materials,2013,40:51-57.
参考文献 5
FAGA M G,GAUTIER G,CARTASEGNA F,et al.AlSiTiN and AlSiCrN multilayer coatings:effects of structure and surface composition on tribological behavior under dry and lubricated conditions[J].Applied Surface Science,2016,365:218-226.
参考文献 6
SUN S Q,YE Y W,WANG Y X,et al.Structure and tribological performances of CrAlSiN coatings with different Si percentages in seawater[J].Tribology International,2017,115:591-599.
参考文献 7
DENG Y,CHEN W L,LI B X,et al.Physical vapor deposition technology for coated cutting tools:a review[J].Ceramics International,2020,46(11):18373-18390.
参考文献 8
VERESCHAKA A,OGANYAN M,BUBLIKOV Y,et al.Increase in efficiency of end milling of titanium alloys due to tools with multilayered composite nano-structured Zr-ZrN-(Zr,Al)N and Zr-ZrN-(Zr,Cr,Al)N Coatings[J].Coatings,2018,8(11):395.
参考文献 9
LOFAJ F,HVIŠOVÁ P,ZUBKO P,et al.Mechanical and tribological properties of the high target utilization sputtering W-C coatings on different substrates[J].International Journal of Refractory Metals and Hard Materials,2019,80:305-314.
参考文献 10
CHAWLA V,JAYAGANTHAN R,CHANADRA R.Structural characterizations of magnetron sputtered nanocrystalline TiN thin films [J].Materials Characterization,2008,59(8):1015-1020.
参考文献 11
BRIOIS P,MERCS D,BANAKH O.Structural and mechanical properties of(Al,Cr)N and(Al,Cr)SiN coatings reactively sputter deposited[J].Plasma Processes and Polymers,2007,4(S1):S677-S680.
参考文献 12
XIAN G,XIONG J,ZHAO H,et al.Evaluation of the structure and properties of the hard TiAlN-(TiAlN/CrAlSiN)-TiAlN multiple coatings deposited on different substrate materials[J].International Journal of Refractory Metals and Hard Materials,2019,85:21.
参考文献 13
GROSSMANN B,SCHALK N,CZETTL C,et al.Phase composition and thermal stability of arc evaporated Ti 1-x Al x N hard coatings with 0.4≤x≤0.67[J].Surface and Coatings Technology,2017,309:687-693.
参考文献 14
SHUM P W,TAM W C,LI K Y,et al.Mechanical and tribological properties of titanium-aluminium-nitride films deposited by reactive close-field unbalanced magnetron sputtering[J].Wear,2004,257(9-10):1030-1040.
参考文献 15
朱丽慧,胡涛,彭笑,等.Al 含量对TiAlN涂层结合强度的影响[J].材料热处理学报,2015,36(3):154-158.ZHU L H,HU T,PENG X,et al.Effect of Al content on adhesion strength of TiAlN coatings[J].Transactions of Materials and Heat Treatment,2015,36(3):154-158.(in Chinese)
参考文献 16
ZHANG Q,XU Y X,ZHANG T F.Tribological properties,oxidation resistance and turning performance of AlTiN/AlCrSiN multilayer coatings by arc ion plating [J].Surface and Coatings Technology,2018,356:1-10.
参考文献 17
CHEN Y,DU H,CHEN M,et al.Structure and wear behavior of AlCrSiN-based coatings[J].Applied Surface Science,2016,370:176-183.
参考文献 18
张建民.用球坑仪测量固体表面的硬度———球坑直径与磨坑时间的关系[J].真空,1997,2(3):16-17.ZHANG J M.Hardness measurement of the solid surface with ball cratering—The relation of ball crater diameter and time[J].Vacuum,1997,2(3):16-17.(in Chinese)
参考文献 19
陈利.Ti-Al-N 基硬质涂层的热稳定性能、微结构及其力学、 切削性能的研究[D].长沙:中南大学,2009.CHEN L.Study on thermal stability,microstructure and mechanical and cutting properties of Ti-Al-N-based hard coatings[D].Changsha:Central South University,2009.(in Chinese)
参考文献 20
张钧.多弧离子镀合金涂层/靶材成分离析现象的初步研究 [J].真空,1994(4):44-47.ZHANG J.Initial study on composition demixing effect of alloy coating/cathode material by multi-Arc Ion Plating[J].Vacuum,1994(4):44-47.(in Chinese)
参考文献 21
杨鸿泰,代明江,李洪.Al 含量对TiAlN涂层组织结构和性能的影响[J].材料导报,2018,32(20):3573-3578.YANG H T,DAI M J,LI H.Effect of Al content microstructure and properties of TiAlN coating[J].Material guide B:Research Paper,2018,32(20):3573-3578.(in Chinese)
参考文献 22
黄凯,李刘合.基体、过渡层偏压和涂层厚度对氧化铬涂层结晶取向的影响[J].中国表面工程,2020,33(1):73-83.HUANG K,LI L H.Effects of substrate,interlayer bias and coating thickness on crystal orientation of chromium oxide coatings[J].China Surface Engineering,2020,33(1):73-83.(in Chinese)
参考文献 23
JIMÉNEZ H,RESTREPO E,DEVIA A.Effect of the substrate temperature in ZrN coatings grown by the pulsed arc technique studied by XRD[J].Surface and Coatings Technology,2006,201(3-4):1594-1601.
参考文献 24
梁俊才,周武平,张凤戈,等.TiAlN 涂层制备过程中 Ti,Al 元素存在形式的演变分析[J].稀有金属,2014,38(4):561-565.LIANG J C,ZHOU W P,ZHANG F G,et al.Evolution analysis of existing forms of Ti and Al elements during preparation of TiAlN coating[J].Chinese Journal of Rare Metals,2014,38(4):561-565.(in Chinese)
参考文献 25
PANDEY A,DALAL S,DUTTA S,et al.Structural characterization of polycrystalline thin films by X-ray diffraction techniques [J].Journal of Materials Science:Materials in Electronics,2021,32(2):1341-1368.
参考文献 26
WANG S Q,CHEN K H,CHEN L,et al.Effect of Al and Si additions on microstructure and mechanical properties of TiN coatings [J].China Surface Engineering,2011,18(2):310-313.
参考文献 27
THOMPSON C V.Structure evolution during processing of polycrystalline films[J].Annual Review of Materials Science,2000,30:159-190.
参考文献 28
HAKAMADA M,NAKAMOTO Y,MATSUMOTO H,et al.Relationship between hardness and grain size in electrodeposited copper films[J].Materials Science and Engineering:A,2007,457(1-2):120-126.
参考文献 29
汪鹏,许昌庆,蔡飞,等.多弧离子镀TiAlSiN梯度涂层制备及切削性能[J].中国表面工程,2019,32(2):34-43.WANG P,XU C Q,CAI F,et al.Preparation and cutting performance of TiAlSiN gradient coating by multi-arc ion plating[J].China Surface Engineering,2019,32(2):34-43.(in Chinese)
参考文献 30
刘孟奇.电弧离子镀CrAlSiN涂层结构与性能研究[D].兰州:西北师范大学,2017.LIU M Q.The structure and properties of CrAlSiN coatings using the cathodic arc ion plating deposition technique[D].Lanzhou:Northwest Normal University,2017.(in Chinese)
参考文献 31
崔学军,程平,张海涛,等.涂层与基体界面结合强度测定模型的有限元模拟[J].吉林大学学报(工学版),2007,37(2):357-361.CUI X J,CHEN P,ZHANG H T,et al.Finite element simulation of a test model for interface bonding strength between coating and substrate[J].Journal of Jilin University(Engineering and Technology Edition),2007,37(2):357-361.
参考文献 32
朱晓东,米彦郁,胡奈赛,等.膜基结合强度评定方法的探讨-划痕法、压入法、接触疲劳法测定的比较[J].中国表面工程,2002,15(4):28-31.ZHU X D,MI Y Y,HU N S,et al.Discussion on evaluation method of film-based bond strength-comparison of scratch method,press-in method and contact fatigue method[J].China Surface Engineering,2002,15(4):28-31.(in Chinese)
目录contents

    摘要

    AlCrSiN 多元硬质涂层具有优异的力学性能,在刀具领域有广泛应用前景。 然而,如何在基底上制备出力学性能优异的 AlCrSiN 涂层有待进一步研究。 基于电弧离子镀技术,在硬质合金基底上沉积了不同 Ti / Al 原子比的 TiAlN 过渡层,并在其上沉积了 AlCrSiN 涂层,研究了过渡层 TiAlN 的微观结构(晶面取向、晶粒尺寸、致密度等)对功能层 AlCrSiN 力学性能的影响。 Ti-Al-N 固溶相的择优取向为(200)。 随着 Ti 含量的增加,(200)衍射峰宽化,晶粒细化,致密程度提高,硬度增加。 Ti / Al 原子比为 2. 75 时,TiAlN 晶粒尺寸为 9. 549 nm,其上制备的 AlCrSiN 硬度值达到 3139. 6 HV,并且涂层与基底间的结合力高达 92 N。 细化(200)取向的 TiAlN 过渡层晶粒可以有效提高其上 AlCrSiN 涂层的硬度以及涂层与硬质合金基底的结合力。 研究成果对提高功能层 AlCrSiN 的力学性能及涂层刀具的寿命有一定的指导意义。

    Abstract

    AlCrSiN multiple hard coating has excellent mechanical properties and has a wide application prospect in the tool field. However, how to prepare AlCrSiN coatings with excellent mechanical properties on the substrate needs to be further studied. The transition layer between the substrate and AlCrSiN coating has an important effect on the mechanical properties of AlCrSiN. The effects of the microstructure (crystal orientation, grain size, relative density, etc) of the interlayer TiAlN on the mechanical properties of the function layer AlCrSiN were studied. TiAlN transition layers with different Ti / Al atomic ratios were deposited on cemented carbide substrates by arc ion plating, and AlCrSiN coating was deposited on TiAlN transition layer. The experiment results show that the preferred orientation of Ti-Al-N solid solution phase is (200). With the increase of Ti content, the (200) diffraction peaks broadens, the grain refines, the density and the hardness increases. When Ti / Al atomic ratio is 2. 75, TiAlN grain size is 9. 549 nm, and the hardness of AlCrSiN prepared on it reaches 3139. 6 HV, and the adhesion force between coating and substrate is up to 92 N. Refining the grains of the TiAlN interlayer with ( 200) orientation can effectively improve the hardness of the AlCrSiN function layer and the adhesion strength between the function layer and the cemented carbide substrate. The research result has a guiding significance to improve the mechanical properties of functional layer AlCrSiN and increasing the life of coating tools.

  • 0 前言

  • 通过物理气相沉积法(PVD)制备的AlCrSiN多元涂层具有高硬度、低摩擦因数以及优异的热稳定性等特点,将其应用于刀具涂层能够有效降低刀具磨损率、延长刀具使用寿命[1-5]。 SUN等[6] 采用多弧离子镀制备了不同Si含量的AlCrSiN涂层,试验结果表明硅含量为5.52%时涂层的综合力学性能最好,归因于该涂层的特殊结构即纳米晶Cr(Al)N镶嵌于Si3N4 非晶中,使得涂层在外力作用下对裂纹的萌生和扩展有较强的抑制作用。物理气相沉积法有真空蒸镀、溅射镀膜、离子镀膜等沉积成膜方式,而多弧离子镀是在硬质合金刀具膜层领域上应用较为广泛的一种PVD技术,具有沉积速率高、沉积温度低、绕射性优异等特点[7]。对于多元涂层, 其相结构复杂,直接与基底结合会存在结合性能较差、使用寿命降低等问题[8-9]。因此,基底与功能层AlCrSiN之间需要一种物理性能与基底差异小,能够在两者间起过渡作用的过渡层。

  • 常用的过渡层涂层有TiN [10]、TiAlN、AlCrN [11] 等。其中,二元TiAlN涂层与硬质合金等基体和AlCrSiN涂层的力学性能差异小,广泛用于AlCrSiN涂层的过渡层研究[12]。在单层TiAlN涂层的研究中, 发现TiAlN涂层的物理性能与其Ti或者Al含量密切相关。对于Ti xAl1-xN(0≤x≤1.0)涂层,不同Ti/Al原子比会影响到涂层的硬度、结合力、弹性模量等力学性能,在x=0.59时,Ti xAl1-xN膜层的压应力最低,膜基附着力最佳[13-14]。朱丽慧等[15]研究了不同Al含量(0.4≤x≤0.5)对TiAlN涂层结合强度的影响,试验结果表明,当Al含量增加时会使得fccAlN向软相hcp-AlN转变,降低TiAlN与基底的结合。在AlTiN/AlCrSiN周期结构涂层研究中, ZHANG等[16]得出以下结论:当AlTiN/AlCrSiN涂层达到某一调制周期值时,AlTiN/AlCrSiN涂层具有最高的硬度、弹性模量和良好的结合强度。而CHEN等[17]对WC-Co基底与AlCrSiN涂层之间的过渡层进行了研究, 引入过渡层MoN、 NbN, 结果表明, MoN/AlCrSiN、NbN/AlCrSiN纳米复合涂层相比无过渡层涂层,纳米多层涂层具有更高的硬度,膜基附着力良好,耐磨性大幅度提高。

  • 可以推测,TiAlN作为基底与功能层AlCrSiN之间的过渡层,一方面,TiAlN的元素组成将影响其自身的力学性能,进而会影响过渡层的效果;另一方面,TiAlN的微观结构将影响其上功能层AlCrSiN的微观结构和性能。因此,为优化基底与功能层AlCrSiN之间的TiAlN过渡层的效果、提高刀具的使用寿命,本文从TiAlN涂层成分和微观结构的角度,调控其上生长的AlCrSiN涂层的微观结构和宏观力学性能等。首先,通过设置Ti靶电流(靶流),制备了Ti/Al原子比不同的TiAlN涂层,并表征了其晶粒取向、尺寸、致密度等微观结构特性;其次,在Ti/Al原子比不同的TiAlN涂层上沉积了AlCrSiN涂层,并研究了TiAlN过渡层微观结构对AlCrSiN功能层的硬度和结合力的影响。

  • 1 涂层制备与试验方法

  • 1.1 涂层的制备

  • 利用电弧离子镀技术在硬质合金基底上进行膜层沉积。试验采用已抛光的WC-6wt%Co的硬质合金基片,在镀膜前对其进行超纯水-丙酮-酒精超声清洗,清洗结束后再进行吹干、烘干处理。为保证后期膜层与基片的结合,在开始镀膜前利用较高的负偏压对基片表面进行氩离子刻蚀清洗, 时间约160min。本文试验中制备了单层和双层涂层,结构如图1所示。选用Ti50Al50合金靶和纯Ti靶沉积不同Ti含量的单层TiAlN涂层,涂层结构如图1a所示;选择Al60Cr30Si10合金靶在TiAlN涂层上制备AlCrSiN涂层,TiAlN/AlCrSiN双层涂层结构如图1b所示。以上两种结构的涂层沉积均在辅助气体Ar和N2 下进行,纯度为99.99%,沉积参数为:TiAl靶电流120A,AlCrSi靶电流100A,Ti靶电流分别设置为0A,60A,90A,120A,负偏压53V,气压为7Pa,镀膜温度400℃。

  • 图1 TiAlN单层结构和TiAlN/AlCrSiN双层结构示意图

  • Fig.1 Schematic diagram of TiAlN single layer structure and TiAlN/AlCrSiN double layer structure

  • 1.2 涂层的表征

  • 用MIRA3TESCAN型场发射扫描电镜( Scanning electron microscope, SEM) 对涂层进行形貌分析,利用其附带的能谱仪( Energy dispersive spectrometer,EDS) 对涂层进行成分分析。采用Bruker D8Advance型掠入射X射线衍射仪(Grazing incidentX-ray powder diffractometer,GIXRD)确定涂层物相组成。试验条件:Cu靶Kα1辐射(λ=0.154 01nm),加速电压为40kV,电流为40mA,扫描范围为25 °~65 °。通过EM500-1A型显微维氏硬度计对涂层进行硬度测量。测试条件:施加载荷为10g,加载时间为10s,测试5个点,取平均值作为硬度值。利用球坑仪[18]测量涂层的厚度值,以及通过型号为WS2005的划痕仪进行膜基结合强度测试。测试参数: 检测所用压头为金刚石压头,加载力为0~100N,加载速度为100N/m,划痕长度为5mm。

  • 2 试验结果与讨论

  • 2.1 单层结构TiAlN涂层的微观结构与力学性能分析

  • 表1 为单层结构TiAlN涂层的EDS数据结果。当Ti靶电流为0A时,只有TiAl靶工作。按照设计要求,该弧靶中的元素含量比Ti ∶Al=50 ∶50,但从涂层的元素成分分析可得,Ti的原子百分比稍高于Al。可能原因是,Ti的饱和蒸汽压低且熔点高,因而其离化率比Al高,生成TiN的吉布斯自由能低于AlN相,使得TiN优先生长,并且金属离子在沉积过程中,Al离子的丢失概率高于Ti [19-20]。随着Ti靶电流继续增大,涂层中Ti含量显著提高,钛铝原子比从1.06增加到2.75。

  • 表1 不同Ti靶电流下TiAlN涂层的元素组成

  • Table1 Element composition of TiAlN coatings at different Ti target currents

  • 单层TiAlN涂层截面形貌SEM照片如图2所示。从SEM照片来看,不同Ti弧靶电流制备的涂层结晶良好,柱状晶结构无明显疏松,与基底结合良好。这是因为电弧离子镀过程是一个热力学非平衡过程,在晶粒生长时倾向于沿垂直于基底表面的方向生长,离子在偏压等能量的作用下在基体表面扩散,从而形成致密的涂层[21]。涂层与基底结合较好,未出现缝隙及剥落现象。随着Ti靶电流增大, 涂层厚度增加。

  • 图2 不同Ti靶电流下TiAlN涂层的截面形貌SEM照片

  • Fig.2 SEM photos of cross-sectional images of TiAlN coatings at different Ti target currents

  • TiAlN涂层的GIXRD结果如图3所示。可以看出单层TiAlN涂层的衍射峰出现在(111)、(200)、(220)晶面,并且以( 200) 晶面择优。相关研究表明,择优取向是由表面自由能和应变能这两个热力学参数之间的竞争决定的,而低厚度涂层通常呈现在表面能最低的取向上[22-23]。涂层的衍射峰都处于c-TiN和c-AlN标准峰之间,这是因为较小半径的Al原子(r=0.143nm)挤入面心立方结构(NaCl型)的TiN中,取代了部分Ti原子( r=0.146nm), 造成晶格畸变,形成Ti-Al-N固溶体。当Ti靶电流超过60A时,相比低电流状态,(200) 面半高宽明显宽化,涂层衍射峰逐渐向低角度方向偏移。结合原子的置换作用分析,随着Ti含量的增加,Ti优先与N原子结合生成c-TiN,Al原子继续在Ti-N晶格中固溶,使得晶格常数减小,晶粒尺寸细化[24]。晶格常数减小后衍射峰向小角度方向偏移。晶粒尺寸细化导致(200)面半高宽明显宽化。同时,晶粒尺寸细化后, 非晶相的晶界增多,导致衍射峰强度下降。

  • 图3 单层TiAlN结构GIXRD图谱

  • Fig.3 GIXRD spectra of TiAlN coatings

  • 考虑到残余应力对衍射峰角度和半高宽的影响,选择具有足够大的强度峰和较高角度的(200) 峰计算平均晶粒尺寸[25-26]。为排除仪器产生的附加半高宽对涂层衍射峰的影响,以下衍射峰的半高宽B已通过标准Si粉末进行修正。谢乐公式[10] 如式(1)所示:

  • D=0.9λBcosθ
    (1)
  • 式中 λ 为Cu的 波长(λ=0.154nm),B 为衍射峰的半高宽(FWHM),θ 为衍射峰的布拉格角。式(1)适用于1~100nm的晶粒计算。衍射峰的角度及对应晶粒尺寸计算结果如表2所示。当Ti靶电流超过60A时,晶粒尺寸逐渐减小。结合晶面取向和界面能量最小化原理,涂层在能量较低的(200) 晶面取向上形核速度快,生成的晶粒细小[21,27]

  • 表2 不同Ti靶电流下的衍射峰角度、半高宽及晶粒尺寸

  • Table2 Angle, FWHM and grain size of the diffraction peak at different Ti target currents

  • 使用显微维氏硬度计对不同Ti靶电流下沉积的过渡层进行硬度测试,涂层厚度通过球坑仪测得。从图4可看出,当Ti靶电流为0A时,过渡层TiAlN硬度为1 878.4HV,随着Ti靶电流逐渐增大至60A,该层厚度值相应提高,但硬度存在下降趋势, 这是因为Ti靶电流为60A时,TiAlN涂层的晶粒尺寸明显增大。根据Hall-Petch [28] 原理,涂层晶粒尺寸变化与其硬度值大小密切相关。当电流为90A和120A时,涂层硬度逐渐增大,结合TiAlN涂层的微观结构分析,Ti含量相对Al含量较高时,在一定程度上提高了Al原子在晶格中的固溶程度,使得涂层晶粒尺寸进一步细化;高Ti/Al比条件下,涂层中形成力学性能较差的h-AlN相的概率大大降低,因而涂层的硬度得到一定的提高[21]。但90A和120A电流下,得到的涂层晶粒尺寸较为接近,在9.5nm~10.5nm范围内,所以其硬度值无明显变化,约为1 913.0HV。

  • 图4 不同Ti靶电流下TiAlN层的硬度、厚度值

  • Fig.4 Hardness and thickness of TiAlN films with different Ti target currents

  • 2.2 双层结构TiAlN/AlCrSiN涂层的微观结构、硬度及结合力

  • TiAlN/AlCrSiN涂层的截面形貌如图5所示。可见,在不同Ti/Al比TiAlN涂层上制备的AlCrSiN涂层的厚度值变化不大。过渡层TiAlN与基底、过渡层与工作层AlCrSiN之间结合紧密。 AlCrSiN层无明显柱状结构,这是因为Si的加入会抑制柱状晶的生长[29]

  • 图5 不同靶流下TiAlN/AlCrSiN涂层的截面形貌SEM照片

  • Fig.5 SEM photos of cross-sectional images of TiAlN/AlCrSiN coatings with different target currents

  • 图6 为AlCrSiN涂层的硬度变化曲线。从图中数据可得,随着TiAlN过渡层制备时Ti靶电流的增加, AlCrSiN层硬度从2 889.6HV降低至2 753.8HV,随之提高至3 139.6HV。结合表2和图4分析可知,当功能层AlCrSiN的制备工艺保持不变时,通过提高过渡层TiAlN中的Ti/Al原子比, Ti靶电流超过60A时,该层晶粒明显细化,晶粒间结合紧密,硬度增加,这对提高功能层AlCrSiN的硬度有一定影响;在多层涂层中外延生长引起的交变应力场,提高了晶界能量,会限制晶体的错位运动, 提高了涂层硬度[30]。并且过渡层中Ti含量增加时,过渡层TiAlN的厚度逐渐增加,TiAlN/AlCrSiN界面上的应力分布均匀,这对其上生长的AlCrSiN涂层的硬度的提高有一定的影响[31]

  • 通过WS-2005型划痕试验仪对涂层进行结合力测试。当金刚石压头上的加载力 L 达到临界载荷 Lc 时,膜层开始从基体上剥离,测试过程中通过传感器获取声信号。在声信号-摩擦力-载荷曲线上,一般根据摩擦力曲线斜率的变化及声信号峰的波动来确定临界载荷 Lc,再结合涂层划痕的光学形貌图,三者综合评定膜基结合力使测试结果更加准确可信[32]

  • 图6 不同Ti靶电流下TiAlN/AlCrSiN涂层的硬度变化曲线

  • Fig.6 Hardness change curve of TiAlN/AlCrSiN films at different Ti target currents

  • 图7 为不同Ti靶电流下TiAlN/AlCrSiN的声信号及摩擦力曲线,图8为不同Ti靶电流下涂层的划痕形貌,当摩擦力曲线的斜率(图中红色虚线)与声信号开始大幅度波动时,涂层划痕开始剥落,因此可判定此时对应的加载力为膜层的临界载荷 Lc。可见,随着Ti靶电流升高,对应涂层声信号开始波动时的载荷也越来越大,结合涂层的划痕形貌分析,涂层的失效临界载荷从82N提高到92N左右。由摩擦力曲线可大致计算出膜层的摩擦因数,摩擦因数随着打底层Ti含量增加,呈现先增加后减小的变化趋势,这与涂层的失效临界载荷变化趋势吻合。这可解释为:Ti靶电流增加使得过渡层的Ti含量增多,过渡层晶粒得到细化,使得TiAlN层与AlCrSiN层之间、TiAlN与基体间的结合紧密;过渡层厚度增加对涂层临界失效载荷的提高有一定影响。

  • 图7 不同Ti靶电流下TiAlN/AlCrSiN涂层的声发射及摩擦力曲线

  • Fig.7 Acoustic emission and friction force curve of TiAlN/AlCrSiN coatings at different Ti target currents

  • 图8 不同Ti靶电流下TiAlN/AlCrSiN涂层的划痕形貌

  • Fig.8 Scratch track of TiAlN/AlCrSiN coatings at different Ti target currents

  • 3 结论

  • 通过改变Ti/Al原子比,调控过渡层TiAlN的微观结构和力学性能,并研究过渡层TiAlN的微观结构和力学性能对其上生长的功能层AlCrSiN涂层微观结构、硬度和结合力的影响。主要结论如下:

  • (1) 制备的TiAlN涂层以(200)晶面取向择优, 晶粒为生长紧密的柱状晶。随着Ti弧靶电流的升高,TiAlN层中Ti/Al原子比从1.06提高到2.75。随着Ti含量的增加,TiAlN涂层的晶粒尺寸先增大后细小,晶粒间无明显孔洞疏松。当Ti/Al原子比为2.75时,TiAlN晶粒尺寸为9.549nm。

  • (2) 随着过渡层TiAlN的Ti/Al原子比增加, 过渡层的晶粒先增大后减小,影响了其上制备的AlCrSiN涂层的硬度,并且该层硬度呈现先下降后提高的变化规律。此外,过渡层厚度的增加对AlCrSiN涂层的硬度及结合力有一定的影响。当过渡层TiAlN的Ti靶电流为120A时,AlCrSiN涂层硬度达到3 139.6HV,TiAlN/AlCrSiN涂层与硬质合金基底的结合力提高至92N,此时摩擦因数最低,涂层耐磨性优异。

  • 参考文献

    • [1] GAO Y,CAI F,ZHANG L,et al.Structure optimization and cutting performance of gradient multilayer AlCrSiN films with ion source etching pretreatment[J].Journal of Materials Engineering and Performance,2020,29(2):997-1006.

    • [2] WU W W,CHEN W L,YANG S B.Design of AlCrSiN multilayers and nanocomposite coating for HSS cutting tools[J].Applied Surface Science,2015,351:803-810.

    • [3] JÄGER N,MEINDLHUMER M,SPOR S,et al.Microstructural evolution and thermal stability of AlCr(Si)N hard coatings revealed by in-situ high-temperature high-energy grazing incidence transmission X-ray diffraction[J].Acta Materialia,2020,186:545-554.

    • [4] LI P,CHEN L,WANG S Q.Microstructure,mechanical and thermal properties of TiAlN/CrAlN multilayer coatings[J].International Journal of Refractory Metals and Hard Materials,2013,40:51-57.

    • [5] FAGA M G,GAUTIER G,CARTASEGNA F,et al.AlSiTiN and AlSiCrN multilayer coatings:effects of structure and surface composition on tribological behavior under dry and lubricated conditions[J].Applied Surface Science,2016,365:218-226.

    • [6] SUN S Q,YE Y W,WANG Y X,et al.Structure and tribological performances of CrAlSiN coatings with different Si percentages in seawater[J].Tribology International,2017,115:591-599.

    • [7] DENG Y,CHEN W L,LI B X,et al.Physical vapor deposition technology for coated cutting tools:a review[J].Ceramics International,2020,46(11):18373-18390.

    • [8] VERESCHAKA A,OGANYAN M,BUBLIKOV Y,et al.Increase in efficiency of end milling of titanium alloys due to tools with multilayered composite nano-structured Zr-ZrN-(Zr,Al)N and Zr-ZrN-(Zr,Cr,Al)N Coatings[J].Coatings,2018,8(11):395.

    • [9] LOFAJ F,HVIŠOVÁ P,ZUBKO P,et al.Mechanical and tribological properties of the high target utilization sputtering W-C coatings on different substrates[J].International Journal of Refractory Metals and Hard Materials,2019,80:305-314.

    • [10] CHAWLA V,JAYAGANTHAN R,CHANADRA R.Structural characterizations of magnetron sputtered nanocrystalline TiN thin films [J].Materials Characterization,2008,59(8):1015-1020.

    • [11] BRIOIS P,MERCS D,BANAKH O.Structural and mechanical properties of(Al,Cr)N and(Al,Cr)SiN coatings reactively sputter deposited[J].Plasma Processes and Polymers,2007,4(S1):S677-S680.

    • [12] XIAN G,XIONG J,ZHAO H,et al.Evaluation of the structure and properties of the hard TiAlN-(TiAlN/CrAlSiN)-TiAlN multiple coatings deposited on different substrate materials[J].International Journal of Refractory Metals and Hard Materials,2019,85:21.

    • [13] GROSSMANN B,SCHALK N,CZETTL C,et al.Phase composition and thermal stability of arc evaporated Ti 1-x Al x N hard coatings with 0.4≤x≤0.67[J].Surface and Coatings Technology,2017,309:687-693.

    • [14] SHUM P W,TAM W C,LI K Y,et al.Mechanical and tribological properties of titanium-aluminium-nitride films deposited by reactive close-field unbalanced magnetron sputtering[J].Wear,2004,257(9-10):1030-1040.

    • [15] 朱丽慧,胡涛,彭笑,等.Al 含量对TiAlN涂层结合强度的影响[J].材料热处理学报,2015,36(3):154-158.ZHU L H,HU T,PENG X,et al.Effect of Al content on adhesion strength of TiAlN coatings[J].Transactions of Materials and Heat Treatment,2015,36(3):154-158.(in Chinese)

    • [16] ZHANG Q,XU Y X,ZHANG T F.Tribological properties,oxidation resistance and turning performance of AlTiN/AlCrSiN multilayer coatings by arc ion plating [J].Surface and Coatings Technology,2018,356:1-10.

    • [17] CHEN Y,DU H,CHEN M,et al.Structure and wear behavior of AlCrSiN-based coatings[J].Applied Surface Science,2016,370:176-183.

    • [18] 张建民.用球坑仪测量固体表面的硬度———球坑直径与磨坑时间的关系[J].真空,1997,2(3):16-17.ZHANG J M.Hardness measurement of the solid surface with ball cratering—The relation of ball crater diameter and time[J].Vacuum,1997,2(3):16-17.(in Chinese)

    • [19] 陈利.Ti-Al-N 基硬质涂层的热稳定性能、微结构及其力学、 切削性能的研究[D].长沙:中南大学,2009.CHEN L.Study on thermal stability,microstructure and mechanical and cutting properties of Ti-Al-N-based hard coatings[D].Changsha:Central South University,2009.(in Chinese)

    • [20] 张钧.多弧离子镀合金涂层/靶材成分离析现象的初步研究 [J].真空,1994(4):44-47.ZHANG J.Initial study on composition demixing effect of alloy coating/cathode material by multi-Arc Ion Plating[J].Vacuum,1994(4):44-47.(in Chinese)

    • [21] 杨鸿泰,代明江,李洪.Al 含量对TiAlN涂层组织结构和性能的影响[J].材料导报,2018,32(20):3573-3578.YANG H T,DAI M J,LI H.Effect of Al content microstructure and properties of TiAlN coating[J].Material guide B:Research Paper,2018,32(20):3573-3578.(in Chinese)

    • [22] 黄凯,李刘合.基体、过渡层偏压和涂层厚度对氧化铬涂层结晶取向的影响[J].中国表面工程,2020,33(1):73-83.HUANG K,LI L H.Effects of substrate,interlayer bias and coating thickness on crystal orientation of chromium oxide coatings[J].China Surface Engineering,2020,33(1):73-83.(in Chinese)

    • [23] JIMÉNEZ H,RESTREPO E,DEVIA A.Effect of the substrate temperature in ZrN coatings grown by the pulsed arc technique studied by XRD[J].Surface and Coatings Technology,2006,201(3-4):1594-1601.

    • [24] 梁俊才,周武平,张凤戈,等.TiAlN 涂层制备过程中 Ti,Al 元素存在形式的演变分析[J].稀有金属,2014,38(4):561-565.LIANG J C,ZHOU W P,ZHANG F G,et al.Evolution analysis of existing forms of Ti and Al elements during preparation of TiAlN coating[J].Chinese Journal of Rare Metals,2014,38(4):561-565.(in Chinese)

    • [25] PANDEY A,DALAL S,DUTTA S,et al.Structural characterization of polycrystalline thin films by X-ray diffraction techniques [J].Journal of Materials Science:Materials in Electronics,2021,32(2):1341-1368.

    • [26] WANG S Q,CHEN K H,CHEN L,et al.Effect of Al and Si additions on microstructure and mechanical properties of TiN coatings [J].China Surface Engineering,2011,18(2):310-313.

    • [27] THOMPSON C V.Structure evolution during processing of polycrystalline films[J].Annual Review of Materials Science,2000,30:159-190.

    • [28] HAKAMADA M,NAKAMOTO Y,MATSUMOTO H,et al.Relationship between hardness and grain size in electrodeposited copper films[J].Materials Science and Engineering:A,2007,457(1-2):120-126.

    • [29] 汪鹏,许昌庆,蔡飞,等.多弧离子镀TiAlSiN梯度涂层制备及切削性能[J].中国表面工程,2019,32(2):34-43.WANG P,XU C Q,CAI F,et al.Preparation and cutting performance of TiAlSiN gradient coating by multi-arc ion plating[J].China Surface Engineering,2019,32(2):34-43.(in Chinese)

    • [30] 刘孟奇.电弧离子镀CrAlSiN涂层结构与性能研究[D].兰州:西北师范大学,2017.LIU M Q.The structure and properties of CrAlSiN coatings using the cathodic arc ion plating deposition technique[D].Lanzhou:Northwest Normal University,2017.(in Chinese)

    • [31] 崔学军,程平,张海涛,等.涂层与基体界面结合强度测定模型的有限元模拟[J].吉林大学学报(工学版),2007,37(2):357-361.CUI X J,CHEN P,ZHANG H T,et al.Finite element simulation of a test model for interface bonding strength between coating and substrate[J].Journal of Jilin University(Engineering and Technology Edition),2007,37(2):357-361.

    • [32] 朱晓东,米彦郁,胡奈赛,等.膜基结合强度评定方法的探讨-划痕法、压入法、接触疲劳法测定的比较[J].中国表面工程,2002,15(4):28-31.ZHU X D,MI Y Y,HU N S,et al.Discussion on evaluation method of film-based bond strength-comparison of scratch method,press-in method and contact fatigue method[J].China Surface Engineering,2002,15(4):28-31.(in Chinese)

  • 参考文献

    • [1] GAO Y,CAI F,ZHANG L,et al.Structure optimization and cutting performance of gradient multilayer AlCrSiN films with ion source etching pretreatment[J].Journal of Materials Engineering and Performance,2020,29(2):997-1006.

    • [2] WU W W,CHEN W L,YANG S B.Design of AlCrSiN multilayers and nanocomposite coating for HSS cutting tools[J].Applied Surface Science,2015,351:803-810.

    • [3] JÄGER N,MEINDLHUMER M,SPOR S,et al.Microstructural evolution and thermal stability of AlCr(Si)N hard coatings revealed by in-situ high-temperature high-energy grazing incidence transmission X-ray diffraction[J].Acta Materialia,2020,186:545-554.

    • [4] LI P,CHEN L,WANG S Q.Microstructure,mechanical and thermal properties of TiAlN/CrAlN multilayer coatings[J].International Journal of Refractory Metals and Hard Materials,2013,40:51-57.

    • [5] FAGA M G,GAUTIER G,CARTASEGNA F,et al.AlSiTiN and AlSiCrN multilayer coatings:effects of structure and surface composition on tribological behavior under dry and lubricated conditions[J].Applied Surface Science,2016,365:218-226.

    • [6] SUN S Q,YE Y W,WANG Y X,et al.Structure and tribological performances of CrAlSiN coatings with different Si percentages in seawater[J].Tribology International,2017,115:591-599.

    • [7] DENG Y,CHEN W L,LI B X,et al.Physical vapor deposition technology for coated cutting tools:a review[J].Ceramics International,2020,46(11):18373-18390.

    • [8] VERESCHAKA A,OGANYAN M,BUBLIKOV Y,et al.Increase in efficiency of end milling of titanium alloys due to tools with multilayered composite nano-structured Zr-ZrN-(Zr,Al)N and Zr-ZrN-(Zr,Cr,Al)N Coatings[J].Coatings,2018,8(11):395.

    • [9] LOFAJ F,HVIŠOVÁ P,ZUBKO P,et al.Mechanical and tribological properties of the high target utilization sputtering W-C coatings on different substrates[J].International Journal of Refractory Metals and Hard Materials,2019,80:305-314.

    • [10] CHAWLA V,JAYAGANTHAN R,CHANADRA R.Structural characterizations of magnetron sputtered nanocrystalline TiN thin films [J].Materials Characterization,2008,59(8):1015-1020.

    • [11] BRIOIS P,MERCS D,BANAKH O.Structural and mechanical properties of(Al,Cr)N and(Al,Cr)SiN coatings reactively sputter deposited[J].Plasma Processes and Polymers,2007,4(S1):S677-S680.

    • [12] XIAN G,XIONG J,ZHAO H,et al.Evaluation of the structure and properties of the hard TiAlN-(TiAlN/CrAlSiN)-TiAlN multiple coatings deposited on different substrate materials[J].International Journal of Refractory Metals and Hard Materials,2019,85:21.

    • [13] GROSSMANN B,SCHALK N,CZETTL C,et al.Phase composition and thermal stability of arc evaporated Ti 1-x Al x N hard coatings with 0.4≤x≤0.67[J].Surface and Coatings Technology,2017,309:687-693.

    • [14] SHUM P W,TAM W C,LI K Y,et al.Mechanical and tribological properties of titanium-aluminium-nitride films deposited by reactive close-field unbalanced magnetron sputtering[J].Wear,2004,257(9-10):1030-1040.

    • [15] 朱丽慧,胡涛,彭笑,等.Al 含量对TiAlN涂层结合强度的影响[J].材料热处理学报,2015,36(3):154-158.ZHU L H,HU T,PENG X,et al.Effect of Al content on adhesion strength of TiAlN coatings[J].Transactions of Materials and Heat Treatment,2015,36(3):154-158.(in Chinese)

    • [16] ZHANG Q,XU Y X,ZHANG T F.Tribological properties,oxidation resistance and turning performance of AlTiN/AlCrSiN multilayer coatings by arc ion plating [J].Surface and Coatings Technology,2018,356:1-10.

    • [17] CHEN Y,DU H,CHEN M,et al.Structure and wear behavior of AlCrSiN-based coatings[J].Applied Surface Science,2016,370:176-183.

    • [18] 张建民.用球坑仪测量固体表面的硬度———球坑直径与磨坑时间的关系[J].真空,1997,2(3):16-17.ZHANG J M.Hardness measurement of the solid surface with ball cratering—The relation of ball crater diameter and time[J].Vacuum,1997,2(3):16-17.(in Chinese)

    • [19] 陈利.Ti-Al-N 基硬质涂层的热稳定性能、微结构及其力学、 切削性能的研究[D].长沙:中南大学,2009.CHEN L.Study on thermal stability,microstructure and mechanical and cutting properties of Ti-Al-N-based hard coatings[D].Changsha:Central South University,2009.(in Chinese)

    • [20] 张钧.多弧离子镀合金涂层/靶材成分离析现象的初步研究 [J].真空,1994(4):44-47.ZHANG J.Initial study on composition demixing effect of alloy coating/cathode material by multi-Arc Ion Plating[J].Vacuum,1994(4):44-47.(in Chinese)

    • [21] 杨鸿泰,代明江,李洪.Al 含量对TiAlN涂层组织结构和性能的影响[J].材料导报,2018,32(20):3573-3578.YANG H T,DAI M J,LI H.Effect of Al content microstructure and properties of TiAlN coating[J].Material guide B:Research Paper,2018,32(20):3573-3578.(in Chinese)

    • [22] 黄凯,李刘合.基体、过渡层偏压和涂层厚度对氧化铬涂层结晶取向的影响[J].中国表面工程,2020,33(1):73-83.HUANG K,LI L H.Effects of substrate,interlayer bias and coating thickness on crystal orientation of chromium oxide coatings[J].China Surface Engineering,2020,33(1):73-83.(in Chinese)

    • [23] JIMÉNEZ H,RESTREPO E,DEVIA A.Effect of the substrate temperature in ZrN coatings grown by the pulsed arc technique studied by XRD[J].Surface and Coatings Technology,2006,201(3-4):1594-1601.

    • [24] 梁俊才,周武平,张凤戈,等.TiAlN 涂层制备过程中 Ti,Al 元素存在形式的演变分析[J].稀有金属,2014,38(4):561-565.LIANG J C,ZHOU W P,ZHANG F G,et al.Evolution analysis of existing forms of Ti and Al elements during preparation of TiAlN coating[J].Chinese Journal of Rare Metals,2014,38(4):561-565.(in Chinese)

    • [25] PANDEY A,DALAL S,DUTTA S,et al.Structural characterization of polycrystalline thin films by X-ray diffraction techniques [J].Journal of Materials Science:Materials in Electronics,2021,32(2):1341-1368.

    • [26] WANG S Q,CHEN K H,CHEN L,et al.Effect of Al and Si additions on microstructure and mechanical properties of TiN coatings [J].China Surface Engineering,2011,18(2):310-313.

    • [27] THOMPSON C V.Structure evolution during processing of polycrystalline films[J].Annual Review of Materials Science,2000,30:159-190.

    • [28] HAKAMADA M,NAKAMOTO Y,MATSUMOTO H,et al.Relationship between hardness and grain size in electrodeposited copper films[J].Materials Science and Engineering:A,2007,457(1-2):120-126.

    • [29] 汪鹏,许昌庆,蔡飞,等.多弧离子镀TiAlSiN梯度涂层制备及切削性能[J].中国表面工程,2019,32(2):34-43.WANG P,XU C Q,CAI F,et al.Preparation and cutting performance of TiAlSiN gradient coating by multi-arc ion plating[J].China Surface Engineering,2019,32(2):34-43.(in Chinese)

    • [30] 刘孟奇.电弧离子镀CrAlSiN涂层结构与性能研究[D].兰州:西北师范大学,2017.LIU M Q.The structure and properties of CrAlSiN coatings using the cathodic arc ion plating deposition technique[D].Lanzhou:Northwest Normal University,2017.(in Chinese)

    • [31] 崔学军,程平,张海涛,等.涂层与基体界面结合强度测定模型的有限元模拟[J].吉林大学学报(工学版),2007,37(2):357-361.CUI X J,CHEN P,ZHANG H T,et al.Finite element simulation of a test model for interface bonding strength between coating and substrate[J].Journal of Jilin University(Engineering and Technology Edition),2007,37(2):357-361.

    • [32] 朱晓东,米彦郁,胡奈赛,等.膜基结合强度评定方法的探讨-划痕法、压入法、接触疲劳法测定的比较[J].中国表面工程,2002,15(4):28-31.ZHU X D,MI Y Y,HU N S,et al.Discussion on evaluation method of film-based bond strength-comparison of scratch method,press-in method and contact fatigue method[J].China Surface Engineering,2002,15(4):28-31.(in Chinese)

  • 手机扫一扫看