en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

叶福兴(通信作者),男,1974年出生,博士,教授,博士研究生导师。主要研究方向为增材制造、表面工程和焊接。E-mail:yefx@tju.edu.cn

中图分类号:TG456

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20210226001

参考文献 1
STOTKO C.Laser sintering:layer by layer[J].Nature Photonics,2009,3(5):265-266.
参考文献 2
JONES N.Science in three dimensions:the print revolution[J].Nature,2012,487(7405):22-23.
参考文献 3
ROCA J B,VAISHNAV P,FUCHS E R H,et al.Policy needed for additive manufacturing[J].Nature Materials,2016,15(8):815-818.
参考文献 4
MACDONALD E,WICKER R.Multiprocess 3D printing for increasing component functionality [J].Science,2016,353(6307):aaf2093.1-aaf2093.8.
参考文献 5
TRUBY R L,LEWIS J A.Printing soft matter in three dimensions[J].Nature,2016,540(7633):371-378.
参考文献 6
CHIN S Y,POH Y C,KOHER A C,et al.Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices[J].Science Robotics,2017,2(2):aah6451.
参考文献 7
IBRAHIM K A,WU B,BRANDON N P.Electrical conductivity and porosity in stainless steel 316L scaffolds for electrochemical devices fabricated using selective laser sintering[J].Materials & Design,2016,106:51-59.
参考文献 8
QIU C L,YUE S,ADKINS N J E,et al.Influence of processing conditions on structure and compressive properties of cellular lattice structures fabricated by selective laser melting[J].Materials Science & Engineering A,2015,638:228-231.
参考文献 9
ZHANG B,LI Y,BAI Q.Defect formation mechanisms in selective laser melting:a review[J].Chinese Journal of Mechanical Engineering,2017,30(3):515-527.
参考文献 10
LIU Q C,ELAMBASSERIL J,SUN S J,et al.The effect of manufacturing defects on the fatigue behaviour of Ti-6Al-4V specimens fabricated using selective laser melting[J].Advanced Materials Research,2014,891-892:1519-1524.
参考文献 11
ABOULKHAIR N T,EVERITT N M,ASHCROFT I,et al.Reducing porosity in AlSi10Mg parts processed by selective laser melting[J].Additive Manufacturing,2014,1-4:77-86.
参考文献 12
GONG H J,RAFI K,GU H F,et al.Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting[J].Materials & Design,2015,86:545-554.
参考文献 13
WANG G,CHEN X,QIU C.On the macro-and micro-deformation mechanisms of selectively laser melted damage tolerant metallic lattice structures [J].Journal of Alloys and Compounds,2021,852:156985.
参考文献 14
LIU Y,YANG Y Q,MAI S Z,et al.Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder[J].Materials & Design,2015,87:797-806.
参考文献 15
YANG L,LO L,DING S,et al.Monitoring and detection of meltpool and spatter regions in laser powder bed fusion of super alloy Inconel 625 [J].Progress in Additive Manufacturing,2020,5(4):367-378.
参考文献 16
GASPER A N D,SZOST B,WANG X,et al.Spatter and oxide formation in laser powder bed fusion of Inconel 718[J].Additive Manufacturing,2018,24:446-456.
参考文献 17
SAMES W J,LIST F A,PANNALA S,et al.The metallurgy and processing science of metal additive manufacturing[J].International Materials Reviews,2016,61(5):1-46.
参考文献 18
FRAZIER W E.Metal additive manufacturing:a review [J].Journal of Materials Engineering & Performance,2014,23(6):1917-1928.
参考文献 19
LEWANDOWSKI J J,SEIFI M.Metal additive manufacturing:a review of mechanical properties[J].Annual Review of Materials Research,2016,46:151-186.
参考文献 20
牛建强.面向增材制造的粉末束流对激光能量散射损失规律的理论研究[J].应用激光,2014,34(3):211-216.NIU J Q.Theoretical study on the law of laser energy scattering loss by powder beam for additive manufacturing [J].Applied Laser,2014,34(3):211-216.(in Chinese)
参考文献 21
王明娣.基于光内送粉的激光熔覆快速制造机理与工艺研究 [D].南京:南京航空航天大学,2008.WANG M D.Research on the mechanism and process of laser cladding rapid manufacturing based on optical powder feeding [D].Nanjing:Nanjing University of Aeronautics and Astronautics,2008.(in Chinese)
参考文献 22
靳绍巍,何秀丽,武扬,等.同轴送粉激光熔覆中粉末流对光束能量的衰减作用[J].中国激光,2011,38(9):67-72.JIN S W,HE X L,WE Y,et al.Effect of powder flow on beam energy attenuation in coaxial powder feeding laser cladding[J].Chinese Journal of Lasers,2011,38(9):67-72.(in Chinese)
参考文献 23
张冬云,董东东,张晖峰,等.激光熔覆过程光束能量衰减的模拟[J].北京工业大学学报,2017(4):537-545.ZHANG D Y,DONG D D,ZHANG H F,et al.Simulation of beam energy attenuation in laser cladding process[J].Journal of Beijing University of Technology,2017(4):537-545.(in Chinese)
参考文献 24
张冬云,张晖峰,董东东,等.激光直接金属沉积中激光束衰减的模拟研究[J].激光与光电子学进展,2016,53(8):209-217.ZHANG D Y,ZHANG H F,DONG D D,et al.Simulation study of laser beam attenuation in laser direct metal deposition [J].Laser and Optoelectronics Progress,2016,53(8):209-217.(in Chinese)
参考文献 25
HUANG Y L,LIANG G Y,SU J Y,et al.Interaction between laser beam and powder stream in the process of laser cladding with powder feeding [J].Modelling & Simulation in Materials Science & Engineering,2004,13(1):47.
参考文献 26
黄延禄,李建国,梁工英,等.送粉激光熔覆中送粉速率对激光束与粉末流相互作用的影响[J].稀有金属材料与工程,2005,34(10):1520-1523.HUANG Y L,LI J G,LIANG G Y,et al.Effect of powder feeding rate on the interaction between laser beam and powder flow in powder feeding laser cladding[J].Rare Metal Materials and Engineering,2005,34(10):1520-1523.(in Chinese)
参考文献 27
TABERNERO I,LAMIKIZ A,MARTÍNEZ S,et al.Modelling of energy attenuation due to powder flow-laser beam interaction during laser cladding process[J].Journal of Materials Processing Technology,2012,212(2):516-522.
参考文献 28
张晖峰,张冬云,董冬冬,等.关于同轴激光直接金属沉积中粉末流导致的激光衰减的模拟研究[C]//第16届全国特种加工学术会议论文集(下).厦门,2015.ZHANG H F,ZHANG D Y,DONG D D,et al.Study on the simulation of laser attenuation caused by powder flow in coaxial laser direct metal deposition[C]//The 16th National Symposium on Special Processing(Part 2).Xiamen,2015.(in Chinese)
参考文献 29
DEVESSE W,BAERE D D,GUILLAUME P.Modeling of laser beam and powder flow interaction in laser cladding using ray-tracing[J].Journal of Laser Applications,2015,27(S2):S29208.
参考文献 30
GRUJICIC M,HU Y,FADEL G M,et al.Optimization of the LENS rapid fabrication process for in-flight melting of feed powder[J].Journal of Materials Synthesis & Processing,2001,9(5):223-233.
参考文献 31
HE X,MAZUMDER J.Transport phenomena during direct metal deposition[J].Journal of Applied Physics 2007,101:053113.
参考文献 32
GUSAROV A V,KRUTH J P.Modelling of radiation transfer in metallic powders at laser treatment[J].International Journal of Heat & Mass Transfer,2005,48(16):3423-3434.
参考文献 33
ODINOT J,JANKOWIAK A,PETIT J,et al.Direct laser additive manufacturing of ceramics by powder deposition[C]//Materials Science Forum.Paris,France,2018:2178-2183.
参考文献 34
杨义成,黄瑞生,孙谦,等.激光送粉增材制造光粉交互作用机制分析[J].焊接学报,2019,40(11):68-74.YANG Y C,HUANG R S,SUN Q,et al.Analysis of interaction mechanism of light and powder in laser powder feeding additive manufacturing[J].Transactions of the China Welding Institution,2019,40(11):68-74.(in Chinese)
参考文献 35
杨义成,黄瑞生,方乃文,等.光粉交互对同轴送粉增材制造能量传输的影响[J].焊接学报,2020,41(6):19-23.YANG Y C,HUANG R S,FANG N W,et al.Influence of light and powder interaction on energy transfer in coaxial powder feeding additive manufacturing[J].Transactions of the China Welding Institution,2020,41(6):19-23.(in Chinese)
参考文献 36
WANG G Y,QIN Y,YANG S.Characterization of laser-powder interaction and particle transport phenomena during laser direct deposition of W-Cu composite [J].Additive Manufacturing,2021,37:101722.
参考文献 37
PEKKARINEN J,SALMINEN A,KUJANP V,et al.Powder cloud behavior in laser cladding using scanning optics[J].Journal of Laser Applications,2016,28(3):032007.
参考文献 38
HUANG Y Z,KHAMESEE M B,TOYSERKANI E.A comprehensive analytical model for laser powder-fed additive manufacturing[J].Additive Manufacturing,2016,12:90-99.
参考文献 39
MANVATKAR V,DE A,DEBROY T.Heat transfer and material flow during laser assisted multi-layer additive manufacturing [J].Journal of Applied Physics,2014,116(12):133.
参考文献 40
FU Y,LOREDO A,MARTIN B,et al.A theoretical model for laser and powder particles interaction during laser cladding[J].Journal of Materials Processing Technology,2002,128(1-3):106-112.
参考文献 41
GU D D,MEINERS W,WISSENBACH K,et al.Laser additive manufacturing of metallic components:materials,processes and mechanisms [J].International Materials Reviews,2013,57(3):133-164.
参考文献 42
KRUTH J P,WANG X,LAOUI T,et al.Lasers and materials in selective laser sintering[J].Assembly Automation,2003,23(4):357-371.
参考文献 43
KURATOV A S,BRANTOV A V,ALIEV Y M,et al.Laserinduced thermoelectric current as a source of generation of THz surface electromagnetic waves[J].Quantum Electronics,2018,48(7):653-657.
参考文献 44
李俊昌.激光的衍射及热作用计算[M].北京:科学出版社,2002.LI J C.Diffraction and thermal action calculation of laser[M].Beijing:Science Press,2002.(in Chinese)
参考文献 45
ALISOY H Z,ALAGOZ B B,US S B,et al.Spatio-spectral analyses of electromagnetic wave energy absorption and heating effect [J].Optik-International Journal for Light and Electron Optics,2014,125(15):4124-4130.
参考文献 46
ZHANG Z,GE P,LI T,et al.Electromagnetic wave-based analysis of laser-particle interactions in directed energy deposition additive manufacturing[J].Additive Manufacturing,2020,34:101284.
参考文献 47
PRASAD H S,BRUECKNER F,KAPLAN A F H.Powder catchment in laser metal deposition[J].Journal of Laser Applications,2019,31(2):022308.
参考文献 48
吴瑞.激光熔覆成形过程中温度场演化的研究[D].北京:北京工业大学,2015.WU R.Research on the evolution of temperature field in laser clad forming [ D].Beijing:Beijing University of Technology,2015.(in Chinese)
参考文献 49
李媛媛.同轴送粉式激光熔覆气体-粉末流对熔池形貌的影响研究[D].长沙:湖南大学,2013.LI Y Y.Study on the influence of gas and powder flow in coaxial laser cladding on the morphology of molten pool[D].Changsha:Hunan University,2013.(in Chinese)
参考文献 50
王晨.基于光内送粉激光熔覆扭曲薄壁件的成形研究[D].苏州:苏州大学,2012.WANG C.Research on forming of twisted thin-walled parts by laser cladding based on optical powder feeding [ D].Soochow:Soochow University,2012.(in Chinese)
参考文献 51
吴少华,石世宏,肖军艳,等.环形激光光内送粉成形薄壁件熔池特征研究[J].应用激光,2013,33(3):250-253.WU S H,SHI S H,XIAO J Y,et al.Research on the characteristics of melting pool of thin-walled parts formed by ring laser intra-optical powder feeding[J].Applied Laser,2013,33(3):250-253.(in Chinese)
参考文献 52
JENDRZEJEWSKI R,S ' LIWIN ' SKIM G,KRAWCZUK M,et al.Temperature and stress fields induced during laser cladding[J].Computers & Structures,2003,82:653-658.
参考文献 53
TOYSERKANI E,KHAJEPOUR A,CORBIN S.Three-dimensional finite element modeling of laser cladding by powder injection:Effects of powder feedrate and travel speed on the process [J].Journal of Laser Applications,2003,15(3):153-160.
参考文献 54
SHIOMI M,YOSHIDOME A,ABE F,et al.Finite element analysis of melting and solidifying processes in laser rapid prototyping of metallic powders [J].International Journal of Machine Tools and Manufacture,1999,39:237-252.
参考文献 55
HAO M Z,SUN Y W.A FEM model for simulating temperature field in coaxial laser cladding of TI6AL4V alloy using an inverse modeling approach[J].International Journal of Heat and Mass Transfer,2013,64:352-360.
参考文献 56
路华伟.激光熔覆成形薄壁件及其温度场的有限元模拟研究 [D].沈阳:东北大学,2016.LU H W.Finite element simulation of laser clad forming thin walls and its temperature field[D].Shenyang:Northeastern University,2016.(in Chinese)
参考文献 57
DEBROY T,WEI H,ZUBACK J,et al.Additive manufacturing of metallic components process,structure and properties [J].Progress in Materials Science,2018,92:112-224.
参考文献 58
BIDARE P,BITHARAS I,WARD R M,et al.Fluid and particle dynamics in laser powder bed fusion [J].Acta Materialia,2018,142:107-120.
参考文献 59
MARTIN J H,YAHATA B D,HUNDLEY J M,et al.3D printing of high-strength aluminium alloys[J].Nature,2017,549:365-369.
参考文献 60
ZHANG M J,CHEN G Y,ZHOU Y,et al.Observation of spatter formation mechanisms in high-power fiber laser welding of thick plate[J].Applied Surface Science,2013,280:868-875.
参考文献 61
DAI D H,GU D D.Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder[J].International Journal of Machine Tools & Manufacture,2015,88:95-107.
参考文献 62
QIU C,PANWISAWAS C,WARD M,et al.On the role of melt flow into the surface structure and porosity development during selective laser melting[J].Acta Materialia,2015,96:72-79.
参考文献 63
GUNENTHIRAM V,PEYRE P,SCHNEIDER M,et al.Analysis of laser-melt pool-powder bed interaction during the selective laser melting of a stainless steel[J].Journal of Laser Applications,2017,29(2):022303.
参考文献 64
MATTHEWS M J,GUSS G,KHAIRALLAH S A,et al.Denudation of metal powder layers in laser powder bed fusion processes [J].Acta Materialia,2016,114:33-42.
参考文献 65
LY S,RUBENCHIK A M,KHAIRALLAH S A,et al.Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing[J].Scientific Reports,2017,7(1):4085.
参考文献 66
曹润辰.18Ni300 马氏体时效钢选区激光熔化工艺及金属粉末激光熔化实验研究[D].上海:上海交通大学,2014.CAO R C.Selective Laser melting process of 18Ni300 maraging steel and experimental study of metal powder laser melting[D].Shanghai:Shanghai Jiao Tong University,2014.(in Chinese)
参考文献 67
CHRISTIAN M,KARINA G,ARNE R,et al.Interaction between laser radiation and metallic powder of 316L austenitic steel during selective laser melting [J].Materials Characterization,2018,145:337-346.
参考文献 68
BERTOLI U S,GUSS G,WU S,et al.In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing[J].Materials & Design,2017,135:385-396.
参考文献 69
LEUNG C L A,MARUSSI S,ATWOOD R C,et al.In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing[J].Nature Communi cations,2018,9(1):1355.
参考文献 70
LOH L E,CHUA C K,YEONG W Y,et al.Numerical investigation and an effective modelling on the Selective Laser Melting(SLM)process with aluminium alloy 6061 [J].International Journal of Heat & Mass Transfer,2015,80:288-300.
参考文献 71
LEE Y S,ZHANG W.Modeling of heat transfer,fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion[J].Additive Manufacturing,2016,12:178-188.
参考文献 72
BADROSSAMAY M,CHILDS T H C.Further studies in selective laser melting of stainless and tool steel powders[J].International Journal of Machine Tools and Manufacture,2007,47(5):779-784.
参考文献 73
CHEN Z,XIANG Y,WEI Z,et al.Thermal dynamic behavior during selective laser melting of K418 superalloy:numerical simulation and experimental verification [J].Applied Physics A,2018,124(4):313.
参考文献 74
KRNER C,ATTAR E,HEINL P.Mesoscopic simulation of selective beam melting processes[J].Journal of Materials Processing Technology,2011,211(6):978-987.
参考文献 75
KHAIRALLAH S A,ANDERSON A T,RUBENCHIK A,et al.Laser powder-bed fusion additive manufacturing:Physics of complex melt flow and formation mechanisms of pores,spatter,and denudation zones[J].Acta Materialia,2016,108:36-45.
参考文献 76
LEE J Y,KO S H,FARSON D F,et al.Mechanism of keyhole formation and stability in stationary laser welding[J].Journal of Physics D Applied Physics,2002,35(13):1570-1576.
参考文献 77
KATAYAMA,S.Introduction:fundamentals of laser welding [M].Cambridge:Woodhead Publishing Limited,2013.
参考文献 78
PAUL A,DEBROY T.Free surface flow and heat transfer in conduction mode laser welding[J].Metallurgical and Materials Transactions B,1988,19(6):851-858.
参考文献 79
KING W E,BARTH H D,CASTILLO V M,et al.Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing[J].Journal of Materials Processing Technology,2014,214(12):2915-2925.
参考文献 80
PANWISAWAS C,PERUMAL B,WARD R M,et al.Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys:Experimental and modelling[J].Acta Materialia,2017,126:251-263.
参考文献 81
YANG J J,HAN J,YU H C,et al.Role of molten pool mode on formability,microstructure and mechanical properties of selective laser melted Ti-6Al-4V alloy[J].Materials & Design,2016,110:558-570.
参考文献 82
WANG H,ZOU Y.Microscale interaction between laser and metal powder in powder-bed additive manufacturing:Conduction mode versus keyhole mode[J].International Journal of Heat and Mass Transfer,2019,142:118473.
目录contents

    摘要

    激光增材制造是通过激光加热熔化粉末或丝材并逐层叠加而形成所需工件的一种增量制造技术。 该技术涉及非常复杂的非平衡物理和化学冶金过程, 在加工过程中易产生非平衡组织和晶粒取向。 激光与粉末的相互作用过程是整个加工过程中最为重要的部分,系统总结激光与粉末的相互作用对于增进对激光增材制造技术的理解,进而提升工件性能具有重要的意义。 按照送粉式与铺粉式激光增材制造两种加工方式,分析了激光能量的衰减、粉末颗粒温度的上升以及激光-粉末-熔池的相互作用,综述了激光与粉末相互作用的研究现状。

    Abstract

    Laser additive manufacturing is an incremental manufacturing technology that applies laser energy to melt powder or wire to achieve layer-by-layer stacking to form the required workpiece. This process involves very complex non-equilibrium physical and chemical metallurgical processes, which easily result in the formation of non-equilibrium phases and crystalline orientation. The interaction process between laser and powder is the most important part of the entire processing process. In-depth summary of the interaction between laser and powder is of great significance for improving the understanding of laser additive manufacturing technology and improving the performance of workpieces. The current research status of laser and powder interaction is summarized based on two processing methods: powder feeding and powder bed laser additive manufacturing. The attenuation of laser energy, the rise of powder particle temperature and the interaction of laser-powder-melt pool are analyzed.

  • 0 前言

  • 激光增材制造( Laser additive manufacturing, LAM)是一种逐点逐线逐层制造技术,该技术使用激光束根据相应的计算机辅助设计(CAD) 模型的切片熔化粉末材料,将复杂的3D几何形状简化为更简单的2D制造。目前,激光选区熔化( Selective laser melting, SLM)、激光金属沉积(Laser metal deposition, LMD,也被称激光金属熔覆)是两种最常见的激光增材制造技术,根据粉末添加方式该技术又可以分为送粉式和铺粉式激光增材制造两大类。

  • 由于LAM技术的原材料选择范围广泛,具有可以进行较为精密复杂结构的加工等优势,所以引起了工业界和学术界极大的兴趣[1-3],目前已经在关键零部件生产中得到了应用,如涡轮叶片[3-4]、医疗器件[5-6]和能量存储装置[7],但在实际应用中依然存在许多不足,比如尺寸精度差[8],容易产生未熔合[9-10]、残余孔隙[11-13]和飞溅等[14-16],这可能导致服役期间LAM组件屈服强度、疲劳强度等力学性能不一致[17-19]。为优化工艺参数,减少LAM缺陷形成, 需要对LAM技术激光与粉末的相互作用有更加深刻的理解。因此国内外学者通过试验和数值模拟的方法对激光与粉末的相互作用进行了大量研究,以下将分别从送粉式与铺粉式激光增材制造过程中激光与粉末的相互作用进行总结分析。

  • 1 送粉式激光增材制造过程中激光与粉末的相互作用

  • 送粉式激光增材制造过程原理如图1所示,其重要特点之一就是粉末与送粉气体组成的两相流在飞行过程中经过激光束的照射加热后进入熔池。在该过程中激光与粉末发生剧烈的相互作用,而激光能量的衰减、粉末温度的上升以及粉末进入熔池后的冶金、凝固过程是其中的研究重点。

  • 图1 送粉式激光增材制造原理

  • Fig.1 Principle of powder feeding laser additive manufacturing

  • 1.1 激光能量的衰减

  • 当激光照射到粉末颗粒时,粉末颗粒会对激光产生散射作用并吸收激光的能量,导致激光能量衰减以及粉末温度上升。当激光波长远大于粉末颗粒尺寸时,发生瑞利散射;当激光波长近似于颗粒尺寸或小于颗粒尺寸时,会发生米氏散射。牛建强[20] 基于米氏散射理论建立了均匀粉末流对激光的衰减模型,研究粉末流对激光能量的散射损失规律。结果表明:激光能量散射损失与粉末颗粒物理特性、激光波长、粉末颗粒大小、送粉量等因素有关。粉末颗粒导电性能越好,其对激光的散射损失越大;激光波长越长,散射损失也越大;而在相同送粉量时,粉末颗粒半径越小,激光能量散射损失越大。此后也有基于米氏理论建立针对同轴送粉激光金属熔覆整个送粉区域的数学模型[21]。靳绍巍等[22] 假设粉末颗粒为均匀球体,建立了同轴送粉的粉末浓度分布的三维模型(图2),分析了激光能量的衰减规律。

  • 图2 3D模型计算区域示意图

  • Fig.2 Schematic diagram of 3D model calculation zone

  • 张冬云等[23-24]研究表明,激光束穿过粉末云的过程中,未到粉末交汇处时光强衰减较弱,汇聚处能量衰减明显。但在这些模型中均未考虑在激光辐照下,粉末颗粒会吸收激光能量,从而温度升高导致物性参数发生一定的变化,这会对结果产生一定的影响, 形成较大的误差。针对这种情况, 黄延禄等[25-26]引入粉末粒子物性参数与温度变化的函数, 采用经典的Lambert-Beer定理和Mie理论计算了粉末流对激光功率衰减的影响,激光能量衰减模型得到进一步完善。

  • 相较于通过直接模拟计算激光与粉末颗粒发生散射导致激光能量衰减,TABERNERO等[27] 提出了一种基于粉末粒子在基底上形成阴影的模型,用该模型能够估计光束的衰减,并能表征到达基底表面的能量密度。引入了试验测量的粒子尺寸分布和光束发散角,对衰减模型进行了试验调整和验证,结果证明误差平均值低于测量值的10%,同时发现对于固定的质量流量,如果使用较小的平均颗粒尺寸,加热的粉末流辐射的能量较高,即粉末流从激光束吸收更多的能量,并且产生的衰减较高,如图3所示。

  • 对激光束进行离散化,将其视为许多独立的激光光线也是分析激光衰减非常重要的研究方法,无论在试验研究还是在数值模拟中都发挥着重要作用。张晖峰等[28]将粉末颗粒轨迹进行简化,建立了一个射线追踪模型(图4),其中光亮斑点为粉末颗粒。光粉相互作用的光线散射模型如图5所示,背景光为入射光线,黑色箭头所指为散射光。将激光束离散为许多独立的光线,进而分析激光与粉末的相互作用,研究考虑了激光波长、粒子尺寸和粒子个数对传播过程的影响,模拟结果近似吻合测量得到的粉末粒子悬浮液的透射率光谱曲线变化趋势。但在该研究中对粉末颗粒轨迹进行较大程度的简化, 并且没有考虑实际系统中存在的复杂粉末流动分布。为此,DEVESSE等[29] 提出了一种能够避免将粉末流动简化为统计粒子密度分布的射线追踪方法,将激光分成许多三角形光线进行初始化(图6), 舍弃了忽略粒子反射和阴影重叠等影响模拟结果精度的假设,并利用蒙特卡罗模拟方法生成了一组粉末颗粒的运动轨迹,更加准确地计算粉末流动对激光能量分布的影响。

  • 图3 对于6.3g/min的质量流量,用热成像摄像机获得的相互作用区域的图像

  • Fig.3 For a mass flow rate of 6.3g/min, images of the interaction area obtained with a thermal imaging camera

  • 图4 射线追踪模型中射线到达圆柱侧面

  • Fig.4 Rays arrive at inner surface in ray-tracing model

  • 图5 光线散射示意图

  • Fig.5 Schematic diagram of light scattering

  • 图6 三角形光线追踪模型

  • Fig.6 Triangular ray-tracing model

  • 光线追踪算法通过将激光束分成多条三角形光线来初始化。每条光线由3个矢量定义,这3个矢量定义了边界角的方向,并汇聚到激光束的焦点。根据光束的强度模式,光线被赋予固定的能量。图6所示为具有高斯强度分布的激光束,该激光束被分成28条三角形光线。光线的阴影表示它们包含的能量(较暗的光线包含更多的能量)。在 Z=0平面上放置了一个虚拟传感器,它是一个正方形网格, 有大量大小相等的单元。然后追踪每条射线的路径,直到传感器被击中。由于射线的路径可能被粒子阻挡,首先,根据粒子到射线原点的距离对粒子进行排序。对于这个集合中的每个粒子,执行一个数学测试来检查它是否阻挡了光线的路径。如果光线击中一个粒子,由于吸收它的一部分能量被转移到粒子上。然后,光线被细分为一组新的光线,其中一些可以继续自由传播,另一些被粒子反射。然后对每一条新射线递归地重复追踪过程。当传感器被击中、光线被导向外层空间或光线能量变得小于机器精度时,光线追踪停止。模拟结果表明,颗粒尺寸分布的选择对吸收的颗粒能量模式有显著影响,而对激光束衰减的影响不太明显。初始激光强度模式的选择主要控制照射表面上的能量分布。发现它对激光束的衰减只有有限的影响,但对总的吸收和损失能量有很大影响。所呈现的光和粒子能量流是激光熔覆过程中工件内部热传导和流体流动过程的驱动力。

  • 1.2 粉末对能量的吸收及温度变化

  • GRUJICIC等[30]的研究表明:激光与粉末的相互作用对粉末粒子从喷嘴到工件表面的飞行过程有重要的影响,并与MAZUMDER等[31-32] 共同分析了激光对粉末的影响机制,利用热平衡估算了激光与粉末相互作用过程中粉末的温升,研究得到粒子撞击沉积层后,其对激光束的吸收程度与颗粒大小及其化学成分有关。 ODINOT等[33] 针对Al2O3 和Al2O3-Y2O3-ZrO2 三元氧化物,开发了LMD-COLLED®工艺(直接激光增材制造工艺),研究了粉末流动性、激光-材料相互作用和热梯度控制,通过加入掺杂离子,使陶瓷粉末的光吸收增加到90%。

  • 杨义成等[34-36] 通过高速成像及图像信息处理技术,如图7、图8所示,分析了粉末颗粒吸收激光能量后导致的温度以及状态的变化。

  • 图7 高速摄像示意图

  • Fig.7 Schematic diagram of high-speed camera

  • 图8 高速摄像光粉作用信息处理示意图

  • Fig.8 Schematic diagram of information processing between laser and powder by high-speed camera

  • PEKKARINEN等[37]利用扫描光学方法研究了送粉角度和载粉气体流量对激光熔覆粉末云行为的影响。通过分光计等设备对粉末云发出的辉光进行测量,进而推出粉末云温度在不同送粉角度和气体流量下的变化。同时发现了粉末云的稳定性高度依赖于测试参数,光谱仪数据和高速视频显示,当粉末材料开始蒸发时,它形成一种羽流,粉末云/羽流开始发射可见光,粉末云发射的光的强度高度依赖于粉末云内部的蒸发水平。当粉末蒸发时,蒸汽开始吸收激光束的能量。当羽流在光谱仪的范围内发射能量时,这种能量吸收在光谱仪中尤为明显,如图9所示。

  • HUANG等[38]提出了一种送粉式激光增材制造综合分析模型,该模型将运动激光束与高斯能量分布、粉末流和半无限衬底耦合在一起,同时考虑了衰减激光功率强度分布、加热粉末空间分布和熔池三维形状及其边界变化。通过对Inconel625合金的沉积试验验证,证明该模型能够准确地预测熔覆层的几何形状。 MANVATKAR等[39] 开发了一个体积热源模型,其中考虑了激光-粉末的相互作用,使用单位面积激光功率的能量密度和粉末粒子的表面积来计算粉末的温升,以及基体经过激光照射和粉末撞击后温度的变化。 FU等[40]用有效照射面积计算吸收的激光能量。研究了不同粉末参数下粒子温度的变化以及激光束能量分布。 TABERNERO等[27] 使用光线追踪法来追踪激光路径。在提出的激光-粉末相互作用模型中对激光反射的影响进行了深入研究。然而,在光路方法中仍然没有考虑粉末的不均匀温升。除了粉末的不均匀温升之外,激光是一种具有波-粒二向性的电磁波,激光波长和能量密度极大地影响材料的激光吸收率[41-42],在研究中也没有考虑激光束的波动特征。对于由激光引起的激光-粒子相互作用,由来自粒子的感应电流引起的热能可以将激光电磁波特征与粉末的温升联系起来[43]。当空间分布的粉末在激光照射方向上存在重叠时,电磁波-传热模型揭示了粉末温升的详细物理性质。激光的电磁波长可以纳入计算,激光-粒子相互作用的详细特征可以由此揭示,提出的模型包括这种相互作用及其对沉积材料温度的影响。激光束可以被视为具有指定波长的高频电磁波[44]。空间分布的粉末颗粒的加热可以使用耦合电磁波加热方法进行建模[45]。为此,ZHANG等[46] 提出了一种基于电磁波理论的修正热源模型,采用双椭球移动热源模型,用有限元法模拟LDAM的温度变化。通过建模和试验评估了不同参数对激光-粉末相互作用的影响。研究了粉末速度对激光增材制造温度变化的影响。结果表明,当粒径分布较宽时,激光对基体的直接换热增加,且随粉末速度的增加而增大。但是,随着粉末流量的增加,传热速率降低。

  • 图9 粉末颗粒不同蒸发程度下光谱仪数据示意图

  • Fig.9 Schematic diagram of spectrometer data under different evaporation degrees of powder particles

  • 1.3 激光-粉末-熔池的相互作用

  • PRASAD等[47]采用高速成像技术研究了同轴喷嘴对Inconel718合金的激光金属沉积( LMD)行为。观察到单个粉末颗粒与激光-熔池表面的相互作用,最后观察到它们在LMD轨迹上的汇集。对高速视频进行定量分析,测量粉末颗粒在熔池中的加入时间、速度和移动距离。结合相关物理理论知识, 如熔体流动和表面张力,解释了粉末聚集的趋势。

  • 目前模拟分析激光-粉末-熔池的相互作用着重于粉末与熔池的热量传递[48-51],许多学者对此做了大量研究。吴瑞[48] 采用三维瞬态模型模拟了采用同轴送粉激光熔覆成形技术制作单壁墙过程中温度场的演化,模拟了粉末在下落过程中与激光的相互作用,并分析了其对熔池温度场可能造成的影响。 JENDRZEJEWSKI等[52]研究了激光熔覆过程中的瞬态温度场以及应力场。此外,TOYSERKANI等[53]针对高斯分布的移动激光束开发了一种3D瞬态有限元建模技术, 用于预测激光熔覆过程。 SHIOMI等[54]建立了脉冲激光熔覆模型,假设粉末的熔化部分由于表面张力而变成球体,考虑了粉末凝固产生的热量和体积收缩,并将粉末的热导率随密度的变化也纳入模型。通过计算加热和冷却期间粉末内的温度分布,得到了凝固粉末的质量,发现凝固部分的质量受峰值功率而不是激光照射持续时间的影响, 单脉冲激光束加热和冷却过程中粉末的最高温度受激光峰值功率的影响。

  • 然而,这些模型所使用的输入参数通常是直接从相应的试验数据中导出的。这将限制有限元分析方法的实用性。为此,HAO等[55] 建立了可以随着工艺参数的变化对激光熔覆进行热模拟的有限元模型。该模型不是通过试验中的测量数据,而是通过使用逆建模方法构建自适应熔覆层和移动热源模型,建模方法的基本思想是通过一个调谐参数来代替熔体流动和激光-粉末相互作用的复杂性。该模型能够预测随着激光功率、激光扫描速度和送粉速度引起的温度变化。

  • 路华伟[56]建立了双椭球热源模型来模拟激光熔覆过程中温度场的变化,进而分析粉末进入熔池后热量与质量交换和传导,对熔池温度场的变化规律进行了详细分析,认为随着熔覆高度的增加,由于热量不能及时散发,熔池的热量累积不断增加,很容易导致温度过高引起熔覆坍塌现象的产生。

  • 2 铺粉式激光增材制造过程中激光与粉末的相互作用

  • 铺粉式激光增材制造原理如图10所示,相较于送粉式激光增材制造时粉末颗粒的高速运动,该过程粉末颗粒来源为平铺的粉末床,更易进行试验观察和处理分析,因此许多学者通过试验的方式研究激光-粉末相互作用的动态过程[57-61]。 BIDARE等[58]发现粉末蒸汽、等离子体和保护气决定了熔池附近粉末的飞溅模式。 DAI等[61] 考虑到材料蒸发引起的反冲压力是熔体流动的主要驱动力,发现表面张力在SLM加工零件最终凝固表面形貌的形成中起着至关重要的作用。

  • 图10 铺粉式激光增材制造原理

  • Fig.10 Principle of powder bed laser additive manufacturing

  • QIU等[62] 发现激光扫描速度和粉末层厚度显著影响SLM工艺制成的Ti-6Al-4V样品的表面质量和孔隙率。这些结果表明,在激光-粉末相互作用过程中,微裂纹、孔隙率和表面质量与不稳定的熔体流动密切相关。 GUNENTHIRAM等[63] 通过对飞溅和粉末床的高速摄像分析和焊后观察(图11),发现位于激光-粉末-熔池相互作用区附近的汽化效应是粉末飞溅现象的主要驱动力,并在一定程度上引起了全过程的不稳定。

  • 图11 激光沉积过程高速摄像图片

  • Fig.11 High-speed camera pictures of laser metal deposition

  • MATTHEWS等[64] 研究了钛合金和铁基合金粉末在不同激光条件和环境气压下的飞溅现象。同样认为粉末飞溅主要是由于激光光斑附近的强烈金属汽化现象,导致粉末颗粒夹带,并对该过程进行了模拟进一步分析了粉末飞溅的产生机制。 LY等[65]描述了强蒸发流下液滴喷射的物理过程, 采用流体阻力分析方法,对316L不锈钢和Ti-6Al-4V粉末层的单相流动模型进行了扩展,进行了与增材制造工艺相关的金属液滴运动的详细试验和有限元模拟。验证了在激光粉末床熔化过程中导致液滴飞溅的主要机制不是来自激光诱导的反冲压力,而是来自周围气流对微颗粒的蒸汽驱动夹带(图12)。曹润辰[66] 对铁基、镍基、钛合金以及CoCr合金等不同种类的金属粉末在不同工艺参数下的熔化现象进行了研究,进而探究熔化过程中激光与粉末的相互作用,并且将粉末熔化过程分为静态(图13)和动态(图14)两种类型,认为粉末颗粒静态熔化时激光照射粉末形成熔池缓慢熔化周围粉末,该过程无飞溅产生,随着熔池的扩大,金属蒸汽和热对流形成越来越大的气流,造成了朝着熔池斜上方飞溅的现象。而对于动态熔化过程,则是在熔池前沿形成了半球或球状液滴。这些液滴主要有两种运动:第一,朝着熔池方向, 直至被熔池吸入;第二,被形成的气流吹向熔池前上方,即所谓的“飞溅”。

  • 图12 静态激光束诱导氩气流夹带粉末颗粒的示意图

  • Fig.12 Schematic diagram of powder particles entrained by argon gas flow caused by static laser beam

  • 图13 粉末颗粒静态熔化过程模型

  • Fig.13 Static melting process model of powder particles

  • 图14 粉末颗粒动态熔化过程模型

  • Fig.14 Dynamic melting process model of powder particles

  • CHRISTIAN等[67]通过研究316L级奥氏体不锈钢经SLM加工后的显微组织、晶体学取向,讨论了粉末在激光作用下熔化形成熔池以及熔池凝固过程中显微组织生长机理。加工过程中,基板和凝固结构影响熔池的温度梯度和冷却速率,从而发生定向凝固和拉长的晶粒。此外,由于熔池和周围元素之间的明显热梯度, 凝固的特征是外延生长。 BERTOLI等[68]使用气体雾化和水雾化两种类型的粉末。通过高帧率的选择性激光熔化(SLM)视频记录,对316L粉末层的激光-粉末相互作用和熔池演化进行了分析讨论,最后将试验确定的冷却速率与计算机模拟得到的数值进行了对比验证,发现粉末颗粒与光束相互作用后达到熔化温度的时间为几微秒,因此在大多数激光-粉末相互作用过程中,激光主要与已经熔融的材料发生作用。 LEUNG等[69] 使用原位X射线成像技术观察了SLM工艺中的缺陷和熔池熔化粉末流动,提供了一种原位成像验证,即热输入可以决定熔覆层的形态和质量。

  • 然而,通过试验来研究粉末床演化的动态过程仍然具有一定不足。因此,数值模拟是量化激光与粉末相互作用过程中热量和质量传递的有力工具。 LOH等[70]建立了SLM的有限元模型,考虑了粉体向固体的转变,以激光功率和扫描速度为变量进行了研究,确定了它们与熔体尺寸、粉末熔化和蒸发以及温度变化速率之间的关系,讨论了熔池的发展过程和温度变化速率。 LEE等[71] 结合了基于离散单元方法的粉末填充模型和三维瞬态热流体流动模拟,捕捉分析了激光束与单个粉末颗粒之间的相互作用,包括自由表面演化、表面张力、蒸发以及熔池传热和流动方向的演变等(图15)。

  • 图15 熔池传热和流动方向的演变

  • Fig.15 Evolution of molten pool heat transfer and fluid convection

  • BADROSSAMAY等[72]开发了一个模型来讨论激光扫描速度对选择性激光熔化中粉末颗粒吸收系数的影响。一些研究人员也开发了其他模拟模型来解释激光-粉末-熔池相互作用过程中的现象和可能的机制[73-75]。例如,CHEN等[73] 发展了一种3D有限差分方法来估计K418粉末在不同激光和不同扫描速度下熔化的动态热行为和流动机制,通过数值模拟计算(图16)与试验验证(图17)的方法探究了激光线能量密度对熔池温度场、粉末颗粒速度以及熔覆焊道形貌的影响。

  • 图16 不同激光线能量密度下熔池温度和粉末颗粒速度

  • Fig.16 Melt pool temperature and powder particle velocity under different laser line energy densities

  • KRNER等[74]开发了一个2D晶格玻尔兹曼模型,研究在激光选区熔化过程中随机填充粉末床的熔化和再凝固。 KHAIRALLAH等[75] 使用3D高保真度粉末比例模型显示了强动态熔体流动产生的孔隙缺陷、材料飞溅等。

  • DAI等[61] 研究了单位长度激光能量输入对温度分布、熔池流动、表面张力和所得表面形态的影响。一般来说,这些现有的模拟模型大多集中于在相对较低的激光功率密度下激光粉末床聚变的动态特性,这是一种传导模式。众所周知,根据激光束的功率密度,在激光焊接中有两种典型的传热模式:传导模式和匙孔模式[76-79]。在传导模式下,热量通过从表面传导进入材料产生焊接,形成浅的焊接熔核[79]。在匙孔模式下,由于金属蒸发而形成以深窄焊缝为特征的匙孔,激光能量被匙孔壁吸收并转移到金属[80]。 KING等[79]观察了SLM工艺中316L不锈钢的传导模式和匙孔模式下激光熔覆过程,并确定了从传导模式熔化过渡到匙孔模式熔化所需的条件。

  • 图17 不同激光线能量密度下焊道形貌

  • Fig.17 Welding morphology under different laser line energy densities

  • YANG等[81]表明熔池模式在决定SLM制备的Ti-6Al-4V样品的成形性、显微组织和力学性能方面起着重要作用。然而,数值模拟很少用于量化传导和匙孔模式下的传热过程,加工过程中熔融金属如何流动和传热仍不清楚。针对于此,WANG等[82] 系统地比较了传导模式和匙孔模式(图18)下粉末的演变过程,首次揭示了这两种典型传热模式的热质平衡,研究了传导模式(图19) 和匙孔模式(图20)下粉末在激光照射后纵截面上发生的变化。在传导模型中,熔池的纵截面只有一个环流,而在匙孔模式中有两个环流。重力驱使熔化的金属填充粉末之间的间隙,模拟结果表明,与传导模式相比,匙孔模式下的可扫描粉末层厚度更大,传导模式下的多道熔化过程中的热分布比小孔模式下的更均匀,从而产生更均匀的组织。

  • 图18 初始时刻在传导模式和匙孔模式下吸收激光能量的示意图

  • Fig.18 Schematic of laser energy absorption in the conduction mode and the keyhole mode at the initial moment

  • 图19 传导模式下激光照射后纵截面上粉末的演变

  • Fig.19 Evolution of the powders after laser irradiation at the longitudinal section in the conduction mode

  • 3 结论

  • 激光与粉末的相互作用是激光增材制造的一个重要过程,通过对该过程的作用机制分析研究,有助于优化激光增材制造过程工艺参数并开发新的工艺,减少成形缺陷从而提升工件质量。目前,针对送粉式和铺粉式激光增材制造过程中光粉的相互作用研究主要集中在以下几个方面:

  • (1) 当激光照射到飞行的粉末粒子时,会发生激光的散射,同时粉末粒子会对激光能量进行吸收,导致激光能量发生衰减。研究模型包括: 基于Lambert-Beer定理和Mie理论建立的激光能量衰减模型,以及采用射线追踪方法对激光进行追踪和建立的阴影衰减模型。

  • 图20 匙孔模式下激光照射后纵截面上粉末的演变

  • Fig.20 Evolution of the powders after laser irradiation at the longitudinal section in the keyhole mode

  • (2) 粉末粒子对激光能量的吸收会导致温度上升,物性参数发生变化,甚至变成熔融状态。通过高速摄像手段拍摄粉末粒子经过激光照射后的状态, 再使用信息提取技术提取亮度变化的参数,进而判断粉末状态是较为可靠的试验手段,但对粉末温度缺乏定量计算。然而,用热平衡的原理建立粉末粒子的温升模型,并引入电磁理论建立了基于电磁波理论的修正热源模型,建立了较为完善的光粉相互作用能量传递模型。

  • (3) 研究激光-粉末-熔池的相互作用,主要采用高速摄像的方法观察飞行粉末在激光照射下进入熔池时产生的现象,并结合传热学、流体力学等知识进行建模分析。由于不同粒子对激光的吸收率不同,在经过激光照射后的温升不同甚至会导致形态不同。不同材料混合的粉末进入熔池时与激光和熔池的相互作用机制分析非常重要,对优化工艺参数和改善工件质量具有非常重要的意义,这将是未来的研究重点。

  • (4) 在激光照射下粉末床的粉末熔融形成熔池,并随着激光的移动而移动。研究铺粉式激光增材制造过程中的光粉相互作用一般会对激光-粉末-熔池整体进行研究分析。采用高速摄像、焊后观察及X射线成像等试验方式研究分析熔池附近粉末行为仍然存在一些不足,因此采用数值模拟技术建立激光-粉末-熔池的动态模型,可以分析激光照射下熔池表面温度分布以及传热模式等机制。

  • 参考文献

    • [1] STOTKO C.Laser sintering:layer by layer[J].Nature Photonics,2009,3(5):265-266.

    • [2] JONES N.Science in three dimensions:the print revolution[J].Nature,2012,487(7405):22-23.

    • [3] ROCA J B,VAISHNAV P,FUCHS E R H,et al.Policy needed for additive manufacturing[J].Nature Materials,2016,15(8):815-818.

    • [4] MACDONALD E,WICKER R.Multiprocess 3D printing for increasing component functionality [J].Science,2016,353(6307):aaf2093.1-aaf2093.8.

    • [5] TRUBY R L,LEWIS J A.Printing soft matter in three dimensions[J].Nature,2016,540(7633):371-378.

    • [6] CHIN S Y,POH Y C,KOHER A C,et al.Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices[J].Science Robotics,2017,2(2):aah6451.

    • [7] IBRAHIM K A,WU B,BRANDON N P.Electrical conductivity and porosity in stainless steel 316L scaffolds for electrochemical devices fabricated using selective laser sintering[J].Materials & Design,2016,106:51-59.

    • [8] QIU C L,YUE S,ADKINS N J E,et al.Influence of processing conditions on structure and compressive properties of cellular lattice structures fabricated by selective laser melting[J].Materials Science & Engineering A,2015,638:228-231.

    • [9] ZHANG B,LI Y,BAI Q.Defect formation mechanisms in selective laser melting:a review[J].Chinese Journal of Mechanical Engineering,2017,30(3):515-527.

    • [10] LIU Q C,ELAMBASSERIL J,SUN S J,et al.The effect of manufacturing defects on the fatigue behaviour of Ti-6Al-4V specimens fabricated using selective laser melting[J].Advanced Materials Research,2014,891-892:1519-1524.

    • [11] ABOULKHAIR N T,EVERITT N M,ASHCROFT I,et al.Reducing porosity in AlSi10Mg parts processed by selective laser melting[J].Additive Manufacturing,2014,1-4:77-86.

    • [12] GONG H J,RAFI K,GU H F,et al.Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting[J].Materials & Design,2015,86:545-554.

    • [13] WANG G,CHEN X,QIU C.On the macro-and micro-deformation mechanisms of selectively laser melted damage tolerant metallic lattice structures [J].Journal of Alloys and Compounds,2021,852:156985.

    • [14] LIU Y,YANG Y Q,MAI S Z,et al.Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder[J].Materials & Design,2015,87:797-806.

    • [15] YANG L,LO L,DING S,et al.Monitoring and detection of meltpool and spatter regions in laser powder bed fusion of super alloy Inconel 625 [J].Progress in Additive Manufacturing,2020,5(4):367-378.

    • [16] GASPER A N D,SZOST B,WANG X,et al.Spatter and oxide formation in laser powder bed fusion of Inconel 718[J].Additive Manufacturing,2018,24:446-456.

    • [17] SAMES W J,LIST F A,PANNALA S,et al.The metallurgy and processing science of metal additive manufacturing[J].International Materials Reviews,2016,61(5):1-46.

    • [18] FRAZIER W E.Metal additive manufacturing:a review [J].Journal of Materials Engineering & Performance,2014,23(6):1917-1928.

    • [19] LEWANDOWSKI J J,SEIFI M.Metal additive manufacturing:a review of mechanical properties[J].Annual Review of Materials Research,2016,46:151-186.

    • [20] 牛建强.面向增材制造的粉末束流对激光能量散射损失规律的理论研究[J].应用激光,2014,34(3):211-216.NIU J Q.Theoretical study on the law of laser energy scattering loss by powder beam for additive manufacturing [J].Applied Laser,2014,34(3):211-216.(in Chinese)

    • [21] 王明娣.基于光内送粉的激光熔覆快速制造机理与工艺研究 [D].南京:南京航空航天大学,2008.WANG M D.Research on the mechanism and process of laser cladding rapid manufacturing based on optical powder feeding [D].Nanjing:Nanjing University of Aeronautics and Astronautics,2008.(in Chinese)

    • [22] 靳绍巍,何秀丽,武扬,等.同轴送粉激光熔覆中粉末流对光束能量的衰减作用[J].中国激光,2011,38(9):67-72.JIN S W,HE X L,WE Y,et al.Effect of powder flow on beam energy attenuation in coaxial powder feeding laser cladding[J].Chinese Journal of Lasers,2011,38(9):67-72.(in Chinese)

    • [23] 张冬云,董东东,张晖峰,等.激光熔覆过程光束能量衰减的模拟[J].北京工业大学学报,2017(4):537-545.ZHANG D Y,DONG D D,ZHANG H F,et al.Simulation of beam energy attenuation in laser cladding process[J].Journal of Beijing University of Technology,2017(4):537-545.(in Chinese)

    • [24] 张冬云,张晖峰,董东东,等.激光直接金属沉积中激光束衰减的模拟研究[J].激光与光电子学进展,2016,53(8):209-217.ZHANG D Y,ZHANG H F,DONG D D,et al.Simulation study of laser beam attenuation in laser direct metal deposition [J].Laser and Optoelectronics Progress,2016,53(8):209-217.(in Chinese)

    • [25] HUANG Y L,LIANG G Y,SU J Y,et al.Interaction between laser beam and powder stream in the process of laser cladding with powder feeding [J].Modelling & Simulation in Materials Science & Engineering,2004,13(1):47.

    • [26] 黄延禄,李建国,梁工英,等.送粉激光熔覆中送粉速率对激光束与粉末流相互作用的影响[J].稀有金属材料与工程,2005,34(10):1520-1523.HUANG Y L,LI J G,LIANG G Y,et al.Effect of powder feeding rate on the interaction between laser beam and powder flow in powder feeding laser cladding[J].Rare Metal Materials and Engineering,2005,34(10):1520-1523.(in Chinese)

    • [27] TABERNERO I,LAMIKIZ A,MARTÍNEZ S,et al.Modelling of energy attenuation due to powder flow-laser beam interaction during laser cladding process[J].Journal of Materials Processing Technology,2012,212(2):516-522.

    • [28] 张晖峰,张冬云,董冬冬,等.关于同轴激光直接金属沉积中粉末流导致的激光衰减的模拟研究[C]//第16届全国特种加工学术会议论文集(下).厦门,2015.ZHANG H F,ZHANG D Y,DONG D D,et al.Study on the simulation of laser attenuation caused by powder flow in coaxial laser direct metal deposition[C]//The 16th National Symposium on Special Processing(Part 2).Xiamen,2015.(in Chinese)

    • [29] DEVESSE W,BAERE D D,GUILLAUME P.Modeling of laser beam and powder flow interaction in laser cladding using ray-tracing[J].Journal of Laser Applications,2015,27(S2):S29208.

    • [30] GRUJICIC M,HU Y,FADEL G M,et al.Optimization of the LENS rapid fabrication process for in-flight melting of feed powder[J].Journal of Materials Synthesis & Processing,2001,9(5):223-233.

    • [31] HE X,MAZUMDER J.Transport phenomena during direct metal deposition[J].Journal of Applied Physics 2007,101:053113.

    • [32] GUSAROV A V,KRUTH J P.Modelling of radiation transfer in metallic powders at laser treatment[J].International Journal of Heat & Mass Transfer,2005,48(16):3423-3434.

    • [33] ODINOT J,JANKOWIAK A,PETIT J,et al.Direct laser additive manufacturing of ceramics by powder deposition[C]//Materials Science Forum.Paris,France,2018:2178-2183.

    • [34] 杨义成,黄瑞生,孙谦,等.激光送粉增材制造光粉交互作用机制分析[J].焊接学报,2019,40(11):68-74.YANG Y C,HUANG R S,SUN Q,et al.Analysis of interaction mechanism of light and powder in laser powder feeding additive manufacturing[J].Transactions of the China Welding Institution,2019,40(11):68-74.(in Chinese)

    • [35] 杨义成,黄瑞生,方乃文,等.光粉交互对同轴送粉增材制造能量传输的影响[J].焊接学报,2020,41(6):19-23.YANG Y C,HUANG R S,FANG N W,et al.Influence of light and powder interaction on energy transfer in coaxial powder feeding additive manufacturing[J].Transactions of the China Welding Institution,2020,41(6):19-23.(in Chinese)

    • [36] WANG G Y,QIN Y,YANG S.Characterization of laser-powder interaction and particle transport phenomena during laser direct deposition of W-Cu composite [J].Additive Manufacturing,2021,37:101722.

    • [37] PEKKARINEN J,SALMINEN A,KUJANP V,et al.Powder cloud behavior in laser cladding using scanning optics[J].Journal of Laser Applications,2016,28(3):032007.

    • [38] HUANG Y Z,KHAMESEE M B,TOYSERKANI E.A comprehensive analytical model for laser powder-fed additive manufacturing[J].Additive Manufacturing,2016,12:90-99.

    • [39] MANVATKAR V,DE A,DEBROY T.Heat transfer and material flow during laser assisted multi-layer additive manufacturing [J].Journal of Applied Physics,2014,116(12):133.

    • [40] FU Y,LOREDO A,MARTIN B,et al.A theoretical model for laser and powder particles interaction during laser cladding[J].Journal of Materials Processing Technology,2002,128(1-3):106-112.

    • [41] GU D D,MEINERS W,WISSENBACH K,et al.Laser additive manufacturing of metallic components:materials,processes and mechanisms [J].International Materials Reviews,2013,57(3):133-164.

    • [42] KRUTH J P,WANG X,LAOUI T,et al.Lasers and materials in selective laser sintering[J].Assembly Automation,2003,23(4):357-371.

    • [43] KURATOV A S,BRANTOV A V,ALIEV Y M,et al.Laserinduced thermoelectric current as a source of generation of THz surface electromagnetic waves[J].Quantum Electronics,2018,48(7):653-657.

    • [44] 李俊昌.激光的衍射及热作用计算[M].北京:科学出版社,2002.LI J C.Diffraction and thermal action calculation of laser[M].Beijing:Science Press,2002.(in Chinese)

    • [45] ALISOY H Z,ALAGOZ B B,US S B,et al.Spatio-spectral analyses of electromagnetic wave energy absorption and heating effect [J].Optik-International Journal for Light and Electron Optics,2014,125(15):4124-4130.

    • [46] ZHANG Z,GE P,LI T,et al.Electromagnetic wave-based analysis of laser-particle interactions in directed energy deposition additive manufacturing[J].Additive Manufacturing,2020,34:101284.

    • [47] PRASAD H S,BRUECKNER F,KAPLAN A F H.Powder catchment in laser metal deposition[J].Journal of Laser Applications,2019,31(2):022308.

    • [48] 吴瑞.激光熔覆成形过程中温度场演化的研究[D].北京:北京工业大学,2015.WU R.Research on the evolution of temperature field in laser clad forming [ D].Beijing:Beijing University of Technology,2015.(in Chinese)

    • [49] 李媛媛.同轴送粉式激光熔覆气体-粉末流对熔池形貌的影响研究[D].长沙:湖南大学,2013.LI Y Y.Study on the influence of gas and powder flow in coaxial laser cladding on the morphology of molten pool[D].Changsha:Hunan University,2013.(in Chinese)

    • [50] 王晨.基于光内送粉激光熔覆扭曲薄壁件的成形研究[D].苏州:苏州大学,2012.WANG C.Research on forming of twisted thin-walled parts by laser cladding based on optical powder feeding [ D].Soochow:Soochow University,2012.(in Chinese)

    • [51] 吴少华,石世宏,肖军艳,等.环形激光光内送粉成形薄壁件熔池特征研究[J].应用激光,2013,33(3):250-253.WU S H,SHI S H,XIAO J Y,et al.Research on the characteristics of melting pool of thin-walled parts formed by ring laser intra-optical powder feeding[J].Applied Laser,2013,33(3):250-253.(in Chinese)

    • [52] JENDRZEJEWSKI R,S ' LIWIN ' SKIM G,KRAWCZUK M,et al.Temperature and stress fields induced during laser cladding[J].Computers & Structures,2003,82:653-658.

    • [53] TOYSERKANI E,KHAJEPOUR A,CORBIN S.Three-dimensional finite element modeling of laser cladding by powder injection:Effects of powder feedrate and travel speed on the process [J].Journal of Laser Applications,2003,15(3):153-160.

    • [54] SHIOMI M,YOSHIDOME A,ABE F,et al.Finite element analysis of melting and solidifying processes in laser rapid prototyping of metallic powders [J].International Journal of Machine Tools and Manufacture,1999,39:237-252.

    • [55] HAO M Z,SUN Y W.A FEM model for simulating temperature field in coaxial laser cladding of TI6AL4V alloy using an inverse modeling approach[J].International Journal of Heat and Mass Transfer,2013,64:352-360.

    • [56] 路华伟.激光熔覆成形薄壁件及其温度场的有限元模拟研究 [D].沈阳:东北大学,2016.LU H W.Finite element simulation of laser clad forming thin walls and its temperature field[D].Shenyang:Northeastern University,2016.(in Chinese)

    • [57] DEBROY T,WEI H,ZUBACK J,et al.Additive manufacturing of metallic components process,structure and properties [J].Progress in Materials Science,2018,92:112-224.

    • [58] BIDARE P,BITHARAS I,WARD R M,et al.Fluid and particle dynamics in laser powder bed fusion [J].Acta Materialia,2018,142:107-120.

    • [59] MARTIN J H,YAHATA B D,HUNDLEY J M,et al.3D printing of high-strength aluminium alloys[J].Nature,2017,549:365-369.

    • [60] ZHANG M J,CHEN G Y,ZHOU Y,et al.Observation of spatter formation mechanisms in high-power fiber laser welding of thick plate[J].Applied Surface Science,2013,280:868-875.

    • [61] DAI D H,GU D D.Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder[J].International Journal of Machine Tools & Manufacture,2015,88:95-107.

    • [62] QIU C,PANWISAWAS C,WARD M,et al.On the role of melt flow into the surface structure and porosity development during selective laser melting[J].Acta Materialia,2015,96:72-79.

    • [63] GUNENTHIRAM V,PEYRE P,SCHNEIDER M,et al.Analysis of laser-melt pool-powder bed interaction during the selective laser melting of a stainless steel[J].Journal of Laser Applications,2017,29(2):022303.

    • [64] MATTHEWS M J,GUSS G,KHAIRALLAH S A,et al.Denudation of metal powder layers in laser powder bed fusion processes [J].Acta Materialia,2016,114:33-42.

    • [65] LY S,RUBENCHIK A M,KHAIRALLAH S A,et al.Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing[J].Scientific Reports,2017,7(1):4085.

    • [66] 曹润辰.18Ni300 马氏体时效钢选区激光熔化工艺及金属粉末激光熔化实验研究[D].上海:上海交通大学,2014.CAO R C.Selective Laser melting process of 18Ni300 maraging steel and experimental study of metal powder laser melting[D].Shanghai:Shanghai Jiao Tong University,2014.(in Chinese)

    • [67] CHRISTIAN M,KARINA G,ARNE R,et al.Interaction between laser radiation and metallic powder of 316L austenitic steel during selective laser melting [J].Materials Characterization,2018,145:337-346.

    • [68] BERTOLI U S,GUSS G,WU S,et al.In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing[J].Materials & Design,2017,135:385-396.

    • [69] LEUNG C L A,MARUSSI S,ATWOOD R C,et al.In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing[J].Nature Communi cations,2018,9(1):1355.

    • [70] LOH L E,CHUA C K,YEONG W Y,et al.Numerical investigation and an effective modelling on the Selective Laser Melting(SLM)process with aluminium alloy 6061 [J].International Journal of Heat & Mass Transfer,2015,80:288-300.

    • [71] LEE Y S,ZHANG W.Modeling of heat transfer,fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion[J].Additive Manufacturing,2016,12:178-188.

    • [72] BADROSSAMAY M,CHILDS T H C.Further studies in selective laser melting of stainless and tool steel powders[J].International Journal of Machine Tools and Manufacture,2007,47(5):779-784.

    • [73] CHEN Z,XIANG Y,WEI Z,et al.Thermal dynamic behavior during selective laser melting of K418 superalloy:numerical simulation and experimental verification [J].Applied Physics A,2018,124(4):313.

    • [74] KRNER C,ATTAR E,HEINL P.Mesoscopic simulation of selective beam melting processes[J].Journal of Materials Processing Technology,2011,211(6):978-987.

    • [75] KHAIRALLAH S A,ANDERSON A T,RUBENCHIK A,et al.Laser powder-bed fusion additive manufacturing:Physics of complex melt flow and formation mechanisms of pores,spatter,and denudation zones[J].Acta Materialia,2016,108:36-45.

    • [76] LEE J Y,KO S H,FARSON D F,et al.Mechanism of keyhole formation and stability in stationary laser welding[J].Journal of Physics D Applied Physics,2002,35(13):1570-1576.

    • [77] KATAYAMA,S.Introduction:fundamentals of laser welding [M].Cambridge:Woodhead Publishing Limited,2013.

    • [78] PAUL A,DEBROY T.Free surface flow and heat transfer in conduction mode laser welding[J].Metallurgical and Materials Transactions B,1988,19(6):851-858.

    • [79] KING W E,BARTH H D,CASTILLO V M,et al.Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing[J].Journal of Materials Processing Technology,2014,214(12):2915-2925.

    • [80] PANWISAWAS C,PERUMAL B,WARD R M,et al.Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys:Experimental and modelling[J].Acta Materialia,2017,126:251-263.

    • [81] YANG J J,HAN J,YU H C,et al.Role of molten pool mode on formability,microstructure and mechanical properties of selective laser melted Ti-6Al-4V alloy[J].Materials & Design,2016,110:558-570.

    • [82] WANG H,ZOU Y.Microscale interaction between laser and metal powder in powder-bed additive manufacturing:Conduction mode versus keyhole mode[J].International Journal of Heat and Mass Transfer,2019,142:118473.

  • 参考文献

    • [1] STOTKO C.Laser sintering:layer by layer[J].Nature Photonics,2009,3(5):265-266.

    • [2] JONES N.Science in three dimensions:the print revolution[J].Nature,2012,487(7405):22-23.

    • [3] ROCA J B,VAISHNAV P,FUCHS E R H,et al.Policy needed for additive manufacturing[J].Nature Materials,2016,15(8):815-818.

    • [4] MACDONALD E,WICKER R.Multiprocess 3D printing for increasing component functionality [J].Science,2016,353(6307):aaf2093.1-aaf2093.8.

    • [5] TRUBY R L,LEWIS J A.Printing soft matter in three dimensions[J].Nature,2016,540(7633):371-378.

    • [6] CHIN S Y,POH Y C,KOHER A C,et al.Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices[J].Science Robotics,2017,2(2):aah6451.

    • [7] IBRAHIM K A,WU B,BRANDON N P.Electrical conductivity and porosity in stainless steel 316L scaffolds for electrochemical devices fabricated using selective laser sintering[J].Materials & Design,2016,106:51-59.

    • [8] QIU C L,YUE S,ADKINS N J E,et al.Influence of processing conditions on structure and compressive properties of cellular lattice structures fabricated by selective laser melting[J].Materials Science & Engineering A,2015,638:228-231.

    • [9] ZHANG B,LI Y,BAI Q.Defect formation mechanisms in selective laser melting:a review[J].Chinese Journal of Mechanical Engineering,2017,30(3):515-527.

    • [10] LIU Q C,ELAMBASSERIL J,SUN S J,et al.The effect of manufacturing defects on the fatigue behaviour of Ti-6Al-4V specimens fabricated using selective laser melting[J].Advanced Materials Research,2014,891-892:1519-1524.

    • [11] ABOULKHAIR N T,EVERITT N M,ASHCROFT I,et al.Reducing porosity in AlSi10Mg parts processed by selective laser melting[J].Additive Manufacturing,2014,1-4:77-86.

    • [12] GONG H J,RAFI K,GU H F,et al.Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting[J].Materials & Design,2015,86:545-554.

    • [13] WANG G,CHEN X,QIU C.On the macro-and micro-deformation mechanisms of selectively laser melted damage tolerant metallic lattice structures [J].Journal of Alloys and Compounds,2021,852:156985.

    • [14] LIU Y,YANG Y Q,MAI S Z,et al.Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder[J].Materials & Design,2015,87:797-806.

    • [15] YANG L,LO L,DING S,et al.Monitoring and detection of meltpool and spatter regions in laser powder bed fusion of super alloy Inconel 625 [J].Progress in Additive Manufacturing,2020,5(4):367-378.

    • [16] GASPER A N D,SZOST B,WANG X,et al.Spatter and oxide formation in laser powder bed fusion of Inconel 718[J].Additive Manufacturing,2018,24:446-456.

    • [17] SAMES W J,LIST F A,PANNALA S,et al.The metallurgy and processing science of metal additive manufacturing[J].International Materials Reviews,2016,61(5):1-46.

    • [18] FRAZIER W E.Metal additive manufacturing:a review [J].Journal of Materials Engineering & Performance,2014,23(6):1917-1928.

    • [19] LEWANDOWSKI J J,SEIFI M.Metal additive manufacturing:a review of mechanical properties[J].Annual Review of Materials Research,2016,46:151-186.

    • [20] 牛建强.面向增材制造的粉末束流对激光能量散射损失规律的理论研究[J].应用激光,2014,34(3):211-216.NIU J Q.Theoretical study on the law of laser energy scattering loss by powder beam for additive manufacturing [J].Applied Laser,2014,34(3):211-216.(in Chinese)

    • [21] 王明娣.基于光内送粉的激光熔覆快速制造机理与工艺研究 [D].南京:南京航空航天大学,2008.WANG M D.Research on the mechanism and process of laser cladding rapid manufacturing based on optical powder feeding [D].Nanjing:Nanjing University of Aeronautics and Astronautics,2008.(in Chinese)

    • [22] 靳绍巍,何秀丽,武扬,等.同轴送粉激光熔覆中粉末流对光束能量的衰减作用[J].中国激光,2011,38(9):67-72.JIN S W,HE X L,WE Y,et al.Effect of powder flow on beam energy attenuation in coaxial powder feeding laser cladding[J].Chinese Journal of Lasers,2011,38(9):67-72.(in Chinese)

    • [23] 张冬云,董东东,张晖峰,等.激光熔覆过程光束能量衰减的模拟[J].北京工业大学学报,2017(4):537-545.ZHANG D Y,DONG D D,ZHANG H F,et al.Simulation of beam energy attenuation in laser cladding process[J].Journal of Beijing University of Technology,2017(4):537-545.(in Chinese)

    • [24] 张冬云,张晖峰,董东东,等.激光直接金属沉积中激光束衰减的模拟研究[J].激光与光电子学进展,2016,53(8):209-217.ZHANG D Y,ZHANG H F,DONG D D,et al.Simulation study of laser beam attenuation in laser direct metal deposition [J].Laser and Optoelectronics Progress,2016,53(8):209-217.(in Chinese)

    • [25] HUANG Y L,LIANG G Y,SU J Y,et al.Interaction between laser beam and powder stream in the process of laser cladding with powder feeding [J].Modelling & Simulation in Materials Science & Engineering,2004,13(1):47.

    • [26] 黄延禄,李建国,梁工英,等.送粉激光熔覆中送粉速率对激光束与粉末流相互作用的影响[J].稀有金属材料与工程,2005,34(10):1520-1523.HUANG Y L,LI J G,LIANG G Y,et al.Effect of powder feeding rate on the interaction between laser beam and powder flow in powder feeding laser cladding[J].Rare Metal Materials and Engineering,2005,34(10):1520-1523.(in Chinese)

    • [27] TABERNERO I,LAMIKIZ A,MARTÍNEZ S,et al.Modelling of energy attenuation due to powder flow-laser beam interaction during laser cladding process[J].Journal of Materials Processing Technology,2012,212(2):516-522.

    • [28] 张晖峰,张冬云,董冬冬,等.关于同轴激光直接金属沉积中粉末流导致的激光衰减的模拟研究[C]//第16届全国特种加工学术会议论文集(下).厦门,2015.ZHANG H F,ZHANG D Y,DONG D D,et al.Study on the simulation of laser attenuation caused by powder flow in coaxial laser direct metal deposition[C]//The 16th National Symposium on Special Processing(Part 2).Xiamen,2015.(in Chinese)

    • [29] DEVESSE W,BAERE D D,GUILLAUME P.Modeling of laser beam and powder flow interaction in laser cladding using ray-tracing[J].Journal of Laser Applications,2015,27(S2):S29208.

    • [30] GRUJICIC M,HU Y,FADEL G M,et al.Optimization of the LENS rapid fabrication process for in-flight melting of feed powder[J].Journal of Materials Synthesis & Processing,2001,9(5):223-233.

    • [31] HE X,MAZUMDER J.Transport phenomena during direct metal deposition[J].Journal of Applied Physics 2007,101:053113.

    • [32] GUSAROV A V,KRUTH J P.Modelling of radiation transfer in metallic powders at laser treatment[J].International Journal of Heat & Mass Transfer,2005,48(16):3423-3434.

    • [33] ODINOT J,JANKOWIAK A,PETIT J,et al.Direct laser additive manufacturing of ceramics by powder deposition[C]//Materials Science Forum.Paris,France,2018:2178-2183.

    • [34] 杨义成,黄瑞生,孙谦,等.激光送粉增材制造光粉交互作用机制分析[J].焊接学报,2019,40(11):68-74.YANG Y C,HUANG R S,SUN Q,et al.Analysis of interaction mechanism of light and powder in laser powder feeding additive manufacturing[J].Transactions of the China Welding Institution,2019,40(11):68-74.(in Chinese)

    • [35] 杨义成,黄瑞生,方乃文,等.光粉交互对同轴送粉增材制造能量传输的影响[J].焊接学报,2020,41(6):19-23.YANG Y C,HUANG R S,FANG N W,et al.Influence of light and powder interaction on energy transfer in coaxial powder feeding additive manufacturing[J].Transactions of the China Welding Institution,2020,41(6):19-23.(in Chinese)

    • [36] WANG G Y,QIN Y,YANG S.Characterization of laser-powder interaction and particle transport phenomena during laser direct deposition of W-Cu composite [J].Additive Manufacturing,2021,37:101722.

    • [37] PEKKARINEN J,SALMINEN A,KUJANP V,et al.Powder cloud behavior in laser cladding using scanning optics[J].Journal of Laser Applications,2016,28(3):032007.

    • [38] HUANG Y Z,KHAMESEE M B,TOYSERKANI E.A comprehensive analytical model for laser powder-fed additive manufacturing[J].Additive Manufacturing,2016,12:90-99.

    • [39] MANVATKAR V,DE A,DEBROY T.Heat transfer and material flow during laser assisted multi-layer additive manufacturing [J].Journal of Applied Physics,2014,116(12):133.

    • [40] FU Y,LOREDO A,MARTIN B,et al.A theoretical model for laser and powder particles interaction during laser cladding[J].Journal of Materials Processing Technology,2002,128(1-3):106-112.

    • [41] GU D D,MEINERS W,WISSENBACH K,et al.Laser additive manufacturing of metallic components:materials,processes and mechanisms [J].International Materials Reviews,2013,57(3):133-164.

    • [42] KRUTH J P,WANG X,LAOUI T,et al.Lasers and materials in selective laser sintering[J].Assembly Automation,2003,23(4):357-371.

    • [43] KURATOV A S,BRANTOV A V,ALIEV Y M,et al.Laserinduced thermoelectric current as a source of generation of THz surface electromagnetic waves[J].Quantum Electronics,2018,48(7):653-657.

    • [44] 李俊昌.激光的衍射及热作用计算[M].北京:科学出版社,2002.LI J C.Diffraction and thermal action calculation of laser[M].Beijing:Science Press,2002.(in Chinese)

    • [45] ALISOY H Z,ALAGOZ B B,US S B,et al.Spatio-spectral analyses of electromagnetic wave energy absorption and heating effect [J].Optik-International Journal for Light and Electron Optics,2014,125(15):4124-4130.

    • [46] ZHANG Z,GE P,LI T,et al.Electromagnetic wave-based analysis of laser-particle interactions in directed energy deposition additive manufacturing[J].Additive Manufacturing,2020,34:101284.

    • [47] PRASAD H S,BRUECKNER F,KAPLAN A F H.Powder catchment in laser metal deposition[J].Journal of Laser Applications,2019,31(2):022308.

    • [48] 吴瑞.激光熔覆成形过程中温度场演化的研究[D].北京:北京工业大学,2015.WU R.Research on the evolution of temperature field in laser clad forming [ D].Beijing:Beijing University of Technology,2015.(in Chinese)

    • [49] 李媛媛.同轴送粉式激光熔覆气体-粉末流对熔池形貌的影响研究[D].长沙:湖南大学,2013.LI Y Y.Study on the influence of gas and powder flow in coaxial laser cladding on the morphology of molten pool[D].Changsha:Hunan University,2013.(in Chinese)

    • [50] 王晨.基于光内送粉激光熔覆扭曲薄壁件的成形研究[D].苏州:苏州大学,2012.WANG C.Research on forming of twisted thin-walled parts by laser cladding based on optical powder feeding [ D].Soochow:Soochow University,2012.(in Chinese)

    • [51] 吴少华,石世宏,肖军艳,等.环形激光光内送粉成形薄壁件熔池特征研究[J].应用激光,2013,33(3):250-253.WU S H,SHI S H,XIAO J Y,et al.Research on the characteristics of melting pool of thin-walled parts formed by ring laser intra-optical powder feeding[J].Applied Laser,2013,33(3):250-253.(in Chinese)

    • [52] JENDRZEJEWSKI R,S ' LIWIN ' SKIM G,KRAWCZUK M,et al.Temperature and stress fields induced during laser cladding[J].Computers & Structures,2003,82:653-658.

    • [53] TOYSERKANI E,KHAJEPOUR A,CORBIN S.Three-dimensional finite element modeling of laser cladding by powder injection:Effects of powder feedrate and travel speed on the process [J].Journal of Laser Applications,2003,15(3):153-160.

    • [54] SHIOMI M,YOSHIDOME A,ABE F,et al.Finite element analysis of melting and solidifying processes in laser rapid prototyping of metallic powders [J].International Journal of Machine Tools and Manufacture,1999,39:237-252.

    • [55] HAO M Z,SUN Y W.A FEM model for simulating temperature field in coaxial laser cladding of TI6AL4V alloy using an inverse modeling approach[J].International Journal of Heat and Mass Transfer,2013,64:352-360.

    • [56] 路华伟.激光熔覆成形薄壁件及其温度场的有限元模拟研究 [D].沈阳:东北大学,2016.LU H W.Finite element simulation of laser clad forming thin walls and its temperature field[D].Shenyang:Northeastern University,2016.(in Chinese)

    • [57] DEBROY T,WEI H,ZUBACK J,et al.Additive manufacturing of metallic components process,structure and properties [J].Progress in Materials Science,2018,92:112-224.

    • [58] BIDARE P,BITHARAS I,WARD R M,et al.Fluid and particle dynamics in laser powder bed fusion [J].Acta Materialia,2018,142:107-120.

    • [59] MARTIN J H,YAHATA B D,HUNDLEY J M,et al.3D printing of high-strength aluminium alloys[J].Nature,2017,549:365-369.

    • [60] ZHANG M J,CHEN G Y,ZHOU Y,et al.Observation of spatter formation mechanisms in high-power fiber laser welding of thick plate[J].Applied Surface Science,2013,280:868-875.

    • [61] DAI D H,GU D D.Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder[J].International Journal of Machine Tools & Manufacture,2015,88:95-107.

    • [62] QIU C,PANWISAWAS C,WARD M,et al.On the role of melt flow into the surface structure and porosity development during selective laser melting[J].Acta Materialia,2015,96:72-79.

    • [63] GUNENTHIRAM V,PEYRE P,SCHNEIDER M,et al.Analysis of laser-melt pool-powder bed interaction during the selective laser melting of a stainless steel[J].Journal of Laser Applications,2017,29(2):022303.

    • [64] MATTHEWS M J,GUSS G,KHAIRALLAH S A,et al.Denudation of metal powder layers in laser powder bed fusion processes [J].Acta Materialia,2016,114:33-42.

    • [65] LY S,RUBENCHIK A M,KHAIRALLAH S A,et al.Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing[J].Scientific Reports,2017,7(1):4085.

    • [66] 曹润辰.18Ni300 马氏体时效钢选区激光熔化工艺及金属粉末激光熔化实验研究[D].上海:上海交通大学,2014.CAO R C.Selective Laser melting process of 18Ni300 maraging steel and experimental study of metal powder laser melting[D].Shanghai:Shanghai Jiao Tong University,2014.(in Chinese)

    • [67] CHRISTIAN M,KARINA G,ARNE R,et al.Interaction between laser radiation and metallic powder of 316L austenitic steel during selective laser melting [J].Materials Characterization,2018,145:337-346.

    • [68] BERTOLI U S,GUSS G,WU S,et al.In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing[J].Materials & Design,2017,135:385-396.

    • [69] LEUNG C L A,MARUSSI S,ATWOOD R C,et al.In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing[J].Nature Communi cations,2018,9(1):1355.

    • [70] LOH L E,CHUA C K,YEONG W Y,et al.Numerical investigation and an effective modelling on the Selective Laser Melting(SLM)process with aluminium alloy 6061 [J].International Journal of Heat & Mass Transfer,2015,80:288-300.

    • [71] LEE Y S,ZHANG W.Modeling of heat transfer,fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion[J].Additive Manufacturing,2016,12:178-188.

    • [72] BADROSSAMAY M,CHILDS T H C.Further studies in selective laser melting of stainless and tool steel powders[J].International Journal of Machine Tools and Manufacture,2007,47(5):779-784.

    • [73] CHEN Z,XIANG Y,WEI Z,et al.Thermal dynamic behavior during selective laser melting of K418 superalloy:numerical simulation and experimental verification [J].Applied Physics A,2018,124(4):313.

    • [74] KRNER C,ATTAR E,HEINL P.Mesoscopic simulation of selective beam melting processes[J].Journal of Materials Processing Technology,2011,211(6):978-987.

    • [75] KHAIRALLAH S A,ANDERSON A T,RUBENCHIK A,et al.Laser powder-bed fusion additive manufacturing:Physics of complex melt flow and formation mechanisms of pores,spatter,and denudation zones[J].Acta Materialia,2016,108:36-45.

    • [76] LEE J Y,KO S H,FARSON D F,et al.Mechanism of keyhole formation and stability in stationary laser welding[J].Journal of Physics D Applied Physics,2002,35(13):1570-1576.

    • [77] KATAYAMA,S.Introduction:fundamentals of laser welding [M].Cambridge:Woodhead Publishing Limited,2013.

    • [78] PAUL A,DEBROY T.Free surface flow and heat transfer in conduction mode laser welding[J].Metallurgical and Materials Transactions B,1988,19(6):851-858.

    • [79] KING W E,BARTH H D,CASTILLO V M,et al.Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing[J].Journal of Materials Processing Technology,2014,214(12):2915-2925.

    • [80] PANWISAWAS C,PERUMAL B,WARD R M,et al.Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys:Experimental and modelling[J].Acta Materialia,2017,126:251-263.

    • [81] YANG J J,HAN J,YU H C,et al.Role of molten pool mode on formability,microstructure and mechanical properties of selective laser melted Ti-6Al-4V alloy[J].Materials & Design,2016,110:558-570.

    • [82] WANG H,ZOU Y.Microscale interaction between laser and metal powder in powder-bed additive manufacturing:Conduction mode versus keyhole mode[J].International Journal of Heat and Mass Transfer,2019,142:118473.

  • 手机扫一扫看