en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

黄绍服,男,1974年出生,博士,教授,硕士研究生导师。主要研究方向为先进制造技术。E-mail:8556126@qq.com

通讯作者:

郭煜,男,1995年出生,硕士。主要研究方向为先进制造技术。E-mail:gy79210@foxmail.com

中图分类号:TG156;TB114

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20201130001

参考文献 1
YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes [J].Advanced Engineering Materials,2004,6(5):299-303.
参考文献 2
CANTOR B,CHANG I T H,KNIGHT P,et al.Microstructural development in equiatomic multicomponent alloys[J].Materials Science and Engineering:A,2004,375-377:213-218.
参考文献 3
YEH J W,CHEN Y L,LIN S J,et al.High-entropy alloys-A new era of exploitation[J].Materials Science Forum,2007,560:1-9.
参考文献 4
SHI Y,YANG B,XIE X,et al.Corrosion of Al xCoCrFeNi high-entropy alloys:Al-content and potential scan-rate dependent pitting behavior[J].Corrosion Science,2017,119:33-45.
参考文献 5
WANG X R,WANG Z Q,LIN T S,et al.Microstructure,thermodynamics and compressive properties of AlCrCuNiZrx(x = 0,1)high-entropy alloys[J].Materials Science and Technology,2016,32(12):1289-1295.
参考文献 6
VAIDYA M,GARLAPATI M,MURTY B.High-entropy alloys by mechanical alloying:A review[J].Journal of Materials Research,2019,34:664-686.
参考文献 7
SANG L,XU Y.Amorphous behavior of ZrxFeNi Si0.4B0.6 high entropy alloys synthesized by mechanical alloying [J].Journal of Non-Crystalline Solids,2020,530:119854.
参考文献 8
RAPHEL A,KUMARAN S,KUMAR K V,et al.Oxidation and corrosion resistance of AlCoCrFeTi high entropy Alloy[J].Materials Today:Proceedings,2017,4(2,Part A):195-202.
参考文献 9
STEPANOV N D,YURCHENKO N Y,ZHEREBTSOV S V,et al.Aging behavior of the HfNbTaTiZr high entropy alloy[J].Materials Letters,2018,211:87-90.
参考文献 10
JAYARAJ J,THIRATHIPVIWAT P,HAN J,et al.Microstructure,mechanical and thermal oxidation behavior of AlNbTiZr high entropy alloy[J].Intermetallics,2018,100:9-19.
参考文献 11
LIU Y X,CHENG C Q,SHANG J L,et al.Oxidation behavior of high-entropy alloys AlxCoCrFeNi(x = 0.15,0.4)in supercritical water and comparison with HR3C steel[J].Transactions of Nonferrous Metals Society of China,2015,25(4):1341-1351.
参考文献 12
KUKSHAL V,PATNAIK A,BHAT I K.Corrosion and thermal behaviour of AlCr1.5CuFeNi2Tix high-entropy alloys[J].Materials Today:Proceedings,2018,5(9,Part 1):17073-17079.
参考文献 13
LIAO W,LAN S,GAO L,et al.Nanocrystalline highentropy alloy(CoCrFeNiAl0.3)thin-film coating by magnetron sputtering[J].Thin Solid Films,2017,638:383-388.
参考文献 14
LAI C H,LIN S J,YEH J W,et al.Preparation and characterization of AlCrTaTiZr multi-element nitride coatings[J].Surface and Coatings Technology,2006,201(6):3275-3280.
参考文献 15
姚陈忠,张鹏,李高仁,等.电化学制备 Fe_(13.8)Co_(28.7)Ni_(4.0)Mn_(22.1)Bi_(14.9)Tm_(16.5)高熵合金及其磁性研究[C]//2008 年全国冶金物理化学学术会议,2008.YAO Chenzhong,ZHANG Peng,LI Gaoren,et al.Electrochemical preparation and magnetic properties of Fe_(13.8)Co _(28.7)Ni _(4.0)Mn _(22.1)Bi _(14.9)Tm_(16.5)high entropy alloys[C]//2008 National Conference on Metallurgical Physics and Chemistry,2008.
参考文献 16
FU Z,CHEN W,XIAO H,et al.Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique [J].Materials & Design,2013,44:535-539.
参考文献 17
VERONESI P,COLOMBINI E,ROSA R,et al.Microwave assisted synthesis of Si-modified Mn25FexNi25Cu(50-x)high entropy alloys [J].Materials Letters,2016,162:277-280.
参考文献 18
JOSEPH J,HODGSON P,JARVIS T,et al.Effect of hot isostatic pressing on the microstructure and mechanical properties of additive manufactured AlxCoCrFeNi high entropy alloys[J].Materials Science and Engineering:A,2018,733:59-70.
参考文献 19
VARALAKSHMI S,APPA RAO G,KAMARAJ M,et al.Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying[J].Journal of Materials Science,2010,45(19):5158-5163.
参考文献 20
LIU B,WANG J,LIU Y,et al.Microstructure and mechanical properties of equimolar FeCoCrNi high entropy alloy prepared via powder extrusion[J].Intermetallics,2016,75:25-30.
参考文献 21
TAKEUCHI A,INOUE A J M T.Classification of bulk metallic glasses by atomic size difference,heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J].Journal Materials Transactions,2005,46(12):2817-2829.
目录contents

    摘要

    轻质多主元合金是一种新型的轻质合金,拥有独特的晶体结构以及力学性能,在航空航天领域具有极大的发展潜力。 本文采用电弧堆焊的方法在 TC4 钛合金表面制备 Al-Ti-Cu 轻质多主元合金熔覆层,堆焊材料为 Al-Ti-Cu 绞股焊丝,制备出的熔覆层与基体呈现出良好的冶金结合,进一步拓宽了轻质多主元合金的应用。 采用 X 射线衍射仪(XRD)、 扫描电子显微镜 (SEM)、能谱仪(EDS)对熔覆层的组织和力学性能进行了研究。 借助密度测试仪、维氏硬度仪、摩擦磨损测试仪、万能力学性能测试机对熔覆层的密度、硬度、耐磨性和强度进行研究。 结果表明,熔覆层主要存在 BCC 结构的 AlCu2Ti 相和少量的 CuO 相和 Fe2Ti 3O9 相。 熔覆层枝晶形态整体呈现为花瓣状。 在室温下,熔覆层的平均硬度为 340. 8 HV,熔覆层干摩擦磨损失效形式为粘着磨损和氧化磨损;熔覆层耐磨性强于 45 钢、磨损体积是 45 钢的 85%。 熔覆层密度为 4. 88 g / cm 3 ,压缩率为 26%,压缩强度为 1187 MPa,比强度约为 2. 661×10 5 (N·m -2 ) / (kg·m -3 )。 接近 Ti 合金的比强度,属于比强度较高的轻质合金。

    Abstract

    Lightweight multi-component alloy is a new type of lightweight alloy with unique crystal structure and mechanical properties, which has great development potential in the field of aerospace. In this paper, Al-Ti-Cu light multi-principal component alloy cladding layer is prepared on the surface of TC4 titanium alloy by arc surfacing welding method. The surfacing material is Al-Ti-Cu stranded welding wire, and the prepared cladding layer and the matrix show a good metallurgical combination, further expanding the application of light multi-principal component alloy. The microstructure and mechanical properties of the cladding layer were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy spectrometer (EDS). The density, hardness, wear resistance and strength of the cladding layer were studied by means of a density tester, a Vickers hardness tester, a tribometer and a universal mechanical property tester. The results show that there are mainly AlCu2Ti phase and a small amount of CuO phase and Fe2Ti 3O9 phase in the cladding layer of BCC structure. The dendrite morphology of the cladding layer appears as petal shape. At room temperature, the average hardness of cladding layer is 340. 8HV, and the failure modes of dry friction wear of cladding layer are adhesive wear and oxidation wear. The wear resistance is stronger than 45 steel, and the wear volume is 85% of 45 steel. The cladding density was 4. 88 g / cm 3 , the compression rate was 26%, the compression strength was 1187 MPa, and the specific strength was about 2. 661 × 10 5 ( N/ m 2 ) / (kg / m 3 ). The specific strength of Ti alloy is close to that of Ti alloy, which belongs to light alloy with higher specific strength.

  • 0 前言

  • 长期以来,传统的合金通常是含1~2种主要元素,通过添加其他少量合金元素来改善性能。但是, 这种材料在发展上面临两个瓶颈问题:一是制备的材料往往只是某一方面性能突出,很难获得综合性能优越的材料;二是性能提升空间有限。 2004年, YEH等[1-2]突破传统的合金设计概念,同时提出了多主元合金的概念。这种合金至少含有五种主要元素,每种元素的原子百分比在5%到35%之间。这些合金又称高熵合金,其混合熵远远高于传统合金。这导致了多主元合金有四大效应:高熵热力学、慢扩散动力学、晶格结构畸变和鸡尾酒性能[3]。因此, 多主元合金可以很容易地形成简单的面心立方(FCC)或体心立方(BCC)固溶体和纳米级沉淀,从而获得高强度、高硬度、热稳定性、耐腐蚀[4] 和耐磨性[5]。因此,多主元合金越来越受到学术界和工业界的关注。

  • 目前,多主元合金制备方法有机械合金化法[6-8]、真空电弧熔炼法[9-11]、真空感应熔炼法[12]、磁控溅射法[13-14]、电化学制备方法[15] 和粉末冶金法[16-20]等,但以上方法不能用来在大尺寸表面上形成高质量的多主元合金。

  • 本文使用Al-Ti-Cu绞股焊丝作为原材料,通过电弧堆焊方法制备了钛基轻质多主元合金熔覆层。采用各种表征方法对熔覆层的组织和力学性能进行分析,为轻质多主元合金的应用提供一种新的制备方法。

  • 1 试验与表征

  • 1.1 样品制备

  • 熔覆层基体材料选用TC4钛板,尺寸统一为100mm×100mm×10mm,具体成分如表1所示。绞股焊丝是由直径均为1.2mm的Al、Ti、Cu合金丝绞股而成的,纯度不低于99.9%,其中1根铜丝作为中间丝,2根钛丝和4根铝丝作为周围丝,绞股后合金丝直径约为3.6mm。此外,相同材料的金属丝放置在相反的位置,以确保熔覆层成分的均匀性。对金属丝进行退火处理,防止在金属丝在绞丝过程中出现绞断的情况。绞股焊丝结构如图1所示。由于绞股焊丝自身独特的几何结构,在利用熔化极气体保护焊进行电弧堆焊过程中, 能够产生旋转电弧(图2),对熔池起到实时搅拌作用。所以优先选用熔化极气体保护焊在基体上制备轻质多主元合金熔覆层。堆焊前对基体进行打磨、预热。采用WSM7-500J氩弧焊机进行试验,保护气体选用混合气体(80%Ar+20%CO2),根据前期试验,堆焊工艺参数选用电流200A、预热温度200℃、堆焊速度4~5m/min。保护气体流量10L/min,送丝速度4m/min,堆焊速度3m/min。

  • 表1 TC4钛板化学成分

  • Table1 Chemical composition of TC4titanium plate

  • 图1 绞股焊丝示意图

  • Fig.1 Schematic diagram of twisted wir

  • 图2 绞股焊丝在熔池中产生旋转电弧

  • Fig.2 Twisted wire produces a rotating arc in the molten pool

  • 1.2 样品表征和性能测试

  • 采用D/max2550V型射线衍射仪分析合金的相组成,试验电压为40kV,扫描速度为2°/min,扫描范围为10°~90°。 NovaNanoSEM50型号的场发射扫描电镜进行SEM分析, MICROMET-6030的维氏硬度仪测量样品硬度,测试所用载荷为150g,载荷时间为20s。 UMT-3型多功能摩擦磨损测试仪进行摩擦磨损试验,万能力学性能测试机( 型号为INSTRON-5982) 测试熔覆层试样压缩性能,WKT-120I高精度磁性材料密度测试仪测量密度。

  • 2 结果与讨论

  • 2.1 熔覆层微观组织分析

  • 图3 为以Ti为基体熔覆层XRD衍射图,对照MDIJade中的PDF卡片。从图3中可以看出熔覆层试样主要存在BCC结构的AlCu2Ti相和少量的CuO相和Fe2Ti3O9 相。图谱中O元素出现是由于在堆焊过程中金属被空气中的氧元素所氧化;Fe2Ti3O9 的出现是由于基体中的Fe元素与Ti元素与空气中的氧元素反应而成。 XRD图谱中看不到明显的金属单质的峰值,说明原材料中各成分得到充分的反应。这是由绞股焊丝几何结构决定的,一方面绞股焊丝在制备时相同材料的焊丝放在相反的位置,可以确保熔覆层成分的均匀性;另一方面绞股焊丝在堆焊过程中产生旋转电弧,对熔池产生搅拌作用,使熔覆层的成分变得更加均匀。

  • 图3 熔覆层XRD图谱

  • Fig.3 XRD pattern of the surfacing layer

  • 图4 为多主元合金熔覆层在钛板上熔合区的线扫描能谱分布图,从图4中可以看出,从堆焊区到基体区,Al元素的含量逐渐降低,但在基体依旧发现有Al元素的存在,这说明熔合区内元素发生了相互扩散行为。在堆焊区内Ti元素含量变化不明显,从结合区到基体区,Ti元素含量逐渐增加。 Cu元素整体含量较低,分布较不均匀。从扫描结果可以看出在熔合区Al、Ti、Cu这三种主要元素的含量出现有规律的变化,总体都呈现出连续的“ W”型变化趋势。 Al和Ti两组元素在熔合线处均有较大的跳跃。

  • 图4 熔覆层熔合区各元素线扫描分布图

  • Fig.4 Scanning distribution diagram of each element line in the fusion zone of cladding layer

  • 图5 为熔覆层的截面组织形貌,从图5a中可以看出堆焊区( Cladding)、结合区( Bonding) 和基体区( Matrix)有明显的区别。可以看出熔覆层与基体呈现冶金结合方式,结合区出现了大量的枝晶组织。图5b可以看出基体组织比较细小,靠近熔合线的基体热影响区由于受到焊接热输入的作用组织变的粗大。图5c为结合区与堆焊区SEM图,可以看出结合区组织均匀,存在枝晶结构,而堆焊区枝晶形态为花瓣状。图5d为结合区与堆焊区SEM局部放大图,在结合区可以明显看出枝晶,堆焊区花瓣状枝晶结构可以看出是由灰色、黑色和白色三种区域组成。

  • 对堆焊区中部整体区域进行面扫描分析。扫描结果如图6所示。可以看出熔覆层主要是由枝晶(Dendrite)和枝晶间( Interdendrite)组织构成,Al元素和Ti元素富集于枝晶内部,Cu元素偏析在枝晶间。元素的偏析主要和元素间的混合焓有关,混合焓值越正,两种原子之间的亲和力越小,混合焓值越负,两种原子之间的亲和力越大。由参考文献[21] 可知,Al元素和Ti元素之间的混合焓比Al-Cu和Ti-Cu之间的混合焓更负,Al元素和Ti元素之间的亲合力也就相对较大。在熔池凝固时,Al元素和Ti元素更容易富集于枝晶。

  • 图5 AlTiCu熔覆层水平剖面的SEM图像

  • Fig.5 SEM image of horizontal section of AlTiCu coatings

  • 图6 熔覆层中元素的面扫描分布

  • Fig.6 Surface scanning distribution of elements in the cladding layer

  • 2.2 熔覆层性能分析

  • 2.2.1 熔覆层密度

  • 利用WKT-120I高精度磁性材料密度测试仪对Ti基体的熔覆层进行密度测试,取三个样品(样品编号为A1、A2、A3),每个样品进行3次重复测量, 最后计算得到以Ti合金为基体的熔覆层密度平均值为4.88g/cm 3。而利用铝丝密度2.7g/cm 3、钛丝密度4.59g/cm 3 和铜丝密度8.96g/cm 3,计算出多主元绞股焊丝的理论密度为4.13g/cm 3。与实际测量密度相差18%。这是由于在实际堆焊过程中,会不可避免的存在飞溅和金属氧化现象,使熔覆层的元素含量和绞股焊丝之间存在差异,此外在堆焊过程中,基体的元素也会对熔覆层元素成分造成影响。

  • 2.2.2 熔覆层维氏硬度

  • 用MICROMET-6030的维氏硬度仪测量样品硬度,硬度曲线分布如图7所示。可以看出不同区域的硬度有很大的不同。按照基体区—结合区—堆焊区呈现阶梯分布。基体硬度<结合区硬度<堆焊区硬度。熔覆层硬度的最大值出现在熔覆层与基体表面结合的区域,在堆焊区中心区域硬度有小幅度的下降,在熔覆层表面硬度又略有回升,但总体变化幅度较小,这证明了熔敷层成分较为均匀。试验得到堆焊平均硬度为340.8HV。堆焊区硬度高于基体是在由于堆焊过程中的元素扩散,一定量的Al、Ti、 Cu元素进入结合区,使原有的晶格发生畸变,起到了固溶强化的效果。基体区的测得的硬度与基体实际理论硬度相当。 Ti为基体的熔覆层硬度高于基体硬度。这是由于在轻质多主元合金绞股焊丝中铝丝、钛丝和铜丝的比例为4 ∶2 ∶1;这就导致在以Ti为基体的多主元合金熔覆层中,基体的Ti元素扩散到熔覆层中,Ti元素含量增加,Ti元素的相对原子半径大于Al、Cu元素,引起了晶格畸变,对滑移系起到了阻碍作用,使得其塑性变形产生阻力,从而提升了熔覆层的硬度值。

  • 图7 室温下熔覆层维氏硬度

  • Fig.7 Vickers hardness of cladding at room temperature

  • 2.2.3 熔覆层磨损性能

  • 采用UMT-3型多功能摩擦磨损测试仪进行摩擦磨损试验。试验前将熔覆层表面进行砂纸打磨、抛光、清洗、干燥处理。磨损试验中采用球和面接触的方式往复进行,磨损试验规范参数如表2所示。图8是45钢和熔覆层的摩擦因数曲线分布图。 45钢采用淬火温度840℃水淬,然后在400℃回火(保温2h,空冷),硬度为360HV。从图中可以看出,在相同的磨损条件下45钢的摩擦因数稳定在0.65~0.75,熔覆层的摩擦因数稳定于0.55左右。

  • 表2 摩擦磨损试验规范参数

  • Table2 Specification parameters of friction and wear test

  • 图8 熔覆层和45钢的摩擦因数

  • Fig.8 Friction coefficient of cladding layer and 45steel

  • 利用OLS4000扫描熔覆层和45钢的磨痕体积,重复进行三次试验,磨损体积如图9所示。从图9可以看出熔覆层耐磨性大于45钢。计算得到熔覆层磨损体积是45钢的85%。

  • 轻质多主元合金熔敷层具有良好的耐磨性能,这主要和其组织结构以及硬度有关。多主元合金元素间的固溶强化,使熔覆层在磨损过程中具有良好的抗塑性变形的能力,从而提高了其耐磨性能。这是熔覆层具有优异耐磨性能的原因。

  • 图10a为45钢表面磨痕形貌。可以看出磨损表面呈现出槽状犁沟磨痕及层状或鳞片状的剥落现象。这说明材料的磨损机理并不唯一。一般来讲,摩擦磨损试样表面存在一层氧化膜,摩擦首先是在试样表面的氧化膜和摩擦副之间展开。随着摩擦磨损的进行,氧化膜发生破裂,摩擦副和试样表面直接接触进行滑动干摩擦。相对摩擦副而言,试样硬度低于摩擦副, 摩擦副的微凸体对材料产生犁削。图10a可以清晰地看出划痕和由于黏着作用形成的黏着点,同时磨损产生的磨粒经过摩擦副的反复碾压黏附在磨损表面。此时材料表面发生磨粒磨损和黏着磨损。随着摩擦副的反复研磨,摩擦面产生大量摩擦热,摩擦副表面发生了氧化反应,磨损面产生大量的氧化产物。表面产生大量的氧化剥落,此时磨损机制已经转变为氧化物的疲劳剥落。因此45钢在干摩擦条件下的摩擦磨损失效机制磨粒磨损、粘着磨损和氧化磨损。图10b为多主元合金熔覆层的磨损形貌。从图中可以明显的看出磨痕表面发生了剥落,出现了小凹坑。说明熔覆层发生了粘着磨损。对图10b中剥落区(箭头1、2) 两处进行EDS分析,EDS分析结果如表3所示。发现磨屑中出现了较多的O元素和微量的铁元素,其具体成分如表所示。说明在磨损过程中,熔覆层的氧化较为严重。因此常温下熔覆层干摩擦条件下的摩擦磨损失效机制为粘着磨损和氧化磨损。

  • 图9 摩擦磨损试验结果

  • Fig.9 Results of friction and wear test

  • 图10 磨损微观形貌

  • Fig.10 Microstructure of wear

  • 从图10可以看出,摩擦表面出现了碎片、严重的氧化颗粒和塑性变形以及裂纹,这是由于在摩擦磨损试验中,GCr15摩擦副对熔覆层表面产生相应的压应力和切应力造成的。在摩擦表面产生裂纹后,继续摩擦会产生大量的碎片,使磨损表面变得粗糙。但继续摩擦,一部分碎片会被磨入到磨损表面的凹坑中,这样摩擦面的粗糙度就会减小。在摩擦磨损试验中,这种过程会不停的发生。该现象体现在摩擦因数曲线上就是摩擦因数呈现周期性波动,如图8所示。

  • 表3 熔覆层化学成分(质量分数%)

  • Table3 Chemical composition of cladding layer(wt.%)

  • 2.2.4 熔覆层室温压缩性能

  • 图11 为轻质多主元合金熔覆层室温压缩应力-应变曲线,熔覆层的压缩率为26%,压缩强度为1 187MPa。从试验结果可以看出熔覆层的压缩强度和塑性都较好,其综合抗压性能较好。结合熔覆层平均密度4.88g/cm 3,算出比强度为2.661 × 10 5(N/m 2)/(kg/m 3),接近Ti合金的比强度,远远高于常规的Al合金与Mg合金,属于比强度较高的轻质合金。

  • 图11 轻质多主元合金压缩应力-应变曲线

  • Fig.11 Compressive stress-strain curve of light multicomponent alloy

  • 图12 为室温下轻质多主元合金熔覆层压缩断口形貌扫描图像。可以看出熔覆层的断口主要由解理台阶、小韧窝、裂纹组成。因而可以推断Ti为基体熔覆层在常温下为韧性断裂与解理断裂的复合断裂模式。

  • 3 结论

  • (1) 采用电弧堆焊工艺可以制备出轻质多主元熔覆层,熔覆层与TC4钛合金基体形成了良好的冶金结合。

  • (2) XRD、SEM和EDS分析表明熔覆层主要由BCC结构的AlCu2Ti相和少量的CuO相和Fe2Ti3O9 相组成。熔覆层出现成分偏析,其中Al元素和Ti元素富集于枝晶内部,Cu元素偏析在枝晶间,熔覆层稀释区出现了大量的枝晶组织。

  • 图12 熔覆层室温下压缩断口形貌

  • Fig.12 Compressive fracture morphology of cladding layer at room temperature

  • (3) 采用电弧堆焊工艺制备的熔覆层硬度较高, 达到340.8HV;熔覆层表现出良好的耐摩擦磨损性能,耐磨性高于45钢,干摩擦磨损失效形式为粘着磨损和氧化磨损。熔覆层密度为4.88g/cm 3,压缩率为26%,压缩强度为1 187MPa,比强度约为2.661×10 5(N/m 2)/(kg/m 3),接近Ti合金的比强度,属于比强度较高的轻质合金。

  • 参考文献

    • [1] YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes [J].Advanced Engineering Materials,2004,6(5):299-303.

    • [2] CANTOR B,CHANG I T H,KNIGHT P,et al.Microstructural development in equiatomic multicomponent alloys[J].Materials Science and Engineering:A,2004,375-377:213-218.

    • [3] YEH J W,CHEN Y L,LIN S J,et al.High-entropy alloys-A new era of exploitation[J].Materials Science Forum,2007,560:1-9.

    • [4] SHI Y,YANG B,XIE X,et al.Corrosion of Al xCoCrFeNi high-entropy alloys:Al-content and potential scan-rate dependent pitting behavior[J].Corrosion Science,2017,119:33-45.

    • [5] WANG X R,WANG Z Q,LIN T S,et al.Microstructure,thermodynamics and compressive properties of AlCrCuNiZrx(x = 0,1)high-entropy alloys[J].Materials Science and Technology,2016,32(12):1289-1295.

    • [6] VAIDYA M,GARLAPATI M,MURTY B.High-entropy alloys by mechanical alloying:A review[J].Journal of Materials Research,2019,34:664-686.

    • [7] SANG L,XU Y.Amorphous behavior of ZrxFeNi Si0.4B0.6 high entropy alloys synthesized by mechanical alloying [J].Journal of Non-Crystalline Solids,2020,530:119854.

    • [8] RAPHEL A,KUMARAN S,KUMAR K V,et al.Oxidation and corrosion resistance of AlCoCrFeTi high entropy Alloy[J].Materials Today:Proceedings,2017,4(2,Part A):195-202.

    • [9] STEPANOV N D,YURCHENKO N Y,ZHEREBTSOV S V,et al.Aging behavior of the HfNbTaTiZr high entropy alloy[J].Materials Letters,2018,211:87-90.

    • [10] JAYARAJ J,THIRATHIPVIWAT P,HAN J,et al.Microstructure,mechanical and thermal oxidation behavior of AlNbTiZr high entropy alloy[J].Intermetallics,2018,100:9-19.

    • [11] LIU Y X,CHENG C Q,SHANG J L,et al.Oxidation behavior of high-entropy alloys AlxCoCrFeNi(x = 0.15,0.4)in supercritical water and comparison with HR3C steel[J].Transactions of Nonferrous Metals Society of China,2015,25(4):1341-1351.

    • [12] KUKSHAL V,PATNAIK A,BHAT I K.Corrosion and thermal behaviour of AlCr1.5CuFeNi2Tix high-entropy alloys[J].Materials Today:Proceedings,2018,5(9,Part 1):17073-17079.

    • [13] LIAO W,LAN S,GAO L,et al.Nanocrystalline highentropy alloy(CoCrFeNiAl0.3)thin-film coating by magnetron sputtering[J].Thin Solid Films,2017,638:383-388.

    • [14] LAI C H,LIN S J,YEH J W,et al.Preparation and characterization of AlCrTaTiZr multi-element nitride coatings[J].Surface and Coatings Technology,2006,201(6):3275-3280.

    • [15] 姚陈忠,张鹏,李高仁,等.电化学制备 Fe_(13.8)Co_(28.7)Ni_(4.0)Mn_(22.1)Bi_(14.9)Tm_(16.5)高熵合金及其磁性研究[C]//2008 年全国冶金物理化学学术会议,2008.YAO Chenzhong,ZHANG Peng,LI Gaoren,et al.Electrochemical preparation and magnetic properties of Fe_(13.8)Co _(28.7)Ni _(4.0)Mn _(22.1)Bi _(14.9)Tm_(16.5)high entropy alloys[C]//2008 National Conference on Metallurgical Physics and Chemistry,2008.

    • [16] FU Z,CHEN W,XIAO H,et al.Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique [J].Materials & Design,2013,44:535-539.

    • [17] VERONESI P,COLOMBINI E,ROSA R,et al.Microwave assisted synthesis of Si-modified Mn25FexNi25Cu(50-x)high entropy alloys [J].Materials Letters,2016,162:277-280.

    • [18] JOSEPH J,HODGSON P,JARVIS T,et al.Effect of hot isostatic pressing on the microstructure and mechanical properties of additive manufactured AlxCoCrFeNi high entropy alloys[J].Materials Science and Engineering:A,2018,733:59-70.

    • [19] VARALAKSHMI S,APPA RAO G,KAMARAJ M,et al.Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying[J].Journal of Materials Science,2010,45(19):5158-5163.

    • [20] LIU B,WANG J,LIU Y,et al.Microstructure and mechanical properties of equimolar FeCoCrNi high entropy alloy prepared via powder extrusion[J].Intermetallics,2016,75:25-30.

    • [21] TAKEUCHI A,INOUE A J M T.Classification of bulk metallic glasses by atomic size difference,heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J].Journal Materials Transactions,2005,46(12):2817-2829.

  • 参考文献

    • [1] YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes [J].Advanced Engineering Materials,2004,6(5):299-303.

    • [2] CANTOR B,CHANG I T H,KNIGHT P,et al.Microstructural development in equiatomic multicomponent alloys[J].Materials Science and Engineering:A,2004,375-377:213-218.

    • [3] YEH J W,CHEN Y L,LIN S J,et al.High-entropy alloys-A new era of exploitation[J].Materials Science Forum,2007,560:1-9.

    • [4] SHI Y,YANG B,XIE X,et al.Corrosion of Al xCoCrFeNi high-entropy alloys:Al-content and potential scan-rate dependent pitting behavior[J].Corrosion Science,2017,119:33-45.

    • [5] WANG X R,WANG Z Q,LIN T S,et al.Microstructure,thermodynamics and compressive properties of AlCrCuNiZrx(x = 0,1)high-entropy alloys[J].Materials Science and Technology,2016,32(12):1289-1295.

    • [6] VAIDYA M,GARLAPATI M,MURTY B.High-entropy alloys by mechanical alloying:A review[J].Journal of Materials Research,2019,34:664-686.

    • [7] SANG L,XU Y.Amorphous behavior of ZrxFeNi Si0.4B0.6 high entropy alloys synthesized by mechanical alloying [J].Journal of Non-Crystalline Solids,2020,530:119854.

    • [8] RAPHEL A,KUMARAN S,KUMAR K V,et al.Oxidation and corrosion resistance of AlCoCrFeTi high entropy Alloy[J].Materials Today:Proceedings,2017,4(2,Part A):195-202.

    • [9] STEPANOV N D,YURCHENKO N Y,ZHEREBTSOV S V,et al.Aging behavior of the HfNbTaTiZr high entropy alloy[J].Materials Letters,2018,211:87-90.

    • [10] JAYARAJ J,THIRATHIPVIWAT P,HAN J,et al.Microstructure,mechanical and thermal oxidation behavior of AlNbTiZr high entropy alloy[J].Intermetallics,2018,100:9-19.

    • [11] LIU Y X,CHENG C Q,SHANG J L,et al.Oxidation behavior of high-entropy alloys AlxCoCrFeNi(x = 0.15,0.4)in supercritical water and comparison with HR3C steel[J].Transactions of Nonferrous Metals Society of China,2015,25(4):1341-1351.

    • [12] KUKSHAL V,PATNAIK A,BHAT I K.Corrosion and thermal behaviour of AlCr1.5CuFeNi2Tix high-entropy alloys[J].Materials Today:Proceedings,2018,5(9,Part 1):17073-17079.

    • [13] LIAO W,LAN S,GAO L,et al.Nanocrystalline highentropy alloy(CoCrFeNiAl0.3)thin-film coating by magnetron sputtering[J].Thin Solid Films,2017,638:383-388.

    • [14] LAI C H,LIN S J,YEH J W,et al.Preparation and characterization of AlCrTaTiZr multi-element nitride coatings[J].Surface and Coatings Technology,2006,201(6):3275-3280.

    • [15] 姚陈忠,张鹏,李高仁,等.电化学制备 Fe_(13.8)Co_(28.7)Ni_(4.0)Mn_(22.1)Bi_(14.9)Tm_(16.5)高熵合金及其磁性研究[C]//2008 年全国冶金物理化学学术会议,2008.YAO Chenzhong,ZHANG Peng,LI Gaoren,et al.Electrochemical preparation and magnetic properties of Fe_(13.8)Co _(28.7)Ni _(4.0)Mn _(22.1)Bi _(14.9)Tm_(16.5)high entropy alloys[C]//2008 National Conference on Metallurgical Physics and Chemistry,2008.

    • [16] FU Z,CHEN W,XIAO H,et al.Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique [J].Materials & Design,2013,44:535-539.

    • [17] VERONESI P,COLOMBINI E,ROSA R,et al.Microwave assisted synthesis of Si-modified Mn25FexNi25Cu(50-x)high entropy alloys [J].Materials Letters,2016,162:277-280.

    • [18] JOSEPH J,HODGSON P,JARVIS T,et al.Effect of hot isostatic pressing on the microstructure and mechanical properties of additive manufactured AlxCoCrFeNi high entropy alloys[J].Materials Science and Engineering:A,2018,733:59-70.

    • [19] VARALAKSHMI S,APPA RAO G,KAMARAJ M,et al.Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying[J].Journal of Materials Science,2010,45(19):5158-5163.

    • [20] LIU B,WANG J,LIU Y,et al.Microstructure and mechanical properties of equimolar FeCoCrNi high entropy alloy prepared via powder extrusion[J].Intermetallics,2016,75:25-30.

    • [21] TAKEUCHI A,INOUE A J M T.Classification of bulk metallic glasses by atomic size difference,heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J].Journal Materials Transactions,2005,46(12):2817-2829.

  • 手机扫一扫看