en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

温永美,女,1986年出生,硕士,讲师。主要研究方向为表面技术和织构刀具。E-mail:yomei999@163.com

通讯作者:

温永美,女,1986年出生,硕士,讲师。主要研究方向为表面技术和织构刀具。E-mail:yomei999@163.com

中图分类号:TG17

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20201102002

参考文献 1
NEINHUIS W B.Purity of the sacred lotus,or escape from contamination in biological surfaces [J].Planta,1997,202(1):1-8.
参考文献 2
佟威,熊党生.仿生超疏水表面的发展及其应用研究进展 [J].无机材料学报,2019,34(11):1133-1144.TONG Wei,XIONG Dangsheng.Bioinspired superhydrophobic materials:Progress and functional application [J].Journal of Inorganic Materials,2019,34(11):1133-1144.
参考文献 3
向静,王宏,朱恂,等.荷叶表面的复刻及微纳结构对疏水性能的影响[J].化工学报,2019,70(9):3545-3552.XIANG Jing,WANG Hong,ZHU Xun,et al.Fast replication method for lotus leaf and effect of micro-nanostructure on hydrophobic properties[J].CIESC Journal,2019,70(9):3545-3552.
参考文献 4
LI G,FAN H,REN F,et al.Multifunctional ultrathin aluminum foil:Oil/water separation and particle filtration [J].Journal of Materials Chemistry A,2016:10.1039.C6TA08231A.
参考文献 5
ZHANG Z,ZHANG Y,FAN H,et al.A Janus oil barrel with tapered microhole arrays for spontaneous highflux spilled oil absorption and storage[J].Nanoscale,2017,9(41):15796-15803.
参考文献 6
BIXLER G D,BHUSHAN B.Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces [J].Nanoscale,2013,5(17):7685-7710.
参考文献 7
YANG Z,WANG L,SUN W,et al.Superhydrophobic epoxy coating modified by fluorographene used for anticorrosion and self-cleaning [J].Applied Surface Science,2017,401:146-155.
参考文献 8
REN F,LI G,ZHANG Z,et al.A single-layer Janus membrane with dual gradient conical micropore arrays for self-driving fog collection [J].Journal of Materials Chemistry A,2017:10.1039.C7TA04392A.
参考文献 9
WU X,SILBERSCHMIDT V V,HU Z T,et al.When superhydrophobic coatings are icephobic:Role of surface topology[J].Surface and Coatings Technology,2019,358:207-214.
参考文献 10
PAYRA D,NAITO M,FUJII Y,et al.Bioinspired adhesive polymer coatings for efficient and versatile corrosion resistance [J].RSC Advances,2015,5(21):15977-15984.
参考文献 11
李宏亮,郭汉杰,王晓辉,等.超疏水锌镍合金镀层的电化学制备[J].功能材料,2020,51(8):215-220.LI Hongliang,GUO Hanjie,WANG Xiaohui,et al.Fabrication of super-hydrophobic Zn-Ni alloy coating by electrochemical deposition [J].Journal of Functional Materials,2020,51(8):215-220.
参考文献 12
孙鹏程,郝秀清,牛宇生,等.硬质合金润湿图案化表面的超快无泵水自输运特性研究[J].南京航空航天大学学报,2020,37(3):416-423.SUN Pengcheng,HAO Xiuqing,NIU Yusheng,et al.Wettability pattern for ultrafast water self-pumping on cemented carbide surface [J].Transactions of Nanjing University of Aeronautics & Astronautics,2020,37(3):416-423.
参考文献 13
YIN Kai,YANG Shuai,DONG Yiran,et al.Ultrafast achievement of a superhydrophilic/hydrophobic janus foam by femtosecond laser ablation for directional water transport and efficient fog harvesting[J].ACS Applied Materials & Interfaces,2018,10:31433-31440.
参考文献 14
FAN Peixun,BAI Benfeng,ZHONG Minlin,et al.General strategy toward dual-scale-controlled metallic micro-nano hybrid structures with ultralow reflectance [J].ACS Nano,2017,11:7401-7408.
参考文献 15
赵文杰,曾志翔,王立平,等.规则织构化硅片表面的制备及其润湿行为[J].中国表面工程,2011,24(3):4-10.ZHAO Wenjie,ZENG Zhixiang,WANG Liping,et al.Fabrication and wetting behaviors of regular textured silicon surfaces[J].China Surface Engineering,2011,24(3):4-10.
参考文献 16
YONG Jiale,CHEN Feng,FANG Yao,et al.Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti-or capturing bubbles[J].ACS Applied Materials & Interfaces,2017,9:39863-39871.
参考文献 17
赵美云,田森,吴阳,等.织构参数对复合绝缘子硅橡胶表面疏水性能的影响 [J].中国表面工程,2019,32(1):12-21.ZHAO Meiyun,TIAN Sen,WU Yang,et al.Effects of texture parameters on surface hydrophobicity of silicone rubber composite insulator[J].China Surface Engineering,2019,32(1):12-21.
参考文献 18
HU Leyong,ZHANG Ling,WANG Deren,et al.Fabrication of biomimetic superhydrophobic surface based on nanosecond laser-treated titanium alloy surface and organic polysilazane composite coating [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,555:515-524.
参考文献 19
CARDOSO J T,AGUILAR-MORALES A I,ALAMRI S,et al.Superhydrophobicity on hierarchical periodic surface structures fabricated via direct laser writing and direct laser interference patterning on an aluminium alloy [J].Optics and Lasers in Engineering,2018,111(DEC.):193-200.
参考文献 20
张东光,李陵汉,吴亚丽,等.超疏水/超亲油铜网表面的一步法制备及其油水分离应用[J].中国表面工程,2019,32(1):31-37.ZHANG Dongguang,LI Linghan,WU Yali,et al.Preparation of superhydrophobic and superoleophilic surface on Cu mesh by one-step method and its application in oilwater separation[J].China Surface Engineering,2019,32(1):31-37.
参考文献 21
ZHANG Zhaoyang,GU Qinming,JIANG Wen,et al.Achieving of bionic super-hydrophobicity by electrodepositing nano-Ni-pyramids on the picosecond laser-ablated micro-Cu-cone surface [J].Surface and Coatings Technology,2019,363:170-178.
参考文献 22
REIF J,VARLAMOVA O,COSTACHE F.Femtosecond laser induced nanostructure formation:Self-organization control parameters[J].Applied Physics A,2008,92(4):1019-1024.
参考文献 23
VOGLER E A.Structure and reactivity of water at biomaterial surfaces[J].Advances in Colloid and Interface Science,1998,74(1-3):69-117.
参考文献 24
江雷,林峰.仿生智能纳米界面材料[M].北京:化工出版社,2007.JIANG Lei,LIN Feng.Bioinspired intelligent nanostructured interfacial materials [ M].Beijing:Chemical Industry Press,2007.
目录contents

    摘要

    表面润湿性是表面技术的研究热点。 为研究不同加工环境中激光制备微织构对 304 不锈钢表面润湿性的影响,采用光纤激光打标机,在空气、无水乙醇环境中采用一步法制备了微织构表面,从织构形貌、织构表面化学成分分析加工环境及激光参数对 304 不锈钢表面润湿性的调控机理。 结果表明,无织构 304 不锈钢表面接触角为 56. 89°,表现出了亲水特性;空气环境中制备的织构为微米尺度的沟槽织构,与无织构 304 不锈钢表面相比 O 原子明显增多,其表面接触角为 10. 61°,表现出了高亲水特性;试验所选参数范围内,无水乙醇环境中制备的织构为不规则的微纳织构,与无织构 304 不锈钢表面相比新增了大量 C 原子,其表面接触角为 66. 14° ~ 117. 83°,表现出了疏水特性;亲/ 疏水表面可以应用在微量液体的定向输运。 影响 304 不锈钢表面润湿性的因素主要有:织构形貌,表面化学成分。 该研究为 304 不锈钢表面润湿性调控提供了参考。

    Abstract

    Surface wettability is a research hotspot of surface technology. In order to study the influence of laser micro texture on the wettability of 304 stainless steel surface in different processing environments, the micro textured surface is prepared by one-step method in air and absolute ethanol environment with fiber laser marking machine. The control mechanism of processing environment and laser parameters on the wettability of 304 stainless steel surface was analyzed from texture morphology and chemical composition of texture surface. The results show that the surface contact angle of non-textured 304 stainless steel is 56. 89 ° which shows hydrophilic property. The texture prepared in air environment is micro scale groove texture, and the number of O atoms is significantly increased compared with the non-texture 304 stainless steel surface, and the surface contact angle is 10. 61 ° which shows high hydrophilic property. In the range of experimental parameters, the texture prepared in absolute ethanol environment is irregular micro-nano texture. Compared with the non texture 304 stainless steel surface, a large number of C atoms are added, and the surface contact angle is 66. 14 ° to 117. 83 ° which shows hydrophobic property. The hydrophilic / hydrophobic surface can be applied to the directional transport of micro liquid. The main factors affecting the wettability of 304 stainless steel are texture morphology and chemical composition of the surface. This study provides a reference for the surface wettability control of 304 stainless steel.

    关键词

    304 不锈钢织构空气无水乙醇亲/ 疏水

  • 0 前言

  • 在人类科学技术发展的历程中,自然界带给人类的灵感与启发,往往能够使某个科学领域取得阶跃式进步。荷叶表现出的自清洁能力[1-3] 吸引了不同领域众多研究人员的关注,它特殊的表面结构及蜡质层能够使水滴在其表面自由滚动,滚动的水滴可以去除荷叶表面的灰尘等污物。受到自然界特殊表面特性的启发,研究人员展开了表面润湿性的相关研究,经研究,特殊润湿性表面有多种功能,如油水分离[4-5]、自清洁[6-7]、水雾收集[8]、防冰霜[9]、耐腐蚀[10-11]、液体输运[12-13]、抗反射[14] 等。关于表面润湿性的研究已经成为表面技术的研究热点,影响润湿性的主要因素有:表面微观结构、材料表面自由能[15]。目前,改变表面润湿性的方法主要为改变表面微观结构[16-17]和低表面能材料的涂覆[18]

  • CARDOSO等[19] 利用紫外纳秒激光在AL2024表面制备了微单元结构,然后再利用红外皮秒激光在微单元结构上制备亚微米结构,形成了多尺度分层表面织构,研究了不同激光参数及激光照射间距对表面织构的影响及织构的疏水角。制备样品放置一周后,平均水接触角达到了161.5°±3°。经分析, 表面化学成分和粗糙度共同作用决定了液滴在表面是Wenzel或Cassie-Baxter状态。张东光等[20] 利用阳极氧化一步法在紫铜网上制备了超疏水/超亲油表面,研究了表面织构形貌及化学成分对润湿性的影响,试验结果表面,一定试验条件下能够制备出超疏水/超亲油表面,制备的铜网油水分离效率达到了96%以上,并且经过10次循环试验后,对煤油/水混合液的分离效率仍能达到90%,证明其有较好的机械稳定性。 ZHANG等[21] 采用皮秒激光烧蚀、电抛光和电沉积等方法,在不进行低表面能改性的情况下制备了仿生超疏水金属表面。首先利用激光技术在金属表面制备了微锥结构,然后利用电沉积技术在微锥结构上制备纳米金字塔结构,形成一个层次结构。试验结果表明,经过连续处理的表面具有很好的疏水性和Cassie态稳定性,接触角大于150°, 滑动角小于9°。经分析,密集分布的纳米金字塔有利于水滴的细化和跳跃,减少与表面的粘附,使表面保持稳定的Cassie状态。

  • 改变表面润湿性的方法多为复杂微织构表面制备、采用表面改性的方式在微织构表面涂覆低表面能材料、时间效应改变微织构表面润湿性、多种加工工艺共同作用等。以上方法都具有一定的局限性, 如:所需设备较多、制备工艺复杂、时间较长、成本较高等。

  • 经文献调研,关于304不锈钢润湿性调控的研究较少,尤其是利用简单工艺快速改变304不锈钢润湿性的研究。本文选择304不锈钢为研究对象,采用光纤激光打标机在空气、无水乙醇环境中制备微织构表面,研究了不同环境中制备的微织构表面的润湿性,丰富了304不锈钢润湿性调控研究。

  • 1 试验及方法

  • 1.1 材料

  • 试验所用材料为40mm×40mm×1.5mm的304不锈钢。在进行激光刻蚀之前,先采用2000目砂纸加水打磨去除表面的氧化物,然后在无水乙醇中超声清洗10min去除表面的碎屑等杂质。

  • 1.2 加工设备

  • 采用KN120光纤激光打标机进行微织构加工, 激光打标机参数如下: 最大功率20W, 波长1 064nm,脉冲激光,光束质量小于M2,内置风冷系统,最小字符0.15mm,打标深度小于0.3mm,打标速度小于7 000mm/s,最小线宽0.012mm,重复精度正负0.002mm,打标范围800mm×650mm×1 500mm。

  • 1.3 试验方法

  • 分别在空气、无水乙醇环境中利用光纤激光打标机制备微织构。空气环境中激光参数:加工次数为3、激光功率为18W、扫描速度为120mm/s、激光频率为20kHz、加工路径间距为100mm。无水乙醇环境中的加工方法如下:将待加工样品放置在装有无水乙醇的容器中,使无水乙醇淹没待加工样品,将激光聚焦在待加工样品表面进行微织构制备。无水乙醇环境中,激光制备微织构的机理较复杂,因此选择多参数研究微织构表面润湿特性,激光参数见表1。所有微织构表面制备完成后不做任何涂覆处理,并在24h内完成形貌观测、能谱分析、接触角测量,避免了氧化作用及空气中微尘对织构表面特性产生影响。

  • 表1 无水乙醇环境中激光加工参数

  • Table1 Laser processing parameters in anhydrous ethanol environment

  • 2 结果与讨论

  • 2.1 微织构形貌

  • 图1 为空气环境中制备微织构的表面形貌。由图1可知,空气环境中制备的304不锈钢织构形貌为较规则的条形沟槽,表面重铸层较大,在沟槽附近形成了不规则的凸起。

  • 图2 为不同激光参数条件下无水乙醇环境中制备织构的表面形貌,图2a~2e为加工次数为1,激光频率为200kHz,激光功率为16W,路径间距为80 μm, 扫描速度分别为0.1mm/s、 1mm/s、 5mm/s、10mm/s、15mm/s的微织构形貌,分别记为E1~E5。由图2a~2e可知,随着激光扫描速度的增加,304不锈钢表面加工痕迹越来越少,经分析, 随着激光扫描速度的增加,单位面积内激光脉冲数量减少,从而导致热积累减少,使材料熔融量减小。图2f~2j为加工次数=1,激光频率为200kHz,扫描速度为1mm/s,路径间距为80 μm,激光功率分别为12W、14W、16W、18W、20W的微织构形貌,分别记为E6~E10。由图2f~2j可知,随着激光功率的增加,304不锈钢表面加工痕迹越来越明显,经分析,随着激光功率的增加,激光的能量密度随之增大,使材料熔融量增加。对比图1与图2,发现空气环境中制备的织构形貌比无水乙醇环境中制备的织构形貌规则,主要因为液体环境中激光加工过程更加复杂,无水乙醇对激光束有反射、折射以及吸收激光能量的作用,并且在固、液界面存在复杂的物理、化学作用。

  • 图1 空气环境中制备的织构形貌

  • Fig.1 Texture morphology in air environment

  • 图2 无水乙醇环境中不同激光参数条件下织构形貌

  • Fig.2 Texture morphology under different laser parameters in anhydrous ethanol environment

  • 图3 为无水乙醇环境中制备的304不锈钢织构表面细节图,该细节图具有代表性,由该图可以看出在无水乙醇环境中304不锈钢微织构表面表现出不规则的熔融,并且分布有很多球形颗粒,球形颗粒为304不锈钢熔融后在无水乙醇环境中迅速冷却产生的。在微织构表面可以看到分布有纳米级别的颗粒状突起,这主要是由于激光冲击压缩和碎片沉积的共同作用,在微织构表面形成了一些纳米颗粒[22]。无水乙醇环境中制备的304不锈钢织构表现出了复杂的微纳形貌。

  • 图3 无水乙醇环境中制备的织构形貌细节

  • Fig.3 Details of texture morphology in anhydrous ethanol environment

  • 2.2 表面化学成分分析

  • 图4 为无织构304不锈钢表面能谱,图5为空气环境中制备的织构表面能谱,图6为无水乙醇环境中制备的织构表面能谱。对比图4与图5,从能谱图中可以看出空气环境中制备的织构表面O原子明显增多。由检测结果可知,无织构304不锈钢表面的O原子的重量百分比和原子百分比分别是1.7%、6.53%,空气环境中制备织构表面的O原子的重量百分比和原子百分比分别是11.84%、 23.14%,证明在空气环境中制备织构极易发生氧化。对比图4与图6,从能谱图中可以看出无水乙醇环境中制备的织构表面出现大量的C原子。由检测结果可知,无织构304不锈钢表面无C原子,无水乙醇环境中制备的织构表面C原子的重量百分比和原子百分比分别是12.87%、41.28%,据猜测, 在无水乙醇环境中制备织构,激光的高能量破坏了无水乙醇的化学键,并使含有C原子的基团附着在了织构表面。

  • 图4 无织构304不锈钢表面能谱

  • Fig.4 Surface energy spectrum of 304stainless steel without texture

  • 图5 空气环境中制备的织构表面能谱

  • Fig.5 Energy spectrum of textured surface prepared in air environment

  • 图6 无水乙醇环境中制备的织构表面能谱

  • Fig.6 Energy spectrum of texture surface prepared in anhydrous ethanol environment

  • 2.3 润湿性分析

  • 润湿性可以用接触角来评价,但亲水性和疏水性的概念仍然存在争议。一直以来,较为普遍的说法是以90°为亲/疏水界限,也就是,接触角小于90° 的固体表面被定义为亲水表面,接触角大于90°的被定义为疏水表面。但是,近年来的研究表明,较新的理论支持65°为亲/疏水界限[23],接触角小于10° 表现为超亲水,接触角大于150°表现为超疏水[24]

  • 图7a为无织构304不锈钢表面接触角,图7b为空气环境中制备织构表面接触角。无织构304不锈钢表面接触角为56.89°,空气环境中制备织构表面接触角为10.61°,均表现为亲水,其中空气环境中制备织构表面可认为达到了高亲水。经分析,空气环境中制备织构表面表现出高亲水特性的原因主要有:空气环境中制备的织构表面为微米尺度,水滴容易进入织构凹槽内;空气环境中制备的织构表面发生氧化,氧原子一般会得到部分电子而呈负价,电子较多时就可以与水中的氢形成氢键,表现出很强的亲水性。

  • 图7 无织构304不锈钢表面、空气环境中制备织构表面接触角

  • Fig.7 Contact angle of textured 304stainless steel surface in air

  • 图8 为无水乙醇环境中不同激光参数条件下制备的织构表面接触角,由图可知,无水乙醇环境中, 其他参数不变的情况下,随着激光扫描速度增加,所得织构表面接触角随之减小,随着激光功率的增加, 所得织构表面接触角随之增大。结合图2可知,接触角的大小与织构表面熔融量有关,熔融量越大表面形貌越复杂则接触角越大。根据新的亲/疏水界限[19]理论,无水乙醇环境中制备的织构表面均表现为疏水,并且当激光参数为扫描速度=1、激光功率为200kHz、激光功率为20W、路径间距为80 μm时,所得织构表面疏水角最大,为117.83°。经分析,无水乙醇环境中制备的织构表面表现出疏水特性的原因主要有:织构形貌复杂,表现出三维微纳结构,水滴不易进入纳米尺度的织构中;所得织构表面检测出大量C原子,C链属于疏水基,使织构表面表现为疏水特性。

  • 图8 无水乙醇环境中不同激光参数条件下制备的织构表面接触角

  • Fig.8 Contact angle of textured surface prepared under different laser parameters in anhydrous ethanol environment

  • 2.4 液体输运

  • 图9a展示了在40mm × 40mm × 1.5mm的304不锈钢上制备出的织构路径,其中深色的为空气环境中制备的织构,浅色的为无水乙醇环境中制备的织构。使用白色颜料和水混合成白色液体,将白色液体滴在上方空气环境中制备的圆形织构内,随着时间的推移,白色液体仅沿着空气环境中制备的织构路径移动,经过8s的时间到达下方空气环境中制备的圆形织构内,整个过程中白色液体没有浸润至无水乙醇环境中制备的织构路径及无织构表面上。试验表明,利用织构的亲/疏水特性可以达到液体定向输运的目的,该作用可以在药物定向输送、定向润滑、可控化学反应等多个领域应用。

  • 图9 液体输运

  • Fig.9 Liquid transport

  • 3 结论

  • (1) 利用激光技术,在不同加工环境中获得的织构形貌不同,空气环境中制备的织构为微米尺度的规则槽型织构,无水乙醇环境中制备的织构为不规则的三维微纳织构。

  • (2) 空气环境中制备的织构表面与无织构表面相比O原子明显增加,表现出了高亲水特性。无水乙醇环境中制备的织构表面与无织构表面相比新增了大量C原子,表现出了疏水特性。

  • (3) 无水乙醇环境中制备的织构表面接触角大小受激光参数影响,主要表现为激光对被加工表面熔融量的程度,即被加工表面熔融量越大,织构形貌越复杂,则织构表面接触角就越大。

  • (4) 影响织构表面润湿性的因素主要有:织构形貌、织构表面化学成分。

  • (5) 改变加工环境、激光参数即可实现304不锈钢润湿性的调控。通过调控304不锈钢的润湿性,可以实现微量液体的定向输运。

  • 参考文献

    • [1] NEINHUIS W B.Purity of the sacred lotus,or escape from contamination in biological surfaces [J].Planta,1997,202(1):1-8.

    • [2] 佟威,熊党生.仿生超疏水表面的发展及其应用研究进展 [J].无机材料学报,2019,34(11):1133-1144.TONG Wei,XIONG Dangsheng.Bioinspired superhydrophobic materials:Progress and functional application [J].Journal of Inorganic Materials,2019,34(11):1133-1144.

    • [3] 向静,王宏,朱恂,等.荷叶表面的复刻及微纳结构对疏水性能的影响[J].化工学报,2019,70(9):3545-3552.XIANG Jing,WANG Hong,ZHU Xun,et al.Fast replication method for lotus leaf and effect of micro-nanostructure on hydrophobic properties[J].CIESC Journal,2019,70(9):3545-3552.

    • [4] LI G,FAN H,REN F,et al.Multifunctional ultrathin aluminum foil:Oil/water separation and particle filtration [J].Journal of Materials Chemistry A,2016:10.1039.C6TA08231A.

    • [5] ZHANG Z,ZHANG Y,FAN H,et al.A Janus oil barrel with tapered microhole arrays for spontaneous highflux spilled oil absorption and storage[J].Nanoscale,2017,9(41):15796-15803.

    • [6] BIXLER G D,BHUSHAN B.Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces [J].Nanoscale,2013,5(17):7685-7710.

    • [7] YANG Z,WANG L,SUN W,et al.Superhydrophobic epoxy coating modified by fluorographene used for anticorrosion and self-cleaning [J].Applied Surface Science,2017,401:146-155.

    • [8] REN F,LI G,ZHANG Z,et al.A single-layer Janus membrane with dual gradient conical micropore arrays for self-driving fog collection [J].Journal of Materials Chemistry A,2017:10.1039.C7TA04392A.

    • [9] WU X,SILBERSCHMIDT V V,HU Z T,et al.When superhydrophobic coatings are icephobic:Role of surface topology[J].Surface and Coatings Technology,2019,358:207-214.

    • [10] PAYRA D,NAITO M,FUJII Y,et al.Bioinspired adhesive polymer coatings for efficient and versatile corrosion resistance [J].RSC Advances,2015,5(21):15977-15984.

    • [11] 李宏亮,郭汉杰,王晓辉,等.超疏水锌镍合金镀层的电化学制备[J].功能材料,2020,51(8):215-220.LI Hongliang,GUO Hanjie,WANG Xiaohui,et al.Fabrication of super-hydrophobic Zn-Ni alloy coating by electrochemical deposition [J].Journal of Functional Materials,2020,51(8):215-220.

    • [12] 孙鹏程,郝秀清,牛宇生,等.硬质合金润湿图案化表面的超快无泵水自输运特性研究[J].南京航空航天大学学报,2020,37(3):416-423.SUN Pengcheng,HAO Xiuqing,NIU Yusheng,et al.Wettability pattern for ultrafast water self-pumping on cemented carbide surface [J].Transactions of Nanjing University of Aeronautics & Astronautics,2020,37(3):416-423.

    • [13] YIN Kai,YANG Shuai,DONG Yiran,et al.Ultrafast achievement of a superhydrophilic/hydrophobic janus foam by femtosecond laser ablation for directional water transport and efficient fog harvesting[J].ACS Applied Materials & Interfaces,2018,10:31433-31440.

    • [14] FAN Peixun,BAI Benfeng,ZHONG Minlin,et al.General strategy toward dual-scale-controlled metallic micro-nano hybrid structures with ultralow reflectance [J].ACS Nano,2017,11:7401-7408.

    • [15] 赵文杰,曾志翔,王立平,等.规则织构化硅片表面的制备及其润湿行为[J].中国表面工程,2011,24(3):4-10.ZHAO Wenjie,ZENG Zhixiang,WANG Liping,et al.Fabrication and wetting behaviors of regular textured silicon surfaces[J].China Surface Engineering,2011,24(3):4-10.

    • [16] YONG Jiale,CHEN Feng,FANG Yao,et al.Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti-or capturing bubbles[J].ACS Applied Materials & Interfaces,2017,9:39863-39871.

    • [17] 赵美云,田森,吴阳,等.织构参数对复合绝缘子硅橡胶表面疏水性能的影响 [J].中国表面工程,2019,32(1):12-21.ZHAO Meiyun,TIAN Sen,WU Yang,et al.Effects of texture parameters on surface hydrophobicity of silicone rubber composite insulator[J].China Surface Engineering,2019,32(1):12-21.

    • [18] HU Leyong,ZHANG Ling,WANG Deren,et al.Fabrication of biomimetic superhydrophobic surface based on nanosecond laser-treated titanium alloy surface and organic polysilazane composite coating [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,555:515-524.

    • [19] CARDOSO J T,AGUILAR-MORALES A I,ALAMRI S,et al.Superhydrophobicity on hierarchical periodic surface structures fabricated via direct laser writing and direct laser interference patterning on an aluminium alloy [J].Optics and Lasers in Engineering,2018,111(DEC.):193-200.

    • [20] 张东光,李陵汉,吴亚丽,等.超疏水/超亲油铜网表面的一步法制备及其油水分离应用[J].中国表面工程,2019,32(1):31-37.ZHANG Dongguang,LI Linghan,WU Yali,et al.Preparation of superhydrophobic and superoleophilic surface on Cu mesh by one-step method and its application in oilwater separation[J].China Surface Engineering,2019,32(1):31-37.

    • [21] ZHANG Zhaoyang,GU Qinming,JIANG Wen,et al.Achieving of bionic super-hydrophobicity by electrodepositing nano-Ni-pyramids on the picosecond laser-ablated micro-Cu-cone surface [J].Surface and Coatings Technology,2019,363:170-178.

    • [22] REIF J,VARLAMOVA O,COSTACHE F.Femtosecond laser induced nanostructure formation:Self-organization control parameters[J].Applied Physics A,2008,92(4):1019-1024.

    • [23] VOGLER E A.Structure and reactivity of water at biomaterial surfaces[J].Advances in Colloid and Interface Science,1998,74(1-3):69-117.

    • [24] 江雷,林峰.仿生智能纳米界面材料[M].北京:化工出版社,2007.JIANG Lei,LIN Feng.Bioinspired intelligent nanostructured interfacial materials [ M].Beijing:Chemical Industry Press,2007.

  • 参考文献

    • [1] NEINHUIS W B.Purity of the sacred lotus,or escape from contamination in biological surfaces [J].Planta,1997,202(1):1-8.

    • [2] 佟威,熊党生.仿生超疏水表面的发展及其应用研究进展 [J].无机材料学报,2019,34(11):1133-1144.TONG Wei,XIONG Dangsheng.Bioinspired superhydrophobic materials:Progress and functional application [J].Journal of Inorganic Materials,2019,34(11):1133-1144.

    • [3] 向静,王宏,朱恂,等.荷叶表面的复刻及微纳结构对疏水性能的影响[J].化工学报,2019,70(9):3545-3552.XIANG Jing,WANG Hong,ZHU Xun,et al.Fast replication method for lotus leaf and effect of micro-nanostructure on hydrophobic properties[J].CIESC Journal,2019,70(9):3545-3552.

    • [4] LI G,FAN H,REN F,et al.Multifunctional ultrathin aluminum foil:Oil/water separation and particle filtration [J].Journal of Materials Chemistry A,2016:10.1039.C6TA08231A.

    • [5] ZHANG Z,ZHANG Y,FAN H,et al.A Janus oil barrel with tapered microhole arrays for spontaneous highflux spilled oil absorption and storage[J].Nanoscale,2017,9(41):15796-15803.

    • [6] BIXLER G D,BHUSHAN B.Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces [J].Nanoscale,2013,5(17):7685-7710.

    • [7] YANG Z,WANG L,SUN W,et al.Superhydrophobic epoxy coating modified by fluorographene used for anticorrosion and self-cleaning [J].Applied Surface Science,2017,401:146-155.

    • [8] REN F,LI G,ZHANG Z,et al.A single-layer Janus membrane with dual gradient conical micropore arrays for self-driving fog collection [J].Journal of Materials Chemistry A,2017:10.1039.C7TA04392A.

    • [9] WU X,SILBERSCHMIDT V V,HU Z T,et al.When superhydrophobic coatings are icephobic:Role of surface topology[J].Surface and Coatings Technology,2019,358:207-214.

    • [10] PAYRA D,NAITO M,FUJII Y,et al.Bioinspired adhesive polymer coatings for efficient and versatile corrosion resistance [J].RSC Advances,2015,5(21):15977-15984.

    • [11] 李宏亮,郭汉杰,王晓辉,等.超疏水锌镍合金镀层的电化学制备[J].功能材料,2020,51(8):215-220.LI Hongliang,GUO Hanjie,WANG Xiaohui,et al.Fabrication of super-hydrophobic Zn-Ni alloy coating by electrochemical deposition [J].Journal of Functional Materials,2020,51(8):215-220.

    • [12] 孙鹏程,郝秀清,牛宇生,等.硬质合金润湿图案化表面的超快无泵水自输运特性研究[J].南京航空航天大学学报,2020,37(3):416-423.SUN Pengcheng,HAO Xiuqing,NIU Yusheng,et al.Wettability pattern for ultrafast water self-pumping on cemented carbide surface [J].Transactions of Nanjing University of Aeronautics & Astronautics,2020,37(3):416-423.

    • [13] YIN Kai,YANG Shuai,DONG Yiran,et al.Ultrafast achievement of a superhydrophilic/hydrophobic janus foam by femtosecond laser ablation for directional water transport and efficient fog harvesting[J].ACS Applied Materials & Interfaces,2018,10:31433-31440.

    • [14] FAN Peixun,BAI Benfeng,ZHONG Minlin,et al.General strategy toward dual-scale-controlled metallic micro-nano hybrid structures with ultralow reflectance [J].ACS Nano,2017,11:7401-7408.

    • [15] 赵文杰,曾志翔,王立平,等.规则织构化硅片表面的制备及其润湿行为[J].中国表面工程,2011,24(3):4-10.ZHAO Wenjie,ZENG Zhixiang,WANG Liping,et al.Fabrication and wetting behaviors of regular textured silicon surfaces[J].China Surface Engineering,2011,24(3):4-10.

    • [16] YONG Jiale,CHEN Feng,FANG Yao,et al.Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti-or capturing bubbles[J].ACS Applied Materials & Interfaces,2017,9:39863-39871.

    • [17] 赵美云,田森,吴阳,等.织构参数对复合绝缘子硅橡胶表面疏水性能的影响 [J].中国表面工程,2019,32(1):12-21.ZHAO Meiyun,TIAN Sen,WU Yang,et al.Effects of texture parameters on surface hydrophobicity of silicone rubber composite insulator[J].China Surface Engineering,2019,32(1):12-21.

    • [18] HU Leyong,ZHANG Ling,WANG Deren,et al.Fabrication of biomimetic superhydrophobic surface based on nanosecond laser-treated titanium alloy surface and organic polysilazane composite coating [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,555:515-524.

    • [19] CARDOSO J T,AGUILAR-MORALES A I,ALAMRI S,et al.Superhydrophobicity on hierarchical periodic surface structures fabricated via direct laser writing and direct laser interference patterning on an aluminium alloy [J].Optics and Lasers in Engineering,2018,111(DEC.):193-200.

    • [20] 张东光,李陵汉,吴亚丽,等.超疏水/超亲油铜网表面的一步法制备及其油水分离应用[J].中国表面工程,2019,32(1):31-37.ZHANG Dongguang,LI Linghan,WU Yali,et al.Preparation of superhydrophobic and superoleophilic surface on Cu mesh by one-step method and its application in oilwater separation[J].China Surface Engineering,2019,32(1):31-37.

    • [21] ZHANG Zhaoyang,GU Qinming,JIANG Wen,et al.Achieving of bionic super-hydrophobicity by electrodepositing nano-Ni-pyramids on the picosecond laser-ablated micro-Cu-cone surface [J].Surface and Coatings Technology,2019,363:170-178.

    • [22] REIF J,VARLAMOVA O,COSTACHE F.Femtosecond laser induced nanostructure formation:Self-organization control parameters[J].Applied Physics A,2008,92(4):1019-1024.

    • [23] VOGLER E A.Structure and reactivity of water at biomaterial surfaces[J].Advances in Colloid and Interface Science,1998,74(1-3):69-117.

    • [24] 江雷,林峰.仿生智能纳米界面材料[M].北京:化工出版社,2007.JIANG Lei,LIN Feng.Bioinspired intelligent nanostructured interfacial materials [ M].Beijing:Chemical Industry Press,2007.

  • 手机扫一扫看