en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

褚清坤,男,1995年出生,硕士。主要研究方向为激光增材制造。E-mail:1536484979@qq.com

通讯作者:

刘敏,男,1965年出生,硕士,教授级高级工程师。主要研究方向为激光增材制造技术和表面工程技术。E-mail:liumin@gdas.gd.cn

中图分类号:TG113;TG146

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20200908002

参考文献 1
CHEN C C,XIE Y C,YAN X C,et al.Effect of hot isostatic pressing(HIP)on microstructure and mechanical properties of Ti6Al4V alloy fabricated by cold spray additive manufacturing [J].Additive Manufacturing,2019,27:595-605.
参考文献 2
YAN X C,YIN S,CHEN C Y,et al.Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting[J].Journal of Alloys and Compounds,2018,764:1056-1071.
参考文献 3
李毅,于彦东,林凯.选区激光熔化 Inconel 625 合金的热处理工艺及其性能研究 [J].热加工工艺,2020,49(6):124-127.LI Yi,YU Yandong,LIN Kai.Heat treatment process and properties of selective laser melting Inconel 625 alloy[J].Heat Treatment Process,2020,49(6):124-127.
参考文献 4
YAN X C,CHEN C Y,CHANG C,et al.Study of the microstructure and mechanical performance of C-X stainless steel processed by selective laser melting(SLM)[J].Materials Science and Engineering:A,2020,781:139227.
参考文献 5
CHANG C,YAN X C,BOLOT R,et al.Influence of post-heat treatments on the mechanical properties of CX stainless steel fabricated by selective laser melting[J].Journal of Materials Science,2020,55(19):8303-16.
参考文献 6
PAUL C P,GANESH P,MISHRA S K,et al.Investigating laser rapid manufacturing for Inconel-625 components[J].Optics & Laser Technology,2007,39(4):800-5.
参考文献 7
张宇,姜云,胡晓安.选区激光熔化成形 Inconel 625 合金的激光焊接头组织及高温蠕变性能[J].焊接学报,2020,41(5):78-84,101-102.ZHANG Yu,JIANG Yun,HU Xiaoan.Microstructure and high temperature creep properties of laser welded joints of Inconel 625 alloy formed by selective laser melting[J].Acta welding Sinica,2020,41(5):78-84,101-102.
参考文献 8
SONG K H,NAKATA K.Effect of precipitation on post-heat-treated Inconel 625 alloy after friction stir welding [J].Materials & Design,2010,31(6):2942-2947.
参考文献 9
MUMTAZ K,HOPKINSON N.Top surface and side roughness of Inconel 625 parts processed using selective laser melting[J].Rapid Prototyping Journal,2009,15(2):96-103.
参考文献 10
YAN X C,GAO S H,CHANG C,et al.Effect of building directions on the surface roughness,microstructure,and tribological properties of selective laser melted Inconel 625[J].Journal of Materials Processing Technology,2021,288:116878.
参考文献 11
LI C,WHITE R,FANG X Y,et al.Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment[J].Materials Science and Engineering:A,2017,705:20-31.
参考文献 12
ANAM M A,DILIP J J S,PAL D,et al.Effect of scan pattern on the microstructural evolution of inconel 625 during selective laser melting[C]//Solid Free form Fabrication 2014:363-376.
参考文献 13
LI S,WEI Q S,SHI Y S,et al.Microstructure characteristics of inconel 625 superalloy manufactured by selective laser melting[J].Journal of Materials Science & Technology,2015,31(9):946-952.
参考文献 14
YADROITSEV I,SMUROV I.Selective laser melting technology:From the single laser melted track stability to 3D parts of complex shape [J].Physics Procedia,2010,5:551-560.
参考文献 15
GONZALEZ J A,MIRELES J,STAFFORD S W,et al.Characterization of Inconel 625 fabricated using powderbed-based additive manufacturing technologies [J].Journal of Materials Processing Technology,2019,264:200-210.
参考文献 16
YAN X C,CHEN C Y,ZHAO R X,et al.Selective laser melting of WC reinforced maraging steel 300:Microstructure characterization and tribological performance [J].Surface and Coatings Technology,2019,371:355-365.
参考文献 17
YAN X C,HUANG C J,CHEN C Y,et al.Additive manufacturing of WC reinforced maraging steel 300 composites by cold spraying and selective laser melting[J].Surface and Coatings Technology,2019,371:161-171.
参考文献 18
黎小辉,万霞,甘春雷.汽车制动材料研究现状与发展趋势 [J].材料研究与应用,2020,14(3):240-245.LI Xiaohui,WAN Xia,GAN Chunlei.Research status and development trend of automotive brake materials [J].Materials Research and Application,2020,14(3):240-245.
参考文献 19
LEE C Y,JEONG J,HAN J,et al.Coupled strengthening in a medium manganese lightweight steel with an inhomogeneously grained structure of austenite[J].Acta Materialia,2015,84:1-8.
参考文献 20
LEE S,JEONG J,LEE Y K.Precipitation and dissolution behavior of κ-carbide during continuous heating in Fe-9.3Mn-5.6Al-0.16C lightweight steel[J].Journal of Alloys and Compounds,2015,648:149-153.
参考文献 21
SONG I K,KIM D K,HAHN Y D,et al.Investigation of Ti3AlC2 in the in situ TiC-Al composite prepared by the exothermic reaction process in liquid aluminum[J].Materials Letters,2004,58(5):593-597.
参考文献 22
WANG Z,LIN T,HE X B,et al.Fabrication and properties of the TiC reinforced high-strength steel matrix composite[J].International Journal of Refractory Metals and Hard Materials,2016,58:14-21.
参考文献 23
LEE Y H,KIM N,LEE S B,et al.Microstructure and mechanical properties of lightweight TiC-steel composite prepared by liquid pressing infiltration process[J].Materials Characterization,2020,162:110202.
参考文献 24
CHANG C,HUANG J,YAN X C,et al.Microstructure and mechanical deformation behavior of selective laser melted Ti6Al4V ELI alloy porous structures[J].Materials Letters,2020,277:128366.
参考文献 25
YAN X C,YIN S,CHEN C Y,et al.Fatigue strength improvement of selective laser melted Ti6Al4V using ultrasonic surface mechanical attrition[J].Materials Research Letters,2019,7(8):327-333.
参考文献 26
ZHANG X Y,YAN X C,FANG G,et al.Biomechanical influence of structural variation strategies on functionally graded scaffolds constructed with triply periodic minimal surface [J].Additive Manufacturing,2020,32:101015.
参考文献 27
GU D D,MEINERS W,WISSENBACH K,et al.Laser additive manufacturing of metallic components:materials,processes and mechanisms[J].International Materials Reviews,2012,57(3):133-164.
参考文献 28
陈秀娟.激光选区熔化成形Inconel625合金的缺陷形成分析及热处理工艺研究[D].广州:广东工业大学,2020.CHEN Xiujuan.Defect formation analysis and heat treatment process of laser selective melting Inconel625 alloy[D].Guangzhou:Guangdong University of Technology,2020.
参考文献 29
薛志远.选区激光熔化 Inconel 625 疲劳裂纹扩展行为研究[D].南昌:南昌航空大学,2019.XUE Zhiyuan.Study on fatigue crack growth behavior of Inconel 625 by selective laser melting[D].Nanchang:Nanchang Aeronautical University,2019.
参考文献 30
YEN Y W,SU J W,HUANG D P.Phase equilibria of the Fe-Cr-Ni ternary systems and interfacial reactions in Fe-Cr alloys with Ni substrate[J].Journal of Alloys and Compounds,2008,457(1):270-278.
参考文献 31
陈秀娟,赵国瑞,董东东.选区激光熔化制造Inconel625高温合金的组织和力学性能[J].中国激光,2019,46(12):70-78.CHEN Xiujuan,ZHAO Guorui,DONG Dongdong.Microstructure and mechanical properties of Inconel625 superalloy fabricated by selective laser melting[J].China Laser,2019,46(12):70-78.
目录contents

    摘要

    为了提高 3D 打印镍基高温合金强度、硬度及耐磨性能,使用激光选区熔化技术(Selective laser melting, SLM)制备添加不同质量分数 TiC 增强 Inconel 625 合金材料,并对比添加不同质量分数 TiC(4 wt. %和 8 wt. %)所制备的 SLM TiC/ Inconel 625 试样的摩擦磨损性能。 结合 X 射线衍射仪(XRD),金相显微镜(OM),扫描电子显微镜(SEM)及能谱分析(EDS)等材料表征手段对 TiC/ Inconel 625 试样的物相分布,微观组织结构及磨损前后的元素分布进行对比分析。 结果表明,随着 TiC 含量的增高,SLM TiC/ Inconel 625 硬度从 325 HV0. 2(不含 TiC)升高到了 587 HV0. 2(SLM 8 wt. % TiC/ Inconel 625),磨损率也由 22. 4×10 -5 mm 3 / (N·m)下降为 9. 8×10 -5 mm 3 / (N·m)。 其中,平均摩擦磨损系数最小的为 SLM 4 wt. % TiC/ Inconel 625 (COF=0. 47)。 综合对比可以发现通过添加适量的 TiC 颗粒可以有限改善 SLM Inconel 625 的硬度及耐磨损性能。

    Abstract

    In order to improve the strength, hardness and wear resistance of nickel-based superalloys, selective laser melting ( SLM) technology is used to fabricate Inconel 625 alloy with different TiC content. The friction and wear properties of SLM TiC/ Inconel 625 samples with a series of TiC content (4 wt. % and 8 wt. %) are in-depth studied and analyzed. The phase distribution, microstructure and element distribution before and after wear tests of the SLM TiC/ Inconel 625 samples are investigated using X-ray diffractometer (XRD), metallographic microscope (OM), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and other advanced material characterization methods. The results show that with the increase of TiC content, the hardness of SLM TiC/ Inconel 625 increased from 325 HV0. 2(without TiC) to 587 HV0. 2(with 8 wt. % TiC). The wear rate of these samples was also decreased from 22. 4×10 -5 mm 3 / (N·m) to 9. 8×10 -5 mm 3 / (N·m). Among these samples, SLM TiC/ Inconel specimen (with 4 wt. %) has the lowest average coefficient of friction (COF= 0. 47). It is proved that the hardness and wear resistance of SLM Inconel 625 samples can be enhanced by adding an appropriate amount of TiC particles.

  • 0 前言

  • 激光选区熔化技术( Selective laser melting, SLM) 是金属增材制造( Addictive manufacturing, AM)领域中最具吸引力的技术之一[1]。在SLM成形过程中,高能量密度的激光对铺成薄层的粉末进行逐层选区烧结,从而成形出预设计形状尺寸的零件。 SLM技术由于其成形自由度高,材料适用范围广等优点,在许多工业领域中都有应用的潜力。此外,由于激光束的能量密度高,除了常用的商用合金粉末( 如钛基[2]、镍基[3]、钴基和铁基[4-5] 合金粉末),SLM技术还可以制造高熔点的钼、钽、钨等难熔金属。因此,SLM是一种可以直接从原始材料中制造金属部件的新兴技术。

  • Inconel625是一种镍基高温合金,由C、Cr、Mo和Nb等元素固溶而成。由于其优异的力学性能和高温蠕变性[6-7],已被广泛用于航空航天、海洋、化学和核工业等领域。 Inconel625零件的传统制造工艺包括铸造、粉末冶金和搅拌摩擦焊[8]。随着AM技术的快速发展,使用AM制造Inconel625零件已逐渐成为了一种极具应用价值的手段。 MUMTAZ和HOPKINSON [9] 在2009年使用SLM技术成功地制造了Inconel625零件。 YAN等[10] 利用SLM技术成功地制备了不同打印方向的SLM Inconel625试样。研究了打印方向对SLM Inconel625试样表面粗糙度、微观组织演变和摩擦磨损性能的影响。研究发现,SLM的打印方向对Inconel625零件的表面宏微观组织和摩擦学性能有明显的影响。 LI等[11] 发现SLM Inconel625样品中存在很多具有强织构的细圆柱状 γ 枝晶,通过热处理可以使组织再结晶,晶粒长大,同时能降低位错密度并减少晶界错位。 ANAM等[12] 使用SEM和EDS观测到在SLM Inconel625样品的熔道中存在富Nb和Mo的胞状亚结构晶粒,且晶粒沿打印方向生长。 LI等[13] 研究了SLM Inconel625试样的显微组织演变,发现其显微组织是由细长的柱状晶体组成。此外,还发现热处理对SLM试样的显微组织的影响并不明显。 YADROITSEV和SMUROV [14]发现,SLM Inconel625试样的延伸率仅为8%~10%,而传统铸造和锻造件的延伸率为40%。此外,GONZALEZ等[15] 比较了不同AM技术生产的Inconel625试样的微观结构和机械性能。结果表明,与使用其他技术制备的试样相比,SLM试样具有更好的力学性能。尽管研究学者对不同工艺制造的Inconel625合金材料的组织和力学性能进行了多方面对比,但使用SLM技术制备耐磨损性能良好的Inconel625镍基高温合金件仍未得到充分关注。

  • 具有优异机械性能的轻质高强、多功能先进金属基复合材料可满足结构轻量化和结构-功能一体化设计需求,是航空航天、汽车零件、电工电子及国防等高科技领域发展不可替代的关键基础材料[16-18]。为减轻结构件整体重量,进一步提升材料的综合力学性能,常需要进行轻质结构材料的研发及试制,但对元素成分进行详细计算及充分调试后再对一种新材料进行开发的方法,往往耗时耗力且需要复杂后处理的流程才可能达到目标性能[19-20]。因此,为了更好地解决上述问题,轻质陶瓷颗粒在先进金属材料中的适量配比以形成金属基复合材料的设计方法是一种实现轻质结构为首要因素的新型复合设计。所制备的复合材料不仅具有良好耐腐蚀性、低密度和高耐磨性,还具有优异的综合宏/微观机械性能。在外加增强材料中,碳化钛(TiC)因其良好的热稳定性和优异的机械性能(如硬度,模量和耐磨性) 而受到越来越多的关注[21]。高体积分数TiC增强金属复合材料由于TiC含量高,常通过粉末冶金( Powder metallurgy,PM) [22]的方式进行制备。但是由于粉末冶金仅为机械结合,制造的复合材料致密度较低,强韧性较差,并不适合需要整体构件综合力学性能要求较高的场合。液体熔渗反应技术( Liquid pressing infiltration,LPI) [23] 可以较好改善粉末冶金技术的局限性,但是结合强度低,成形件结构简单,后续机加工困难仍是该类技术的瓶颈问题,不适合结构复杂且综合机械性能较高的零件制备。因此,自由成形具有复杂异形结构的金属基复合材料成为高性能件制备中亟需解决的问题。 SLM具有极高的加工柔性及较好的材料利用率[24],很好地解决了复杂结构的成形问题。高能量SLM激光束引入的超高冷速(10 5~10 7 K/s [25])使得激光辐照区的熔融材料经历快速非平衡凝固过程导致精细微结构及合金元素在SLM零件中呈均匀分散[26]。正是由于上述原因,SLM成为了制备具有高性能金属基复合材料(Metal matrix composites,MMCs)的最佳选择之一[27]

  • 综上所述,目前SLM Inconel625的研究主要集中在激光加工参数和打印方向对SLM Inconel625零件微观结构和力学性能的影响[28-29],而在添加TiC等强化相对试样微观组织及性能的影响方面研究较少。因此,本研究拟通过在Inconel625中添加不同含量的TiC,以研究不同含量TiC对SLM Inconel625试样的微观结构及磨损性能的影响。

  • 1 材料及方法

  • 1.1 试样制备

  • 本研究所用Inconel625粉末为球形Inconel625粉末(EOS GmbH,德国),化学成分列于表1;所用TiC粉末(上海水田材料科技有限公司,中国)为不规则粉末,纯度为99.9wt.%,粒度为1-10 μm。球形Inconel625粉末与TiC粉末采用QM-3SP4型行星球磨机进行球磨混粉,转速为150r/min,混粉时间为1h。图1a为所使用的Inconel625/TiC混合粉末的分散分布情况和粉末元素分布情况,图1b为通过Mastersizer 3000型激光衍射粉末粒度仪测得的球形Inconel625粉末的粒度分布。如图1c所示, 激光扫描策略为在相邻层之间旋转67°。使用EOS M290增材制造系统在316L不锈钢基板上进行样品的制备,如图1d所示,对激光参数进行系统研究后,参数设定如下:激光光斑为100 μm,激光功率为280W,层厚为30 μm,扫描间距为110 μm,扫描速度为950mm/s,对样品进行成形。进行样品制备时向成形仓通入高纯度氩气(99.99wt.%),并将氧含量保持在1 000ppm以下,有效避免了样品制备过程的氧化现象。图1d为使用SLM技术制备的不同TiC含量强化摩擦磨损试样和金相试样,摩擦磨损试样的尺寸为 ϕ 15 × 5mm, 金相试样的尺寸为10mm×10mm×5mm。

  • 图1 TiC/Inconel625粉末的宏观形态和粒度分布及SLM扫描策略和不同TiC含量的SLM TiC/Inconel625样品

  • Fig.1 Macro morphology and Particle size distribution of the TiC/Inconel625powders, SLM scanning strategy utilized and SLM TiC/Inconel625samples fabricated under different TiC content

  • 表1 Inconel625粉末化学成分

  • Table1 Chemical composition of the Inconel625raw powder

  • 1.2 材料表征

  • 选择Dektak XT轮廓仪对不同打印样品的表面形貌进行表征。使用Leica DmirmMW550型光学显微镜和带有能谱仪系统的Nova nanoSEM430型扫描电子显微镜对SLM Inconel625样品的微观结构进行表征。在进行金相分析之前,对所有样品用不同目数的SiC砂纸进行打磨并抛光, 然后在含有100ml硝酸(HNO3)和300mL盐酸( HCl) 的王水溶液中腐蚀20s。使用RIGAKU公司产的Smartlab9KW型高分辨X射线衍射仪对SLM样品的物相组成进行分析,靶材为铜靶,扫描角度为20°~100°,所用电压及电流为40kV和30mA。使用MH-5D型显微硬度计测量试样的维氏显微硬度, 所用载荷为200g,加载时间为25s。将SLM样品测试面的表面粗糙度(Ra)抛光到0.15 μm以下, 测量SLM样品表面不同位置的显微硬度值,测量10次后取平均值并记录。

  • 1.3 摩擦磨损性能

  • 在室温下使用MA-T3001型摩擦磨损试验仪对试样进行滑动摩擦试验。在测试摩擦磨损性能之前,将所有SLM试样的表面粗糙度抛光至0.15 μm以下。选择直径为4mm的氮化硅( Si3N4) 球作为对磨球,并在进行测试之前用乙醇清洗。磨损试验条件如下:试验载荷为1 000g、转速为400r/min、摩擦距离为500m、摩擦半径为5mm。在滑动摩擦试验过程中,由机器自动记录摩擦因数(COF)。在完成磨损试验后,用扫描电镜观察和分析试样的磨损表面。用三维表面轮廓仪对磨痕的宏观形貌进行多次测量后。通过以下公式[10] 计算样品的磨损率(ω),并在三次测量后计算平均值

  • ω=2πrS/WL

  • 式中,r 是磨损轨迹的半径,mm;S是磨损轨迹的横截面积,mm 2;W 是加载载荷,N;L 是滑动距离,m。

  • 2 结果与讨论

  • 2.1 物相分布

  • 对不同TiC含量的SLM Inconel625试样进行XRD物相测试,结果如图2所示。由XRD衍射图谱可知,SLM Inconel625试样的物相主要由大量的γ-(Cr,Ni) 相和少量Laves相[10,30] 组成,其中 γ-(Cr,Ni)相的相位角为43.58°;当TiC加入时,XRD图谱中出现了较为明显的TiC和Laves相的衍射峰。随着TiC含量的增高,γ-(Cr,Ni) 相的峰值降低,即 γ-(Cr,Ni)相含量相对减少。此外,TiC在熔凝过程中将会出现部分熔化现象,可能促进了其周围金属间化合物的形成,使SLM Inconel625中出现了较多Laves相峰位,即NbCr2。 SLM TiC/Inconel625的凝固物相形成过程能够推导如下

  • L+TiCTiC+γ-(Cr,Ni)TiC+γ-(Cr,Ni)+ Laves phase NbCr2

  • 图2 不同TiC含量SLM TiC/Inconel625试样的XRD图谱

  • Fig.2 XRD profiles of the SLM TiC/Inconel625samples manufactured under different TiC content

  • 由于TiC的引入以及促进Inconel625本身形成的多种金属间化合物使得SLM TiC/Inconel625的硬度得到极大提高,从而对其摩擦磨损性能将有较大改善。

  • 2.2 微观组织

  • 图3 为不含TiC下制备的SLM Inconel625试样的显微组织。打印过程中,激光与粉末层相互作用形成熔池时,熔池的边缘与预置粉末或已凝固的熔道相接触,导致熔池边缘处温度梯度大,晶粒沿热流方向择优长大形成柱状晶;而在熔池内部,热流分布均匀,温度梯度较小,快速凝固后则形成细小均匀的等轴晶。因此,如图3a、3b所示,SLM Inconel625试样相邻层的熔道(激光路径)呈67°交叉分布,且在熔道内部为分布均匀且细小的等轴晶,在熔道搭接处则呈柱状晶生长。

  • 图3 SLM Inconel625试样的微观组织

  • Fig.3 Microstructure of SLM Inconel625samples

  • 如图4a、4b所示,加入4wt.%TiC后,TiC粒子均匀地分散在Inconel625基体中,由于TiC导热性能差,未熔弥散分布的TiC粒子将会形成新的低温点, 使得热流方向的取向程度大大降低,晶粒的柱状晶生长趋势相应地降低,基体组织内的柱状晶含量降低。此外,在图4a中可以观察到白亮色难腐蚀区域,这可能是由于TiC附近形成了耐腐蚀的金属间化合物,改善了4wt.%TiC/Inconel625试样的局部耐腐蚀性。

  • 图4 4wt.%TiC/Inconel625试样的OM图、SEM图及EDS图

  • Fig.4 OM, SEM, EDS of SLM 4wt.%TiC/Inconel625samples

  • 如图5a、5b所示,在8wt.%TiC/Inconel625试样中,弥散分布的低温TiC点更多,热流分布相对更加均匀,在微观组织中基本不存在柱状晶,均为分布均匀细小的等轴晶组织[31]。由图4的EDS元素面扫图可以发现,Inconel625中没有观察到Nb,Cr,Mo等元素偏聚现象,可以看出基体是 γ-(Cr,Ni)相,晶间组织可能是Ni3(Nb,Mo) 等金属间化合物;随着TiC的加入,如图4c所示,Nb在TiC颗粒附近有分布,在TiC区域附近由于C和Ti会和Nb反应,因此可能会形成金属间化合物NbC或(Nb,Ti)固溶体, 这将提升Inconel625的强度和硬度。此外,通过图5b所示的EDS元素线扫描数据可以看出,TiC在Inconel625中发生部分溶解,围绕TiC形成了一个元素过渡区域。

  • 图5 8wt.%TiC/Inconel625试样的SEM图和EDS图

  • Fig.5 SEM, EDS of SLM 8wt.%TiC/Inconel625samples

  • 2.3 硬度分布

  • 图6 为不同TiC含量SLM Inconel625试样的平均显微硬度值。表2列出了不同TiC含量SLM Inconel625试样的平均显微硬度值。随着TiC的加入,TiC并未完全溶解而是弥散地分布在基体中,起到了弥散强化的作用,阻碍了位错的运动,从而提高了试样的显微硬度值。随TiC含量的增加,弥散强化效果越强, 试样的平均显微硬度值也越高。如图6所示,与Inconel625试样相比,4wt.%TiC/图6不同TiC含量SLM TiC/Inconel625试样的显微硬度分布Fig.6Microhardness distribution of the SLM TiC/Inconel625samples under different TiC content表2不同TiC含量SLM Inconel625试样的平均显微硬度Table2Average microhardness of SLM Inconel625samples with different TiC content Sample Average microhardness/HV0.2 Inconel625 325±5.6 4wt.%TiC/Inconel625 487±6.8 8wt.%TiC/Inconel625 589±9.2Inconel625试样平均显微硬度提升了50.2%;与4wt.%TiC/Inconel625试样相比,8wt.%TiC/Inconel625试样平均显微硬度提升了20.4%。硬度的提升对Inconel625材料耐磨性能的提升起到了至关重要的作用。

  • 图6 不同TiC含量SLM TiC/Inconel625试样的显微硬度分布

  • Fig.6 Microhardness distribution of the SLM TiC/Inconel625samples under different TiC content

  • 表2 不同TiC含量SLM Inconel625试样的平均显微硬度

  • Table2 Average microhardness of SLM Inconel625samples with different TiC content

  • 2.4 TiC对摩擦磨损性能的影响

  • 随着TiC含量增高,硬度提高,耐磨性增高, SLM样品平均磨损率呈降低趋势,如图7和表3所示。对于Inconel625试样,摩擦稳定阶段(100~500m)的平均磨损率为2.24×10-4 mm 3/(N·m),平均磨损率明显高于4wt.%TiC/Inconel625和8wt.%TiC/Inconel625试样,这是由于Inconel625试样硬度较低容易形成黏着磨损。但是当TiC颗粒增加过多时,材料塑韧性变差,TiC颗粒与基体结合力降低,磨损过程中容易发生剥落现象,因此8wt.%TiC/Inconel625试样在摩擦稳定阶段(100~500m) 摩擦系数明显上升。图7b显示了不同TiC含量SLM试样磨痕的深度。随着TiC含量增高,磨痕的深度逐渐减小,表明TiC颗粒的加入对材料摩擦磨损性能的提高起到了很好的作用。

  • 图7 不同TiC含量的SLM TiC/Inconel625样品的摩擦磨损系数图和磨损截面形貌

  • Fig.7 Coefficient of friction-sliding and cross-sectional worn profile of the SLM TiC/Inconel625samples with different TiC content

  • 表3 不同TiC含量SLM Inconel625试样的摩擦学性能

  • Table3 Tribological properties of SLM Inconel625samples with different TiC contents

  • 图8 显示了不同TiC含量SLM Inconel625试样表面磨损形貌。 Inconel625、4wt.%TiC/Inconel625和8wt.%TiC/Inconel625试样的磨痕宽度分别为1.50mm、1.23mm和1.05mm。随着TiC含量升高,磨痕宽度逐渐降低。如图8a~8c所示,Inconel625试样磨痕中有明显的凹坑和裂纹等粘着磨损特征,且在图8c中磨痕附近有大量磨屑堆积。由于Inconel625试样硬度较低,耐磨性差,所以磨损以粘着磨损为主。如图8d所示,随着TiC含量增高,磨痕宽度变窄,且磨屑变少,分层现象不严重, 且在图8f中可以看到有细密的犁沟,这说明弥散分布的TiC起到了提升磨损性能的作用。如图8g所示,随着TiC含量提升,弥散分布的TiC使得材料耐磨性能进一步提高,磨痕宽度变小,磨损率降低[10]。但是TiC含量较高时,TiC颗粒将从基体上剥落,形成硬质颗粒造成磨粒磨损现象,这可能是导致8wt.%TiC/Inconel625摩擦磨损系数略高于4wt.%TiC/Inconel625的原因。

  • 3 结论

  • (1) 通过混粉及SLM成功地制备出了不同TiC含量的Inconel625/TiC试样,加入TiC后,试样的物相组成除了 γ-(Cr,Ni)相还出现了TiC和Laves相(NbCr2)。

  • 图8 试样的摩擦三维形貌

  • Fig.8 Worn surface morphology

  • (2) SLM Inconel625的组织为等轴晶和柱状晶,加入TiC后,TiC发生部分溶解,能看到弥散分布在试样内部的TiC颗粒,且柱状晶数量大大减少。

  • (3) SLM Inconel625的平均显微硬度为325HV0.2,加入4wt.%TiC后平均显微硬度值增加了50.2%达到487HV0.2,加入8wt.%TiC后达到589HV0.2,硬度提升明显。

  • (4) 随TiC含量的增加,摩擦磨损后磨痕的平均宽度及平均深度降低,耐磨性增强。 8wt.%TiC/Inconel625试样的耐磨性最好,磨痕平均宽度最低为1.05mm, 平均磨损率最低为9.8 × 10-5 mm 3/(N·m)。通过SLM得到了硬度高、耐磨性好的Inconel625/TiC样品,后续将继续研究添加更高质量分数的TiC对Inconel625组织、性能的影响,推动Inconel625的多元化应用。

  • 参考文献

    • [1] CHEN C C,XIE Y C,YAN X C,et al.Effect of hot isostatic pressing(HIP)on microstructure and mechanical properties of Ti6Al4V alloy fabricated by cold spray additive manufacturing [J].Additive Manufacturing,2019,27:595-605.

    • [2] YAN X C,YIN S,CHEN C Y,et al.Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting[J].Journal of Alloys and Compounds,2018,764:1056-1071.

    • [3] 李毅,于彦东,林凯.选区激光熔化 Inconel 625 合金的热处理工艺及其性能研究 [J].热加工工艺,2020,49(6):124-127.LI Yi,YU Yandong,LIN Kai.Heat treatment process and properties of selective laser melting Inconel 625 alloy[J].Heat Treatment Process,2020,49(6):124-127.

    • [4] YAN X C,CHEN C Y,CHANG C,et al.Study of the microstructure and mechanical performance of C-X stainless steel processed by selective laser melting(SLM)[J].Materials Science and Engineering:A,2020,781:139227.

    • [5] CHANG C,YAN X C,BOLOT R,et al.Influence of post-heat treatments on the mechanical properties of CX stainless steel fabricated by selective laser melting[J].Journal of Materials Science,2020,55(19):8303-16.

    • [6] PAUL C P,GANESH P,MISHRA S K,et al.Investigating laser rapid manufacturing for Inconel-625 components[J].Optics & Laser Technology,2007,39(4):800-5.

    • [7] 张宇,姜云,胡晓安.选区激光熔化成形 Inconel 625 合金的激光焊接头组织及高温蠕变性能[J].焊接学报,2020,41(5):78-84,101-102.ZHANG Yu,JIANG Yun,HU Xiaoan.Microstructure and high temperature creep properties of laser welded joints of Inconel 625 alloy formed by selective laser melting[J].Acta welding Sinica,2020,41(5):78-84,101-102.

    • [8] SONG K H,NAKATA K.Effect of precipitation on post-heat-treated Inconel 625 alloy after friction stir welding [J].Materials & Design,2010,31(6):2942-2947.

    • [9] MUMTAZ K,HOPKINSON N.Top surface and side roughness of Inconel 625 parts processed using selective laser melting[J].Rapid Prototyping Journal,2009,15(2):96-103.

    • [10] YAN X C,GAO S H,CHANG C,et al.Effect of building directions on the surface roughness,microstructure,and tribological properties of selective laser melted Inconel 625[J].Journal of Materials Processing Technology,2021,288:116878.

    • [11] LI C,WHITE R,FANG X Y,et al.Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment[J].Materials Science and Engineering:A,2017,705:20-31.

    • [12] ANAM M A,DILIP J J S,PAL D,et al.Effect of scan pattern on the microstructural evolution of inconel 625 during selective laser melting[C]//Solid Free form Fabrication 2014:363-376.

    • [13] LI S,WEI Q S,SHI Y S,et al.Microstructure characteristics of inconel 625 superalloy manufactured by selective laser melting[J].Journal of Materials Science & Technology,2015,31(9):946-952.

    • [14] YADROITSEV I,SMUROV I.Selective laser melting technology:From the single laser melted track stability to 3D parts of complex shape [J].Physics Procedia,2010,5:551-560.

    • [15] GONZALEZ J A,MIRELES J,STAFFORD S W,et al.Characterization of Inconel 625 fabricated using powderbed-based additive manufacturing technologies [J].Journal of Materials Processing Technology,2019,264:200-210.

    • [16] YAN X C,CHEN C Y,ZHAO R X,et al.Selective laser melting of WC reinforced maraging steel 300:Microstructure characterization and tribological performance [J].Surface and Coatings Technology,2019,371:355-365.

    • [17] YAN X C,HUANG C J,CHEN C Y,et al.Additive manufacturing of WC reinforced maraging steel 300 composites by cold spraying and selective laser melting[J].Surface and Coatings Technology,2019,371:161-171.

    • [18] 黎小辉,万霞,甘春雷.汽车制动材料研究现状与发展趋势 [J].材料研究与应用,2020,14(3):240-245.LI Xiaohui,WAN Xia,GAN Chunlei.Research status and development trend of automotive brake materials [J].Materials Research and Application,2020,14(3):240-245.

    • [19] LEE C Y,JEONG J,HAN J,et al.Coupled strengthening in a medium manganese lightweight steel with an inhomogeneously grained structure of austenite[J].Acta Materialia,2015,84:1-8.

    • [20] LEE S,JEONG J,LEE Y K.Precipitation and dissolution behavior of κ-carbide during continuous heating in Fe-9.3Mn-5.6Al-0.16C lightweight steel[J].Journal of Alloys and Compounds,2015,648:149-153.

    • [21] SONG I K,KIM D K,HAHN Y D,et al.Investigation of Ti3AlC2 in the in situ TiC-Al composite prepared by the exothermic reaction process in liquid aluminum[J].Materials Letters,2004,58(5):593-597.

    • [22] WANG Z,LIN T,HE X B,et al.Fabrication and properties of the TiC reinforced high-strength steel matrix composite[J].International Journal of Refractory Metals and Hard Materials,2016,58:14-21.

    • [23] LEE Y H,KIM N,LEE S B,et al.Microstructure and mechanical properties of lightweight TiC-steel composite prepared by liquid pressing infiltration process[J].Materials Characterization,2020,162:110202.

    • [24] CHANG C,HUANG J,YAN X C,et al.Microstructure and mechanical deformation behavior of selective laser melted Ti6Al4V ELI alloy porous structures[J].Materials Letters,2020,277:128366.

    • [25] YAN X C,YIN S,CHEN C Y,et al.Fatigue strength improvement of selective laser melted Ti6Al4V using ultrasonic surface mechanical attrition[J].Materials Research Letters,2019,7(8):327-333.

    • [26] ZHANG X Y,YAN X C,FANG G,et al.Biomechanical influence of structural variation strategies on functionally graded scaffolds constructed with triply periodic minimal surface [J].Additive Manufacturing,2020,32:101015.

    • [27] GU D D,MEINERS W,WISSENBACH K,et al.Laser additive manufacturing of metallic components:materials,processes and mechanisms[J].International Materials Reviews,2012,57(3):133-164.

    • [28] 陈秀娟.激光选区熔化成形Inconel625合金的缺陷形成分析及热处理工艺研究[D].广州:广东工业大学,2020.CHEN Xiujuan.Defect formation analysis and heat treatment process of laser selective melting Inconel625 alloy[D].Guangzhou:Guangdong University of Technology,2020.

    • [29] 薛志远.选区激光熔化 Inconel 625 疲劳裂纹扩展行为研究[D].南昌:南昌航空大学,2019.XUE Zhiyuan.Study on fatigue crack growth behavior of Inconel 625 by selective laser melting[D].Nanchang:Nanchang Aeronautical University,2019.

    • [30] YEN Y W,SU J W,HUANG D P.Phase equilibria of the Fe-Cr-Ni ternary systems and interfacial reactions in Fe-Cr alloys with Ni substrate[J].Journal of Alloys and Compounds,2008,457(1):270-278.

    • [31] 陈秀娟,赵国瑞,董东东.选区激光熔化制造Inconel625高温合金的组织和力学性能[J].中国激光,2019,46(12):70-78.CHEN Xiujuan,ZHAO Guorui,DONG Dongdong.Microstructure and mechanical properties of Inconel625 superalloy fabricated by selective laser melting[J].China Laser,2019,46(12):70-78.

  • 参考文献

    • [1] CHEN C C,XIE Y C,YAN X C,et al.Effect of hot isostatic pressing(HIP)on microstructure and mechanical properties of Ti6Al4V alloy fabricated by cold spray additive manufacturing [J].Additive Manufacturing,2019,27:595-605.

    • [2] YAN X C,YIN S,CHEN C Y,et al.Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting[J].Journal of Alloys and Compounds,2018,764:1056-1071.

    • [3] 李毅,于彦东,林凯.选区激光熔化 Inconel 625 合金的热处理工艺及其性能研究 [J].热加工工艺,2020,49(6):124-127.LI Yi,YU Yandong,LIN Kai.Heat treatment process and properties of selective laser melting Inconel 625 alloy[J].Heat Treatment Process,2020,49(6):124-127.

    • [4] YAN X C,CHEN C Y,CHANG C,et al.Study of the microstructure and mechanical performance of C-X stainless steel processed by selective laser melting(SLM)[J].Materials Science and Engineering:A,2020,781:139227.

    • [5] CHANG C,YAN X C,BOLOT R,et al.Influence of post-heat treatments on the mechanical properties of CX stainless steel fabricated by selective laser melting[J].Journal of Materials Science,2020,55(19):8303-16.

    • [6] PAUL C P,GANESH P,MISHRA S K,et al.Investigating laser rapid manufacturing for Inconel-625 components[J].Optics & Laser Technology,2007,39(4):800-5.

    • [7] 张宇,姜云,胡晓安.选区激光熔化成形 Inconel 625 合金的激光焊接头组织及高温蠕变性能[J].焊接学报,2020,41(5):78-84,101-102.ZHANG Yu,JIANG Yun,HU Xiaoan.Microstructure and high temperature creep properties of laser welded joints of Inconel 625 alloy formed by selective laser melting[J].Acta welding Sinica,2020,41(5):78-84,101-102.

    • [8] SONG K H,NAKATA K.Effect of precipitation on post-heat-treated Inconel 625 alloy after friction stir welding [J].Materials & Design,2010,31(6):2942-2947.

    • [9] MUMTAZ K,HOPKINSON N.Top surface and side roughness of Inconel 625 parts processed using selective laser melting[J].Rapid Prototyping Journal,2009,15(2):96-103.

    • [10] YAN X C,GAO S H,CHANG C,et al.Effect of building directions on the surface roughness,microstructure,and tribological properties of selective laser melted Inconel 625[J].Journal of Materials Processing Technology,2021,288:116878.

    • [11] LI C,WHITE R,FANG X Y,et al.Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment[J].Materials Science and Engineering:A,2017,705:20-31.

    • [12] ANAM M A,DILIP J J S,PAL D,et al.Effect of scan pattern on the microstructural evolution of inconel 625 during selective laser melting[C]//Solid Free form Fabrication 2014:363-376.

    • [13] LI S,WEI Q S,SHI Y S,et al.Microstructure characteristics of inconel 625 superalloy manufactured by selective laser melting[J].Journal of Materials Science & Technology,2015,31(9):946-952.

    • [14] YADROITSEV I,SMUROV I.Selective laser melting technology:From the single laser melted track stability to 3D parts of complex shape [J].Physics Procedia,2010,5:551-560.

    • [15] GONZALEZ J A,MIRELES J,STAFFORD S W,et al.Characterization of Inconel 625 fabricated using powderbed-based additive manufacturing technologies [J].Journal of Materials Processing Technology,2019,264:200-210.

    • [16] YAN X C,CHEN C Y,ZHAO R X,et al.Selective laser melting of WC reinforced maraging steel 300:Microstructure characterization and tribological performance [J].Surface and Coatings Technology,2019,371:355-365.

    • [17] YAN X C,HUANG C J,CHEN C Y,et al.Additive manufacturing of WC reinforced maraging steel 300 composites by cold spraying and selective laser melting[J].Surface and Coatings Technology,2019,371:161-171.

    • [18] 黎小辉,万霞,甘春雷.汽车制动材料研究现状与发展趋势 [J].材料研究与应用,2020,14(3):240-245.LI Xiaohui,WAN Xia,GAN Chunlei.Research status and development trend of automotive brake materials [J].Materials Research and Application,2020,14(3):240-245.

    • [19] LEE C Y,JEONG J,HAN J,et al.Coupled strengthening in a medium manganese lightweight steel with an inhomogeneously grained structure of austenite[J].Acta Materialia,2015,84:1-8.

    • [20] LEE S,JEONG J,LEE Y K.Precipitation and dissolution behavior of κ-carbide during continuous heating in Fe-9.3Mn-5.6Al-0.16C lightweight steel[J].Journal of Alloys and Compounds,2015,648:149-153.

    • [21] SONG I K,KIM D K,HAHN Y D,et al.Investigation of Ti3AlC2 in the in situ TiC-Al composite prepared by the exothermic reaction process in liquid aluminum[J].Materials Letters,2004,58(5):593-597.

    • [22] WANG Z,LIN T,HE X B,et al.Fabrication and properties of the TiC reinforced high-strength steel matrix composite[J].International Journal of Refractory Metals and Hard Materials,2016,58:14-21.

    • [23] LEE Y H,KIM N,LEE S B,et al.Microstructure and mechanical properties of lightweight TiC-steel composite prepared by liquid pressing infiltration process[J].Materials Characterization,2020,162:110202.

    • [24] CHANG C,HUANG J,YAN X C,et al.Microstructure and mechanical deformation behavior of selective laser melted Ti6Al4V ELI alloy porous structures[J].Materials Letters,2020,277:128366.

    • [25] YAN X C,YIN S,CHEN C Y,et al.Fatigue strength improvement of selective laser melted Ti6Al4V using ultrasonic surface mechanical attrition[J].Materials Research Letters,2019,7(8):327-333.

    • [26] ZHANG X Y,YAN X C,FANG G,et al.Biomechanical influence of structural variation strategies on functionally graded scaffolds constructed with triply periodic minimal surface [J].Additive Manufacturing,2020,32:101015.

    • [27] GU D D,MEINERS W,WISSENBACH K,et al.Laser additive manufacturing of metallic components:materials,processes and mechanisms[J].International Materials Reviews,2012,57(3):133-164.

    • [28] 陈秀娟.激光选区熔化成形Inconel625合金的缺陷形成分析及热处理工艺研究[D].广州:广东工业大学,2020.CHEN Xiujuan.Defect formation analysis and heat treatment process of laser selective melting Inconel625 alloy[D].Guangzhou:Guangdong University of Technology,2020.

    • [29] 薛志远.选区激光熔化 Inconel 625 疲劳裂纹扩展行为研究[D].南昌:南昌航空大学,2019.XUE Zhiyuan.Study on fatigue crack growth behavior of Inconel 625 by selective laser melting[D].Nanchang:Nanchang Aeronautical University,2019.

    • [30] YEN Y W,SU J W,HUANG D P.Phase equilibria of the Fe-Cr-Ni ternary systems and interfacial reactions in Fe-Cr alloys with Ni substrate[J].Journal of Alloys and Compounds,2008,457(1):270-278.

    • [31] 陈秀娟,赵国瑞,董东东.选区激光熔化制造Inconel625高温合金的组织和力学性能[J].中国激光,2019,46(12):70-78.CHEN Xiujuan,ZHAO Guorui,DONG Dongdong.Microstructure and mechanical properties of Inconel625 superalloy fabricated by selective laser melting[J].China Laser,2019,46(12):70-78.

  • 手机扫一扫看