en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

郭磊,男,1986年出生,博士,教授,硕士研究生导师。主要研究方向为高温防护涂层。E-mail:glei028@tju.edu.cn

通讯作者:

郭磊,男,1986年出生,博士,教授,硕士研究生导师。主要研究方向为高温防护涂层。E-mail:glei028@tju.edu.cn

中图分类号:TG156;TB114

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20201227001

参考文献 1
朱晨,于建海,郭亚飞,等.航空发动机热障涂层存在的问题及其发展方向[J].表面技术,2016,45(1):13-29.ZHU Chen,YU Jianhai,GUO Yafei,et al.Problems of aircraft engine thermal barrier coating and its developing direction [J].Surface Technology,2016,45(1):13-29.
参考文献 2
VAßEN R,JARLIGO M O,STEINKE T.Overview on advanced thermal barrier coatings [J].Surface and Coatings Technology,2010,205(4):938-942.
参考文献 3
李民,程玉贤.航空发动机用高温防护涂层研究进展[J].中国表面工程,2012,25(1):16-21.LI Min,CHENG Yuxian.Progress in research on high temperature protective coatings for aero-engines [J].China Surface Engineering,2012,25(1):16-21.
参考文献 4
王铀,王亮.新型锆酸盐基热障涂层材料的研究进展[J].中国表面工程,2009,22(6):8-18.WANG You,WANG Liang.Research progress of new types of zirconate-based thermal barrier coatings [J].China Surface Engineering,2009,22(6):8-18.
参考文献 5
何箐,吕玉芬,汪瑞军,等.等离子喷涂常规和纳米8YSZ热障涂层的性能[J].中国表面工程,2008,21(6):18-22.HE Jing,LÜ Yufen,WANG Ruijun,et al.Properties of thermal barrier coatings with common and nano 8YSZ powders [J].China Surface Engineering,2008,21(6):18-22.
参考文献 6
徐惠彬,宫声凯,刘福顺.航空发动机热障涂层材料体系的研究[J].航空学报,2000,21(1):7-12.XU Huibin,GONG Shengkai,LIU Fushun.Recent development in materials design of thermal barrier coatings for gas turbine[J].Acta Aeronautica et Astronautic Sinica,2000,21(1):7-12.
参考文献 7
WANG Z B,ZHOU C G,XU H B,et al.Effect of thermal treatment on the grain growth of nanostructured YSZ thermal barrier coating prepared by air plasma spraying [J].Chinese Journal of Aeronautics,2004,17(2):119-123.
参考文献 8
WANG H L,BAKAL A,ZHANG X X,et al.CaOMgO-Al 2O3-SiO2(CMAS)corrosion of Gd2Zr2O7 and Sm2Zr2O7 [J].Journal of the Electrochemical Society,2016,163(10):643-648.
参考文献 9
YAN Z,GUO L,LI Z H,et al.Effects of laser glazing on CMAS corrosion behavior of Y2O3 stabilized ZrO2 thermal barrier coatings[J].Corrosion Science,2019,157:450-461.
参考文献 10
杨姗洁,彭徽,郭洪波.热障涂层在CMAS环境下的失效与防护[J].航空材料学报,2018,38(2):43-51.YANG Shanjie,PENG Hui,GUO Hongbo.Failure and protection of thermal barrier coating under CMAS attack [J].Journal of Aeronautical Materials,2018,38(2):43-51.
参考文献 11
马景涛,邓畅光,王允良,等.高温燃气下CMAS混合盐覆盖对YSZ热障涂层性能的影响[J].金属热处理,2017,42(9):160-167.MA Jingtao,DENG Changguang,WANG Yunliang,et al.Effect of CMAS mixed salt on properties of YSZ thermal barrier coatings under high temperature gas [J].Heat Treatment of Metals,2017,42(9):160-167.
参考文献 12
PUJOL G,ANSART F,BONINO J P,et al.Step-bystep investigation of degradation mechanisms induced by CMAS attack on YSZ materials for TBC applications [J].Surface and Coatings Technology,2013,237:71-78.
参考文献 13
王允良,邓畅光,詹肇麟,等.CMAS 环境下 PS-PVD 7YSZ 涂层的抗热冲击性能及失效机制[J].金属热处理,2017,42(4):175-179.WANG Yunliang,DENG Changguang,ZHAN Zhaolin,et al.Thermal shock resistance and failure mechanism of CMAS deposited PS-PVD 7YSZ coating [J].Heat Treatment of Metals,2017,42(4):175-179.
参考文献 14
LIU H,CAI J,ZHU J H.CMAS(CaO-MgO-Al 2O3-SiO2)resistance of Y2O3-stabilized ZrO2 thermal barrier coatings with Pt layers[J].Ceramics International,2018,44:452-458.
参考文献 15
AMARENDRA K R,RABI S B,DOUGLAS E W,et al.CMAS-resistant thermal barrier coatings(TBC)[J].International Journal of Applied Ceramic Technology,2010,7(5):662-674.
参考文献 16
AYSEGUL A,ALEXANDER L V,NITIN P P,et al.Novel thermal barrier coatings that are resistant to hightemperature attack by glassy deposits[J].Acta Material,2007,55:6734-6745.
参考文献 17
GUO L,YAN Z,WANG X H,et al.Ti 2AlC MAX phase for resistance against CMAS attack to thermal barrier coatings [J].Ceramics International,2019,45:7627-7634.
参考文献 18
YAN Z,GUO L,ZHANG Z,et al.Versatility of potential protective layer material Ti 2AlC on resisting CMAS corrosion to thermal barrier coatings[J].Corrosion Science,2020,167:1-14.
参考文献 19
ZHANG Z,LAI D M Y,LIM S H,et al.Alleviating delamination of Ti 2AlC coating upon oxidation at 600℃ with heavy incorporation of TiC[J].Journal of Alloys and Compounds,2019,790:536-546.
参考文献 20
CAO J,YIN Z W,LI H L,et al.Tribological and mechanical properties of Ti 2AlC coating at room temperature and 800℃ [J].Ceramics International,2018,44:1046-1051.
参考文献 21
JENNY F,MARIE S,STEFAN B,et al.Ti 2AlC coatings deposited by high velocity oxy-fuel spraying [J].Surface and Coatings Technology,2008,202(24):5976-5981.
参考文献 22
BENJAMIN R M,BRENDA L G D,BENJAMIN H,et al.Cold spray deposition of Ti 2AlC coatings for improved nuclear fuel cladding [J].Journal of Nuclear Materials,2015,466:712-717.
参考文献 23
于月光,侯伟骜,尹春雷,等.可磨封严涂层材料喷涂过程中石墨含量变化研究 [J].热喷涂技术,2009,1(1):20-24.YU Yueguang,HOU Weiao,YIN Chunlei,et al.Graphite content change of powders for abradable seal coatings during flame or plasma process [J].Thermal Spray Technology,2009,1(1):20-24.
参考文献 24
颜建辉,徐红梅,许剑光,等.粉末粒度对喷涂二硅化钼涂层微观结构的影响[J].材料导报,2012,26(9):34-37.YAN Jianhong,XU Hongmei,XU Jianguang,et al.Influence of powders size on the microstructure of molybdenum disilicide coating prepared by thermal spraying [J].Materials Review,2012,26(9):34-37.
参考文献 25
赵国锋,王莹莹,张海龙,等.冷喷涂设备及冷喷涂技术应用研究进展[J].表面技术,2017,46(11):198-205.ZHAO Guofeng,WANG Yingying,ZHANG Hailong,et al.Application of cold spraying equipment and cold spraying technology[J].Surface Technology,2017,46(11):198-205.
参考文献 26
马国强,李友芬.SiO2-B2O3-ZrO2 陶瓷涂层的制备及性能 [J].北京化工大学学报,2013,40(6):50-55.MA Guoqiang,LI Youfen.Preparation and properties of SiO2-B2O3-ZrO2 ceramic coating[J].Journal of Beijing University of Chemical Technology,2013,40(6):50-55.
参考文献 27
WANG J Q,YUAN Y C,CHI Z H,et al.High-temperature sulfur corrosion behavior of h-BN-based ceramic coating prepared by slurry method[J].Materials Chemistry and Physics,2018,206:186-192.
参考文献 28
范衍,范景莲,李威,等.料浆涂覆法制 W-Si-ZrO2-Y2O3 高温抗氧化涂层的组织与高温氧化行为[J].粉末冶金材料科学与工程,2016,21(5):754-759.FAN Yan,FAN Jinglian,LI Wei,et al.Microstructure and oxidation behavior of W-Si-ZrO2-Y2O3 high temperature oxidation resistant coating preparated by slurry spraying[J].Materials Science and Engineering of Powder Metallurgy,2016,21(5):754-759.
参考文献 29
JIANG Y,LIU T Y,RU H Q,et al.Ultra-high-temperature ceramic TaB2-SiC-Si coating by impregnation and in-situ reaction method to prevent graphite materials from oxidation and ablation [J].Ceramics International,2019,45:6541-6551.
参考文献 30
LAN W H,XIAO P.Fabrication of yttria-stabilized-zirconia thick coatings via slurry process with pressure infiltration[J].Journal of the European Ceramic Society,2009,29:391-401.
参考文献 31
薛飞.复合陶瓷涂层抗磨特性及对锅炉热力性能影 􀆇㏂响的研究[D].杭州:中国计量大学,2017.XUE Fei.Research on wear properties of composite ceramic coatings and its influence on boiler thermodynamic performance[D].Hangzhou:China Jiliang University,2017.
参考文献 32
马国强.料浆法制备 SiO2 系和MgO系陶瓷涂层及性能表征[D].北京:北京化工大学,2013.MA G Q.Fabrication and characterization of SiO2 、MgO ceramic coating through slurry method [ D].Beijing:Beijing University of Chemical Technology,2013.
参考文献 33
文琪.钢基陶瓷复合涂层的制备与性能研究[D].荆州:长江大学,2019.WEN Qi.Preparation and properties of steel-based ceramic composite coatings [ D].Jingzhou:Yangtze University,2019.
参考文献 34
田帅.石墨陶瓷涂层的制备[D].淄博:山东理工大学,2017.TIAN Shuai.Preparation of graphite ceramic coatings [D].Zibo:Shandong University of Technology,2017.
参考文献 35
XU H B,GUO H B,LIU F,et al.Development of gradient thermal barrier coatings and their hot-fatigue behavior[J].Surface & Coatings Technology,2000,130(1):133-139.
目录contents

    摘要

    MAX 相 Ti 2AlC 是一种很有潜力的热障涂层抗环境沉积物(CMAS)腐蚀防护层材料。 采用料浆法在 YSZ(Y2O3 部分稳定 ZrO2 )热障涂层表面制备 Ti 2AlC 防护层,研究粘结剂种类、粘结剂含量、涂覆方式、保温时间和烧结温度对涂层结合质量的影响。 结果表明,与硅酸钠相比,乙基纤维素作为粘结剂更合适,当粘结剂含量为 7%左右时,Ti 2AlC 涂层表面完整,无明显缺陷;与刷涂方法相比,采用浸渍的涂覆方式得到的涂层致密性良好,界面处无明显缝隙;最佳的烧结温度和保温时间为 1250 ℃ ,10 h。 最终采用优化出的参数在 YSZ 热障涂层表面制备出了厚度~100 μm 的 Ti 2AlC 防护层,其与 YSZ 涂层之间的界面完整,结合良好,为 MAX 相 Ti 2AlC 用于 CMAS 防护层提供了指导。

    Abstract

    Ti 2AlC MAX phase is a potential material protecting thermal barrier coatings ( TBCs) against environmental deposition ( CMAS) corrosion. Ti 2AlC protective layer was prepared on the surface of YSZ (Y2O3 partially stabilized ZrO2 ) TBCs by a slurry method, and effects of the binder type, binder content, covering method, sintering temperature and time on the coating quality are investigated. The results show that compared with sodium silicate, ethyl cellulose is more suitable as the binder. When the binder content was about 7%, the surface of Ti 2AlC coating is entire without obvious defects. Compared with the brush covering method, the coating prepared by dipping had better compactness and no obvious gap at the interface. The optimum sintering temperature and time are 1250 ℃ and 10 h, respectively. Finally, a Ti 2AlC protective coating with a thickness of~ 100 μm is successfully prepared on the surface of YSZ TBCs by the optimized parameters, the interface between which and the YSZ coating is entire and well combined. This study is considered to provide a guidance for using Ti 2AlC MAX phase protective coating for TBC applications.

    关键词

    MAX 相Ti 2AlC热障涂层CMAS料浆法

  • 0 前言

  • 热障涂层(Thermal barrier coating,TBC)是一种用于航空发动机涡轮叶片,可延长叶片寿命,提高发动机推重比和热效率的高温防护涂层[1-4]。当前最广泛应用的YSZ( Y2O3 部分稳定ZrO2) 热障涂层[5-7]。航空发动机的服役环境非常恶劣,在沙漠、火山活动频发地区工作时,空气中存在的一些沙尘, 主要成分为CaO-MgO-Al2O3-SiO2,即CMAS(环境沉积物)会进入到发动机内部[8-10]。由于发动机的工作温度非常高,CMAS熔融并通过毛细作用渗入YSZ涂层的内部,消耗稳定剂Y2O3,使涂层由稳定的四方相变为单斜相,导致涂层产生裂纹[11-12]。另一方面,CMAS的渗透会引起渗透区涂层致密化,使热膨胀系数发生改变。在热冲击过程中,由于渗透区和未渗透区的热膨胀系数不匹配而产生裂纹[13]。因此,热障涂层的CMAS腐蚀防护成为研究热点。

  • 在热障涂层表面制备一层防护层是一种良好的CMAS防护方法。 LIU等[14] 在YSZ表面沉积了一层Pt,但是由于Pt与CMAS的热相容性差,无法长时间抵抗CMAS侵蚀。 RAI等[15] 制备了Pd保护层,但是由于Pd层的多孔结构导致它只能短暂地抵抗CMAS的侵蚀。 PADTURE等[16] 发现当CMAS中积累了大量Ti和Al元素时,可以促进CMAS结晶。笔者课题组经研究发现,MAX相Ti2AlC是一种极具应用潜力的热障涂层CMAS防护层材料: Ti2AlC富含大量的Ti和Al元素, 当与熔融的CMAS接触时, Al和Ti会迁移到熔体中引发CMAS的结晶[17];还发现,预氧化后的Ti2AlC抗CMAS效果更好,表面形成的Al2O3 薄膜会与熔融的CMAS反应生成钙长石相,TiO2 则会促进CMAS的结晶[18]

  • Ti2AlC涂层的制备方法有很多,比如等离子喷涂法、超音速火焰喷涂法和冷喷涂法等。 ZHANG等[19]采用等离子喷涂方法在镍基合金表面制备了厚度为270 μm的TiC-Ti2AlC涂层。 CAO等[20] 采用超音速火焰喷涂制备了Ti2AlC涂层。 FRODELIUS等[21]采用超音速火焰喷涂的方法在不锈钢基体上制备出来了Ti2AlC涂层, 厚度超过100 μm。 BENJAMIN等[22]采用冷喷涂的方法,在锆合金表面制备了Ti2AlC涂层。但是,以上这些喷涂设备造价较贵,并且热喷涂过程中粉末损失严重,这就意味着更高的成本[23-24]。而冷喷涂的设备目前在工业中还没有受到广泛的应用,并且无法对形状复杂的结构进行喷涂,不利于在现场进行施工,影响了其进一步的发展[25]

  • 最近, 有学者对一种操作简单、成本低的方法———料浆法制备涂层进行了研究。马国强等[26] 采用料浆法在不锈钢基体表面制备了SiO2-B2O3-ZrO2 陶瓷涂层,涂层在800℃下经过31次热震试验后涂层表面仍然无剥落无裂纹,表明料浆法制备的涂层具有良好的结合强度。 WANG等[27] 用料浆法在20CrMn钢表面制备了h-BN基陶瓷涂层,具有良好的抗高温腐蚀的能力。范衍等[28] 采用料浆涂覆和多步反应烧结工艺在钨合金表面制备W-SiZrO2-Y2O3 高温抗氧化陶瓷复合涂层,制备出来的涂层有效抗氧化寿命达14h。 JIANG等[29] 在石墨基体上采用料浆法制备了TaB2-SiC-Si保护层,防止了石墨材料的氧化和烧蚀。 LAN等[30] 在金属基体上采用一种新颖的料浆法制备了YSZ涂层,厚度可达420 μm。这些研究成果表明料浆法制备的涂层具有良好的结合强度和性能。除此之外,料浆法在操作过程中将料浆涂敷在基体上通过升温固化涂层,大大减少了粉末的损失,降低了成本,并且对环境、设备的要求低,制作周期短[31]。有望制备MAX相Ti2AlC防护层。

  • 本文采用料浆法制备MAX相Ti2AlC涂层,将Ti2AlC粉末与粘结剂粉末混合均匀后,加入溶剂制成料浆,研究粘结剂种类、粘结剂含量、涂覆方式、烧结温度和保温时间参数等对涂层结合质量的影响, 为将MAX相Ti2AlC用作热障涂层CMAS防护层提供指导。

  • 1 试验准备

  • 1.1 样品制备

  • 采用大气等离子喷涂方法在石墨基体上制备YSZ涂层, 工艺参数如表1所示。在制备料浆Ti2AlC涂层之前,采用乙醇超声清洗,去除YSZ涂层表面的油污。选择不同种类的溶剂( 去离子水或者无水乙醇)、粘结剂(硅酸钠或者乙基纤维素) 与Ti2AlC粉末一起,放入恒温磁力搅拌器中搅拌1~2h,使粉末与粘结剂均匀混合。然后采用刷涂或者浸渍的方式将料浆涂覆在YSZ基体上,将涂覆好的试样放在室温下凉置24h后放入气氛炉中进行烧结,保护气为氩气。为了对比粘结剂种类、粘结剂含量、涂覆方式、保温时间和烧结温度的影响,制备了四组试样,每组试样的参数分别如表2~5所示。

  • 表1 等离子喷涂YSZ涂层的工艺参数

  • Table1 Process parameters of plasma sprayed YSZ coatings

  • 表2 不同粘接剂种类的制备参数

  • Table2 Preparation parameters of different binders

  • 表3 不同粘结剂含量的制备参数

  • Table3 Preparation parameters of different binder content

  • 表4 不同涂覆方式的制备参数

  • Table4 Preparation parameters of different coating methods

  • 表5 不同烧结时间和温度的制备参数

  • Table5 Preparation parameters of different sintering temperature and time

  • 1.2 结果表征

  • 采用NDJ-1型旋转式黏度计(浙江力辰仪器科技有限公司)测量料浆黏度;采用相机拍摄制备出来的涂层的宏观形貌,观察试样表面是否有气孔、鼓包、裂纹以及涂层剥落等缺陷;采用TDCLSU1510钨灯丝扫描电子显微镜观察涂层横截面形貌,电压15kV表征料浆涂层的致密性和涂层与基体的界面情况。

  • 2 结果与讨论

  • 2.1 粘结剂的影响

  • 粘结剂对料浆涂层与YSZ涂层的结合有着十分重要的影响;不同粘结剂的粘结能力不同,耐高温性能不同,故首先需要确定粘结剂的种类,按照如表2所示的参数制备了两组试样。

  • 图1 为Z1和Z2的宏观形貌,从图中可以看出以硅酸钠为粘结剂的涂层经过烧结后,与基体的结合并不牢固,涂层部分脱落,而以乙基纤维素作为粘结剂的涂层,表面完整,无脱落现象。试样Z2的横截面如图2所示,可以看出料浆涂层与基体界面完整,而且一些地方的Ti2AlC涂层嵌入进了YSZ涂层,表明界面结合总体良好。这是因为乙基纤维素具有链状高分子结构,当乙醇挥发后,乙基纤维素以链状高分子形式将Ti2AlC粉末包裹起来,形成一种网状的缠结结构,使得Ti2AlC颗粒之间结合的紧密,同时乙基纤维素能够很好地润湿YSZ涂层表面,使得料浆涂层与YSZ涂层可以很好结合在一起。所以以乙基纤维素作为粘结剂的涂层结合效果更好,故后续的试验均采用乙基纤维素作为粘结剂制备涂层。

  • 图1 不同粘结剂制备的试样的宏观照片

  • Fig.1 Macrostructures of samples prepared with different binders

  • 图2 Z2横截面的SEM照片

  • Fig.2 SEM image of cross-section of Z2

  • 2.2 粘结剂含量的影响

  • 料浆涂覆到YSZ涂层上需要经过润湿和铺展两个过程,若要使料浆能够均匀的铺展在YSZ涂层上,料浆需要一个合适的黏度范围,这样才能很好的润湿基体。

  • 料浆的黏度主要受到粘结剂在料浆中的含量影响。粘结剂含量越大,料浆的黏度越大,但是也会增加表面张力,导致料浆的润湿性变差而难以在基体表面铺展。同时粘结剂的含量越高,那么料浆中的乙基纤维素分子链之间的距离就越短,Ti2AlC颗粒受到分子链的缠结作用就越大,导致Ti2AlC颗粒越紧密,保证了料浆涂层的致密性。故需要选择合适的粘结剂含量才能得到良好的涂覆效果。根据表2的试验结果,加入不同含量的乙基纤维素并测量料浆的黏度,结果如表6所示,然后按照表3的参数进行烧结。

  • 表6 不同粘结剂含量对应的料浆黏度

  • Table6 Viscosity of slurry with different binder content

  • 图3 为采用不同粘结剂含量制备的试样的宏观照片。根据表6的结果,随着乙基纤维素含量的增加,料浆的黏度也会随之增大。当乙基纤维素含量为3%时,料浆黏度仅为26mPa·s,无法与基体很好地结合,由于受到重力以及表面张力的作用,料浆流失并出现流浆的现象,如图3a)所示,部分基体没有被料浆覆盖。而当乙基纤维素含量为9%时,料浆的黏度高达4 350mPa·s,从而导致料浆无法铺展, 部分基体暴露,同时在干燥过程中,水蒸气无法排除,留在了料浆中形成了气孔,鼓包,甚至发生开裂, 如图3f所示。当乙基纤维素含量在5%~8%,黏度在190~530mPa·s时,料浆涂层无流浆现象,便于涂覆,并且鼓包、裂纹等缺陷明显减少,如图3b~图3e所示; 其中, 乙基纤维素含量为7%, 黏度为455mPa·s时,试样表面最为平整,无明显缺陷。因此本试验确定的粘结剂含量为7%。

  • 2.3 涂覆方式的影响

  • 由于之前的试验均采用浸渍的方式进行涂覆, 但是浸渍后得到的试样容易出现鼓包的缺陷,这可能是由于采用浸渍方式在基体表面涂覆,气泡都集中于中央难以溢出,所以会出现鼓包的现象。而刷涂则可以将气泡赶出,故根据表2、3的试验结果,分别以刷涂和浸渍的方式涂覆,具体参数如表4所示。

  • 图4 为T1和T2试样的宏观形貌,从图中可以看出采用刷涂的涂覆方式得到的涂层,表面光洁,无明显缺陷;采用浸渍方式得到的涂层,表面出现了鼓包。图5为T1和T2的横截面照片,可以看到采用刷涂方式进行涂覆,料浆涂层中存在大量的缝隙,可达十几微米,严重的影响了料浆涂层与基体的结合。而采用浸渍方式得到的涂层致密性很高,并且与基体总体上结合良好。这是由于刷涂的涂覆方式无法人为地控制料浆涂层在基体表面均匀铺展,烧结后就会出现大量的缝隙。而采用浸渍的方式,料浆会在重力和表面张力的作用下均匀的铺展,并且随着浸渍时间的延长,料浆中的乙基纤维素分子链之间的距离缩短,能够更充分地将Ti2AlC颗粒紧密的结合在一起,烧结后就能得到厚度均匀、与基体结合良好的涂层。故本试验采用的涂覆方式为浸渍,但鼓包问题目前暂未解决,尚需后续研究。

  • 2.4 保温时间和烧结温度的影响

  • 根据表2~4三组试验的结果,确定粘结剂为乙基纤维素,含量为7%并且采用浸渍的方法涂覆。接下来需要研究保温时间和烧结温度的影响,采用了4组参数进行对比,如表5所示。

  • 采用SEM对不同烧结参数的试样的横截面进行了观察,如图6所示。对比图6a和图6b可以发现,随着保温时间的延长,涂层的致密性逐渐提升, 涂层中的缝隙逐渐减少。对比图6c和图6d可以发现,随着烧结温度的升高,料浆涂层与基体之间结合的愈发紧密,在1 250℃ 下,涂层致密性明显提升, 并且嵌入到YSZ基体中,呈现良好的结合。

  • 图3 不同粘结剂含量的试样的宏观照片

  • Fig.3 Macrostructures of samples with different binder content

  • 图4 两种涂覆方式制备的试样宏观形貌

  • Fig.4 Macrostructures of samples prepared by two coating methods

  • 从以上结果中可以看出,烧结温度和保温时间对涂层的质量有着十分重要的影响,保温时间影响涂层的致密性,烧结温度则影响涂层与基体之间的结合。这是因为在高温下,Ti2AlC料浆会经过蒸发、凝聚、扩散三个阶段,在第三阶段———扩散过程中, 随着保温时间的延长,会使Ti2AlC晶粒完全发育并逐渐长大,晶粒之间的间距逐渐减小[32],从而使涂层的致密性提升。但是,过长的保温时间反而会使晶粒过分长大,使得各个晶粒之间的气孔相连接富集,导致涂层的致密性下降,并且长时间的保温会使涂层中积累较多的热应力,最终的会出现缩孔、裂纹等缺陷[32]。烧结温度的影响机理与保温时间类似,在扩散阶段,较高的温度为Ti2AlC颗粒向YSZ涂层的扩散提供了足够的驱动力,使得Ti2AlC完全嵌入到了YSZ基体中提高了涂层与基体的结合强度。当然,烧结温度不能太低,否则涂层会由于未完全烧透,在炉冷到室温之后出现剥落的现象[33]。而烧结温度太高,在高温下基体容易被破坏[34],尤其当温度超过了1 250℃ 时,YSZ会由稳定的四方相变为不稳定的单斜相,该过程往往伴随着5%~8%的体积膨胀,从而导致涂层产生裂纹,严重影响涂层的使用寿命[35]

  • 图5 两种涂覆方式下的横截面的SEM照片

  • Fig.5 SEM images of cross-section under two coating methods

  • 2.5 采用优化后的参数制备的涂层

  • 根据以上内容的讨论,确定了料浆法制备MAX相防护层的工艺参数,如表7所示。图7为试样的横截面形貌。

  • 从图7可以看出,采用优化后的参数制备出的涂层厚度均匀,与YSZ基体之间的界面无明显的缝隙,并且Ti2AlC嵌入到了YSZ中,这表明涂层与基体之间呈现良好的结合,涂层厚度约100 μm。后续我们会在此工艺参数的基础上,通过评价其抗热振性能和抗CMAS腐蚀性能来进一步优化工艺参数。

  • 图6 不同烧结时间和温度下的横截面的SEM照片

  • Fig.6 SEM images of cross-section under different sintering time and temperature

  • 表7 优化后的工艺参数

  • Table7 Optimized process parameters

  • 图7 优化后的参数制备的试样的横截面的SEM照片

  • Fig.7 SEM images of cross-section of sample prepared with optimized parameters

  • 3 结论

  • (1) 与硅酸钠对比,乙基纤维素是合适的粘结剂, 乙基纤维素的链状高分子结构可以将Ti2AlC颗粒包裹起来,从而提高涂层的致密性。当其在料浆中的含量太低时,容易出现流浆现象; 含量太高,料浆的黏度太大难以涂覆。当其含量为7%,黏度为455mPa·s时,涂层表面完整,无明显缺陷。

  • (2) 与刷涂方法相比,浸渍涂覆方式得到的涂层,厚度均匀,致密性好,并与基体呈现良好结合,但是容易出现鼓包、裂纹等缺陷。在后续的试验中可通过用玻璃棒将料浆中的气体赶出或者浸渍提拉法等涂覆方式进行改善。

  • (3) 合适的温度以及保温时间是保证涂层结合质量的关键。保温时间影响涂层的致密性,烧结温度则影响涂层与基体之间的结合。随着保温时间的延长,Ti2AlC晶粒完全发育并逐渐长大,晶粒之间的间距逐渐减小,从而使涂层的致密性提升。较高的烧结温度则为Ti2AlC颗粒向YSZ涂层的扩散提供了足够的驱动力,使得Ti2AlC完全嵌入到了YSZ基体中。目前最合适的烧结工艺参数是1 250℃,保温10h。

  • (4) 在YSZ涂层表面制备出了厚度~100 μm的Ti2AlC防护层,探索出的初步工艺参数:粘结剂为乙基纤维素,其含量为7%,并采用浸渍涂覆的方式,固化工艺参数为1 250℃,保温10h。

  • 参考文献

    • [1] 朱晨,于建海,郭亚飞,等.航空发动机热障涂层存在的问题及其发展方向[J].表面技术,2016,45(1):13-29.ZHU Chen,YU Jianhai,GUO Yafei,et al.Problems of aircraft engine thermal barrier coating and its developing direction [J].Surface Technology,2016,45(1):13-29.

    • [2] VAßEN R,JARLIGO M O,STEINKE T.Overview on advanced thermal barrier coatings [J].Surface and Coatings Technology,2010,205(4):938-942.

    • [3] 李民,程玉贤.航空发动机用高温防护涂层研究进展[J].中国表面工程,2012,25(1):16-21.LI Min,CHENG Yuxian.Progress in research on high temperature protective coatings for aero-engines [J].China Surface Engineering,2012,25(1):16-21.

    • [4] 王铀,王亮.新型锆酸盐基热障涂层材料的研究进展[J].中国表面工程,2009,22(6):8-18.WANG You,WANG Liang.Research progress of new types of zirconate-based thermal barrier coatings [J].China Surface Engineering,2009,22(6):8-18.

    • [5] 何箐,吕玉芬,汪瑞军,等.等离子喷涂常规和纳米8YSZ热障涂层的性能[J].中国表面工程,2008,21(6):18-22.HE Jing,LÜ Yufen,WANG Ruijun,et al.Properties of thermal barrier coatings with common and nano 8YSZ powders [J].China Surface Engineering,2008,21(6):18-22.

    • [6] 徐惠彬,宫声凯,刘福顺.航空发动机热障涂层材料体系的研究[J].航空学报,2000,21(1):7-12.XU Huibin,GONG Shengkai,LIU Fushun.Recent development in materials design of thermal barrier coatings for gas turbine[J].Acta Aeronautica et Astronautic Sinica,2000,21(1):7-12.

    • [7] WANG Z B,ZHOU C G,XU H B,et al.Effect of thermal treatment on the grain growth of nanostructured YSZ thermal barrier coating prepared by air plasma spraying [J].Chinese Journal of Aeronautics,2004,17(2):119-123.

    • [8] WANG H L,BAKAL A,ZHANG X X,et al.CaOMgO-Al 2O3-SiO2(CMAS)corrosion of Gd2Zr2O7 and Sm2Zr2O7 [J].Journal of the Electrochemical Society,2016,163(10):643-648.

    • [9] YAN Z,GUO L,LI Z H,et al.Effects of laser glazing on CMAS corrosion behavior of Y2O3 stabilized ZrO2 thermal barrier coatings[J].Corrosion Science,2019,157:450-461.

    • [10] 杨姗洁,彭徽,郭洪波.热障涂层在CMAS环境下的失效与防护[J].航空材料学报,2018,38(2):43-51.YANG Shanjie,PENG Hui,GUO Hongbo.Failure and protection of thermal barrier coating under CMAS attack [J].Journal of Aeronautical Materials,2018,38(2):43-51.

    • [11] 马景涛,邓畅光,王允良,等.高温燃气下CMAS混合盐覆盖对YSZ热障涂层性能的影响[J].金属热处理,2017,42(9):160-167.MA Jingtao,DENG Changguang,WANG Yunliang,et al.Effect of CMAS mixed salt on properties of YSZ thermal barrier coatings under high temperature gas [J].Heat Treatment of Metals,2017,42(9):160-167.

    • [12] PUJOL G,ANSART F,BONINO J P,et al.Step-bystep investigation of degradation mechanisms induced by CMAS attack on YSZ materials for TBC applications [J].Surface and Coatings Technology,2013,237:71-78.

    • [13] 王允良,邓畅光,詹肇麟,等.CMAS 环境下 PS-PVD 7YSZ 涂层的抗热冲击性能及失效机制[J].金属热处理,2017,42(4):175-179.WANG Yunliang,DENG Changguang,ZHAN Zhaolin,et al.Thermal shock resistance and failure mechanism of CMAS deposited PS-PVD 7YSZ coating [J].Heat Treatment of Metals,2017,42(4):175-179.

    • [14] LIU H,CAI J,ZHU J H.CMAS(CaO-MgO-Al 2O3-SiO2)resistance of Y2O3-stabilized ZrO2 thermal barrier coatings with Pt layers[J].Ceramics International,2018,44:452-458.

    • [15] AMARENDRA K R,RABI S B,DOUGLAS E W,et al.CMAS-resistant thermal barrier coatings(TBC)[J].International Journal of Applied Ceramic Technology,2010,7(5):662-674.

    • [16] AYSEGUL A,ALEXANDER L V,NITIN P P,et al.Novel thermal barrier coatings that are resistant to hightemperature attack by glassy deposits[J].Acta Material,2007,55:6734-6745.

    • [17] GUO L,YAN Z,WANG X H,et al.Ti 2AlC MAX phase for resistance against CMAS attack to thermal barrier coatings [J].Ceramics International,2019,45:7627-7634.

    • [18] YAN Z,GUO L,ZHANG Z,et al.Versatility of potential protective layer material Ti 2AlC on resisting CMAS corrosion to thermal barrier coatings[J].Corrosion Science,2020,167:1-14.

    • [19] ZHANG Z,LAI D M Y,LIM S H,et al.Alleviating delamination of Ti 2AlC coating upon oxidation at 600℃ with heavy incorporation of TiC[J].Journal of Alloys and Compounds,2019,790:536-546.

    • [20] CAO J,YIN Z W,LI H L,et al.Tribological and mechanical properties of Ti 2AlC coating at room temperature and 800℃ [J].Ceramics International,2018,44:1046-1051.

    • [21] JENNY F,MARIE S,STEFAN B,et al.Ti 2AlC coatings deposited by high velocity oxy-fuel spraying [J].Surface and Coatings Technology,2008,202(24):5976-5981.

    • [22] BENJAMIN R M,BRENDA L G D,BENJAMIN H,et al.Cold spray deposition of Ti 2AlC coatings for improved nuclear fuel cladding [J].Journal of Nuclear Materials,2015,466:712-717.

    • [23] 于月光,侯伟骜,尹春雷,等.可磨封严涂层材料喷涂过程中石墨含量变化研究 [J].热喷涂技术,2009,1(1):20-24.YU Yueguang,HOU Weiao,YIN Chunlei,et al.Graphite content change of powders for abradable seal coatings during flame or plasma process [J].Thermal Spray Technology,2009,1(1):20-24.

    • [24] 颜建辉,徐红梅,许剑光,等.粉末粒度对喷涂二硅化钼涂层微观结构的影响[J].材料导报,2012,26(9):34-37.YAN Jianhong,XU Hongmei,XU Jianguang,et al.Influence of powders size on the microstructure of molybdenum disilicide coating prepared by thermal spraying [J].Materials Review,2012,26(9):34-37.

    • [25] 赵国锋,王莹莹,张海龙,等.冷喷涂设备及冷喷涂技术应用研究进展[J].表面技术,2017,46(11):198-205.ZHAO Guofeng,WANG Yingying,ZHANG Hailong,et al.Application of cold spraying equipment and cold spraying technology[J].Surface Technology,2017,46(11):198-205.

    • [26] 马国强,李友芬.SiO2-B2O3-ZrO2 陶瓷涂层的制备及性能 [J].北京化工大学学报,2013,40(6):50-55.MA Guoqiang,LI Youfen.Preparation and properties of SiO2-B2O3-ZrO2 ceramic coating[J].Journal of Beijing University of Chemical Technology,2013,40(6):50-55.

    • [27] WANG J Q,YUAN Y C,CHI Z H,et al.High-temperature sulfur corrosion behavior of h-BN-based ceramic coating prepared by slurry method[J].Materials Chemistry and Physics,2018,206:186-192.

    • [28] 范衍,范景莲,李威,等.料浆涂覆法制 W-Si-ZrO2-Y2O3 高温抗氧化涂层的组织与高温氧化行为[J].粉末冶金材料科学与工程,2016,21(5):754-759.FAN Yan,FAN Jinglian,LI Wei,et al.Microstructure and oxidation behavior of W-Si-ZrO2-Y2O3 high temperature oxidation resistant coating preparated by slurry spraying[J].Materials Science and Engineering of Powder Metallurgy,2016,21(5):754-759.

    • [29] JIANG Y,LIU T Y,RU H Q,et al.Ultra-high-temperature ceramic TaB2-SiC-Si coating by impregnation and in-situ reaction method to prevent graphite materials from oxidation and ablation [J].Ceramics International,2019,45:6541-6551.

    • [30] LAN W H,XIAO P.Fabrication of yttria-stabilized-zirconia thick coatings via slurry process with pressure infiltration[J].Journal of the European Ceramic Society,2009,29:391-401.

    • [31] 薛飞.复合陶瓷涂层抗磨特性及对锅炉热力性能影 􀆇㏂响的研究[D].杭州:中国计量大学,2017.XUE Fei.Research on wear properties of composite ceramic coatings and its influence on boiler thermodynamic performance[D].Hangzhou:China Jiliang University,2017.

    • [32] 马国强.料浆法制备 SiO2 系和MgO系陶瓷涂层及性能表征[D].北京:北京化工大学,2013.MA G Q.Fabrication and characterization of SiO2 、MgO ceramic coating through slurry method [ D].Beijing:Beijing University of Chemical Technology,2013.

    • [33] 文琪.钢基陶瓷复合涂层的制备与性能研究[D].荆州:长江大学,2019.WEN Qi.Preparation and properties of steel-based ceramic composite coatings [ D].Jingzhou:Yangtze University,2019.

    • [34] 田帅.石墨陶瓷涂层的制备[D].淄博:山东理工大学,2017.TIAN Shuai.Preparation of graphite ceramic coatings [D].Zibo:Shandong University of Technology,2017.

    • [35] XU H B,GUO H B,LIU F,et al.Development of gradient thermal barrier coatings and their hot-fatigue behavior[J].Surface & Coatings Technology,2000,130(1):133-139.

  • 参考文献

    • [1] 朱晨,于建海,郭亚飞,等.航空发动机热障涂层存在的问题及其发展方向[J].表面技术,2016,45(1):13-29.ZHU Chen,YU Jianhai,GUO Yafei,et al.Problems of aircraft engine thermal barrier coating and its developing direction [J].Surface Technology,2016,45(1):13-29.

    • [2] VAßEN R,JARLIGO M O,STEINKE T.Overview on advanced thermal barrier coatings [J].Surface and Coatings Technology,2010,205(4):938-942.

    • [3] 李民,程玉贤.航空发动机用高温防护涂层研究进展[J].中国表面工程,2012,25(1):16-21.LI Min,CHENG Yuxian.Progress in research on high temperature protective coatings for aero-engines [J].China Surface Engineering,2012,25(1):16-21.

    • [4] 王铀,王亮.新型锆酸盐基热障涂层材料的研究进展[J].中国表面工程,2009,22(6):8-18.WANG You,WANG Liang.Research progress of new types of zirconate-based thermal barrier coatings [J].China Surface Engineering,2009,22(6):8-18.

    • [5] 何箐,吕玉芬,汪瑞军,等.等离子喷涂常规和纳米8YSZ热障涂层的性能[J].中国表面工程,2008,21(6):18-22.HE Jing,LÜ Yufen,WANG Ruijun,et al.Properties of thermal barrier coatings with common and nano 8YSZ powders [J].China Surface Engineering,2008,21(6):18-22.

    • [6] 徐惠彬,宫声凯,刘福顺.航空发动机热障涂层材料体系的研究[J].航空学报,2000,21(1):7-12.XU Huibin,GONG Shengkai,LIU Fushun.Recent development in materials design of thermal barrier coatings for gas turbine[J].Acta Aeronautica et Astronautic Sinica,2000,21(1):7-12.

    • [7] WANG Z B,ZHOU C G,XU H B,et al.Effect of thermal treatment on the grain growth of nanostructured YSZ thermal barrier coating prepared by air plasma spraying [J].Chinese Journal of Aeronautics,2004,17(2):119-123.

    • [8] WANG H L,BAKAL A,ZHANG X X,et al.CaOMgO-Al 2O3-SiO2(CMAS)corrosion of Gd2Zr2O7 and Sm2Zr2O7 [J].Journal of the Electrochemical Society,2016,163(10):643-648.

    • [9] YAN Z,GUO L,LI Z H,et al.Effects of laser glazing on CMAS corrosion behavior of Y2O3 stabilized ZrO2 thermal barrier coatings[J].Corrosion Science,2019,157:450-461.

    • [10] 杨姗洁,彭徽,郭洪波.热障涂层在CMAS环境下的失效与防护[J].航空材料学报,2018,38(2):43-51.YANG Shanjie,PENG Hui,GUO Hongbo.Failure and protection of thermal barrier coating under CMAS attack [J].Journal of Aeronautical Materials,2018,38(2):43-51.

    • [11] 马景涛,邓畅光,王允良,等.高温燃气下CMAS混合盐覆盖对YSZ热障涂层性能的影响[J].金属热处理,2017,42(9):160-167.MA Jingtao,DENG Changguang,WANG Yunliang,et al.Effect of CMAS mixed salt on properties of YSZ thermal barrier coatings under high temperature gas [J].Heat Treatment of Metals,2017,42(9):160-167.

    • [12] PUJOL G,ANSART F,BONINO J P,et al.Step-bystep investigation of degradation mechanisms induced by CMAS attack on YSZ materials for TBC applications [J].Surface and Coatings Technology,2013,237:71-78.

    • [13] 王允良,邓畅光,詹肇麟,等.CMAS 环境下 PS-PVD 7YSZ 涂层的抗热冲击性能及失效机制[J].金属热处理,2017,42(4):175-179.WANG Yunliang,DENG Changguang,ZHAN Zhaolin,et al.Thermal shock resistance and failure mechanism of CMAS deposited PS-PVD 7YSZ coating [J].Heat Treatment of Metals,2017,42(4):175-179.

    • [14] LIU H,CAI J,ZHU J H.CMAS(CaO-MgO-Al 2O3-SiO2)resistance of Y2O3-stabilized ZrO2 thermal barrier coatings with Pt layers[J].Ceramics International,2018,44:452-458.

    • [15] AMARENDRA K R,RABI S B,DOUGLAS E W,et al.CMAS-resistant thermal barrier coatings(TBC)[J].International Journal of Applied Ceramic Technology,2010,7(5):662-674.

    • [16] AYSEGUL A,ALEXANDER L V,NITIN P P,et al.Novel thermal barrier coatings that are resistant to hightemperature attack by glassy deposits[J].Acta Material,2007,55:6734-6745.

    • [17] GUO L,YAN Z,WANG X H,et al.Ti 2AlC MAX phase for resistance against CMAS attack to thermal barrier coatings [J].Ceramics International,2019,45:7627-7634.

    • [18] YAN Z,GUO L,ZHANG Z,et al.Versatility of potential protective layer material Ti 2AlC on resisting CMAS corrosion to thermal barrier coatings[J].Corrosion Science,2020,167:1-14.

    • [19] ZHANG Z,LAI D M Y,LIM S H,et al.Alleviating delamination of Ti 2AlC coating upon oxidation at 600℃ with heavy incorporation of TiC[J].Journal of Alloys and Compounds,2019,790:536-546.

    • [20] CAO J,YIN Z W,LI H L,et al.Tribological and mechanical properties of Ti 2AlC coating at room temperature and 800℃ [J].Ceramics International,2018,44:1046-1051.

    • [21] JENNY F,MARIE S,STEFAN B,et al.Ti 2AlC coatings deposited by high velocity oxy-fuel spraying [J].Surface and Coatings Technology,2008,202(24):5976-5981.

    • [22] BENJAMIN R M,BRENDA L G D,BENJAMIN H,et al.Cold spray deposition of Ti 2AlC coatings for improved nuclear fuel cladding [J].Journal of Nuclear Materials,2015,466:712-717.

    • [23] 于月光,侯伟骜,尹春雷,等.可磨封严涂层材料喷涂过程中石墨含量变化研究 [J].热喷涂技术,2009,1(1):20-24.YU Yueguang,HOU Weiao,YIN Chunlei,et al.Graphite content change of powders for abradable seal coatings during flame or plasma process [J].Thermal Spray Technology,2009,1(1):20-24.

    • [24] 颜建辉,徐红梅,许剑光,等.粉末粒度对喷涂二硅化钼涂层微观结构的影响[J].材料导报,2012,26(9):34-37.YAN Jianhong,XU Hongmei,XU Jianguang,et al.Influence of powders size on the microstructure of molybdenum disilicide coating prepared by thermal spraying [J].Materials Review,2012,26(9):34-37.

    • [25] 赵国锋,王莹莹,张海龙,等.冷喷涂设备及冷喷涂技术应用研究进展[J].表面技术,2017,46(11):198-205.ZHAO Guofeng,WANG Yingying,ZHANG Hailong,et al.Application of cold spraying equipment and cold spraying technology[J].Surface Technology,2017,46(11):198-205.

    • [26] 马国强,李友芬.SiO2-B2O3-ZrO2 陶瓷涂层的制备及性能 [J].北京化工大学学报,2013,40(6):50-55.MA Guoqiang,LI Youfen.Preparation and properties of SiO2-B2O3-ZrO2 ceramic coating[J].Journal of Beijing University of Chemical Technology,2013,40(6):50-55.

    • [27] WANG J Q,YUAN Y C,CHI Z H,et al.High-temperature sulfur corrosion behavior of h-BN-based ceramic coating prepared by slurry method[J].Materials Chemistry and Physics,2018,206:186-192.

    • [28] 范衍,范景莲,李威,等.料浆涂覆法制 W-Si-ZrO2-Y2O3 高温抗氧化涂层的组织与高温氧化行为[J].粉末冶金材料科学与工程,2016,21(5):754-759.FAN Yan,FAN Jinglian,LI Wei,et al.Microstructure and oxidation behavior of W-Si-ZrO2-Y2O3 high temperature oxidation resistant coating preparated by slurry spraying[J].Materials Science and Engineering of Powder Metallurgy,2016,21(5):754-759.

    • [29] JIANG Y,LIU T Y,RU H Q,et al.Ultra-high-temperature ceramic TaB2-SiC-Si coating by impregnation and in-situ reaction method to prevent graphite materials from oxidation and ablation [J].Ceramics International,2019,45:6541-6551.

    • [30] LAN W H,XIAO P.Fabrication of yttria-stabilized-zirconia thick coatings via slurry process with pressure infiltration[J].Journal of the European Ceramic Society,2009,29:391-401.

    • [31] 薛飞.复合陶瓷涂层抗磨特性及对锅炉热力性能影 􀆇㏂响的研究[D].杭州:中国计量大学,2017.XUE Fei.Research on wear properties of composite ceramic coatings and its influence on boiler thermodynamic performance[D].Hangzhou:China Jiliang University,2017.

    • [32] 马国强.料浆法制备 SiO2 系和MgO系陶瓷涂层及性能表征[D].北京:北京化工大学,2013.MA G Q.Fabrication and characterization of SiO2 、MgO ceramic coating through slurry method [ D].Beijing:Beijing University of Chemical Technology,2013.

    • [33] 文琪.钢基陶瓷复合涂层的制备与性能研究[D].荆州:长江大学,2019.WEN Qi.Preparation and properties of steel-based ceramic composite coatings [ D].Jingzhou:Yangtze University,2019.

    • [34] 田帅.石墨陶瓷涂层的制备[D].淄博:山东理工大学,2017.TIAN Shuai.Preparation of graphite ceramic coatings [D].Zibo:Shandong University of Technology,2017.

    • [35] XU H B,GUO H B,LIU F,et al.Development of gradient thermal barrier coatings and their hot-fatigue behavior[J].Surface & Coatings Technology,2000,130(1):133-139.

  • 手机扫一扫看