en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

吕明达,男,1991年出生,博士研究生。主要研究方向为等离子喷涂。E-mail:lvmingda@163.com

通讯作者:

张广军,男,1969年出生,博士,教授,博士研究生导师。主要研究方向为电弧增材制造,等离子喷涂。E-mail:zhanggj@hit.edu.cn

中图分类号:TM913;TG174

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20201211001

参考文献 1
SNYDER G J,TOBERER E S.Complex thermoelectric materials [J].Nature Materials,2008,7(2):105-114.
参考文献 2
BELL L E.Cooling,heating,generating heat with and recovering waste thermoelectric [J].Science,2014,321(5895):1457-1461.
参考文献 3
BISWAS K,HE J,BLUM I D,et al.High-performance bulk thermoelectrics with all-scale hierarchical architectures[J].Nature,2012,489(7416):414-418.
参考文献 4
HOCHBAUM A I,CHEN R,DELGADO R D,et al.Enhanced thermoelectric performance of rough silicon nanowires[J].Nature,2008,451(7175):163-167.
参考文献 5
ZHANG Q,LIAO J,TANG Y,et al.Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration [J].Energy and Environmental Science,2017,10(4):956-963.
参考文献 6
LIU W,JIE Q,KIM H S,et al.Current progress and future challenges in thermoelectric power generation:From materials to devices[J].Acta Materialia,2015,87(155):357-376.
参考文献 7
VINING C B.An inconvenient truth about thermoelectrics[J].Nature Materials,2009,8(2):83-85.
参考文献 8
ZEBARJADI M,ESFARJANI K,DRESSELHAUS M S,et al.Perspectives on thermoelectrics:From fundamentals to device applications[J].Energy and Environmental Science,2012,5(1):5147-5162.
参考文献 9
ZHANG T.Design and optimization considerations for thermoelectric devices[J].Energy Conversion and Management,2016,112:404-412.
参考文献 10
李长久.热喷涂技术应用及研究进展与挑战[J].热喷涂技术,2018,10(4):1-22.LI Changjiu.Applications,research progresses and future challenges of thermal spray technology[J].Thermal Spray Technology,2018,10(4):1-22.
参考文献 11
徐滨士,谭俊,陈建敏,等.表面工程领域科学技术发展[J].中国表面工程,2011,24(2):1-12.XU Binshi,TAN Jun,CHEN Jianmin,et al.Science and technology development of surface engineering[J].Chinese Surface Engineering,2011,24(2):1-12.
参考文献 12
李成新,刘森辉,张惠宇,等.新型大气长层流等离子体喷涂方法和研究进展 [J].中国表面工程,2019,32(6):1-19.LI Chengxin,LIU Senhui,ZHANG Huiyu,et al.An introduction and progress of a novel atmospheric laminar plasma spray method [J].China Surface Engineering,2019,32(6):1-19.
参考文献 13
秦加浩,金鑫,方帅帅,等.等离子喷涂 WC/Co 疏水涂层[J].中国表面工程,2017,30(6):26-33.QIN Jiahao,JIN Xin,FANG Suhaishuai,et al.Plasma sprayed WC/Co hydrophobic coating[J].China Surface Engineering,2017,30(6):26-33.
参考文献 14
LI J,LI C X,YANG G J,et al.Effect of vapor deposition in shrouded plasma spraying on morphology and wettability of the metallic Ni20Cr coating surface [J].Journal of Alloys and Compounds,2018,735:430-440.
参考文献 15
ROBINSON B W,TIGHE C J,GRUAR R I,et al.Suspension plasma sprayed coatings using dilute hydrothermally produced titania feedstocks for photocatalytic applications [J].Journal of Materials Chemistry A,2015,3(24):12680-12689.
参考文献 16
付耀耀,李华.利用热喷涂技术制备二氧化钛光催化涂层研究现状与展望[J].热喷涂技术,2019,11(1):1-8.FU Yaoyao,LI Hua.Research status and prospect of thermal spray fabrication of nano-titania photocatalytic coatings [J].Thermal Spray Technology,2019,11(1):1-8.
参考文献 17
杨焜,邓畅光,邝子奇,等.大气等离子喷涂 TiO2 涂层性能及厚涂层制备工艺[J].中国表面工程,2014,27(4):12-18.YANG Kun,DENG Changguang,KUANG Ziqi,et al.Properties of TiO2 coating deposited by atmospheric plasma spraying and thick coating fabrication process [J].China Surface Engineering,2014,27(4):12-18.
参考文献 18
周亮,崔珊,罗发,等.热喷涂雷达吸波涂层研究现状与展望[J].材料导报,2015,29(17):47-51,83.LUO Liang,CUI Shan,LUO Fa,et al.Research status and prospect on thermally sprayed radar absorption coatings[J].Materials Review,2015,29(17):47-51,83.
参考文献 19
ZHANG S L,ZHANG A P,LI C X,et al.Suspension plasma sprayed Sr2Fe1.4Mo0.6O6-δ electrodes for solid oxide fuel cells[J].Journal of Thermal Spray Technology,2017,26(3):432-440.
参考文献 20
ZHANG S L,LIU T,LI C J,et al.Atmos pheric plasma-sprayed La0.8 Sr0.2Ga0.8Mg0.2O3 electrolyte membranes for intermediate-temperature solid oxide fuel cells [J].J.Mater.Chem.A,2015,3(14):7535-7553.
参考文献 21
董丽娟,李强.水和乙醇悬浮液等离子喷涂SOFC电解质层的工艺及涂层特点比较[J].中国表面工程,2011,24(5):32-37.DONG Lijuan,LI Qiang.Comparison of the process and characteristics of electrolytic layers for SOFC by water and alcohol based suspension plasma spraying[J].China Surface Engineering,2011,24(5):32-37.
参考文献 22
SAMPATH S.Thermal spray applications in electronics and sensors:Past,present,and future[J].Journal of Thermal Spray Technology,2010,19(5):921-949.
参考文献 23
FU G,ZUO L,LONGTIN J,et al.Thermoelectric properties of magnesium silicide deposited by use of an atmospheric plasma thermal spray[J].Journal of Electronic Materials,2014,43(7):2723-2730.
参考文献 24
FU G,ZUO L,LONGTIN J,et al.Thermoelectric properties of magnesium silicide fabricated using vacuum plasma thermal spray[J].Journal of Applied Physics,2013,114(14):144905.
参考文献 25
TEWOLDE M,FU G,HWANG D J,et al.Thermoelectric device fabrication using thermal spray and laser micromachining[J].Journal of Thermal Spray Technology,2016,25(3):431-440.
参考文献 26
LEE H,HAN S J,CHIDAMBARAM SESHADRI R,et al.Thermoelectric properties of in-situ plasma spray synthesized sub-stoichiometry TiO2-X [J].Scientific Reports,2016,6:36581.
参考文献 27
LEE H,CHIDAMBARAM S R,HAN S J,et al.TiO2-X based thermoelectric generators enabled by additive and layered manufacturing[J].Applied Energy,2017,192:24-32.
参考文献 28
ZHANG L,LIAO X J,ZHANG S L,et al.Effect of powder particle size and spray parameters on the Ni/Al reaction during plasma spraying of Ni-Al composite powders[J].Journal of Thermal Spray Technology,2021:1-15.
参考文献 29
SHARMA A,GAMBINO R J,SAMPATH S.Anisotropic electrical properties in thermal spray metallic coatings [J].Acta Materialia,2006,54(1):59-65.
参考文献 30
罗文辉,李涵,林泽冰,等.Si 含量对高锰硅化合物相组成及热电性能的影响研究 [J].物理学报,2010,59(12):8783-8788.LUO Wenhui,LI Han,LIN Zebing,et al.Effects of Si content on phase composition and thermoelectric properties of higher manganese silicide[J].Acta Physica Sinica,2010,59(12):8783-8788.
参考文献 31
石勇军,路清梅,张忻,等.高锰硅热电材料的微观结构及电热输运性能[J].无机材料学报,2011(7):691-695.SHI Yongjun,LU Qingmei,ZHANG Xi,et al.Microstructure and thermoelectric properties of higher manganese silicides[J].Journal of Inorganic Materials,2011(7):691-695.
参考文献 32
LEE H,KIM G,LEE B,et al.Effect of Si content on the thermoelectric transport properties of Ge-doped higher manganese silicides [J].Scripta Materialia,2017,135:72-75.
参考文献 33
SADIA Y,GELBSTEIN Y.Silicon-rich higher manganese silicides for thermoelectric applications[J].Journal of Electronic Materials,2012,41(6):1504-1508.
目录contents

    摘要

    热电器件(Thermoelectric generator, TEG)利用材料内部载流子运动可实现对低品质余废热能的回收利用。 相较于热电材料的发展,TEG 制备技术的滞后制约了 TEG 的广泛应用。 针对上述问题,探索使用灵活、高成本效益的等离子喷涂技术制备高锰硅(Higher manganese silicide, HMS)基管形 TEG 的可行性,详细描述了层积型 TEG 的喷涂制备过程,并对高锰硅热电沉积层的物相组织、微观形貌进行表征,最后测试管形 TEG 热电 P-N 单元的热电输出性能。 结果表明,等离子喷涂制备的多层复合结构管形 TEG 成形良好;高锰硅沉积层作为热电功能层,喷涂后保持与原始粉末相同的 HMS 主体相,同时沉积层的快速冷却过程减少了杂质 Si 相的残余;管形 TEG 在自然散热工况下,当柱状热源为 450 ℃ 时单个 P-N 单元电压输出可达 24. 69 mV,满足超低压收集装置的电压输入要求。

    Abstract

    Thermoelectric generator (TEG) can directly convert heat gradient into electricity by the motion of charge carriers. However, comparing with the development in thermoelectric materials, the difficulty in processing them into engineering devices limits TEG applications. Atmospheric plasma spraying, as a flexible and cost-effective manufacturing process, is employed to manufacture higher manganese silicide (HMS) based tubular TEG. The as-sprayed HMS deposition is characterized for phase structure and microstructure. The voltage output is measured to assess the thermoelectric performance of the P-N unit in tubular TEG. The results show that a multi-layer tubular TEG is sprayed successfully. The HMS depositon keeps the same phase structure with original powder, while the volume of monatomic Si is reduced for the rapid cooling in plasma spraying. Under the ambient cooling condition, the voltage output of single P-N unit can reach 24. 69 mV when cylindrical heat source is 450 ℃ , which meets the minimum voltage input requirement of ultra-low energy harvesting device.

  • 0 前言

  • 随着人口增长和工业化进程的加速推进,能源短缺以及化石能源过渡消耗带来的环境问题严重制约着人类社会的长期稳定发展,积极开发可持续能源,提高能源利用效率成为全球能源发展的趋势[1-2]。数据显示:当前约90%的能源是由使用化石燃料燃烧作为热源的热机产生的, 其中有约60%~70%的能源以热能的形式散失[3],每年有近15万亿瓦时的热能浪费[4]

  • 热电器件( Thermoelectric generator,TEG) 是一类利用材料内部载流子运动实现热能和电能直接相互转换的装置,对于提高能源利用效率、降低环境污染具有重要意义。热电器件具有无运动部件、结构简单、反应迅速、环境友好等优点,且随着热电材料领域内的长足进步,热电转换效率有了显著提高,特别是面对大量低成本甚至零成本的余废热资源,热电器件具有很高的应用潜力[5-6]。当前制约热电器件规模化应用的主要瓶颈是器件研发的滞后[7],投入在热电器件的结构设计、制备工艺方面的研究工作与深入热电材料基础研究、提高材料的热电性能同样重要[8],低成本高适用性的热电器件制备技术成为热电领域内的研究重点[9]

  • 等离子喷涂技术作为重要的表面涂层技术已成熟应用于航天、航空等工业领域,制备保护性涂层对材料表面性能(耐磨损性、耐腐蚀性、耐高温等) 进行强化[10,12]。此外,近十年来不断有利用等离子喷涂技术制备功能性涂层(超疏水涂层[13-14],光催化涂层[15-17],吸波涂层[18]等)的研究工作见诸报道,而基于不同性能的功能层累积叠加还可实现功能器件的制造,如固体氧化物燃料电池的制造[19-21]。正是以上等离子喷涂技术在功能涂层方向的拓展,以及金属/陶瓷复合涂层的技术积累,使得利用等离子喷涂技术制备层积型热电器件成为可能[22],等离子喷涂技术的低成本和高灵活性等优势更吸引了研究者人员的关注。

  • 当前热电器件的等离子喷涂制备技术主要聚焦于两方面:热电涂层的热电性能研究与层积型热电器件的设计制备。 ZUO等针对N型热电材料硅化镁,分别进行了大气[23] 和真空环境下[24] 的等离子喷涂研究。在此基础上LONGTIN提出了一种硅化镁基平板式热电器件的等离子喷涂制备方法,该方法利用等离子喷涂制备金属导电层、热电功能层,通过激光加工完成各独立单元的分割,最后添加支撑材料喷涂获得顶部导电层,最终制备50.8mm × 50.8mm的层积型热电器件[25]。纽约州立大学石溪分校的HWASOO等[26] 开展了等离子喷涂制备TiO2 热电涂层的研究,结果显示在优化工艺条件下TiO2 涂层在750K的塞贝克系数可达-230 μV/K。该团队后续设计并喷涂制备了多热电单元的层积型TiO2 热电器件[27], 该器件723K最大输出可达2.43mW。总体而言,目前的研究工作多基于N型热电材料(Mg2 Si, FeSi2, TiO2),而等离子喷涂P型热电材料罕有报道;上述文献涉及的热电器件,其等离子喷涂制备过程还存在额外激光加工或多单元器件结构复杂较难集群使用的问题。

  • P型高锰硅( Higher manganese silicide, HMS) 热电材料具有低成本,环境友好以及高可靠性等优点,在中温区(500~800K)温差发电领域具有较强的应用潜力。本文基于P型高锰硅热电材料,设计一种管形层积式热电器件,详细展示了管形热电器件的等离子喷涂制备过程,验证了等离子喷涂制备管式层积型热电器件的可行性,对高锰硅沉积层的组织形貌、物相结构进行了表征,并对该器件的热电输出性能进行了测试。

  • 1 试验准备

  • 1.1 试验材料及设备

  • 器件基体采用长度为250mm的氧化铝陶瓷管,其内径尺寸为14mm,外径尺寸22mm。为提高基体表面粗糙度增加涂层与基体间的机械咬合效率,氧化铝陶瓷管表面在喷涂前经丙酮清洗油污后, 进行喷砂处理,喷砂材料为24目白刚玉砂,喷砂压力0.4MPa,喷砂操作中喷嘴轴向与陶瓷管表面保持45°~60°的夹角。喷砂处理后使用压缩空气清除表面砂尘,安装固定于旋转夹具。

  • 等离子喷涂设备( PT-880, Plasma Technik AG, Switzerland) 装配F4型喷枪, 阳极孔径为6mm,工作主气为Ar气(纯度>99.999%),辅助气体为H2 气(>99.999%)。

  • 器件制备使用的粉体材料分别如下:Ni15Al合金粉(粒度范围45~75 μm, 锦州金江),氧化铝陶瓷粉(粒度范围45~75 μm, 锦州金江)以及P型高锰硅粉(中值粒径D 50=21 μm, 上海允复)。其中高锰硅粉末的微观形貌如图1a所示,粉末呈现熔融破碎制粉的典型特征:颗粒为不规则块状、多棱角、致密(图1b)。喷涂前,先将粉末置110℃ 干燥箱中烘干1h去除粉末中吸附的水汽,以增强粉末流行性。

  • 1.2 器件设计及制备过程

  • 1.2.1 管形TEG设计

  • 热电器件的基本组成单位为N/P型热电材料构造成的热电单元。热电单元呈 π 形结构,在该结构中,N型和P型热电元件以电串联和热并联的形式组合。传统平板状热电器件,多个热电单元集成于两个绝缘陶瓷平板之中,适用于热流方向垂直于陶瓷平板的热能收集环境。

  • 基于等离子喷涂工艺的特点,本文提出的管形沉积式热电器件的结构设计如图2所示。在该结构中,由陶瓷管及在其表面喷涂制备的四个沉积层共同组成管形热电器件,分别为底部导电层、热电功能层、顶部导电层及绝缘外覆层。其中,顶底两个导电层与置于其中的P-N型热电功能层共同形成 π 形热电单元,实现管表面多单元的电流串联。

  • 图1 P型高锰硅粉末的微观形貌及粒度分布

  • Fig.1 Morphology and size distribution of HMS feedstock powder

  • 图2 管形热电器件结构示意图

  • Fig.2 Schematic of the tubular TEG by plasma spraying

  • 1.2.2 管形层积型热电器件制备

  • 管形热电器件的等离子喷涂制备过程如图3所示。氧化铝管被夹持固定在旋转夹具上,掩膜板置于喷枪与陶瓷管之间,与待喷涂表面距离为5mm。按底部导电层、P型热电单元、N型热电单元、顶部导电层和绝缘外覆层的顺序使用相应掩膜板(Mask A/B/C/D)依次喷涂。

  • 其中,高锰硅粉体用于制备P型热电单元;NiAl合金粉因其与基体结合强度高、高抗氧化性和电阻率低的特点[22,28-29],用于制备底部/顶部导电层;与此同时,NiAl合金作为K型热电偶负极具有负的塞贝克系数,选用NiAl合金粉制备N型热电单元。

  • 图3 管形热电器件喷涂制备过程

  • Fig.3 Fabrication process of the tubular TEG by plasma spraying

  • 为保证成形尺寸,设置定位销孔保证不同掩膜板具有相同安装位置,并于喷涂前使用线结构光进行测定调整。经前期试验工艺优化后,各层具体的喷涂参数如表1所示。

  • 表1 管形热电器件各层等离子喷涂工艺参数

  • Table1 Deposition parameters of the each layer for TEG

  • Note: 100 μm for conductive layer; 300 μm for N-type TE elements.

  • 1.3 结构表征及性能测试

  • 1.3.1 组织形貌表征

  • 采用扫描电镜( Helios NanoLab600i, FEI, USA)对喷涂制备试样的表面及截面形貌进行观察, 并利用能谱仪(X-Max80, Oxford Instruments, UK) 进行成分分析。使用X射线衍射仪(D8-Adavance, Bruker, Germany)分析涂层的物相结构。扫描速度为5(°)/min, 扫描范围20 °~80 °, 加速电压40kV,电流40mA。

  • 1.3.2 热电性能测试

  • 管形器件的热电输出性能测试使用的测试系统结构如图4所示。管形热电器件内部插入加热棒作为柱状热源创造TEG内外温度梯度,数据采集卡实时采集器件P-N单元两端输出电压,在上位机控制下完成在柱状热源温度连续变化下热电器件P-N单元的电压输出测试工作。

  • 图4 热电器件测试示意图

  • Fig.4 Illustration of tubular TEG output measurement

  • 2 结果与讨论

  • 2.1 涂层物相分析

  • 高锰硅初始粉体及其沉积层的XRD衍射图谱如图5所示。

  • 图5 高锰硅粉体及其沉积层XRD谱图

  • Fig.5 XRD pattern of the initial feedstock and sprayed HMS deposition

  • 试验所用的高锰硅粉末,其物相主体为HMS相(Mn15 Si26, JCPDS card No.89~2413),但含有高锰硅中常见杂质相:单质Si相和MnSi杂相。根据Mn-Si二元平衡相图可知,高锰硅的单相区间极窄, Si摩尔含量在63.1%~63.63%,由于Mn元素在其熔点的饱和蒸汽压远高于Si元素在其熔点的饱和蒸汽压,因此熔炼过程中容易出现样品成分偏离高锰硅单相区,造成单质Si的残留;并且在熔体冷却过程中,固相MnSi与富Si液相发生包晶反应生成高锰硅,即包晶反应MnSi(s)+Si(l) → HMS(s),由于Si原子的扩散速度较慢,所以随着包晶反应的进行,HMS层逐渐加厚至临界状态,扩散停滞,在高锰硅粉体的实际熔炼工艺中,包晶反应不能在凝固前完全进行,因此在高锰硅粉体中残留了单质Si相和少量的MnSi相。热电性能通常用热电优值 ZT 表征,由式 ZT=(α 2σ/κ) T 得出,其中 ασκ 分别为热电材料的塞贝克系数、电导率、热导率。理想的热电材料应具有较大的塞贝克系数,较高的电导率和较低的热导率。对于MnSi金属相而言,其具有较高的电导率和热导率,然而其塞贝克系数很低,室温下约为10 μV/K而且随温度变化很小,因此一般认为,MnSi金属相的存在会显著降低材料的热电性能[30-31]。与MnSi相反,单质Si相具有较低的电导率和较大的塞贝克系数(室温约440 μV/K),因此随硅含量的提高,高锰硅电导率降低而塞贝克系数提高。少量的Si富余可调控塞贝克系数进而改善高锰硅热电性能,但要避免过量Si带来的电导率恶化[32-33]

  • 高锰硅沉积层的XRD分析结果显示,高锰硅沉积层物相成分保持了HMS主相,依旧存在单质Si相和少量MnSi相,但与初始高锰硅粉体相比,单质Si相对含量明显降低。这是因为高锰硅粉体在等离子焰流中被加热至熔融状态撞击基体表面,快速凝固获得细晶组织,产生的HMS片层较薄,液态Si相扩散更为容易,范围更为彻底,进一步减少了材料中的单质Si沉淀。经等离子喷涂后高锰硅沉积层中Si含量明显降低,有利于减少Si对电导率的影响,从而改善高锰硅沉积层的热电性能。

  • 2.2 涂层形貌

  • 管形热电器件HMS沉积层表面及断截面形貌如图6所示。涂层表面凹凸不平,结构上有很大的起伏,能够明显观察到有些区域被片状扁平粒子覆盖,表明该处的粉末颗粒完全熔化,经等离子喷涂后,成层片状结构铺展,在扁平粒子周围有指状飞溅,呈现典型熔滴溅射特征,同时还可观察到未能完全铺展的半熔化粉末颗粒。

  • 从涂层的断截面照片可以看出,高锰硅沉积层呈现出典型的等离子喷涂工艺的层状堆叠结构。沉积层结构形态与制备过程密切相关:高锰硅粉末颗粒在喷枪中被等离子焰流熔化并喷出,熔化或半熔化的粉末颗粒高速撞击到金属基体上并迅速降温, 熔滴铺展、凝固并收缩变形,在基体上呈现扁平化熔滴堆叠,并且不断重复该过程,在粒子相互堆叠过程中,小片层之间的不完全重叠或熔融液滴凝固过程中的体积收缩引将造成孔隙缺陷。同时,粒子撞击铺展后迅速冷却,液相-固相相变凝固并收缩,导致大量微裂纹的形成。

  • 图6 HMS沉积层表面及断截面形貌照片

  • Fig.6 Surface and fractured cross-section SEM photographs of the HMS deposition

  • 孔隙、裂纹等缺陷是等离子喷涂工艺的结构特征,是由本身的形成机理所决定的。对于等离子喷涂制备的高锰硅热电功能层而言,孔隙、微裂纹缺陷能够有助于降低高锰硅沉积层的热导率,有助于保持两侧温度差,但微观裂纹的存在同时加强了对载流子的散射作用,降低了电导率从而影响高锰硅沉积层的热电性能。

  • 高锰硅沉积层的截面照片如图7所示。高锰硅沉积层并非均匀的单相组织,经EDS对微区进行成分分析,结合XRD谱图可判断:图中深灰色区域标记点A(SiK 96.43At%, MnK 3.57At%)为Si相;图中中度灰色区域标记点B( SiK 68.30At%, MnK 31.70At%)为HMS相;图中浅灰色区域标记点C(SiK 57.39At%, MnK 42.61At%)为MnSi相。

  • 2.3 热电性能

  • 等离子喷涂制备的管形热电器件( 未喷涂Al2O3 绝缘外覆层)如图8所示。

  • 管形TEG成型良好,连续室温至500℃ 的加热测试中,未出现沉积层与陶瓷管基体间、层与层间的结合不良,表面无裂纹剥落。对于管形TEG而言,即有利于对柱状热源的热能回收利用,同时管外圆沉积层在冷却中产生收缩压应力,有利于提高结合强度,减少管形TEG的失效。

  • 图7 高锰硅沉积层截面照片及成分分析

  • Fig.7 Cross-section image of HMS deposition and the spot EDS analysis results

  • 图8 管形热电器件的实拍图

  • Fig.8 Photograph of the tubular TEG

  • 为了评价管形TEG的热电输出性能,对图8中TEG的单个P-N单元进行测试,其在自然散热条件不同柱状热源温度下的热电输出性能曲线如图9所示。高锰硅作为中温区间热电材料,在其工作温度50~450℃范围内,电压输出值随温度升高而增大, 从0.56mV直至在450℃ 达到最大24.69mV。对于常见超低电压收集装置( LTC3108)而言,输入电压大于20mV可正常运作。说明等离子喷涂制备的管形TEG可通过余废热回收方式支撑无源传感的实际应用需求。

  • 3 结论

  • (1) 采用等离子喷涂技术,通过掩膜板在陶瓷管表面成功制备了管形热电器件,该器件为多层复合结构包括底部导电层、P型热电单元、N型热电单元、顶部导电层和绝缘外覆层。

  • 图9 管形热电器件P-N单元的输出曲线

  • Fig.9 Output of the single P-N unit under different temperature

  • (2) 在优化工艺参数下,高锰硅沉积层物相结构与初始粉末保持一致,主体相均为HMS相;沉积层形成过程中的快速冷却过程明显减少杂质Si相。

  • (3) 等离子喷涂制备的管形TEG在自然散热工况下电压输出随TEG内柱状热源温度升高而增加, 单个P-N单元在450℃ 电压输出可达24.69mV,满足超低压收集装置的电压输入要求,具有通过余废热回收支撑无源传感的实际应用潜力。

  • 参考文献

    • [1] SNYDER G J,TOBERER E S.Complex thermoelectric materials [J].Nature Materials,2008,7(2):105-114.

    • [2] BELL L E.Cooling,heating,generating heat with and recovering waste thermoelectric [J].Science,2014,321(5895):1457-1461.

    • [3] BISWAS K,HE J,BLUM I D,et al.High-performance bulk thermoelectrics with all-scale hierarchical architectures[J].Nature,2012,489(7416):414-418.

    • [4] HOCHBAUM A I,CHEN R,DELGADO R D,et al.Enhanced thermoelectric performance of rough silicon nanowires[J].Nature,2008,451(7175):163-167.

    • [5] ZHANG Q,LIAO J,TANG Y,et al.Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration [J].Energy and Environmental Science,2017,10(4):956-963.

    • [6] LIU W,JIE Q,KIM H S,et al.Current progress and future challenges in thermoelectric power generation:From materials to devices[J].Acta Materialia,2015,87(155):357-376.

    • [7] VINING C B.An inconvenient truth about thermoelectrics[J].Nature Materials,2009,8(2):83-85.

    • [8] ZEBARJADI M,ESFARJANI K,DRESSELHAUS M S,et al.Perspectives on thermoelectrics:From fundamentals to device applications[J].Energy and Environmental Science,2012,5(1):5147-5162.

    • [9] ZHANG T.Design and optimization considerations for thermoelectric devices[J].Energy Conversion and Management,2016,112:404-412.

    • [10] 李长久.热喷涂技术应用及研究进展与挑战[J].热喷涂技术,2018,10(4):1-22.LI Changjiu.Applications,research progresses and future challenges of thermal spray technology[J].Thermal Spray Technology,2018,10(4):1-22.

    • [11] 徐滨士,谭俊,陈建敏,等.表面工程领域科学技术发展[J].中国表面工程,2011,24(2):1-12.XU Binshi,TAN Jun,CHEN Jianmin,et al.Science and technology development of surface engineering[J].Chinese Surface Engineering,2011,24(2):1-12.

    • [12] 李成新,刘森辉,张惠宇,等.新型大气长层流等离子体喷涂方法和研究进展 [J].中国表面工程,2019,32(6):1-19.LI Chengxin,LIU Senhui,ZHANG Huiyu,et al.An introduction and progress of a novel atmospheric laminar plasma spray method [J].China Surface Engineering,2019,32(6):1-19.

    • [13] 秦加浩,金鑫,方帅帅,等.等离子喷涂 WC/Co 疏水涂层[J].中国表面工程,2017,30(6):26-33.QIN Jiahao,JIN Xin,FANG Suhaishuai,et al.Plasma sprayed WC/Co hydrophobic coating[J].China Surface Engineering,2017,30(6):26-33.

    • [14] LI J,LI C X,YANG G J,et al.Effect of vapor deposition in shrouded plasma spraying on morphology and wettability of the metallic Ni20Cr coating surface [J].Journal of Alloys and Compounds,2018,735:430-440.

    • [15] ROBINSON B W,TIGHE C J,GRUAR R I,et al.Suspension plasma sprayed coatings using dilute hydrothermally produced titania feedstocks for photocatalytic applications [J].Journal of Materials Chemistry A,2015,3(24):12680-12689.

    • [16] 付耀耀,李华.利用热喷涂技术制备二氧化钛光催化涂层研究现状与展望[J].热喷涂技术,2019,11(1):1-8.FU Yaoyao,LI Hua.Research status and prospect of thermal spray fabrication of nano-titania photocatalytic coatings [J].Thermal Spray Technology,2019,11(1):1-8.

    • [17] 杨焜,邓畅光,邝子奇,等.大气等离子喷涂 TiO2 涂层性能及厚涂层制备工艺[J].中国表面工程,2014,27(4):12-18.YANG Kun,DENG Changguang,KUANG Ziqi,et al.Properties of TiO2 coating deposited by atmospheric plasma spraying and thick coating fabrication process [J].China Surface Engineering,2014,27(4):12-18.

    • [18] 周亮,崔珊,罗发,等.热喷涂雷达吸波涂层研究现状与展望[J].材料导报,2015,29(17):47-51,83.LUO Liang,CUI Shan,LUO Fa,et al.Research status and prospect on thermally sprayed radar absorption coatings[J].Materials Review,2015,29(17):47-51,83.

    • [19] ZHANG S L,ZHANG A P,LI C X,et al.Suspension plasma sprayed Sr2Fe1.4Mo0.6O6-δ electrodes for solid oxide fuel cells[J].Journal of Thermal Spray Technology,2017,26(3):432-440.

    • [20] ZHANG S L,LIU T,LI C J,et al.Atmos pheric plasma-sprayed La0.8 Sr0.2Ga0.8Mg0.2O3 electrolyte membranes for intermediate-temperature solid oxide fuel cells [J].J.Mater.Chem.A,2015,3(14):7535-7553.

    • [21] 董丽娟,李强.水和乙醇悬浮液等离子喷涂SOFC电解质层的工艺及涂层特点比较[J].中国表面工程,2011,24(5):32-37.DONG Lijuan,LI Qiang.Comparison of the process and characteristics of electrolytic layers for SOFC by water and alcohol based suspension plasma spraying[J].China Surface Engineering,2011,24(5):32-37.

    • [22] SAMPATH S.Thermal spray applications in electronics and sensors:Past,present,and future[J].Journal of Thermal Spray Technology,2010,19(5):921-949.

    • [23] FU G,ZUO L,LONGTIN J,et al.Thermoelectric properties of magnesium silicide deposited by use of an atmospheric plasma thermal spray[J].Journal of Electronic Materials,2014,43(7):2723-2730.

    • [24] FU G,ZUO L,LONGTIN J,et al.Thermoelectric properties of magnesium silicide fabricated using vacuum plasma thermal spray[J].Journal of Applied Physics,2013,114(14):144905.

    • [25] TEWOLDE M,FU G,HWANG D J,et al.Thermoelectric device fabrication using thermal spray and laser micromachining[J].Journal of Thermal Spray Technology,2016,25(3):431-440.

    • [26] LEE H,HAN S J,CHIDAMBARAM SESHADRI R,et al.Thermoelectric properties of in-situ plasma spray synthesized sub-stoichiometry TiO2-X [J].Scientific Reports,2016,6:36581.

    • [27] LEE H,CHIDAMBARAM S R,HAN S J,et al.TiO2-X based thermoelectric generators enabled by additive and layered manufacturing[J].Applied Energy,2017,192:24-32.

    • [28] ZHANG L,LIAO X J,ZHANG S L,et al.Effect of powder particle size and spray parameters on the Ni/Al reaction during plasma spraying of Ni-Al composite powders[J].Journal of Thermal Spray Technology,2021:1-15.

    • [29] SHARMA A,GAMBINO R J,SAMPATH S.Anisotropic electrical properties in thermal spray metallic coatings [J].Acta Materialia,2006,54(1):59-65.

    • [30] 罗文辉,李涵,林泽冰,等.Si 含量对高锰硅化合物相组成及热电性能的影响研究 [J].物理学报,2010,59(12):8783-8788.LUO Wenhui,LI Han,LIN Zebing,et al.Effects of Si content on phase composition and thermoelectric properties of higher manganese silicide[J].Acta Physica Sinica,2010,59(12):8783-8788.

    • [31] 石勇军,路清梅,张忻,等.高锰硅热电材料的微观结构及电热输运性能[J].无机材料学报,2011(7):691-695.SHI Yongjun,LU Qingmei,ZHANG Xi,et al.Microstructure and thermoelectric properties of higher manganese silicides[J].Journal of Inorganic Materials,2011(7):691-695.

    • [32] LEE H,KIM G,LEE B,et al.Effect of Si content on the thermoelectric transport properties of Ge-doped higher manganese silicides [J].Scripta Materialia,2017,135:72-75.

    • [33] SADIA Y,GELBSTEIN Y.Silicon-rich higher manganese silicides for thermoelectric applications[J].Journal of Electronic Materials,2012,41(6):1504-1508.

  • 参考文献

    • [1] SNYDER G J,TOBERER E S.Complex thermoelectric materials [J].Nature Materials,2008,7(2):105-114.

    • [2] BELL L E.Cooling,heating,generating heat with and recovering waste thermoelectric [J].Science,2014,321(5895):1457-1461.

    • [3] BISWAS K,HE J,BLUM I D,et al.High-performance bulk thermoelectrics with all-scale hierarchical architectures[J].Nature,2012,489(7416):414-418.

    • [4] HOCHBAUM A I,CHEN R,DELGADO R D,et al.Enhanced thermoelectric performance of rough silicon nanowires[J].Nature,2008,451(7175):163-167.

    • [5] ZHANG Q,LIAO J,TANG Y,et al.Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration [J].Energy and Environmental Science,2017,10(4):956-963.

    • [6] LIU W,JIE Q,KIM H S,et al.Current progress and future challenges in thermoelectric power generation:From materials to devices[J].Acta Materialia,2015,87(155):357-376.

    • [7] VINING C B.An inconvenient truth about thermoelectrics[J].Nature Materials,2009,8(2):83-85.

    • [8] ZEBARJADI M,ESFARJANI K,DRESSELHAUS M S,et al.Perspectives on thermoelectrics:From fundamentals to device applications[J].Energy and Environmental Science,2012,5(1):5147-5162.

    • [9] ZHANG T.Design and optimization considerations for thermoelectric devices[J].Energy Conversion and Management,2016,112:404-412.

    • [10] 李长久.热喷涂技术应用及研究进展与挑战[J].热喷涂技术,2018,10(4):1-22.LI Changjiu.Applications,research progresses and future challenges of thermal spray technology[J].Thermal Spray Technology,2018,10(4):1-22.

    • [11] 徐滨士,谭俊,陈建敏,等.表面工程领域科学技术发展[J].中国表面工程,2011,24(2):1-12.XU Binshi,TAN Jun,CHEN Jianmin,et al.Science and technology development of surface engineering[J].Chinese Surface Engineering,2011,24(2):1-12.

    • [12] 李成新,刘森辉,张惠宇,等.新型大气长层流等离子体喷涂方法和研究进展 [J].中国表面工程,2019,32(6):1-19.LI Chengxin,LIU Senhui,ZHANG Huiyu,et al.An introduction and progress of a novel atmospheric laminar plasma spray method [J].China Surface Engineering,2019,32(6):1-19.

    • [13] 秦加浩,金鑫,方帅帅,等.等离子喷涂 WC/Co 疏水涂层[J].中国表面工程,2017,30(6):26-33.QIN Jiahao,JIN Xin,FANG Suhaishuai,et al.Plasma sprayed WC/Co hydrophobic coating[J].China Surface Engineering,2017,30(6):26-33.

    • [14] LI J,LI C X,YANG G J,et al.Effect of vapor deposition in shrouded plasma spraying on morphology and wettability of the metallic Ni20Cr coating surface [J].Journal of Alloys and Compounds,2018,735:430-440.

    • [15] ROBINSON B W,TIGHE C J,GRUAR R I,et al.Suspension plasma sprayed coatings using dilute hydrothermally produced titania feedstocks for photocatalytic applications [J].Journal of Materials Chemistry A,2015,3(24):12680-12689.

    • [16] 付耀耀,李华.利用热喷涂技术制备二氧化钛光催化涂层研究现状与展望[J].热喷涂技术,2019,11(1):1-8.FU Yaoyao,LI Hua.Research status and prospect of thermal spray fabrication of nano-titania photocatalytic coatings [J].Thermal Spray Technology,2019,11(1):1-8.

    • [17] 杨焜,邓畅光,邝子奇,等.大气等离子喷涂 TiO2 涂层性能及厚涂层制备工艺[J].中国表面工程,2014,27(4):12-18.YANG Kun,DENG Changguang,KUANG Ziqi,et al.Properties of TiO2 coating deposited by atmospheric plasma spraying and thick coating fabrication process [J].China Surface Engineering,2014,27(4):12-18.

    • [18] 周亮,崔珊,罗发,等.热喷涂雷达吸波涂层研究现状与展望[J].材料导报,2015,29(17):47-51,83.LUO Liang,CUI Shan,LUO Fa,et al.Research status and prospect on thermally sprayed radar absorption coatings[J].Materials Review,2015,29(17):47-51,83.

    • [19] ZHANG S L,ZHANG A P,LI C X,et al.Suspension plasma sprayed Sr2Fe1.4Mo0.6O6-δ electrodes for solid oxide fuel cells[J].Journal of Thermal Spray Technology,2017,26(3):432-440.

    • [20] ZHANG S L,LIU T,LI C J,et al.Atmos pheric plasma-sprayed La0.8 Sr0.2Ga0.8Mg0.2O3 electrolyte membranes for intermediate-temperature solid oxide fuel cells [J].J.Mater.Chem.A,2015,3(14):7535-7553.

    • [21] 董丽娟,李强.水和乙醇悬浮液等离子喷涂SOFC电解质层的工艺及涂层特点比较[J].中国表面工程,2011,24(5):32-37.DONG Lijuan,LI Qiang.Comparison of the process and characteristics of electrolytic layers for SOFC by water and alcohol based suspension plasma spraying[J].China Surface Engineering,2011,24(5):32-37.

    • [22] SAMPATH S.Thermal spray applications in electronics and sensors:Past,present,and future[J].Journal of Thermal Spray Technology,2010,19(5):921-949.

    • [23] FU G,ZUO L,LONGTIN J,et al.Thermoelectric properties of magnesium silicide deposited by use of an atmospheric plasma thermal spray[J].Journal of Electronic Materials,2014,43(7):2723-2730.

    • [24] FU G,ZUO L,LONGTIN J,et al.Thermoelectric properties of magnesium silicide fabricated using vacuum plasma thermal spray[J].Journal of Applied Physics,2013,114(14):144905.

    • [25] TEWOLDE M,FU G,HWANG D J,et al.Thermoelectric device fabrication using thermal spray and laser micromachining[J].Journal of Thermal Spray Technology,2016,25(3):431-440.

    • [26] LEE H,HAN S J,CHIDAMBARAM SESHADRI R,et al.Thermoelectric properties of in-situ plasma spray synthesized sub-stoichiometry TiO2-X [J].Scientific Reports,2016,6:36581.

    • [27] LEE H,CHIDAMBARAM S R,HAN S J,et al.TiO2-X based thermoelectric generators enabled by additive and layered manufacturing[J].Applied Energy,2017,192:24-32.

    • [28] ZHANG L,LIAO X J,ZHANG S L,et al.Effect of powder particle size and spray parameters on the Ni/Al reaction during plasma spraying of Ni-Al composite powders[J].Journal of Thermal Spray Technology,2021:1-15.

    • [29] SHARMA A,GAMBINO R J,SAMPATH S.Anisotropic electrical properties in thermal spray metallic coatings [J].Acta Materialia,2006,54(1):59-65.

    • [30] 罗文辉,李涵,林泽冰,等.Si 含量对高锰硅化合物相组成及热电性能的影响研究 [J].物理学报,2010,59(12):8783-8788.LUO Wenhui,LI Han,LIN Zebing,et al.Effects of Si content on phase composition and thermoelectric properties of higher manganese silicide[J].Acta Physica Sinica,2010,59(12):8783-8788.

    • [31] 石勇军,路清梅,张忻,等.高锰硅热电材料的微观结构及电热输运性能[J].无机材料学报,2011(7):691-695.SHI Yongjun,LU Qingmei,ZHANG Xi,et al.Microstructure and thermoelectric properties of higher manganese silicides[J].Journal of Inorganic Materials,2011(7):691-695.

    • [32] LEE H,KIM G,LEE B,et al.Effect of Si content on the thermoelectric transport properties of Ge-doped higher manganese silicides [J].Scripta Materialia,2017,135:72-75.

    • [33] SADIA Y,GELBSTEIN Y.Silicon-rich higher manganese silicides for thermoelectric applications[J].Journal of Electronic Materials,2012,41(6):1504-1508.

  • 手机扫一扫看