en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

于强亮(1986—),男(汉),博士,副研究员;研究方向:润滑油添加剂、功能缓蚀剂、功能防腐涂层;E-mail:yql@licp.cas.cn

中图分类号:TH117.1

文献标识码:A

文章编号:1007-9289(2020)06-0136-08

DOI:10.11933/j.issn.1007-9289.20201022001

参考文献 1
张建文,张朝辉,刘志杭.质子型离子液体水基润滑液摩擦学性能研究[J].摩擦学学报,2019,39(5):628-634.ZHANG J W,ZHANG C H,LIU Z H.Lubricating properties of the protic ionic liquids as the water-based lubricating additives[J].Tribology,2019,39(5):628-634(in Chinese).
参考文献 2
WANG Y,LEE T,LIN J,et al.Corrosion properties of metals in dicyanamide-based ionic liquids [J].Corrosion Science,2014,78,81-88.
参考文献 3
凡明锦,张朝阳,文平,等.氨基酸离子液体润滑剂的结构与摩擦学行为的关系[J].中国表面工程,2017,30(3):148-158.FAN M J,ZHANG C Y,WEN P,et al.Relationship between molecular structure and tribological performance of amino acid ionic liquid lubricant[J].China Surface Engineering,2017,30(3):148-158(in Chinese).
参考文献 4
孟凡善,李征,丁昊昊,等.油酸修饰纳米 BN/TiN 润滑添加剂的摩擦学性能研究[J].材料工程,2020,48(5):160-167.MENG F S,LI Z,DING H H,et al.Tribological properties of nano-BN/TiN lubricating additives modified with oleic acid [J].Journal of Materials Engineering,2020,48(5):160-167(in Chinese).
参考文献 5
侯铄,杨勇,寇天鑫,等.润滑添加剂三乙醇胺硼酸酯的摩擦学特性研究 [J].润滑与密封,2020,45(2):75-80.HOU S,YANG Y,KOU T X,et al.Tribological properties of triethanolamine borate as lubrication[J].Lubrication Engineering,2020,45(2):75-80(in Chinese).
参考文献 6
黄玉萍,黄国威,王玉荣,等.油溶性离子液体作为润滑油添加剂的摩擦学性能研究[J].材料保护,2017,50(4):43-47.HUANG Y P,HUANG G W,WANG Y R,et al.Tribological performance of oil-soluble ionic liquids as additives in lubricant oil[J].Materials Protection,2017,50(4):43-47(in Chinese).
参考文献 7
李金龙,周峰,李春生,等.离子液体作为聚乙二醇(PEG)添加剂的摩擦学性能[J].摩擦学学报,2011,31(1):36-39.LI J L,ZHOU F,LI C S,et al.Tribological properties of ionic liquid as additives in polyethylene glycol[J].Tribology,2011,31(1):36-39(in Chinese).
参考文献 8
于强亮,王将兵,范丰奇,等.N/P 无卤素离子液体润滑剂的链长与摩擦学性能的关系[J].摩擦学学报,2020,40(5):673-679.YU Q L,WANG J B,FAN F Q,et al.The relationship between the chain length and tribological properties of N/P halogen-free ionic liquid lubricants [J].Tribology,2020,40(5):673-679(in Chinese).
参考文献 9
屈孟男,马雪瑞,何金梅,等.功能化苯并三氮唑离子液体作为润滑油添加剂的摩擦学性能研究[J].摩擦学学报,2017,37(2):199-205..QU M N,MA X R,HE J M,et al.Tribological properties of functionalized benzotriazolium ionic liquid as lubricant additive[J].Tribology,2017,37(2):199-205(in Chinese).
参考文献 10
YU Q,ZHANG C,DONG Rui,et al.Novel N,P-containing oil-soluble ionic liquids with excellent tribological and anti-corrosion performance [J].Tribology International,2019,132:118-129.
参考文献 11
BAMHILL W C,QU J,LUO H,et al.Phosphonium-organophosphate ionic liquids as lubricant additives:effects of cation structure on physicochemical and tribological characteristics [J].ACS Applied Materials & Interfaces,2014,6(24):22585-22593.
参考文献 12
QU J,BANSAL D G,YU B,et al.Anti-wear performance and mechanism of an oil-miscible ionic liquid as a lubricant additive[J].ACS Applied Materials & Interfaces,2012,4(2):997-1002.
参考文献 13
HUANG G,YU Q,MA Z,et al.Oil-soluble ionic liquids as antiwear and extreme pressure additives in poly-α-olefin for steel/steel contacts[J].Friction,2017,7(1):18-31.
参考文献 14
JIANG D,HU L,FENG D.Crown-type ionic liquids as lubricants for steel-on-steel system [J].Tribology Letters,2010,41(2):417-424.
参考文献 15
WANG Y,YU Q,CAI M,et al.Halide-free PN ionic liquids surfactants as additives for enhancing tribological performance of water-based liquid[J].Tribology International,2018,128:190-196.
参考文献 16
WANG Y,YU Q,MA Z,et al.Significant enhancement of anti-friction capability of cationic surfactant by phosphonate functionality as additive in water[J].Tribology International,2017,112:86-93.
参考文献 17
WANG Y,YU Q,CAI M,et al.Synergy of lithium salt and non-ionic surfactant for significantly improved tribological properties of water-based fluids[J].Tribology International,2017,113:58-64.
参考文献 18
BAI Y,YU Q,ZHANG J,et al.Soft-nanocomposite lubricants of supramolecular gel with carbon nanotubes[J].Journal of Materials Chemistry A,2019,7(13):7654-7663.
参考文献 19
YU Q,WU Y,LI D,et al.Supramolecular ionogel lubricants with imidazolium-based ionic liquids bearing the urea group as gelator [J].Journal of Colloid and Interface Science,2017,487:130-140.
参考文献 20
YU Q,HUANG G,CAI M,et al.In situ zwitterionic supramolecular gel lubricants for significantly improved tribological properties[J].Tribology International,2016,95:55-65.
参考文献 21
GUSAIN R,GUPTA P,SARAN U S,et al.Halogen-free bis(imidazolium)/bis(ammonium)-di [ bis(salicylato)borate] ionic liquids as energy-efficient and environmentally friendly lubricant additives[J].ACS Applied Materials Interfaces,2014,6(17):15318-15328.
目录contents

    摘要

    以磷酸二异辛酯(EDHPA)作为阴离子,双季磷盐为阳离子合成一种新型的无卤素离子液体并作为 PAO 10 的润滑添加剂与市售 T306 做比较。 通过 SRV-Ⅴ摩擦磨损试验机考察其摩擦学性能,通过扫描电子显微镜对磨损形貌进行表征,通过非接触式三维轮廓仪对磨损体积进行测量,通过 ECR 对摩擦过程中摩擦膜变化进行分析,通过 XPS 元素分析对磨斑表面化学元素和变化进行分析。 结果表明合成的新型无卤素离子液体作为 PAO 10 的添加剂时具有优异的摩擦学性能,同时极大程度的提高了 PAO 10 的极压承载能力。 新型离子液体在摩擦过程中发生摩擦化学反应,其中较长的烷基链与极性元素 P 在摩擦时生成致密且厚的边界润滑膜,提高了 PAO 10 体系的减摩抗磨性能和极压承载性能。

    Abstract

    A new type of halogen-free ionic liquid was synthesized by using diisooctyl phosphate ( EDHPA) as anion and diquaternary phosphate as cation. It was compared with commercial T306 as lubricating additive of PAO 10. The tribological properties were investigated by SRV-Ⅴ friction and wear testing machine, the wear morphology was characterized by scanning electron microscope, the wear volume was measured by non-contact three-dimensional profilometer, the changes of friction film during the friction process were analyzed by ECR, and the chemical elements and changes of wear spot surface were analyzed by XPS. Results show that the new synthesized halogen-free ionic liquid has excellent tribological properties as an additive of PAO 10, and greatly improves the extreme pressure carrying capacity of PAO 10. The friction chemical reaction occurs in the friction process of the new ionic liquid, in which the long alkyl chain and polar element P form a dense and thick boundary lubrication film during friction, which improves the friction reducing, anti-wear and extreme pressure bearing properties of PAO 10 system.

  • 0 引言

  • 润滑剂是减少设备摩擦与磨损的主要方式之一,也是目前工业使用最有效的手段[1-2]。随着科技的发展,机械设备零部件的精密度越来越高,对摩擦润滑环境的要求愈加苛刻,常规润滑添加剂难以满足机械设备在恶劣环境下的润滑要求,迫切需要开发新型的高性能润滑添加剂, 以保证设备的安全运行[3-5]

  • 离子液体作为一类性能优异的润滑剂,具有低熔点,优异的热稳定性和不燃等特性和显著的减摩抗磨特性[6-7]。近年来,随着环境保护力度的增加,对环境友好的润滑剂和添加剂的需求将逐渐增加。无卤素离子液体相比传统离子液体, 如咪唑离子液体,具有更高的水解稳定性和环境友好性,使用无卤素离子液体取代传统咪唑离子液体作为基础油的润滑添加剂,可以有效的缓解环境污染问题[8]。曲孟男等[9] 合成了一种含酯基的离子液体并作为葵花籽油的润滑添加剂考察其摩擦学性能,发现当离子液体的添加量(质量分数)达到1.5%时,摩擦因数减少42.9%,磨损体积降低33.3%;YU等[10]合成了两种N-P型油溶性离子液体并作为PAO 10的润滑添加剂考察了摩擦学性能,试验发现所合成的离子液体的摩擦学性能优异,在加入(质量分数) 1%离子液体时的性能优于ZDDP和磷酸三酯; WILLIAM等[11]研究了具有相同有机磷酸根阴离子而不同链长的季磷盐阳离子作为GTL 4基础油的摩擦学性能,试验结果表明,设计的离子液体与油可以很好的互溶,当添加量(质量分数)为1.04%时表现出良好的润滑性能;QU等[12] 研究了三已基十四烷基磷双(2-乙基己基)磷酸酯作为PAO添加剂的减摩抗磨性能,试验发现,加入5%离子液体可消除润滑油中的摩擦失效,摩擦因数降低60%,磨损体积降低3个数量级;HUANG等[13]合成了两种具有相似阴离子的P-S型油溶性离子液体,评估了防腐性能,并测试了作为PAO 10添加剂的摩擦学性能,试验结果表明,这些离子液体作为添加剂可以显著降低滑动触点的摩擦磨损并增强空白PAO 10的EP性能。这些研究表明,离子液体作为基础油的润滑添加剂具有良好的相容性并能极大程度地改善基础油的润滑性能。

  • 季磷盐中含有极性元素P,可在摩擦界面发生摩擦化学反应,生成摩擦化学反应膜[14],是离子液体中常用且高效的阳离子。文中以磷酸二异辛酯作为阴离子,在双季磷盐为阳离子合成一种新型的无卤素离子液体并作为PAO 10的润滑添加剂,考察了它的摩擦学性能和极压承载性能并分析了摩擦过程中的成膜机理。

  • 1 试验

  • 1.1 材料

  • 合成离子液体所需的三辛基磷(85%)和1, 2-二溴乙烷(98%)购自J&K。磷酸二异辛酯钠是根据先前报道的方法制备的[18], 所使用的PAO 10为中国石油兰州润滑油研究开发中心提供,T306购自广州锐圣研化工科技有限公司。

  • 1.2 合成

  • 称取1.0mol三辛基磷和0.5mol1,2-二溴乙烷并加入乙腈,在85℃ 下回流24h。冷却至室温后加1.0mol磷酸二异辛酯钠,反应12h。减压蒸除溶剂,粗产物用石油醚溶解并过滤出溴化钠,滤液加入100mL蒸馏水洗去溴化钠。有机相用无水硫酸镁干燥,过滤出硫酸镁,蒸除溶剂,得到黄色透明粘稠液体,标记为D-P1888P8,分子结构如图1所示。核磁共振分析与质谱数据如表1所示。

  • 图1 D-P1888P8 的分子结构

  • Fig.1 Molecular structure of D-P1888P8 表1D-P1888P8 的核磁共振与质谱分析数据

  • 表1 D-P1888P8 的核磁共振与质谱分析数据

  • Table1 NMR and MS data analysis of D-P1888P8

  • 1.3 热稳定性分析

  • 采用NETZSCH STA 449F3TGA-DSC热同步分析仪测试了样品的热稳定性。所需样品为PAO 10以及相同质量比分别为1%T306,1%D-P1888P8 的PAO组合物。试验条件:氮气氛围下, 升温速率为10℃/min,从室温升温至600℃。

  • 1.4 摩擦磨损试验和摩擦表面分析

  • 采用Optimol油脂公司制造的SRV-5摩擦磨损试验机对上述样品的摩擦学性能进行测量, 采用球-盘点接触方式,上试球为AISI 52100钢球,直径为10mm,下试盘为AISI 52100钢盘,直径为24mm,厚度为7.9mm。采用FEG-250扫描电子显微镜(SEM)观察SRV摩擦磨损试验过后的磨痕,采用BRUKER-NPFLEX非接触式三维轮廓仪测量下式样的磨损体积,采用XPS分析测定了磨斑表面的化学元素状态。电接触电阻(ECR)通过SRV-5摩擦磨损试验机采集得到。在室温下对1%T306和1%D-P1888P8 进行变载荷试验,载荷从50~1650N,以50N的间隔逐步进行,每个载荷的测试时间为2min。

  • 2 结果与讨论

  • 2.1 热稳定性

  • 使用热同步分析仪测试了PAO 10、1%T306和1%D-P1888P8 的热稳定性如图2所示,相应的热分解温度如表2所示。在PAO 10中加入1%T306后,PAO 10的热稳定性有所下降,热分解温度为312.05℃ 低于PAO 10自身的329.04℃, 在升温过程中,1%T306在PAO 10之前发生了热分解,表现出较差的热稳定性。而加入1%D-P1888P8 后,热重曲线与基础油PAO 10接近,热分解温度为327.29℃ 与PAO 10的热分解温度接近,说明加入1%D-P1888P8 基本未改变基础油的热分解温度。

  • 图2 PAO 10、1%T306和1%D-P1888P8 的热重曲线

  • Fig.2 TG curves of PAO 10, 1%T306and 1%D-P1888P8

  • 表2 PAO 10、1%T306和1%D-P1888P8 的热稳定性

  • Table2 Thermal stabilities of PAO 10, 1%T306and 1%D-P1888P8

  • 2.2 摩擦学性能及表面形貌分析

  • 图3(a) 为PAO 10、包含1%T306和1%D-P1888P8 的PAO 10在室温状态下的摩擦因数随时间变化的曲线(载荷:300N,行程:1mm,温度: RT,频率:25Hz)。图3( b)对应于图3( a) 试验过后, 测量的下试盘的磨斑磨损体积。在图3(a)中我们发现,PAO 10的摩擦因数最大,平均摩擦因数为0.178,有明显且较长的磨合期,在加入润滑添加剂后,摩擦因数均明显下降,平均摩擦因数大小为: PAO 10( 0.178)> 1%T306(0.118)> 1%D-P1888P8(0.094)。其中加入1%D-P1888P8 后,PAO 10体系具有优异的摩擦学性能,磨合时间极大程度的缩短,说明D-P1888P8 具有优异的减摩性能。图3(b)表明,PAO 10在室温下的磨损体积较大,达到了1.20×10-3 mm 3,在加入润滑添加剂后的抗磨性能优于空白的PAO 10基础油,且当加入1%D-P1888P8 磨损体积最小,可能是由于D-P1888P8 中的极性元素P与摩擦副表面的Fe发生摩擦化学反应,生成摩擦化学反应膜, 表现出最优的抗磨性能[15]。结合图3(a)说明加入1%D-P1888P8 可以有效的改善室温下PAO 10的摩擦学性能。

  • 图3 室温下的摩擦因数及磨损量曲线

  • Fig.3 Friction coefficient and wear volume curves at RT

  • 图4(a),4(b),4(c)分别为室温下PAO 10、 1%T306和1%D-P1888P8 润滑后下试样的磨损表面形貌。从图4中我们发现,PAO 10润滑下的磨损痕迹最大,有宽且深的磨斑,观察到较为严重的黏着磨损。在加入1%T306后,磨斑变小, 黏着磨损减少但依然存在,观察到典型的平行犁沟。在加入1%D-P1888P8 润滑后,磨斑变浅变窄, 在1000倍下无明显黏着磨损,平行犁沟明显减少。以上结果表明,D-P1888P8 作为PAO 10的润滑添加剂在室温下具有优异的抗磨性能。

  • 图5(a)为100℃时PAO 10、1%T306和1%D-P1888P8 的摩擦磨损试验中,摩擦因数随时间变化曲线,图5( b) 为摩擦试验过后下试盘的磨损体积(载荷:300N,行程:1mm,温度100℃,频率:25Hz)。观察图5( a) 发现PAO 10和1%T306摩擦因数较大,其中PAO 10有明显的磨合期,结合图5( b) 说明,PAO 10磨损体积也比室温下增长了1.63倍,磨损情况严重。在加入1%T306后与室温相比,磨损体积增长了0.1591 × 10-3 mm 3 约3.67倍,表明在高温下T306的减摩抗磨性能比室温时下降很多。而加入1%D-P1888P8后,摩擦因数与室温相比变化不大甚至有所下降(0.091),在高温下表现出优异而稳定的减摩性能,结合磨损量,与室温相比,磨损体积增大0.0965×10-3 mm 3 约2.27倍,在高温下抗磨性能下降较小,表现出优异的摩擦学性能。

  • 图4 不同润滑剂下室温润滑后下试样磨斑表面的SEM照片

  • Fig.4 SEM images of the surface of the lower samples after deference lubricant at RT

  • 图5 100℃下摩擦因数和磨损量曲线

  • Fig.5 Friction coefficient and wear volume curve at 100℃

  • 图6(a),6( b),6( c) 分别为100℃ 时PAO 10、1%T306和1%D-P1888P8 的摩擦磨损试验后, 下试样表面的磨斑表面形貌。从图6( a)中我们发现,基础油PAO 10中发生较为严重的黏着磨损,磨斑比室温下宽且深,典型平行犁沟较多,结合磨损体积,表明PAO 10在高温下的磨损情况严重。加入1%T306后,黏着磨损减少,但仍然有大量的典型平行犁沟,与室温情况相比,抗磨损性能下降很多。在加入1%D-P1888P8 后, 与PAO 10和1%T306相比,磨斑较窄而浅,无明显黏着磨损,且犁沟较少,与室温下SEM图像相比,抗磨损性能下降但犁沟增加不多说明抗磨性能下降较小,仍然具有优异的抗磨性能。

  • 图6 不同润滑剂100℃下润滑后试样磨斑表面的SEM照片

  • Fig.6 SEM images of the surface of the lower sample after deference lubricant at 100℃

  • 在室温下对1%T306和1%D-P1888P8 进行变载荷试验,结果如图7所示(载荷:从50~1650N, 载荷梯度:50N/2min,行程:1mm,温度:RT,频率:25Hz)。在图7中,1%T306的COF随载荷的增加有一定的波动,当载荷超过800N时,出现润滑失效。当加入1%D-P1888P8 时,其摩擦因数随着载荷的增加波动较小,且随着载荷的增加摩擦因数有减小的趋势, 其承载性能可以达到1600N,达到了1%T306承载能力的2倍。这些结果表明,加入1%D-P1888P8 使PAO体系具有优异的承载能力,结合SRV数据,说明D-P1888P88在PAO 10中具有优异的润滑和极压性能。考虑到它的优异摩擦学性能,可以用作为润滑添加剂。

  • 图7 1%T306和1%D-P1888P8 随时间和载荷变化的摩擦因数曲线

  • Fig.7 Friction coefficient curves of 1%T306and 1%D-P1888P8 with time and load

  • 2.3 润滑机理

  • 测试了PAO 10、1%T306和1%D-P1888P8 在室温和100℃ 下的电接触电阻值(ECR) 如图8所示,当不同物质吸附在摩擦副表面上时,其界面处的电接触电阻是可变的,ECR测量结果可以直观显示界面电阻的变化和推断界面摩擦膜的形成[16]。图8(a)为在室温下的接触电阻随时间变化曲线。从图8( a)中可以看出PAO 10的电接触电阻值较小,说明摩擦过程中摩擦副之间为直接接触。 1%T306比PAO 10的ECR值大,说明在摩擦过程中发生了摩擦化学反应,生成摩擦化学反应膜。此外,1%D-P1888P8 的ECR值最大, 说明D-P1888P8 比T306具有更强的摩擦化学反应能力,在摩擦过程中形成了更致密和更厚的润滑膜,对摩擦学性能的提升较大,而且这一变化趋势在高温摩擦过程中也得到了验证,图8(b),说明D-P1888P8 在摩擦过程中通过摩擦化学反应在摩擦表面形成了润滑保护膜避免了摩擦副之间的直接接触,因此ECR值比基础油PAO 10的高很多,较厚的润滑膜有利于提高润滑油的减摩抗磨性能和极压承载性能[17]

  • 图8 PAO 10、1%T306和1%D-P1888P8 的ECR值

  • Fig.8 ECR of PAO 10、1%T306and 1%D-P1888P8

  • 通过摩擦磨损试验证明D-P1888P8 具有优异的减摩抗磨性能,通过SEM表明D-P1888P8 可以减少PAO 10基础油在摩擦过程中的黏着磨损情况,提高金属的使用寿命,通过ECR测试表明摩擦过程中D-P1888P8 与摩擦副表面发生摩擦化学反应生成较厚且致密的摩擦化学反应膜。这些试验结果证明D-P1888P8 作为润滑添加剂的可行性。为研究摩擦副表面发生的摩擦化学反应,解释摩擦过程的成膜机理,获得有关季鏻盐离子液体的润滑作用机理,对室温和100℃下的SRV试验过后的磨损表面通过XPS对Fe、O、P等元素进行分析。图9为室温和100℃ 下1%D-P1888P8 润滑的磨损表面的XPS能谱(SRV:载荷:300N, 行程:1mm,温度:RT和100℃,频率:25Hz)。图9表明,在室温和100℃ 下,1%D-P1888P8 润滑的磨损表面的XPS能谱非常相似。在室温下, Fe2p峰大约出现在711.3和724.5eV,结合O1s的峰出现在532.5eV, 可能对应于Fe2O3, Fe(OH)O, Fe3O4。 P2p的峰出现在133.9eV,结合O的特征峰, 可能对应于P-O-P, P-O-Fe等[18-21]。以上结果表明, D-P1888P8 作为润滑添加剂在摩擦过程中发生摩擦化学反应,形成摩擦化学膜,避免了摩擦副之间的直接接触,因此获得了优异的摩擦学性能。

  • 图9 室温和高温下1%D-P1888P8 润滑的XPS光谱图

  • Fig.9 XPS spectra of lubricated with 1%D-P1888P8 at RT and HT

  • 3 结论

  • (1) 合成了一种新型的无卤素离子液体D-P1888P8 并作为基础油PAO 10的润滑添加剂,与PAO 10相比,其热稳定性基本不变。

  • (2) 在室温下,加入了1%D-P1888P8 的PAO 10体系的减摩抗磨性能比添加1%T306的摩擦学性能更为优异。在高温下, 1%D-P1888P8的PAO 10体系依旧表现出优异的减摩抗磨性能。在变载试验中,加入1%的D-P1888P8 表现出良好的极压承载性能。

  • (3) 通过ECR对室温和100℃下的接触电阻的测量,发现1%D-P1888P8 具有较长的烷基链,在摩擦过程中发生摩擦化学反应形成了致密和厚的润滑膜,阻碍了摩擦副之间的直接接触。通过XPS对磨损表面的元素分析结果发现,活性元素P在摩擦化学反应中发挥了关键作用,在摩擦过程中与摩擦副表面的Fe元素反应形成边界润滑膜, 提高了PAO 10的减摩抗磨性能和极压承载能力。

  • 参考文献

    • [1] 张建文,张朝辉,刘志杭.质子型离子液体水基润滑液摩擦学性能研究[J].摩擦学学报,2019,39(5):628-634.ZHANG J W,ZHANG C H,LIU Z H.Lubricating properties of the protic ionic liquids as the water-based lubricating additives[J].Tribology,2019,39(5):628-634(in Chinese).

    • [2] WANG Y,LEE T,LIN J,et al.Corrosion properties of metals in dicyanamide-based ionic liquids [J].Corrosion Science,2014,78,81-88.

    • [3] 凡明锦,张朝阳,文平,等.氨基酸离子液体润滑剂的结构与摩擦学行为的关系[J].中国表面工程,2017,30(3):148-158.FAN M J,ZHANG C Y,WEN P,et al.Relationship between molecular structure and tribological performance of amino acid ionic liquid lubricant[J].China Surface Engineering,2017,30(3):148-158(in Chinese).

    • [4] 孟凡善,李征,丁昊昊,等.油酸修饰纳米 BN/TiN 润滑添加剂的摩擦学性能研究[J].材料工程,2020,48(5):160-167.MENG F S,LI Z,DING H H,et al.Tribological properties of nano-BN/TiN lubricating additives modified with oleic acid [J].Journal of Materials Engineering,2020,48(5):160-167(in Chinese).

    • [5] 侯铄,杨勇,寇天鑫,等.润滑添加剂三乙醇胺硼酸酯的摩擦学特性研究 [J].润滑与密封,2020,45(2):75-80.HOU S,YANG Y,KOU T X,et al.Tribological properties of triethanolamine borate as lubrication[J].Lubrication Engineering,2020,45(2):75-80(in Chinese).

    • [6] 黄玉萍,黄国威,王玉荣,等.油溶性离子液体作为润滑油添加剂的摩擦学性能研究[J].材料保护,2017,50(4):43-47.HUANG Y P,HUANG G W,WANG Y R,et al.Tribological performance of oil-soluble ionic liquids as additives in lubricant oil[J].Materials Protection,2017,50(4):43-47(in Chinese).

    • [7] 李金龙,周峰,李春生,等.离子液体作为聚乙二醇(PEG)添加剂的摩擦学性能[J].摩擦学学报,2011,31(1):36-39.LI J L,ZHOU F,LI C S,et al.Tribological properties of ionic liquid as additives in polyethylene glycol[J].Tribology,2011,31(1):36-39(in Chinese).

    • [8] 于强亮,王将兵,范丰奇,等.N/P 无卤素离子液体润滑剂的链长与摩擦学性能的关系[J].摩擦学学报,2020,40(5):673-679.YU Q L,WANG J B,FAN F Q,et al.The relationship between the chain length and tribological properties of N/P halogen-free ionic liquid lubricants [J].Tribology,2020,40(5):673-679(in Chinese).

    • [9] 屈孟男,马雪瑞,何金梅,等.功能化苯并三氮唑离子液体作为润滑油添加剂的摩擦学性能研究[J].摩擦学学报,2017,37(2):199-205..QU M N,MA X R,HE J M,et al.Tribological properties of functionalized benzotriazolium ionic liquid as lubricant additive[J].Tribology,2017,37(2):199-205(in Chinese).

    • [10] YU Q,ZHANG C,DONG Rui,et al.Novel N,P-containing oil-soluble ionic liquids with excellent tribological and anti-corrosion performance [J].Tribology International,2019,132:118-129.

    • [11] BAMHILL W C,QU J,LUO H,et al.Phosphonium-organophosphate ionic liquids as lubricant additives:effects of cation structure on physicochemical and tribological characteristics [J].ACS Applied Materials & Interfaces,2014,6(24):22585-22593.

    • [12] QU J,BANSAL D G,YU B,et al.Anti-wear performance and mechanism of an oil-miscible ionic liquid as a lubricant additive[J].ACS Applied Materials & Interfaces,2012,4(2):997-1002.

    • [13] HUANG G,YU Q,MA Z,et al.Oil-soluble ionic liquids as antiwear and extreme pressure additives in poly-α-olefin for steel/steel contacts[J].Friction,2017,7(1):18-31.

    • [14] JIANG D,HU L,FENG D.Crown-type ionic liquids as lubricants for steel-on-steel system [J].Tribology Letters,2010,41(2):417-424.

    • [15] WANG Y,YU Q,CAI M,et al.Halide-free PN ionic liquids surfactants as additives for enhancing tribological performance of water-based liquid[J].Tribology International,2018,128:190-196.

    • [16] WANG Y,YU Q,MA Z,et al.Significant enhancement of anti-friction capability of cationic surfactant by phosphonate functionality as additive in water[J].Tribology International,2017,112:86-93.

    • [17] WANG Y,YU Q,CAI M,et al.Synergy of lithium salt and non-ionic surfactant for significantly improved tribological properties of water-based fluids[J].Tribology International,2017,113:58-64.

    • [18] BAI Y,YU Q,ZHANG J,et al.Soft-nanocomposite lubricants of supramolecular gel with carbon nanotubes[J].Journal of Materials Chemistry A,2019,7(13):7654-7663.

    • [19] YU Q,WU Y,LI D,et al.Supramolecular ionogel lubricants with imidazolium-based ionic liquids bearing the urea group as gelator [J].Journal of Colloid and Interface Science,2017,487:130-140.

    • [20] YU Q,HUANG G,CAI M,et al.In situ zwitterionic supramolecular gel lubricants for significantly improved tribological properties[J].Tribology International,2016,95:55-65.

    • [21] GUSAIN R,GUPTA P,SARAN U S,et al.Halogen-free bis(imidazolium)/bis(ammonium)-di [ bis(salicylato)borate] ionic liquids as energy-efficient and environmentally friendly lubricant additives[J].ACS Applied Materials Interfaces,2014,6(17):15318-15328.

  • 参考文献

    • [1] 张建文,张朝辉,刘志杭.质子型离子液体水基润滑液摩擦学性能研究[J].摩擦学学报,2019,39(5):628-634.ZHANG J W,ZHANG C H,LIU Z H.Lubricating properties of the protic ionic liquids as the water-based lubricating additives[J].Tribology,2019,39(5):628-634(in Chinese).

    • [2] WANG Y,LEE T,LIN J,et al.Corrosion properties of metals in dicyanamide-based ionic liquids [J].Corrosion Science,2014,78,81-88.

    • [3] 凡明锦,张朝阳,文平,等.氨基酸离子液体润滑剂的结构与摩擦学行为的关系[J].中国表面工程,2017,30(3):148-158.FAN M J,ZHANG C Y,WEN P,et al.Relationship between molecular structure and tribological performance of amino acid ionic liquid lubricant[J].China Surface Engineering,2017,30(3):148-158(in Chinese).

    • [4] 孟凡善,李征,丁昊昊,等.油酸修饰纳米 BN/TiN 润滑添加剂的摩擦学性能研究[J].材料工程,2020,48(5):160-167.MENG F S,LI Z,DING H H,et al.Tribological properties of nano-BN/TiN lubricating additives modified with oleic acid [J].Journal of Materials Engineering,2020,48(5):160-167(in Chinese).

    • [5] 侯铄,杨勇,寇天鑫,等.润滑添加剂三乙醇胺硼酸酯的摩擦学特性研究 [J].润滑与密封,2020,45(2):75-80.HOU S,YANG Y,KOU T X,et al.Tribological properties of triethanolamine borate as lubrication[J].Lubrication Engineering,2020,45(2):75-80(in Chinese).

    • [6] 黄玉萍,黄国威,王玉荣,等.油溶性离子液体作为润滑油添加剂的摩擦学性能研究[J].材料保护,2017,50(4):43-47.HUANG Y P,HUANG G W,WANG Y R,et al.Tribological performance of oil-soluble ionic liquids as additives in lubricant oil[J].Materials Protection,2017,50(4):43-47(in Chinese).

    • [7] 李金龙,周峰,李春生,等.离子液体作为聚乙二醇(PEG)添加剂的摩擦学性能[J].摩擦学学报,2011,31(1):36-39.LI J L,ZHOU F,LI C S,et al.Tribological properties of ionic liquid as additives in polyethylene glycol[J].Tribology,2011,31(1):36-39(in Chinese).

    • [8] 于强亮,王将兵,范丰奇,等.N/P 无卤素离子液体润滑剂的链长与摩擦学性能的关系[J].摩擦学学报,2020,40(5):673-679.YU Q L,WANG J B,FAN F Q,et al.The relationship between the chain length and tribological properties of N/P halogen-free ionic liquid lubricants [J].Tribology,2020,40(5):673-679(in Chinese).

    • [9] 屈孟男,马雪瑞,何金梅,等.功能化苯并三氮唑离子液体作为润滑油添加剂的摩擦学性能研究[J].摩擦学学报,2017,37(2):199-205..QU M N,MA X R,HE J M,et al.Tribological properties of functionalized benzotriazolium ionic liquid as lubricant additive[J].Tribology,2017,37(2):199-205(in Chinese).

    • [10] YU Q,ZHANG C,DONG Rui,et al.Novel N,P-containing oil-soluble ionic liquids with excellent tribological and anti-corrosion performance [J].Tribology International,2019,132:118-129.

    • [11] BAMHILL W C,QU J,LUO H,et al.Phosphonium-organophosphate ionic liquids as lubricant additives:effects of cation structure on physicochemical and tribological characteristics [J].ACS Applied Materials & Interfaces,2014,6(24):22585-22593.

    • [12] QU J,BANSAL D G,YU B,et al.Anti-wear performance and mechanism of an oil-miscible ionic liquid as a lubricant additive[J].ACS Applied Materials & Interfaces,2012,4(2):997-1002.

    • [13] HUANG G,YU Q,MA Z,et al.Oil-soluble ionic liquids as antiwear and extreme pressure additives in poly-α-olefin for steel/steel contacts[J].Friction,2017,7(1):18-31.

    • [14] JIANG D,HU L,FENG D.Crown-type ionic liquids as lubricants for steel-on-steel system [J].Tribology Letters,2010,41(2):417-424.

    • [15] WANG Y,YU Q,CAI M,et al.Halide-free PN ionic liquids surfactants as additives for enhancing tribological performance of water-based liquid[J].Tribology International,2018,128:190-196.

    • [16] WANG Y,YU Q,MA Z,et al.Significant enhancement of anti-friction capability of cationic surfactant by phosphonate functionality as additive in water[J].Tribology International,2017,112:86-93.

    • [17] WANG Y,YU Q,CAI M,et al.Synergy of lithium salt and non-ionic surfactant for significantly improved tribological properties of water-based fluids[J].Tribology International,2017,113:58-64.

    • [18] BAI Y,YU Q,ZHANG J,et al.Soft-nanocomposite lubricants of supramolecular gel with carbon nanotubes[J].Journal of Materials Chemistry A,2019,7(13):7654-7663.

    • [19] YU Q,WU Y,LI D,et al.Supramolecular ionogel lubricants with imidazolium-based ionic liquids bearing the urea group as gelator [J].Journal of Colloid and Interface Science,2017,487:130-140.

    • [20] YU Q,HUANG G,CAI M,et al.In situ zwitterionic supramolecular gel lubricants for significantly improved tribological properties[J].Tribology International,2016,95:55-65.

    • [21] GUSAIN R,GUPTA P,SARAN U S,et al.Halogen-free bis(imidazolium)/bis(ammonium)-di [ bis(salicylato)borate] ionic liquids as energy-efficient and environmentally friendly lubricant additives[J].ACS Applied Materials Interfaces,2014,6(17):15318-15328.

  • 手机扫一扫看