en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

郑晓华(1971—),男(汉),副教授,博士;研究方向:材料表面工程、电接触材料;E-mail:zhengxh@zjut.edu.cn

中图分类号:TG174.44

文献标识码:A

文章编号:1007-9289(2020)06-0068-09

DOI:10.11933/j.issn.1007-9289.20201013001

参考文献 1
VETTER J.60 years of DLC coatings:Historical highlights and technical review of cathodic arc processes to synthesize various DLC types,and their evolution for industrial applications [J].Surface and Coatings Technology,2014,257:213-240.
参考文献 2
ROBERTSON J.Diamond-like amorphous carbon [J].Materials Science and Engineering:R:Reports,2002,37(4-6):129-281.
参考文献 3
CUI M J,REN S M,FAN X Q,et al.Influence of modulation ratio on the tribological and electrochemical behaviors of multilayer DLC coatings [J].Journal of Mechanical Engineering(China),2018,54(6):25-31.
参考文献 4
ONODERA S,FUJII S,MOLIGUCHI H,et al.Antibacterial property of F doped DLC film with plasma treatment [J].Diamond and Related Materials,2020,107:107835-107842.
参考文献 5
CINALI M B,COSKUN O D.Improved infrared emissivity of diamond-like carbon sandwich structure with titanium nitride metallic interlayer [J].Solar Energy,2020,204:644-653.
参考文献 6
ZHOU Y F,LI L L,SHAO W,et al.Mechanical and tribological behaviors of Ti-DLC films deposited on 304 stainless steel:Exploration with Ti doping from micro to macro [J].Diamond and Related Materials,2020,107:107870-107877.
参考文献 7
TRIROJ N,SAENESAK R,PORNTHEERAPHAT S,et al.Diamond-like carbon thin film electrodes for microfluidic bioelectrochemical sensing platforms [J].Analytical Chemistry,2020,92(5):3650-3657.
参考文献 8
AWAJA F,WONG T T,PUTZER D,et al.Molecular descriptions of functionalised multi layered diamond like/amorphous carbon coatings [J].Materials Today Communications,2019,19:433-440.
参考文献 9
LUX H,EDLING M,LUCCI M,et al.The role of substrate temperature and magnetic filtering for DLC by cathodic arc evaporation [J].Coatings,2019,9(5):345-360.
参考文献 10
SALVARO D B,GIACOMELLI R O,BINDER R,et al.Assessment of a multifunctional tribological coating(nitride + DLC)deposited on grey cast iron in a mixed lubrication regime [J].Wear,2017,376-377:803-812.
参考文献 11
REN Z C,QIN H F,DONG Y L,et al.A boron-doped diamond like carbon coating with high hardness and low friction coefficient [J].Wear,2019,436-437:203031-203039.
参考文献 12
VITU T,ESCUDEIRO A,POLAR T,et al.Sliding properties of Zr-DLC coatings:The effect of tribolayer formation [J].Surface and Coatings Technology,2014,258:734-745.
参考文献 13
ZHAO Z Y,YU X,ZHANG Z Q,et al.Attempting Agdoped diamond-like carbon film to improve seal performance of hydraulic servo-actuator [J].Materials,2020,13(11):2618-2632.
参考文献 14
YU W J,WANG J J,HUANG W J,et al.Improving high temperature tribological performances of Si doped diamondlike carbon by using W interlayer [J].Tribology International,2020,146:106241-106247.
参考文献 15
饶倩,张腾飞,李雪源,等.SiC/DLC 过渡层对类金刚石薄膜力学性能的影响[J].材料保护,2014,47(S1):118-121.RAO Q,ZHANG T F,LI X Y,et al.Influence of SiC/DLC interlayer on the mechanical properties of DLC films[J].Materials Protection,2014,47(S1):118-121(in Chinese).
参考文献 16
CAO H S,Qi F G,OUYANG X P,et al.Effect of Ti transition layer thickness on the structure,mechanical and adhesion properties of Ti-DLC coatings on aluminum alloys [J].Materials(Basel),2018,11(9):1742-1755.
参考文献 17
周永,孔翠翠,李晓伟,等.Ti/Al 过渡层对共掺杂类金刚石薄膜性能的影响[J].表面技术,2019,48(1):268-275.ZHOU Y,KONG C C,LI X W,et al.Effect of Ti/Al transition layer on properties of co-doped diamond-like carbon films [J].Surface Technology,2019,48(1):268-275(in Chinese).
参考文献 18
YU G M,GONG Z B,JIANG B Z,et al.Superlubricity for hydrogenated diamond like carbon induced by thin MoS2 and DLC layer in moist air [J].Diamond and Related Materials,2020,102:107668-107676.
参考文献 19
LU Y M,HUANG G J,GUO Y L,et al.Diamond-like carbon film with gradient germanium-doped buffer layer by pulsed laser deposition [J].Surface and Coatings Technology,2018,337:290-295.
参考文献 20
BAKOGLIDIS K D,NEDELCU I,IVANOV I G,et al.Rolling performance of carbon nitride-coated bearing components in different lubrication regimes [J].Tribology International,2017,114:141-151.
参考文献 21
LIU D G,ZHENG L,LIU J Q,et al.Structure and lubricated tribological behavior of silicon incorporated carbon nitride composite films deposited by magnetron sputtering[J].Diamond and Related Materials,2018,82:115-123.
参考文献 22
陈占领.直流偏压辅助脉冲激光沉积CNx薄膜的组织结构和性能[D].杭州:浙江工业大学,2013.CHEN Z L.Microstructure and properties of CNx films deposited by DC bias enhanced PLD technique [ D].Hangzhou:Zhejiang University of Technology,2013(in Chinese).
参考文献 23
LIU D G,MA H R,LI H,et al.Structure,phase transformation and corrosion resistance of CrAlN/CN composite multilayer films in NaCl aqueous solution [J].Ceramics International,2019,45(18):24446-24452.
参考文献 24
CHEN R,TU J P,LIU D G,et al.Structural and mechanical properties of TaN/a-CNx multilayer films [J].Surface and Coatings Technology,2012,206(8-9):2242-2248.
参考文献 25
杨芳儿,常新新,林玲玲,等.CNx 层厚度对 DLC/CNx 多层膜结构和力学性能的影响 [J].中国表面工程,2018,31(2):66-74.YANG F E,CHANG X X,LIN L L,et al.Effects of single layer thickness of CNx on microstructure and mechanical properties of DLC/CNx multilayer films[J].China Surface Engineering,2018,31(2):66-74(in Chinese).
参考文献 26
杨芳儿,龚润泽,王贡启,等.DLC 层厚度对 CNx/DLC 多层膜结构及摩擦学性能的影响 [J].硅酸盐学报,2019,47(1):62-71.YANG F E,GONG R Z,WANG G Q,et al.Effects of diamond-like carbon(DLC)layer thickness on microstructure and tribological properties of magnetron sputtered CNx/DLC multilayer films[J].Journal of the Chinese Ceramic Society,2019,47(1):62-71(in Chinese).
参考文献 27
HELLGREN N,HASSCH R T,SCHIMIDT S,et al.Interpretation of X-ray photoelectron spectra of carbon-nitride thin films:New insights from in situ XPS [J].Carbon,2016,108:242-252.
参考文献 28
ZHENG W T,GUO J H,SAKAMOTO Y,et al.Chemical bonding in carbon nitride films studied by X-ray spectroscopies [J].Diamond and Related Materials,2001,10(9):1897-1900.
参考文献 29
SADEK A Z,KRACICA M,MOAFI A,et al.The microstructure and properties of energetically deposited carbon nitride films [J].Diamond and Related Materials,2014,45:58-63.
参考文献 30
CASIRAGHI C,PIAZZA F,FERRARI A C,et al.Bonding in hydrogenated diamond-like carbon by Raman spectroscopy [J].Diamond and Related Materials,2005,14(3-7),1098-1102.
参考文献 31
PETROV P,DIMIREOV D B,PAPADIMITRIOU D,et al.Raman and X-ray photoelectron spectroscopy study of carbon nitride thin films [J].Applied Surface Science,1999,151(3):233-238.
参考文献 32
LI A,LI X,WANG Y,et al.Investigation of mechanical and tribological properties of super-thick DLC films with different modulation ratios prepared by PECVD [J].Materials Research Express,2019,6(8):86433-86446.
参考文献 33
SHIN J K,LEE C S,LEE K R,et al.Effect of residual stress on the Raman-spectrum analysis of tetrahedral amorphous carbon films[J].Applied Physics Letters,2001,78(5):631-633.
参考文献 34
FERRARI A C,ROBERTSON J.Interpretation of Raman spectra of disordered and amorphous carbon [J].Physical Review B,2000,61(20):14095-14107.
参考文献 35
WANG X C,LI Z Q,WU P,et al.Structural and mechanical properties of facing-target sputtered amorphous CNx films [J].Diamond & Related Material,2006,15(10):1732-1737.
参考文献 36
SCHARF T W,SINGER I L.Role of the transfer film on the friction and wear of metal carbide reinforced amorphous carbon coatings during run-in [J].Tribology Letter,2009,36(1):43-53.
参考文献 37
YANG F E,LU Y,Zhang R,et al.Microstructure and tribological properties of WSx/a-C multilayer films with various layer thickness ratios in different environments [J].Surface & Coatings Technology,2017,309(1):187-194.
参考文献 38
周飞,王谦之,付永强,等.纳米复合薄膜水润滑摩擦学性能的研究进展[J].表面技术,2020,49(6):34-44.ZHOU F,WANG Q Z,FU Y Q,et al.Progress in tribological properties of nano-composite films in water lubrication [J].Surface Technology,2020,49(6):34-44(in Chinese).
目录contents

    摘要

    类金刚石碳膜通常内应力大、结合力低,而多层膜结构可提高结合力。 采用磁控溅射技术在 Si 基体上沉积不同 CNx 层厚度的 GLC/ 成分梯度 CNx 纳米多层膜。 通过扫描电子显微镜(SEM)、X 射线衍射仪(XRD)、X 射线光电子能谱(XPS)、Raman 光谱仪、球盘式摩擦仪、纳米压痕仪等对多层膜的表面形貌、微观结构、力学以及摩擦性能进行分析。 结果表明:多层膜表面平整光滑,CNx 层厚度为 50 nm 的多层膜有明显的层状结构。 多层膜中存在石墨相而 CNx 以微晶或非晶存在。 薄膜的 sp 3 键含量、结合力、硬度等均随 CNx 层厚度的增加先增加后减小。 CNx 层厚度对多层膜的大气环境摩擦因数影响很小,但显著降低其真空环境摩擦因数。 多层膜的硬度为( 15 ~ 17. 6) GPa,大气中的磨损率为 (1. 03~ 2. 33)×10 -16 m 3N -1m -1 ,真空中为(2. 06~ 3. 34)×10 -16 m 3N -1m -1 。 CNx 层厚度为 20 nm 的多层膜综合性能最佳。

    Abstract

    Diamond-like-carbon film usually presents high internal stress and poor adhesion, whereas the multilayer architecture helps to improve its adhesion. Graphite-like-carbon (GLC) / composition-gradient CNx nano-multilayer films with different thicknesses of CNx single layer were prepared on silicon substrates by magnetron sputtering technique. The surface morphologies, microstructure, mechanical properties and tribological properties of the films were analyzed by SEM, XRD, XPS, Raman spectroscopy, ball-on-disk tribotester and nano-indentation tester, respectively. As the result, the surface of the multilayer film is smooth and the multilayer film with CNx single layer thickness of 50 nm displays an obviously layered structure. Graphitic phase exists in multilayer film while the CNx layers are microcrystalline or amorphous. The content of sp 3 hybrid bonds, the adhesion and hardness of the film firstly increase and then decrease with the increase of CNx single layer thickness. The thickness of CNx single layer has little effect on the atmospheric friction coefficient of multilayer film, but it significantly reduces the friction coefficient in vacuum environment. The hardness of the multilayer film is (15 ~ 17. 6) GPa, and the wear rate is (1. 03 ~ 2. 33) ×10 -16 m 3N -1m -1 in air and (2. 06~ 3. 34) ×10 -16 m 3N -1m -1 in vacuum. The multilayer film with CNx single layer thickness of 20 nm shows the best comprehensive performance.

    关键词

    多层膜梯度CNxGLC磁控溅射

  • 0 引言

  • 类金刚石碳(Diamond-like-carbon, DLC) 薄膜具有高耐磨、低摩擦因数、耐腐蚀、化学性质稳定等性能优点[1-2],因此有望在机械、光学、电气电子、生物医药等工业领域提供广泛的应用[3-5]。 DLC薄膜的制备方法多样,主要有磁控溅射、等离子体辅助化学气相沉积、离子注入、阴极过滤弧等[6-9]。但是,这些方法所制备的DLC薄膜残余应力高、基体结合力差,限制了DLC的实际应用。

  • 目前,改善DLC膜与基体结合性能的途径主要有掺杂元素法、引入中间层法和构建多层膜体系等。对DLC薄膜掺杂金属或非金属元素,如N、B、Zr、Ag、Si等,可以有效改善薄膜的内应力[ 10-14];在基体和DLC膜间形成梯度界面层,能够提高结合力[ 15-17]。但是以上方法往往以损害薄膜的硬度和摩擦学性能为代价。构建多层膜体系的方法具有显著优点,不仅可以保持薄膜的高硬度、高模量,还可以降低残余应力,提高结合力。 YU等[ 18] 使用磁控溅射方法沉积了MoS2/DLC多层膜, 相比于MoS2 或DLC单层膜,摩擦试验证明只有MoS2/DLC多层膜能在潮湿空气中实现超润滑的效果。 LU等[ 19] 分别在Ge衬底上制备了具有Ge缓冲层和梯度Ge掺杂层的多层DLC薄膜,与之前制备的纯DLC薄膜相比,多层DLC薄膜的临界载荷增加了50%~100%,同时保证了较好的硬度。

  • 正是由于构建软硬交替的纳米多层膜体系有助于改善薄膜内应力,同时保证高硬度、高模量等优点,加之无定型氮化碳( a-CNx) 表现出的低摩擦因数、高硬度( 12~35GPa)、良好的耐磨性和化学惰性[ 20-23] 等特点, 使得CNx薄膜配合其他薄膜材料构建多层膜的设计能够发挥多层膜结构的优势和CNx薄膜的巨大潜力。 CHEN等[ 24] 设计了不同a-CNx厚度的TaN/a-CNx多层膜,试验证明引入a-CNx可以提高多层膜的摩擦学性能。杨芳儿等[ 25-26] 等采用磁控溅射法将质软的CNx膜引入DLC薄膜制备DLC/CNx多层膜,结果发现CNx薄膜的周期性插入显著降低了DLC薄膜的内应力,同时,纳米多层膜的硬度和综合摩擦学性能得到保障,甚至优于DLC薄膜。然而,因为DLC/CNx多层膜的相界面处存在成分突变,仍易产生明显的应力,致使层间结合力的进一步提升变得困难。

  • 考虑到磁控溅射法制备C膜和CNx膜的便捷性,文中设计了一种新型结构C/CNx多层膜, 也即多层周期由类石墨碳膜(Graphite-Like-Carbon, GLC)和成分梯度CNx膜组成,CNx膜的氮含量从0逐渐增大至预定值(20.7%),这种结构可使多层膜的相界面数量减半。通过研究不同CNx层厚度的GLC/成分梯度CNx多层膜的微观结构、力学性能和摩擦学性能,探索成分梯度设计对多层膜体系的影响,为提升多层膜的界面结合提供新思路,也为成分梯度结构在多层膜体系中的应用建立基础,为服役在大气/真空中的零部件的延寿设计提供参考。

  • 1 材料与方法

  • 1.1 薄膜制备

  • 采用直流磁控溅射技术于单晶硅片表面沉积GLC/成分梯度CNx纳米多层膜。沉积前首先将硅基体在10%HF溶液中浸泡20min,再分别用丙酮和酒精超声波清洗20min,吹干后固定于镀膜机( JGP-450) 腔体内样品台上。将靶基距设置为70mm,真空室预抽气压至2×10-3 Pa,然后通入Ar气(流量30mL/min)使真空室内气压保持在1.2Pa。调节温度为200℃,负偏压为-100V,靶功率为160W。溅射纯度为99.99%的石墨靶沉积GLC膜层,然后通入N2 在混合气氛中沉积CNx膜层,N2 流量从0线性过渡到5mL/min,CNx膜层制备结束后立即关闭N2流量,如此实现GLC/成分梯度CNx纳米多层膜一个周期的制备。每个周期保持GLC膜层的厚度不变(δGLC=50nm),CNx层厚度变化( δCN x=10, 20, 30, 40, 50nm),膜层厚度通过各自的沉积速率进行控制。具体沉积参数见表1。

  • 1.2 表征方法

  • 通过对薄膜进行X射线衍射(Thermo X′Pert Pro) 检测薄膜的物相组成, Cu靶, 扫描速度0.033°/s, 扫描范围15°~85°。用HITACHIS4800型场发射扫描电镜对多层膜的表面及横截面形貌进行观察,并用电镜自带能谱仪分析元素及含量。多层膜与基底间的结合力用WS-2005型涂层附着力划痕仪测定,加载速率100N/min, 划痕速率4mm/min,划痕长度为4mm,以首次出现明显的声发射信号所对应的载荷为薄膜的临界载荷,取3次测量结果的平均值作为薄膜的结合力。薄膜硬度及弹性模量用TI-950型纳米压痕仪及连续刚度法测定,在薄膜的不同区域压9~10个点,压入深度为50~60nm,统计结果并取平均值。用WTM-1E球盘式摩擦试验机测试薄膜在大气(相对湿度≈ 45%)和真空环境下的摩擦学性能, 磨球为Si3N4 陶瓷球( HRC 62, ϕ3mm),在100g的法向载荷下测试10min,相对滑行速率为0.105m/s,计算整个测试周期内瞬时摩擦因数的平均值作为该薄膜的平均摩擦因数。薄膜的磨损率运用Dek-tak3型台阶仪进行磨损轮廓测量并计算得出。采用拉曼光谱仪(LabRAM HR UV)检测薄膜内部分子振动方式, 所用激光波长为632.81nm,采集范围为400~3000cm-1,采集时长90s。运用XPSPEAK41软件分析薄膜表面C、N等元素的X射线光电子能谱(KRATOS AXIS ULTRA(DLD),XPS),得到薄膜内部的结合键及键能,采谱前样品经过30s时长的Ar +刻蚀处理,以清除表面部分吸附物。

  • 表1 GLC/成分梯度CNx纳米多层膜沉积参数

  • Table1 Process parameters of GLC/composition-gradient CNx multilayer films

  • 2 结果与讨论

  • 2.1 薄膜的微观结构

  • 图1 为纳米多层膜的表面和截面SEM形貌。从表面形貌可以看出,多层膜溅射均匀,表面平整,质量好; 从截面形貌可见薄膜生长致密, δCN x=50nm的样品具有明显的分层结构,且分层主要位于CNx/GLC界面处(如图1右侧虚线所示),这可能是由于CNx层厚度较大时, CNx/GLC界面(也即多层周期之间的界面)两侧的成分突变导致多层膜容易在该处发生分层,加上相界面处原子混合区的相对宽度更小(相对于更大的调制周期),从而显得分层结构相对清晰。

  • 图1 GLC/成分梯度CNx纳米多层膜的表面及横截面SEM形貌

  • Fig.1 SEM images of surface and cross section of GLC/composition-gradient CNx multilayer films

  • 图2 为GLC/成分梯度CNx多层膜的XRD图谱。 5个样品在2θ≈44.4°左右均出现了一个尖锐的峰,经过PDF卡片对比,确定其为(002) 晶面的2H石墨。其他峰如32.9°、47.6°、54.5°、 56.2°,均为Si的衍射峰。 XRD图谱中没有出现CNx的峰,推测其为微晶或非晶。

  • 图2 GLC/成分梯度CNx纳米多层膜的XRD图谱

  • Fig.2 XRD patterns of GLC/composition-gradient CNx multilayer films

  • 图3 为GLC/成分梯度CNx多层膜的C 1s和N 1s电子结合能谱及拟合结果。将薄膜的C 1s谱拟合成4个峰,分别为284.7、285.5、286.7和288.7eV。查阅XPS数据库及文献资料[27-29],确定其位置的峰分别为sp 2C-C键、 sp 2C-N键、 sp 3C-N键及C-O键。将薄膜的N 1s结果拟合成3个峰,分别为398.7eV的N-sp 3C键、400.2eV的N-sp 2C键和402.5eV的N-O键。其中C-O键和N-O键的存在归因于样品在空气中的暴露或氧化。计算每个样品C 1s谱中sp 3C-N键峰的面积比,可知CNx层厚度为10、20、30、40和50nm时sp 3C-N杂化面积比分别为10.9%、16.4%、10.9%、 10.1%以及9.7%,说明sp 3C-N杂化键的含量随着CNx层厚度的增加先增加后减少。而在N 1s谱中N-sp 3C键的含量分别为46.2%、 51.9%、 50.2%、49.6%和48.8%,可见其变化趋势与C 1s谱一致。

  • 图4 为CNx层厚度为10、20、30和40nm的GLC/成分梯度CNx多层膜的Raman光谱。一般地,碳基薄膜在800~2000cm-1 范围内有两个峰, 分别是D峰(~1350cm-1) 和G峰(~1560cm-1) [30-32]。其中G峰是由环和链中所有sp 2 原子对的键的延伸和振动产生,D峰是由于缺陷和无序诱导产生。经过拟合处理,表2给出了试验样品的峰位置、强度比ID/IG以及半高宽,可见,CNx层厚度为20nm时,多层膜的D峰和G峰的波数最小。

  • 图3 GLC/成分梯度CNx纳米多层膜的C1s和N1s XPS拟合结果

  • Fig.3 Fitting results of XPS spectra( C1s, N1s) of GLC/composition-gradient CNx multilayer films

  • 图4 GLC/成分梯度CNx纳米多层膜的Raman图谱

  • Fig.4 Raman spectra of GLC/composition-gradient CNx multilayer films

  • 一般说来,D峰与G峰往波数增加的方向移动,即“蓝移”,可归因于多层膜内压应力的变化,且“蓝移” 幅度越大,压应力越大[26, 33]。对比表中数据可知,随着CNx层厚度的增大,“蓝移”幅度先减后增,也即多层膜中的压应力先降低后增大。 ID/IG 比值定性反应了sp 3 杂化的含量[34]。表2中结果显示:随着CNx层厚度的增加,ID/IG 比值先减小后增大,说明sp 2 杂化含量先减少后增大,换言之sp 3 杂化先增后减;与此同时,CNx层厚度的增加,使得薄膜中碳团簇的尺寸增大。而半高宽的改变反映了薄膜内各种键有序性的变化。 D峰半高宽的减小表明环状sp 2C=C键的键长无序性和键角无序性变弱,即键有序度的增加[26]。而G峰的半高宽减小表明薄膜中的石墨成分有序化程度提高。在试验中,随着CNx层厚度增加,D峰的半高宽先减后增,G峰的半高宽逐渐减小。当CNx层厚度为20nm时,两峰半高宽的差值达到最小,价键畸形程度降低。 CNx层厚度为30nm和40nm的样品D峰半高宽逐渐增大,G峰半高宽减小,两峰半高宽差值变大,表明薄膜的有序化程度降低[35]

  • 表2 GLC/成分梯度CNx 纳米多层膜的Raman分析结果

  • Table2 Fitting results of Raman spectra of GLC/composition-gradient CNx multilayer films

  • 2.2 薄膜的力学性能

  • 图5 为GLC/成分梯度CNx纳米多层膜的划痕测试结果,所得薄膜的结合力如图6( a)所示。可见,随着CNx层厚度的增加,GLC/成分梯度CNx多层膜的结合力呈先增大后减小的趋势。其中,δCN x=20nm时达到41.2N,明显高于其他多层膜。这主要是因为多层膜的结合力与薄膜内部的残余应力相关,较高的残余应力会大大降低多层膜的结合强度。此外,以软质层(GLC层) 与硬质层(梯度CNx层)周期性交替沉积的多层膜,由于软质层能通过适量的变形缓解硬质层中的应力,从而降低层间界面应力集中的峰值应力,有效阻止外力作用下微观裂纹的扩展;且恰当厚度CNx层的存在,使GLC层和CNx层有更好的力学相容性,并且能更好地过渡到下一周期的开始,层间剥离的趋势大大减小。

  • 图5 GLC/成分梯度CNx纳米多层膜的划痕测试结果

  • Fig.5 Scratching test results of GLC/composition-gradient CNx multilayer films

  • 图6 GLC/成分梯度CNx纳米多层膜的结合力、弹性模量和硬度

  • Fig.6 Adhesion, elastic modulus and hardness of GLC/composition-gradient CNx multilayer films

  • 图6(b)为CNx层厚度变化对薄膜的硬度与弹性模量的影响。从图中可见随着CNx层厚度的增加,多层膜的硬度先增大后减小,变化幅度较小,介于15~17.6GPa。 δCN x =20nm时硬度最大(17.6GPa),这与前文XPS和Raman的结果相呼应,δCN x=20nm样品中sp 3 键含量最高,因此有最大的硬度。 N的掺入导致了C=N键的形成,这在一定程度上阻碍sp 3C-N键的形成,降低薄膜硬度。 CNx层厚度对弹性模量的影响与硬度相似,变化幅度介于155.8~176.3GPa,其中 δCN x=20nm样品最大(176.3GPa)。

  • 2.3 薄膜的摩擦学性能

  • 图7 所示为多层膜在大气和真空环境中磨损测试后的磨痕形貌照片。可见,δCN x=10nm、 20nm的多层膜在大气和真空中的磨痕存在细划痕,δCN x =30nm的多层膜则划痕不明显,而δCN x=50nm的多层膜磨痕边缘极不规则,膜层破裂脱落的可能性大。对图7中白色方框位置进行EDS成分分析,结果见表3。对比可知 δCN x=10、 20和30nm的多层膜样品经过陶瓷球的摩擦有所磨损,但没有完全磨穿,可见这些多层膜的耐磨性优异,而 δCN x=50nm的多层膜则已完全磨穿。进一步的磨屑成分EDS分析结果表明,大气环境下磨屑的化学组成以Si、O、C元素为主,而真空环境下以C、Si元素为主。这说明,大气环境下的磨屑主要来自于陶瓷球的磨损,而真空环境下的磨屑属于陶瓷球和多层膜共同磨损后的产物。

  • 图8 为大气和真空环境下多层膜的摩擦因数曲线,δCN x=10、20、30和40nm的多层膜样品在大气和真空下的摩擦曲线波动都较为平稳,说明陶瓷球并未接触硅片基底,多层膜并未破损, 耐磨性较好;而 δCN x =50nm样品的摩擦曲线波动相对剧烈,这是由于后期陶瓷球直接穿破了薄膜,接触了硅片基底,从侧面说明该样品的耐磨性较差。

  • 图7 薄膜在大气(a-d)和真空环境下(e-h)的磨痕SEM形貌图

  • Fig.7 Surface morphologies of films after wear tests in air(a-d) and in vacuum(e-h)

  • 表3 大气和真空环境下磨痕的C、N、O、Si原子数分数

  • Table3 C, N, O, Si atomic fraction of wear scars after friction tests in air and in vacuum

  • 图8 薄膜在大气和真空环境下的摩擦因数曲线

  • Fig.8 Friction coefficient curves of films in air and in vacuum

  • 图9(a)为薄膜在大气和真空环境下的平均摩擦因数。可见,随着CNx层厚度增大,大气中的平均摩擦因数呈单调缓慢下降趋势( δCN x=50nm例外),而真空中的平均摩擦因数则先增大后明显降低,并且 δCN x=10、20、30和40nm多层膜样品在大气中的摩擦因数要低于真空中的摩擦因数。一般地,摩擦副接触区表面均匀致密的转移膜可以有效阻挡陶瓷球和薄膜之间的直接接触,从而减少摩擦和磨损[36]。由于真空环境中非晶碳膜的摩擦因数(可达0.5) 显著高于大气环境(0.05~0.15) [37],而真空环境中非晶CNx薄膜的摩擦因数(0.06~0.22) 略低于大气环境(0.12~0.25) [25],因此,随着CNx层厚度增大,也即CNx膜层的体积分数增加,多层膜在真空环境中的摩擦学特性逐渐向非晶CNx薄膜靠拢。这容易理解, 因为随着CNx层厚度增大,在相同磨损深度(比如跨越几个调制周期)的情况下,磨球与CNx层的接触面积增大,因而CNx层对多层膜的摩擦因数和磨损率的影响增加。由于真空环境中CNx层的摩擦因数小于GLC层, 因此随着 δCN x 增大,多层膜在真空环境中的摩擦因数呈现下降趋势。另外,因为真空环境中可供吸附的气体量很少,导致磨球表面的转移膜与多层膜之间几乎不存在气体的润滑作用及界面阻隔作用,使得摩擦副接触面两侧的原子作用力增强,剪切阻力增大,因而多层膜在真空中的摩擦因数相对较高。在大气环境中,由于气体及水汽吸附在薄膜上,在摩擦副接触区表面形成转移层和润滑层[38],使得非晶碳膜表现出优异的减摩性能,因而此时多层膜的摩擦因数比真空环境中的要低。另外,随着CNx层厚度的增大,多层膜中sp 2C键含量的增加降低了薄膜的硬度,导致薄膜的剪切强度降低,对薄膜摩擦因数的降低有一定贡献。 δCN x=50nm多层膜的摩擦因数反常升高, 其主要原因是薄膜被磨穿后陶瓷球与硅片发生直接接触,摩擦因数升高。

  • 图9 薄膜在大气和真空环境下的平均摩擦因数和磨损率

  • Fig.9 Average friction coefficient and wear rate of films in different environments

  • 此外,与大气环境中相比,薄膜在真空环境中的瞬时摩擦因数都呈现逐渐升高趋势,推测其原因可能与CNx层在摩擦磨损过程中受挤压应力、摩擦热、剪切力等因素的共同作用下发生键断裂产生的氮原子散失有关。

  • 图9(b)为薄膜在大气和真空环境中的磨损率。多层膜在大气中的磨损率低于真空中, δCN x=10nm和 δCN x=20nm的样品尤其明显,可能与石墨相在大气中表现出更好的润滑性能相关。随着CNx层厚度的增加,多层膜的磨损率呈先减小后增加的趋势。磨损率的变化与纳米多层膜的结构密切相关,梯度CNx层的硬度、弹性模量比GLC层要高得多,但GLC层在大气中的减摩性能更好。薄膜硬度的提高和摩擦因数的降低,使 δCN x =20nm样品在大气中表现出最低磨损率。多层膜在真空中的磨损率高于大气环境,且随着CNx层厚度增大差距缩小,其主要原因是真空环境中GLC层摩擦因数高、所受剪切力大,磨损率比CNx层要高得多,且多层膜中GLC层的体积分数随着CNx层厚度增大而降低。

  • 3 结论

  • 多层膜中GLC层以2H-石墨的形式存在, 而CNx层以微晶或非晶形式存在。随着CNx层厚度的增加,多层膜中sp 3 键含量先增加后减少,结合力、硬度和弹性模量呈同等变化趋势, 而薄膜在大气、真空环境中的磨损率均先降低后升高。 CNx层厚度小于40nm时,多层膜在大气环境中的摩擦因数和磨损率均低于真空环境。 CNx层厚度为20nm时多层膜具有优异的力学性能, 其结合力最佳( 41.2N), 硬度为17.6GPa,大气中的摩擦因数为0.215,磨损率为1.03×10-16 m 3N-1m-1

  • 参考文献

    • [1] VETTER J.60 years of DLC coatings:Historical highlights and technical review of cathodic arc processes to synthesize various DLC types,and their evolution for industrial applications [J].Surface and Coatings Technology,2014,257:213-240.

    • [2] ROBERTSON J.Diamond-like amorphous carbon [J].Materials Science and Engineering:R:Reports,2002,37(4-6):129-281.

    • [3] CUI M J,REN S M,FAN X Q,et al.Influence of modulation ratio on the tribological and electrochemical behaviors of multilayer DLC coatings [J].Journal of Mechanical Engineering(China),2018,54(6):25-31.

    • [4] ONODERA S,FUJII S,MOLIGUCHI H,et al.Antibacterial property of F doped DLC film with plasma treatment [J].Diamond and Related Materials,2020,107:107835-107842.

    • [5] CINALI M B,COSKUN O D.Improved infrared emissivity of diamond-like carbon sandwich structure with titanium nitride metallic interlayer [J].Solar Energy,2020,204:644-653.

    • [6] ZHOU Y F,LI L L,SHAO W,et al.Mechanical and tribological behaviors of Ti-DLC films deposited on 304 stainless steel:Exploration with Ti doping from micro to macro [J].Diamond and Related Materials,2020,107:107870-107877.

    • [7] TRIROJ N,SAENESAK R,PORNTHEERAPHAT S,et al.Diamond-like carbon thin film electrodes for microfluidic bioelectrochemical sensing platforms [J].Analytical Chemistry,2020,92(5):3650-3657.

    • [8] AWAJA F,WONG T T,PUTZER D,et al.Molecular descriptions of functionalised multi layered diamond like/amorphous carbon coatings [J].Materials Today Communications,2019,19:433-440.

    • [9] LUX H,EDLING M,LUCCI M,et al.The role of substrate temperature and magnetic filtering for DLC by cathodic arc evaporation [J].Coatings,2019,9(5):345-360.

    • [10] SALVARO D B,GIACOMELLI R O,BINDER R,et al.Assessment of a multifunctional tribological coating(nitride + DLC)deposited on grey cast iron in a mixed lubrication regime [J].Wear,2017,376-377:803-812.

    • [11] REN Z C,QIN H F,DONG Y L,et al.A boron-doped diamond like carbon coating with high hardness and low friction coefficient [J].Wear,2019,436-437:203031-203039.

    • [12] VITU T,ESCUDEIRO A,POLAR T,et al.Sliding properties of Zr-DLC coatings:The effect of tribolayer formation [J].Surface and Coatings Technology,2014,258:734-745.

    • [13] ZHAO Z Y,YU X,ZHANG Z Q,et al.Attempting Agdoped diamond-like carbon film to improve seal performance of hydraulic servo-actuator [J].Materials,2020,13(11):2618-2632.

    • [14] YU W J,WANG J J,HUANG W J,et al.Improving high temperature tribological performances of Si doped diamondlike carbon by using W interlayer [J].Tribology International,2020,146:106241-106247.

    • [15] 饶倩,张腾飞,李雪源,等.SiC/DLC 过渡层对类金刚石薄膜力学性能的影响[J].材料保护,2014,47(S1):118-121.RAO Q,ZHANG T F,LI X Y,et al.Influence of SiC/DLC interlayer on the mechanical properties of DLC films[J].Materials Protection,2014,47(S1):118-121(in Chinese).

    • [16] CAO H S,Qi F G,OUYANG X P,et al.Effect of Ti transition layer thickness on the structure,mechanical and adhesion properties of Ti-DLC coatings on aluminum alloys [J].Materials(Basel),2018,11(9):1742-1755.

    • [17] 周永,孔翠翠,李晓伟,等.Ti/Al 过渡层对共掺杂类金刚石薄膜性能的影响[J].表面技术,2019,48(1):268-275.ZHOU Y,KONG C C,LI X W,et al.Effect of Ti/Al transition layer on properties of co-doped diamond-like carbon films [J].Surface Technology,2019,48(1):268-275(in Chinese).

    • [18] YU G M,GONG Z B,JIANG B Z,et al.Superlubricity for hydrogenated diamond like carbon induced by thin MoS2 and DLC layer in moist air [J].Diamond and Related Materials,2020,102:107668-107676.

    • [19] LU Y M,HUANG G J,GUO Y L,et al.Diamond-like carbon film with gradient germanium-doped buffer layer by pulsed laser deposition [J].Surface and Coatings Technology,2018,337:290-295.

    • [20] BAKOGLIDIS K D,NEDELCU I,IVANOV I G,et al.Rolling performance of carbon nitride-coated bearing components in different lubrication regimes [J].Tribology International,2017,114:141-151.

    • [21] LIU D G,ZHENG L,LIU J Q,et al.Structure and lubricated tribological behavior of silicon incorporated carbon nitride composite films deposited by magnetron sputtering[J].Diamond and Related Materials,2018,82:115-123.

    • [22] 陈占领.直流偏压辅助脉冲激光沉积CNx薄膜的组织结构和性能[D].杭州:浙江工业大学,2013.CHEN Z L.Microstructure and properties of CNx films deposited by DC bias enhanced PLD technique [ D].Hangzhou:Zhejiang University of Technology,2013(in Chinese).

    • [23] LIU D G,MA H R,LI H,et al.Structure,phase transformation and corrosion resistance of CrAlN/CN composite multilayer films in NaCl aqueous solution [J].Ceramics International,2019,45(18):24446-24452.

    • [24] CHEN R,TU J P,LIU D G,et al.Structural and mechanical properties of TaN/a-CNx multilayer films [J].Surface and Coatings Technology,2012,206(8-9):2242-2248.

    • [25] 杨芳儿,常新新,林玲玲,等.CNx 层厚度对 DLC/CNx 多层膜结构和力学性能的影响 [J].中国表面工程,2018,31(2):66-74.YANG F E,CHANG X X,LIN L L,et al.Effects of single layer thickness of CNx on microstructure and mechanical properties of DLC/CNx multilayer films[J].China Surface Engineering,2018,31(2):66-74(in Chinese).

    • [26] 杨芳儿,龚润泽,王贡启,等.DLC 层厚度对 CNx/DLC 多层膜结构及摩擦学性能的影响 [J].硅酸盐学报,2019,47(1):62-71.YANG F E,GONG R Z,WANG G Q,et al.Effects of diamond-like carbon(DLC)layer thickness on microstructure and tribological properties of magnetron sputtered CNx/DLC multilayer films[J].Journal of the Chinese Ceramic Society,2019,47(1):62-71(in Chinese).

    • [27] HELLGREN N,HASSCH R T,SCHIMIDT S,et al.Interpretation of X-ray photoelectron spectra of carbon-nitride thin films:New insights from in situ XPS [J].Carbon,2016,108:242-252.

    • [28] ZHENG W T,GUO J H,SAKAMOTO Y,et al.Chemical bonding in carbon nitride films studied by X-ray spectroscopies [J].Diamond and Related Materials,2001,10(9):1897-1900.

    • [29] SADEK A Z,KRACICA M,MOAFI A,et al.The microstructure and properties of energetically deposited carbon nitride films [J].Diamond and Related Materials,2014,45:58-63.

    • [30] CASIRAGHI C,PIAZZA F,FERRARI A C,et al.Bonding in hydrogenated diamond-like carbon by Raman spectroscopy [J].Diamond and Related Materials,2005,14(3-7),1098-1102.

    • [31] PETROV P,DIMIREOV D B,PAPADIMITRIOU D,et al.Raman and X-ray photoelectron spectroscopy study of carbon nitride thin films [J].Applied Surface Science,1999,151(3):233-238.

    • [32] LI A,LI X,WANG Y,et al.Investigation of mechanical and tribological properties of super-thick DLC films with different modulation ratios prepared by PECVD [J].Materials Research Express,2019,6(8):86433-86446.

    • [33] SHIN J K,LEE C S,LEE K R,et al.Effect of residual stress on the Raman-spectrum analysis of tetrahedral amorphous carbon films[J].Applied Physics Letters,2001,78(5):631-633.

    • [34] FERRARI A C,ROBERTSON J.Interpretation of Raman spectra of disordered and amorphous carbon [J].Physical Review B,2000,61(20):14095-14107.

    • [35] WANG X C,LI Z Q,WU P,et al.Structural and mechanical properties of facing-target sputtered amorphous CNx films [J].Diamond & Related Material,2006,15(10):1732-1737.

    • [36] SCHARF T W,SINGER I L.Role of the transfer film on the friction and wear of metal carbide reinforced amorphous carbon coatings during run-in [J].Tribology Letter,2009,36(1):43-53.

    • [37] YANG F E,LU Y,Zhang R,et al.Microstructure and tribological properties of WSx/a-C multilayer films with various layer thickness ratios in different environments [J].Surface & Coatings Technology,2017,309(1):187-194.

    • [38] 周飞,王谦之,付永强,等.纳米复合薄膜水润滑摩擦学性能的研究进展[J].表面技术,2020,49(6):34-44.ZHOU F,WANG Q Z,FU Y Q,et al.Progress in tribological properties of nano-composite films in water lubrication [J].Surface Technology,2020,49(6):34-44(in Chinese).

  • 参考文献

    • [1] VETTER J.60 years of DLC coatings:Historical highlights and technical review of cathodic arc processes to synthesize various DLC types,and their evolution for industrial applications [J].Surface and Coatings Technology,2014,257:213-240.

    • [2] ROBERTSON J.Diamond-like amorphous carbon [J].Materials Science and Engineering:R:Reports,2002,37(4-6):129-281.

    • [3] CUI M J,REN S M,FAN X Q,et al.Influence of modulation ratio on the tribological and electrochemical behaviors of multilayer DLC coatings [J].Journal of Mechanical Engineering(China),2018,54(6):25-31.

    • [4] ONODERA S,FUJII S,MOLIGUCHI H,et al.Antibacterial property of F doped DLC film with plasma treatment [J].Diamond and Related Materials,2020,107:107835-107842.

    • [5] CINALI M B,COSKUN O D.Improved infrared emissivity of diamond-like carbon sandwich structure with titanium nitride metallic interlayer [J].Solar Energy,2020,204:644-653.

    • [6] ZHOU Y F,LI L L,SHAO W,et al.Mechanical and tribological behaviors of Ti-DLC films deposited on 304 stainless steel:Exploration with Ti doping from micro to macro [J].Diamond and Related Materials,2020,107:107870-107877.

    • [7] TRIROJ N,SAENESAK R,PORNTHEERAPHAT S,et al.Diamond-like carbon thin film electrodes for microfluidic bioelectrochemical sensing platforms [J].Analytical Chemistry,2020,92(5):3650-3657.

    • [8] AWAJA F,WONG T T,PUTZER D,et al.Molecular descriptions of functionalised multi layered diamond like/amorphous carbon coatings [J].Materials Today Communications,2019,19:433-440.

    • [9] LUX H,EDLING M,LUCCI M,et al.The role of substrate temperature and magnetic filtering for DLC by cathodic arc evaporation [J].Coatings,2019,9(5):345-360.

    • [10] SALVARO D B,GIACOMELLI R O,BINDER R,et al.Assessment of a multifunctional tribological coating(nitride + DLC)deposited on grey cast iron in a mixed lubrication regime [J].Wear,2017,376-377:803-812.

    • [11] REN Z C,QIN H F,DONG Y L,et al.A boron-doped diamond like carbon coating with high hardness and low friction coefficient [J].Wear,2019,436-437:203031-203039.

    • [12] VITU T,ESCUDEIRO A,POLAR T,et al.Sliding properties of Zr-DLC coatings:The effect of tribolayer formation [J].Surface and Coatings Technology,2014,258:734-745.

    • [13] ZHAO Z Y,YU X,ZHANG Z Q,et al.Attempting Agdoped diamond-like carbon film to improve seal performance of hydraulic servo-actuator [J].Materials,2020,13(11):2618-2632.

    • [14] YU W J,WANG J J,HUANG W J,et al.Improving high temperature tribological performances of Si doped diamondlike carbon by using W interlayer [J].Tribology International,2020,146:106241-106247.

    • [15] 饶倩,张腾飞,李雪源,等.SiC/DLC 过渡层对类金刚石薄膜力学性能的影响[J].材料保护,2014,47(S1):118-121.RAO Q,ZHANG T F,LI X Y,et al.Influence of SiC/DLC interlayer on the mechanical properties of DLC films[J].Materials Protection,2014,47(S1):118-121(in Chinese).

    • [16] CAO H S,Qi F G,OUYANG X P,et al.Effect of Ti transition layer thickness on the structure,mechanical and adhesion properties of Ti-DLC coatings on aluminum alloys [J].Materials(Basel),2018,11(9):1742-1755.

    • [17] 周永,孔翠翠,李晓伟,等.Ti/Al 过渡层对共掺杂类金刚石薄膜性能的影响[J].表面技术,2019,48(1):268-275.ZHOU Y,KONG C C,LI X W,et al.Effect of Ti/Al transition layer on properties of co-doped diamond-like carbon films [J].Surface Technology,2019,48(1):268-275(in Chinese).

    • [18] YU G M,GONG Z B,JIANG B Z,et al.Superlubricity for hydrogenated diamond like carbon induced by thin MoS2 and DLC layer in moist air [J].Diamond and Related Materials,2020,102:107668-107676.

    • [19] LU Y M,HUANG G J,GUO Y L,et al.Diamond-like carbon film with gradient germanium-doped buffer layer by pulsed laser deposition [J].Surface and Coatings Technology,2018,337:290-295.

    • [20] BAKOGLIDIS K D,NEDELCU I,IVANOV I G,et al.Rolling performance of carbon nitride-coated bearing components in different lubrication regimes [J].Tribology International,2017,114:141-151.

    • [21] LIU D G,ZHENG L,LIU J Q,et al.Structure and lubricated tribological behavior of silicon incorporated carbon nitride composite films deposited by magnetron sputtering[J].Diamond and Related Materials,2018,82:115-123.

    • [22] 陈占领.直流偏压辅助脉冲激光沉积CNx薄膜的组织结构和性能[D].杭州:浙江工业大学,2013.CHEN Z L.Microstructure and properties of CNx films deposited by DC bias enhanced PLD technique [ D].Hangzhou:Zhejiang University of Technology,2013(in Chinese).

    • [23] LIU D G,MA H R,LI H,et al.Structure,phase transformation and corrosion resistance of CrAlN/CN composite multilayer films in NaCl aqueous solution [J].Ceramics International,2019,45(18):24446-24452.

    • [24] CHEN R,TU J P,LIU D G,et al.Structural and mechanical properties of TaN/a-CNx multilayer films [J].Surface and Coatings Technology,2012,206(8-9):2242-2248.

    • [25] 杨芳儿,常新新,林玲玲,等.CNx 层厚度对 DLC/CNx 多层膜结构和力学性能的影响 [J].中国表面工程,2018,31(2):66-74.YANG F E,CHANG X X,LIN L L,et al.Effects of single layer thickness of CNx on microstructure and mechanical properties of DLC/CNx multilayer films[J].China Surface Engineering,2018,31(2):66-74(in Chinese).

    • [26] 杨芳儿,龚润泽,王贡启,等.DLC 层厚度对 CNx/DLC 多层膜结构及摩擦学性能的影响 [J].硅酸盐学报,2019,47(1):62-71.YANG F E,GONG R Z,WANG G Q,et al.Effects of diamond-like carbon(DLC)layer thickness on microstructure and tribological properties of magnetron sputtered CNx/DLC multilayer films[J].Journal of the Chinese Ceramic Society,2019,47(1):62-71(in Chinese).

    • [27] HELLGREN N,HASSCH R T,SCHIMIDT S,et al.Interpretation of X-ray photoelectron spectra of carbon-nitride thin films:New insights from in situ XPS [J].Carbon,2016,108:242-252.

    • [28] ZHENG W T,GUO J H,SAKAMOTO Y,et al.Chemical bonding in carbon nitride films studied by X-ray spectroscopies [J].Diamond and Related Materials,2001,10(9):1897-1900.

    • [29] SADEK A Z,KRACICA M,MOAFI A,et al.The microstructure and properties of energetically deposited carbon nitride films [J].Diamond and Related Materials,2014,45:58-63.

    • [30] CASIRAGHI C,PIAZZA F,FERRARI A C,et al.Bonding in hydrogenated diamond-like carbon by Raman spectroscopy [J].Diamond and Related Materials,2005,14(3-7),1098-1102.

    • [31] PETROV P,DIMIREOV D B,PAPADIMITRIOU D,et al.Raman and X-ray photoelectron spectroscopy study of carbon nitride thin films [J].Applied Surface Science,1999,151(3):233-238.

    • [32] LI A,LI X,WANG Y,et al.Investigation of mechanical and tribological properties of super-thick DLC films with different modulation ratios prepared by PECVD [J].Materials Research Express,2019,6(8):86433-86446.

    • [33] SHIN J K,LEE C S,LEE K R,et al.Effect of residual stress on the Raman-spectrum analysis of tetrahedral amorphous carbon films[J].Applied Physics Letters,2001,78(5):631-633.

    • [34] FERRARI A C,ROBERTSON J.Interpretation of Raman spectra of disordered and amorphous carbon [J].Physical Review B,2000,61(20):14095-14107.

    • [35] WANG X C,LI Z Q,WU P,et al.Structural and mechanical properties of facing-target sputtered amorphous CNx films [J].Diamond & Related Material,2006,15(10):1732-1737.

    • [36] SCHARF T W,SINGER I L.Role of the transfer film on the friction and wear of metal carbide reinforced amorphous carbon coatings during run-in [J].Tribology Letter,2009,36(1):43-53.

    • [37] YANG F E,LU Y,Zhang R,et al.Microstructure and tribological properties of WSx/a-C multilayer films with various layer thickness ratios in different environments [J].Surface & Coatings Technology,2017,309(1):187-194.

    • [38] 周飞,王谦之,付永强,等.纳米复合薄膜水润滑摩擦学性能的研究进展[J].表面技术,2020,49(6):34-44.ZHOU F,WANG Q Z,FU Y Q,et al.Progress in tribological properties of nano-composite films in water lubrication [J].Surface Technology,2020,49(6):34-44(in Chinese).

  • 手机扫一扫看