en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

万熠(1977—),男(汉),教授,博士;研究方向:生物材料加工制造理论与技术;E-mail:wanyi@sdu.edu.cn

中图分类号:TG146;R318

文献标识码:A

文章编号:1007-9289(2020)06-0029-08

DOI:10.11933/j.issn.1007-9289.20201109001

参考文献 1
皇甫强,牛金龙.钛合金在医学领域的应用[J].稀有金属快报,2005,24(1):33-34.HUANG F Q,NIU J L.Application of titanium alloy in medical field[J].Rare Metals Letters,2005,24(1):33-34(in Chinese).
参考文献 2
张颖鑫,徐勇,曾志翔.钛合金表面织构化与构建生物活性涂层的研究进展[J].中国表面工程,2019,32(1):1-11.ZHANG Y X,XU Y,ZENG Z X.Research progress of texturing and biological activity coatings on titanium alloys [J].China Surface Engineering,2019,32(1):1-11(in Chinese).
参考文献 3
王方辉,张姗姗,舒静媛,等.纯钛种植体表面改性对骨结合的影响[J].中国组织工程研究,2014,18(52):8491-8497.WANG F H,ZHANG S S,SHU J Y,et al.Effects of surface modification of titanium implants on the osseointegration [J].Chinese Journal of Tissue Engineering Research,2014,18(52):8491-8497(in Chinese).
参考文献 4
陈西文,朱智敏.纯钛在口腔修复中的应用[J].中国实用口腔科杂志,2014,7(3):188-192.CHEN X W,ZHU Z M.The application of titanium in prosthodontics[J].Chinese Journal of Practical Stomatology,2014,7(3):188-192(in Chinese).
参考文献 5
MUSTAFA K,WROBLEWSKI J,HULTENBY K,et al.Effects of titanium surfaces blasted with TiO2 particles on the initial attachment of cells derived from human mandibular bone.A scanning electron microscopic and histomorphometric analysis[J].Clinical Oral Implants Research,2010,11(2):116-128.
参考文献 6
谭思民,王帅星,赵晴,等.水热时间对钛合金微弧氧化膜合成羟基磷灰石的影响[J].表面技术,2014(3):000020-24.TAN S M,WANG S X,ZHAO Q,et al.Effects of hydrothermal time on hydroxyapatite synthesis of microarc oxidized titanium[J].Surface Technology,2014,43(3):20-24(in Chinese).
参考文献 7
WANG T,WAN Y,LIU Z Q.Effects of superimposed micro/nano-structured titanium alloy surface on cellular behaviors in vitro[J].Advanced Engineering Materials,2016,18(7):1259-1266.
参考文献 8
王建平,李正佳,范晓红.激光打标系统及工艺参数的分析[J].光学与光电技术,2005(3):32-35.WANG J P,LI Z J,FAN X H.Laser marking system and analysis of its technical parameters[J].Optics & Optoelectronic Technology,2005(3):32-35(in Chinese).
参考文献 9
ZHOU L,DING X L,WANG J X,et al.The effects of hierarchical micro/nanosurfaces decorated with TiO2 nanotubes on the bioactivity of titanium implants in vitro and in vivo [J].International Journal of Nanomedicine,2015,10:6955-6973.
参考文献 10
WEBSTER T J.Biomimetic helical rosette nanotubes and nanocrystalline hydroxyapatite coatings on titanium for improving orthopedic implants[J].International Journal of Nanomedicine,2008,3(3):323.
参考文献 11
EKATERINA,GONGADZE,DORON,et al.Adhesion of osteoblasts to a nanorough titanium implant surface.[J].International Journal of Nanomedicine,2011.
参考文献 12
顾昕.二氧化钛纳米管材料成骨及抗菌实验研究[D].上海:第二军医大学,2013.GU X.Study on self-ordered nanotube titanium for osteogenesis and antibacterial applications [ D].Shanghai:Second Military Medical University,2013(in Chinese).
参考文献 13
HUANG Y,ZHANG X J,ZHANG H L,et al.Fabrication of silver and strontium-doped hydroxyapatite/TiO2 nanotube bilayer coatings for enhancing bactericidal effect and osteoinductivity[J].Ceramics International,2017.
参考文献 14
WANG Z,XIE C L,LUO F,et al.P25 nanoparticles decorated on titania nanotubes arrays as effective drug delivery system for ibuprofen [J].Applied Surface Science,2015,324(1):621-626.
参考文献 15
JIA HUIYING,KERR L L.Kinetics of drug release from drug carrier of polymer/TiO2 nanotubes composite-pH dependent study [J].Journal of Applied Polymer Science,2014.
参考文献 16
SCHNEIDER G B,PERINPANAYAGAM H,CLEGG M,et al.Implant surface roughness affects osteoblast gene expression.[J].Journal of Dental Research,2003,82(5):372.
参考文献 17
GITTENS R A,OLIVARES-NAVARRETE R,SCHWARTZ Z,et al.Implant osseointegration and the role of microroughness and nanostructures:Lessons for spine implants[J].Acta Biomaterialia,2014,10(8):3363-3371.
参考文献 18
YU W Q,QIU J,XU L,et al.Corrosion behaviors of TiO2 nanotube layers on titanium in Hank's solution[J].Biomedical Materials,2009,4(6):065012.
参考文献 19
DAMODARAN,VINOD,B,et al.Titania nanostructures:A biomedical perspective[J].RSC Advances,2015,5(47):37149-37171.
参考文献 20
AHUIR-TORRES J I,HERNÁNDEZ-LÓPEZ J M,ARENAS M A,et al.Synthesis of TiO2 nanopore arrays by pulsed laser treatment and anodic oxidation [J].Surface and Coatings Technology,2014,259:408-414.
参考文献 21
BAUER S,PARK J,MARK K V D,et al.Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes[J].Acta Biomaterialia,2008,4(5):1576-1582.
参考文献 22
JIA Z,XIU P,LI M,et al.Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings:Trap-killing of bacteria,surface-regulated osteoblast functions and host responses[J].Biomaterials,2016,75:203-222.
参考文献 23
ERIKSSON C,NYGREN H,OHLSON K.Implantation of hydrophilic and hydrophobic titanium discs in rat tibia:cellular reactions on the surfaces during the first 3 weeks in bone [J].Biomaterials,2004,25(19):4759-4766.
参考文献 24
KOKUBO T,TAKADAMA H.How useful is SBF in predicting in vivo bone bioactivity?[J].Biomaterials,2006,27(15):2907-2915.
参考文献 25
SONODA T,KATO M,KATOU K,et al.Surface structure of Ti-O films formed on pure titanium by anodic oxidation [J].Journal of Physics Conference,2007,61:1091-1096.
参考文献 26
KIM H M,KANEKO H,KAWASHITA M,et al.Mechanism of apatite formation on anodically oxidized titanium metal in simulated body fluid[J].Key Engineering Materials,2004,254/256:741-744.
参考文献 27
FERRARIS S,YAMAGUCHI S,BARBANI N,et al.Bioactive materials:In vitro investigation of different mechanisms of hydroxyapatite precipitation [J].Acta Biomaterialia,2019,102:468-480.
目录contents

    摘要

    钛本身为生物惰性材料,为了提高钛植入体的生物活性,制备出兼具微米级结构和纳米级结构的表面,发挥微纳米双级结构的协同效应。 采用纳秒激光刻蚀出微沟槽结构并在其表面进行阳极氧化,在钛表面制备了一种有序的微沟槽-TiO2 纳米管复合结构。 对各组不同表面结构的试件的表面形貌、粗糙度、亲水性、物相组成等进行表征。 应用生物矿化试验对不同组试件的生物活性进行评价。 与抛光表面相比,微纳米复合结构的表面粗糙度从 0. 281 μm 增加到 7. 297 μm,表面接触角从 73. 1°减小到 32. 1°,亲水性显著提高。 XRD 图谱显示,阳极氧化后经热处理的表面出现了锐钛矿(2θ= 26°)的特征峰,表明 TiO2 由无定型转变为锐钛矿型。 此外,与抛光表面和单一微/ 纳米结构表面相比,微纳组表面在模拟体液中浸泡 14 d 后沉积的羟基磷灰石层更致密。 采用激光刻蚀与阳极氧化制备的微纳复合结构可以显著提高钛表面的粗糙度和亲水性,且具有更加优异的生物活性。 此研究为在钛植入体表面构建规则的微纳米结构以改善生物活性提供了一种有效的方法。

    Abstract

    Titanium and its alloys are bioinert materials. The surface with micro-scale and nano-scale structures was prepared and the synergistic effect of the micro-nano structure was used to improve the biological activity of the titanium implant. An ordered micro-grooves and TiO2 nanotube composite structure was prepared on titanium by nanosecond laser etching and anodic oxidation. The surface morphology, roughness, hydrophilicity, and phase composition of Ti samples with different surface structures were characterized. Vitro mineralization experiments were used to evaluate the biological activity of samples with different groups. Results show that micro-grooves and TiO2 nanotubes are successfully constructed. Compared with polished surface, the surface roughness of the micro-nano composite structure increase from 0. 281 μm to 7. 297 μm, and the surface contact angle decrease from 73. 1° to 32. 1°, exhibiting a better hydrophilicity. XRD patterns show that the anatase characteristic peak appeares after anodization and heat treatment, indicating that TiO2 changed from amorphous to anatase. In addition, after being immersed in the simulated body fluid for 14 days, the hydroxyapatite layer deposited on the micro-nano structured surface is thicker and denser, compared with the polished surface and the single micro / nano structured surface. All results indicated that micro-nano structure prepared by laser etching and anodic oxidation can significantly improve the roughness and hydrophilicity of the titanium surface, and realized more excellent biological activity. This study provides an effective method for constructing regular micronano structures on the surface of titanium implants to improve biological activity.

  • 0 引言

  • 钛及其合金因其具有耐腐蚀性、良好的力学性能和较低的弹性模量,被广泛用作牙科置换材料、关节植入体等硬组织替代物[1-2]。然而在植入人体后,钛依然存在骨整合差,容易脱落等问题[3-4]。为了提高植入体的生物相容性,人们通过各种机械及物理化学方法在植入体表面制备出微米或纳米结构:Mustafa等[5]采用表面TiO2 颗粒喷砂的方法,获得了微米级的粗糙表面,有利于人体下颌骨细胞的粘附与增殖;谭思民等[6] 将钛合金试件微弧氧化后进行水热处理,获得了纳米线结构,且随着水热时间的延长在SBF浸泡后形成的HA含量增加;Wang等[7] 采用微细铣削和碱热处理相结合的方法,成功构建出交叉结构微沟槽与纳米棒的表面,细胞试验表明微纳双级结构对于细胞附着、增殖和分化具有显著的促进作用。

  • 然而,喷砂、碱热处理等方法加工效率低、且容易产生污染。因此,文中研究通过激光刻蚀在纯钛表面加工出平行的微米级沟槽。激光刻蚀是利用原子受激辐射出光子时产生的热效应熔化掉工件表面材料从而留下永久印记的工艺,与传统的机械、化学等加工方法相比具有精度高、污染小、使用灵活、可控性高等优点[8]。采用阳极氧化的方法在微沟槽内部及表面生成致密的TiO2 纳米管,据报道,TiO2 纳米管在促进成骨分化[9-11]、抗菌[12-13]、搭载药物[14-15] 等领域都展现出广阔的应用前景。采用扫描电子显微镜、激光共聚焦扫描显微镜、X射线衍射仪和接触角测量仪对不同组钛片的表面理化特性进行了表征。利用体外生物矿化试验对不同试件的生物活性进行了评价。

  • 1 材料和方法

  • 1.1 样品的预处理

  • 纯钛(宝鸡钛业有限公司,陕西)被加工成尺寸为10mm × 10mm × 2mm的试件,依次经过400、800、1200和2000号的水磨砂纸打磨,再用绒布抛光至表面无划痕。抛光后的试件依次放入丙酮、无水乙醇和去离子水中超声清洗15min,去除表面杂质,干燥后将钛片试件分成4组。其中, 1组为抛光组(记为Cp-Ti)。

  • 采用激光打标机(灯泵浦YAG-T80C,大族激光科技股份有限公司)对2组、4组试件进行微沟槽阵列加工, 激光波长1064nm, 光斑直径30 μm,光束质量 M 2<11,最大平均功率80W,激光束能量可以通过改变频率和电流进行连续调节。所设计的微沟槽阵列如图1所示,其中微沟槽宽度为100 μm, 相邻两沟槽中心间距为300 μm,深度为20 μm。

  • 图1 微沟槽阵列示意图

  • Fig.1 Schematic diagram of microgroove array

  • 经过参数优化,最终选用频率 Q=2kHz, 电流 I=16A的参数进行加工,将激光加工后的试件用去离子水超声清洗,然后进行酸蚀处理以去除激光加工过程中材料熔化飞溅沉积在表面的熔渣与杂物, 酸蚀液采用浓度为2.9mol/L的HCl和4.5mol/L的H2 SO4 的混合溶液,在80℃ 恒温下酸蚀10min,将试件取出后用去离子水冲洗、干燥后得到2组试件(记为M-Ti)。

  • 在含有2.0%(质量分数)去离子水和0.25%(质量分数)NH4F的乙二醇溶液中对3、4组试件进行阳极氧化,其试验装置如图2所示,钛片与铂片的间距为40mm,分别连接直流电源的正负极,将电压设定为15V,为使反应更加充分,使用磁力搅拌器匀速搅拌电解液,氧化时间为1h。反应结束后分别将两组试件取出,3组试件为N-Ti组,将4组试件置于马弗炉内450℃ 下保温2h,冷却后取出,得到MN-Ti组。

  • 图2 阳极氧化试验装置

  • Fig.2 Experimental device of anodic oxidation

  • 1.2 样品表面表征

  • 使用扫描电子显微镜( SEM, XSM-7610F, 日本)对试件表面形貌进行观察与表征,使用三维共聚焦激光显微镜( 3D-LSM, VK-X200K, Keyence, 日本)观察各组试件的表面三维形貌并测量面粗糙度Sa。试件表面的晶相变化由X射线衍射仪(DMAX-2500PC, 日本)进行检测。

  • 1.3 表面润湿性

  • 使用接触角测量仪( SL200KS, 美国), 将2 μL的蒸馏水滴在不同试件的表面以进行接触角的测量,根据测量结果评价各组试件表面的亲疏水性。

  • 1.4 生物活性检测

  • 采用模拟体液( SBF) 浸泡法考察不同组试件的体外生物矿化能力,将各组钛片正面朝上置于六孔板中,注入配制好的SBF溶液,放入37℃ 恒温箱中保存14d,取出后将各组试件用去离子水冲洗、晾干。采用扫描电子显微镜(SEM)对钛片表面羟基磷灰石形貌进行观察与表征,并使用EDS和XRD进行检测分析各组试件表面沉积物的元素种类和晶相组成。

  • 2 结果与讨论

  • 2.1 样品表面表征

  • 在不同倍数显微镜下观察的各组试件的表面形貌如图3所示。在低倍镜下,Cp-Ti组(图3(a1)) 和N-Ti组(图3(c1))呈现较平坦的表面。而MTi组(图3(b1)和MN-Ti组(图3(d1))的表面经过激光刻蚀和酸蚀后,呈现出规则排列的微沟槽阵列,槽宽约为100 μm。在高倍镜下,微米级的沟槽两侧呈现出酸蚀的痕迹(图3( b2)),MN-Ti组由于在激光加工的基础上进行了阳极氧化处理,表面形貌相比M-Ti组要平滑,呈现出纳米级的颗粒状起伏。采用更高的倍数对各试件表面进行纳米尺度的表征(图3(a3)(b3)(c3)(d3)),发现Cp-Ti组(图3(a3))和M-Ti组(图3( b3))表面较为光整,没有明显的纳米结构,而N-Ti组(图3(c3))和MN-Ti组(图3(d3))存在紧密排列的纳米管结构,管径约40nm,相邻管之间的间距较小。以上结果表明,通过激光刻蚀和阳极氧化相结合的方法,在Ti表面成功加工出微沟槽和纳米管的微纳双级结构。

  • 图4 是各组试件的表面三维形貌。与Cp-Ti组相比,M-Ti组和MN-Ti呈现出带有微沟槽和酸蚀痕迹的表面,表面粗糙度明显增加。在N-Ti组表面也观察到有微小颗粒状起伏(图4(c)),说明经阳极氧化处理后的N-Ti组与Cp-Ti组之间存在细微差异。以上结果与表面形貌SEM结果一致。

  • 粗糙度测量结果如图5所示。由于在抛光表面上进行了激光刻蚀处理, M-Ti组的Sa测量值相比Cp-Ti组从0.281 μm增加到6.560 μm。 MN-Ti组经过了阳极氧化处理,其Sa值比M-Ti组略有增加,为7.297 μm。此外,N-Ti组的Sa值相比Cp-Ti组有很大提高,为1.342 μm。粗糙度对于细胞粘附和增殖的作用已得到广泛研究。由于比表面积的增大,微纳结构表面更加有利于细胞粘附和骨组织生长[16-17]

  • 图6 所示为退火前后MN-Ti组钛片表面的X射线衍射图谱,图像显示经过阳极氧化并进行退火处理的试件表面呈现出锐钛矿相的特征峰(2θ=26°),而未经退火处理的表面只存在钛的特征峰。有研究表明[18-19],在纳米尺度下锐钛矿是稳定的,而且锐钛矿型纳米管能够增加钛的耐腐蚀性,有助于植入体的长期植入。

  • 2.2 表面润湿性

  • 图7 为2 μL水滴在不同组钛片表面上的图像,从图中可以看出,Cp-Ti组的接触角为73.1°, 呈现亲水性。 M-Ti组的润湿性有所降低,接触角为113°。分析原因是激光刻蚀使试件表面自由能下降[20],进而表现出疏水性。由于阳极氧化的作用,N-Ti组的亲水性相比Cp-Ti组有所增加, 表面接触角为62.5°,而具有微沟槽和纳米管的MN-Ti组亲水性最好,接触角为32.1°。这主要归因于TiO2 纳米管的毛细效应和表面产生的TiOH基团具有亲水性[21]。研究表明,植入体表面的润湿性对蛋白质在表面的粘附及细胞行为都有重要的作用,且亲水性表面有助于加快成骨速度[22-23]

  • 图3 各组试件表面结构SEM图

  • Fig.3 SEM images of surface structures of samples with different groups

  • 图4 不同组试件表面的三维形貌

  • Fig.4 Three-dimensional morphologies of samples with different groups

  • 图5 不同组试件表面的粗糙度平均值(Sa)(n=3)

  • Fig.5 Average surface roughness of samples with different groups(Sa)(n=3)

  • 图6 退火前后MN-Ti组钛片表面的XRD图谱

  • Fig.6 XRD patterns of Mn-Ti group before and after annealing

  • 图7 不同组试件表面的接触角

  • Fig.7 Surfaces contact angles of samples with different groups

  • 2.3 生物活性

  • 羟基磷灰石(HA)是人体骨骼和牙齿的主要组成部分,对于维持人体内的Ca、P平衡具有重要作用[24],其在体外的形成能力是衡量材料生物活性的重要指标。文中试验衡量各组钛片生物活性的特异性指标是HA在表面的成核与生长情况,诱导HA形成的数量越多、时间越短,证明表面具有更加良好的生物活性。

  • 图8 为各组试件在SBF中浸泡14d后沉积层的SEM形貌。 Cp-Ti组( 图8( a1)( a2)) 和M-Ti组(图8( b1)( b2)) 表面均未观察到明显沉积物,表明抛光组和微米结构组试件的生物活性较差。在N-Ti组的表面发现了较多的沉积物(图8(c1)(c2)),表明纳米结构的表面是诱导生物活性的主要因素。如图8( d1)( d2) 所示, MN-Ti组表面有大量沉积物生成,形成一层较厚的涂层,并完全覆盖了微纳米结构的表面,局部放大图像(图8( d2))显示了球形的羟基磷灰石颗粒,并且表面具有垂直分布的针状结构,与NTi组相比,在MN-Ti上形成的羟基磷灰石沉积量更大,颗粒尺寸也更大。

  • 使用EDS分析了MN-Ti表面沉积物的元素组成,结果如图9所示。除C、O和试件本身元素外,MN-Ti表面新形成的沉积物主要由Ca和P组成。此外,还获取了Cp-Ti组、N-Ti组和MN-Ti组Ti片在SBF中浸泡14d后表面沉积物的XRD图谱,如图10所示,26°和32°处的衍射峰可确认表面存在羟基磷灰石相。以上结果可以得出结论:由于激光刻蚀和阳极氧化的协同作用,微纳双级结构表面表现出最佳的生物活性。

  • 在阳极氧化过程中,随着纳米管的生成,钛表面在电化学作用下也形成了大量的Ti-OH基团[25]。试件在模拟体液浸泡过程中,Ti-OH基团与溶液中的OH-结合,形成Ti-O-,使得表面呈负电性,其反应方程式如下[26]

  • Ti-OH+OH-Ti-O-+H2O
    (1)
  • 在表面Ti-O- 的作用下,模拟体液中带正电荷的Ca2+离子吸附到材料表面,随后聚集的过量的Ca2+ 又会吸引溶液中带负电荷的HPO 2- 4, 并与之结合生成CaHPO4 前驱体。 CaHPO4 通过吸收周围环境中的Ca2+、 HPO 2- 4 等离子自发生长,最终形成HA [ 27],其反应过程如图11所示。

  • 微纳米结构表面沉积的的HA之所以更多, 一是因为微沟槽使各种离子聚集,更容易形核, 二是因为微沟槽与其上密集分布的纳米管形成了多级尺度三维结构,有利于羟基磷灰石晶核的进一步生长,而且该微纳结构提高了HA附着的稳定性。

  • 图8 各组试件在SBF中浸泡14d后表面SEM形貌

  • Fig.8 SEM images of each group of samples soaked in SBF for 14days

  • 图9 MN-Ti组试件浸泡于SBF中14d后的表面EDS分析结果

  • Fig.9 Surface EDS analysis results of MN-Ti samples soaked in SBF for 14days

  • 图10 各组试件在SBF中浸泡14天后表面的XRD图谱

  • Fig.10 XRD patterns of the surfaces of each sample soaked in SBF for 14days

  • 图11 HA在微纳结构表面形成机理

  • Fig.11 Formation mechanism of HA on the surface of micro-nano structure

  • 3 结论

  • 在医用纯钛表面利用激光刻蚀与阳极氧化的方法成功构建出微纳复合结构。 SEM结果显示,钛片表面呈现平行的微沟槽阵列和致密的TiO2 纳米管结构,相比于抛光组,微纳结构使钛片表面粗糙度显著增加,且具有更优良的亲水性。模拟体液浸泡试验结果表明,微沟槽-TiO2复合结构相比单一的微米或纳米结构具有更好的体外生物活性。激光刻蚀与阳极氧化的结合有望成为一种新的植入体表面改性的方法以用于商业或临床试验。

  • 参考文献

    • [1] 皇甫强,牛金龙.钛合金在医学领域的应用[J].稀有金属快报,2005,24(1):33-34.HUANG F Q,NIU J L.Application of titanium alloy in medical field[J].Rare Metals Letters,2005,24(1):33-34(in Chinese).

    • [2] 张颖鑫,徐勇,曾志翔.钛合金表面织构化与构建生物活性涂层的研究进展[J].中国表面工程,2019,32(1):1-11.ZHANG Y X,XU Y,ZENG Z X.Research progress of texturing and biological activity coatings on titanium alloys [J].China Surface Engineering,2019,32(1):1-11(in Chinese).

    • [3] 王方辉,张姗姗,舒静媛,等.纯钛种植体表面改性对骨结合的影响[J].中国组织工程研究,2014,18(52):8491-8497.WANG F H,ZHANG S S,SHU J Y,et al.Effects of surface modification of titanium implants on the osseointegration [J].Chinese Journal of Tissue Engineering Research,2014,18(52):8491-8497(in Chinese).

    • [4] 陈西文,朱智敏.纯钛在口腔修复中的应用[J].中国实用口腔科杂志,2014,7(3):188-192.CHEN X W,ZHU Z M.The application of titanium in prosthodontics[J].Chinese Journal of Practical Stomatology,2014,7(3):188-192(in Chinese).

    • [5] MUSTAFA K,WROBLEWSKI J,HULTENBY K,et al.Effects of titanium surfaces blasted with TiO2 particles on the initial attachment of cells derived from human mandibular bone.A scanning electron microscopic and histomorphometric analysis[J].Clinical Oral Implants Research,2010,11(2):116-128.

    • [6] 谭思民,王帅星,赵晴,等.水热时间对钛合金微弧氧化膜合成羟基磷灰石的影响[J].表面技术,2014(3):000020-24.TAN S M,WANG S X,ZHAO Q,et al.Effects of hydrothermal time on hydroxyapatite synthesis of microarc oxidized titanium[J].Surface Technology,2014,43(3):20-24(in Chinese).

    • [7] WANG T,WAN Y,LIU Z Q.Effects of superimposed micro/nano-structured titanium alloy surface on cellular behaviors in vitro[J].Advanced Engineering Materials,2016,18(7):1259-1266.

    • [8] 王建平,李正佳,范晓红.激光打标系统及工艺参数的分析[J].光学与光电技术,2005(3):32-35.WANG J P,LI Z J,FAN X H.Laser marking system and analysis of its technical parameters[J].Optics & Optoelectronic Technology,2005(3):32-35(in Chinese).

    • [9] ZHOU L,DING X L,WANG J X,et al.The effects of hierarchical micro/nanosurfaces decorated with TiO2 nanotubes on the bioactivity of titanium implants in vitro and in vivo [J].International Journal of Nanomedicine,2015,10:6955-6973.

    • [10] WEBSTER T J.Biomimetic helical rosette nanotubes and nanocrystalline hydroxyapatite coatings on titanium for improving orthopedic implants[J].International Journal of Nanomedicine,2008,3(3):323.

    • [11] EKATERINA,GONGADZE,DORON,et al.Adhesion of osteoblasts to a nanorough titanium implant surface.[J].International Journal of Nanomedicine,2011.

    • [12] 顾昕.二氧化钛纳米管材料成骨及抗菌实验研究[D].上海:第二军医大学,2013.GU X.Study on self-ordered nanotube titanium for osteogenesis and antibacterial applications [ D].Shanghai:Second Military Medical University,2013(in Chinese).

    • [13] HUANG Y,ZHANG X J,ZHANG H L,et al.Fabrication of silver and strontium-doped hydroxyapatite/TiO2 nanotube bilayer coatings for enhancing bactericidal effect and osteoinductivity[J].Ceramics International,2017.

    • [14] WANG Z,XIE C L,LUO F,et al.P25 nanoparticles decorated on titania nanotubes arrays as effective drug delivery system for ibuprofen [J].Applied Surface Science,2015,324(1):621-626.

    • [15] JIA HUIYING,KERR L L.Kinetics of drug release from drug carrier of polymer/TiO2 nanotubes composite-pH dependent study [J].Journal of Applied Polymer Science,2014.

    • [16] SCHNEIDER G B,PERINPANAYAGAM H,CLEGG M,et al.Implant surface roughness affects osteoblast gene expression.[J].Journal of Dental Research,2003,82(5):372.

    • [17] GITTENS R A,OLIVARES-NAVARRETE R,SCHWARTZ Z,et al.Implant osseointegration and the role of microroughness and nanostructures:Lessons for spine implants[J].Acta Biomaterialia,2014,10(8):3363-3371.

    • [18] YU W Q,QIU J,XU L,et al.Corrosion behaviors of TiO2 nanotube layers on titanium in Hank's solution[J].Biomedical Materials,2009,4(6):065012.

    • [19] DAMODARAN,VINOD,B,et al.Titania nanostructures:A biomedical perspective[J].RSC Advances,2015,5(47):37149-37171.

    • [20] AHUIR-TORRES J I,HERNÁNDEZ-LÓPEZ J M,ARENAS M A,et al.Synthesis of TiO2 nanopore arrays by pulsed laser treatment and anodic oxidation [J].Surface and Coatings Technology,2014,259:408-414.

    • [21] BAUER S,PARK J,MARK K V D,et al.Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes[J].Acta Biomaterialia,2008,4(5):1576-1582.

    • [22] JIA Z,XIU P,LI M,et al.Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings:Trap-killing of bacteria,surface-regulated osteoblast functions and host responses[J].Biomaterials,2016,75:203-222.

    • [23] ERIKSSON C,NYGREN H,OHLSON K.Implantation of hydrophilic and hydrophobic titanium discs in rat tibia:cellular reactions on the surfaces during the first 3 weeks in bone [J].Biomaterials,2004,25(19):4759-4766.

    • [24] KOKUBO T,TAKADAMA H.How useful is SBF in predicting in vivo bone bioactivity?[J].Biomaterials,2006,27(15):2907-2915.

    • [25] SONODA T,KATO M,KATOU K,et al.Surface structure of Ti-O films formed on pure titanium by anodic oxidation [J].Journal of Physics Conference,2007,61:1091-1096.

    • [26] KIM H M,KANEKO H,KAWASHITA M,et al.Mechanism of apatite formation on anodically oxidized titanium metal in simulated body fluid[J].Key Engineering Materials,2004,254/256:741-744.

    • [27] FERRARIS S,YAMAGUCHI S,BARBANI N,et al.Bioactive materials:In vitro investigation of different mechanisms of hydroxyapatite precipitation [J].Acta Biomaterialia,2019,102:468-480.

  • 参考文献

    • [1] 皇甫强,牛金龙.钛合金在医学领域的应用[J].稀有金属快报,2005,24(1):33-34.HUANG F Q,NIU J L.Application of titanium alloy in medical field[J].Rare Metals Letters,2005,24(1):33-34(in Chinese).

    • [2] 张颖鑫,徐勇,曾志翔.钛合金表面织构化与构建生物活性涂层的研究进展[J].中国表面工程,2019,32(1):1-11.ZHANG Y X,XU Y,ZENG Z X.Research progress of texturing and biological activity coatings on titanium alloys [J].China Surface Engineering,2019,32(1):1-11(in Chinese).

    • [3] 王方辉,张姗姗,舒静媛,等.纯钛种植体表面改性对骨结合的影响[J].中国组织工程研究,2014,18(52):8491-8497.WANG F H,ZHANG S S,SHU J Y,et al.Effects of surface modification of titanium implants on the osseointegration [J].Chinese Journal of Tissue Engineering Research,2014,18(52):8491-8497(in Chinese).

    • [4] 陈西文,朱智敏.纯钛在口腔修复中的应用[J].中国实用口腔科杂志,2014,7(3):188-192.CHEN X W,ZHU Z M.The application of titanium in prosthodontics[J].Chinese Journal of Practical Stomatology,2014,7(3):188-192(in Chinese).

    • [5] MUSTAFA K,WROBLEWSKI J,HULTENBY K,et al.Effects of titanium surfaces blasted with TiO2 particles on the initial attachment of cells derived from human mandibular bone.A scanning electron microscopic and histomorphometric analysis[J].Clinical Oral Implants Research,2010,11(2):116-128.

    • [6] 谭思民,王帅星,赵晴,等.水热时间对钛合金微弧氧化膜合成羟基磷灰石的影响[J].表面技术,2014(3):000020-24.TAN S M,WANG S X,ZHAO Q,et al.Effects of hydrothermal time on hydroxyapatite synthesis of microarc oxidized titanium[J].Surface Technology,2014,43(3):20-24(in Chinese).

    • [7] WANG T,WAN Y,LIU Z Q.Effects of superimposed micro/nano-structured titanium alloy surface on cellular behaviors in vitro[J].Advanced Engineering Materials,2016,18(7):1259-1266.

    • [8] 王建平,李正佳,范晓红.激光打标系统及工艺参数的分析[J].光学与光电技术,2005(3):32-35.WANG J P,LI Z J,FAN X H.Laser marking system and analysis of its technical parameters[J].Optics & Optoelectronic Technology,2005(3):32-35(in Chinese).

    • [9] ZHOU L,DING X L,WANG J X,et al.The effects of hierarchical micro/nanosurfaces decorated with TiO2 nanotubes on the bioactivity of titanium implants in vitro and in vivo [J].International Journal of Nanomedicine,2015,10:6955-6973.

    • [10] WEBSTER T J.Biomimetic helical rosette nanotubes and nanocrystalline hydroxyapatite coatings on titanium for improving orthopedic implants[J].International Journal of Nanomedicine,2008,3(3):323.

    • [11] EKATERINA,GONGADZE,DORON,et al.Adhesion of osteoblasts to a nanorough titanium implant surface.[J].International Journal of Nanomedicine,2011.

    • [12] 顾昕.二氧化钛纳米管材料成骨及抗菌实验研究[D].上海:第二军医大学,2013.GU X.Study on self-ordered nanotube titanium for osteogenesis and antibacterial applications [ D].Shanghai:Second Military Medical University,2013(in Chinese).

    • [13] HUANG Y,ZHANG X J,ZHANG H L,et al.Fabrication of silver and strontium-doped hydroxyapatite/TiO2 nanotube bilayer coatings for enhancing bactericidal effect and osteoinductivity[J].Ceramics International,2017.

    • [14] WANG Z,XIE C L,LUO F,et al.P25 nanoparticles decorated on titania nanotubes arrays as effective drug delivery system for ibuprofen [J].Applied Surface Science,2015,324(1):621-626.

    • [15] JIA HUIYING,KERR L L.Kinetics of drug release from drug carrier of polymer/TiO2 nanotubes composite-pH dependent study [J].Journal of Applied Polymer Science,2014.

    • [16] SCHNEIDER G B,PERINPANAYAGAM H,CLEGG M,et al.Implant surface roughness affects osteoblast gene expression.[J].Journal of Dental Research,2003,82(5):372.

    • [17] GITTENS R A,OLIVARES-NAVARRETE R,SCHWARTZ Z,et al.Implant osseointegration and the role of microroughness and nanostructures:Lessons for spine implants[J].Acta Biomaterialia,2014,10(8):3363-3371.

    • [18] YU W Q,QIU J,XU L,et al.Corrosion behaviors of TiO2 nanotube layers on titanium in Hank's solution[J].Biomedical Materials,2009,4(6):065012.

    • [19] DAMODARAN,VINOD,B,et al.Titania nanostructures:A biomedical perspective[J].RSC Advances,2015,5(47):37149-37171.

    • [20] AHUIR-TORRES J I,HERNÁNDEZ-LÓPEZ J M,ARENAS M A,et al.Synthesis of TiO2 nanopore arrays by pulsed laser treatment and anodic oxidation [J].Surface and Coatings Technology,2014,259:408-414.

    • [21] BAUER S,PARK J,MARK K V D,et al.Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes[J].Acta Biomaterialia,2008,4(5):1576-1582.

    • [22] JIA Z,XIU P,LI M,et al.Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings:Trap-killing of bacteria,surface-regulated osteoblast functions and host responses[J].Biomaterials,2016,75:203-222.

    • [23] ERIKSSON C,NYGREN H,OHLSON K.Implantation of hydrophilic and hydrophobic titanium discs in rat tibia:cellular reactions on the surfaces during the first 3 weeks in bone [J].Biomaterials,2004,25(19):4759-4766.

    • [24] KOKUBO T,TAKADAMA H.How useful is SBF in predicting in vivo bone bioactivity?[J].Biomaterials,2006,27(15):2907-2915.

    • [25] SONODA T,KATO M,KATOU K,et al.Surface structure of Ti-O films formed on pure titanium by anodic oxidation [J].Journal of Physics Conference,2007,61:1091-1096.

    • [26] KIM H M,KANEKO H,KAWASHITA M,et al.Mechanism of apatite formation on anodically oxidized titanium metal in simulated body fluid[J].Key Engineering Materials,2004,254/256:741-744.

    • [27] FERRARIS S,YAMAGUCHI S,BARBANI N,et al.Bioactive materials:In vitro investigation of different mechanisms of hydroxyapatite precipitation [J].Acta Biomaterialia,2019,102:468-480.

  • 手机扫一扫看