en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

郝秀清(1983—),女,教授,博士;研究方向:表面微织构及摩擦学、先进加工技术、功能表面设计制造及应用;E-mail:xqhao@nuaa.edu.cn

中图分类号:TH117.1

文献标识码:A

文章编号:1007-9289(2020)06-0001-22

DOI:10.11933/j.issn.1007-9289.20201014001

参考文献 1
邱明,钱亚明.摩擦学原理与设计[M].北京:国防工业出版社.2013.QIU M.QIAN Y M.Tribology principle and design[M].Beijing:National Defense Industry Press.2013(in Chinese).
参考文献 2
JOST H P.Tribology micro and macro economics:A road to economic savings[J].Tribology & Lubrication Technology,2005,61(10):18-22.
参考文献 3
LUO J B,ZHOU X.Superlubricitive engineering-future industry nearly getting rid of wear and frictional energy consumption[J].Friction,2020,8(4):643-665.
参考文献 4
HOLMBERG K,ERDEMIR A.Influence of tribology on global energy consumption,costs and emissions [J].Friction,2017,5(3):263-284.
参考文献 5
赵钊.非匀速摩擦磨损试验系统的设计与研究[D].北京:北京化工大学,2006.ZHAO Z.Design and Study of the non-uniform speed friction & wearing testing system[D].Beijing:Beijing University of Chemical Technology,2006(in Chinese).
参考文献 6
JURAJ B,LENKA K,ALAN V,et al.The Influence of high temperature on DV-2 Jet engine Ni-based superalloy turbine blade degradation[J].Materials Today:Proceedings,2017,4(5):5743-5748.
参考文献 7
MEHRPOOYA M,GHORBANI B,BAHNAMIRI F K.Basic design and thermodynamic analysis of a high helium content natural gas-fuel cell power plant[J].Journal of Cleaner Production,2020,262:121401.
参考文献 8
李波.航空发动机用高温轴承改造方案的研究[J].现代制造技术与装备,2019(6):5-6.LI B.Study on the modification scheme of high temperature bearing for aero-engine[J].Modern Manufacturing Technology and Equipment,2019(6):5-6(in Chinese).
参考文献 9
汪超,沈红卫,梅林波.高温材料在发电燃气轮机中的应用和发展[J].热力透平,2014,43(2):94-100.WANG C,SHEN H W,MEI L B.Application and development of high temperature material for power generation gas turbines[J].Thermal Turbine,2014,43(2):94-100(in Chinese).
参考文献 10
SU G S,XIAO X D,DU J,et al.On cutting temperatures in high and ultrahigh-speed machining [J].The International Journal of Advanced Manufacturing Technology,2020,107(1-2):73-83.
参考文献 11
王哲.基于高温力学行为的陶瓷刀具制备及其性能研究 [D].济南:山东大学,2020.WANG Z.Study on the preparation and performance of ceramic cutting tools based on high temperature mechanical behavior [D].Jinan:Shandong University,2020(in Chinese).
参考文献 12
黄云战.新型陶瓷刀具的应用分析及其研究[J].机械工程师,2003(4):10-12.HUANG Y Z.Analysis on application of new types of ceramic cutting tools[J].Mechanical Engineer,2003(4):10-12(in Chinese).
参考文献 13
桂长林,沈健.摩擦磨损试验机设计的基础 Ⅰ.摩擦磨损试验机的分类和特点分析[J].固体润滑,1990(1):48-55.GUI C L,SHEN J.The base of friction-wear tester design I.the classification and properties analysis of friction-wear testers[J].Journal of Solid Lubrication,1990(1):48-55(in Chinese).
参考文献 14
王红星,王章忠,钱百能,等.正火温度对高碳钢组织与耐磨性能的影响[J].材料热处理学报,2018,39(12):71-77.WANG H X,WANG Z Z,QIAN B N,et al.Effect of normalizing temperature on microstructure and wear resistance of high carbon steel [J].Transactions of materials and heat treatment,2018,39(12):71-77(in Chinese).
参考文献 15
秦强波,贾文静,陈松,等.退火温度对球墨铸铁的组织与力学性能的影响[J].重庆科技学院学报(自然科学版),2020,22(3):114-118.QIN Q B,JIA W J,CHEN S,et al.Effect of annealing temperature on microstructure and mechanical properties of nodular cast iron[J].Journal of Chongqing University of Science and Technology(Natural Sciences Edition),2020,22(3):114-118(in Chinese).
参考文献 16
王成林,王勇澎,牛志强,等.回火温度对40CrNi2Mo钢力学性能和干摩擦性能的影响[J].材料热处理学报,2020,41(4):75-82.WANG C L,WANG Y P,NIU Z Q,et al.Effect of tempering temperature on mechanical properties and dry friction properties of 40CrNi2Mo steel[J].Transactions of Materials and Heat Treatment,2020,41(4):75-82(in Chinese).
参考文献 17
WANG T S,YANG J,SHANG C J,et al.Sliding friction surface microstructure and wear resistance of 9SiCr steel with low-temperature austempering treatment[J].Surface & Coatings Technology,2008,202(16):4036-4040.
参考文献 18
WEI X L,PAN M Q,ZENG D H,et al.Effect of heating temperature on microstructure and mechanical properties of continuous copper fiber[C]∥International Conference on Industrial Mechatronics and Automation.Chengdu,China.2009:475-478.
参考文献 19
CUI G D,ZHANG H B,JIANG T B,et al.Effect of process temperature on the microstructure and properties of low-temperature gas multi-component thermochemical treatment 45CrMoV alloy steel [ C]∥Advances in Chemical,Material and Metallurgical Engineering,Pts 1-5.Advanced Materials Research.Kunming,China.2013,(634-638):1712-1717.
参考文献 20
黎国猛.M50NiL 钢表面复合渗层组织与性能研究[D].贵阳:贵州大学,2019.LI G M.Study on microstructure and properties of M50NiL composite permeation layer on steel surface[D].Guiyang:Guizhou University,2019(in Chinese).
参考文献 21
LI G M,LIANG Y L,SUN H,et al.Effect of pre-existing carbides prepared by different heat treatments on the nitriding behavior during a carburizing and nitriding duplex treatment of an M50NiL steel[J].Surface and Coatings Technology,2020,395:125930.
参考文献 22
ZAGONEL L F,FIGUEROA C A,DROPPA R,et al.Influence of the process temperature on the steel microstructure and hardening in pulsed plasma nitriding [J].Surface & Coatings Technology,2006,201(1):452-457.
参考文献 23
胡蓉.影响渗氮质量的工艺参数[J].装备制造技术,2015(9):82-84.HU R.The process parameters affecting the quality of nitriding[J].Equipment Manufacturing Technology,2015(9):82-84(in Chinese).
参考文献 24
刘建睿,严宏志,李算,等.离子渗氮工艺参数对4Cr5MoSiV钢表层组织与性能的影响[J].表面技术,2019,48(8):199-205.LIU J R,YAN H Z,LI S,et al.Effect of ion nitriding process parameters on surface properties of 4Cr5MoSiV steel[J].Surface Technology,2019,48(8):199-205(in Chinese).
参考文献 25
PANG G X,LI Z L,CHEN Z Y.Research on ion nitriding temperature effect on wear resistance of Cr12MoV steel[J].Physics Procedia,2013,50:120-123.
参考文献 26
XU L,BA D C,WANG Q,et al.Microstructure and tribological properties of plasma nitrided biomedical CoCrMo alloys[J].Rare Metal Materials and Engineering,2017,46(1):51-56.
参考文献 27
GADHARI P,SAHOO P.Effect of annealing temperature and alumina particles on mechanical and tribological properties of Ni-P-Al2O3 composite coatings[J].Silicon,2017,9(5):761-774.
参考文献 28
HOU G L,AN Y L,ZHAO X Q,et al.Effect of heat treatment on wear behavior of WC-(W,Cr) 2C-Ni coating[J].Surface Engineering,2012,28(10):786-790.
参考文献 29
王期超,黄燕滨,卢士勇,等.热处理温度对镍–磷–石墨烯复合镀层性能的影响[J],电镀与涂饰,2017,36(11):562-566.WANG Q C,HUANG Y B,LU S Y,et al.Effect of heat treatment temperature on properties of nickel-phosphorus-graphene composite coating [J].Electroplating & Finishing,2017,36(11):562-566(in Chinese).
参考文献 30
MUKHOPADHYAY A,BARMAN T K,SAHOO P,et al.Effect of heat treatment on tribological behavior of electroless Ni-B-Mo coatings at different operating temperatures[J].Silicon,2018,10(3):1203-1215.
参考文献 31
ZAITSEV S V,VASHCHILIN V S,PROKHORENKOV D S,et al.Influence of annealing temperature on the microstructure and morphology of TiN films synthesized by dual magnetron sputtering[J].Technical Physics,2018,63(8):1189-1193.
参考文献 32
VASHISHTHA N,SAPATE S G,BAGDE P,et al.Effect of heat treatment on friction and abrasive wear behavior of WC12Co and Cr3C2-25NiCr coatings[J].Tribology International,2018,118:381-399.
参考文献 33
BROOKES E J,GREENWOOD P,XING G.Friction and wear of synthetic diamond[J].International Journal of Refractory Metal & Hard Materials,1999,17(1-3):69-77.
参考文献 34
DENG J X,ZHANG H,WU Z,et al.Friction and wear behavior of polycrystalline diamond at temperatures up to 700℃ [J].International Journal of Refractory Metals & Hard Materials,2011,29(5):631-638.
参考文献 35
DENG J X,ZHANG H,WU Z,et al.Unlubricated friction and wear behaviors of Al2O3/TiC ceramic cutting tool materials from high temperature tribological tests[J].International Journal of Refractory Metals and Hard Materials,2012,35:17-26.
参考文献 36
张辉,邓建新,吴泽,等.Al2O3/TiC 基陶瓷刀具材料的高温摩擦磨损性能研究[J].摩擦学学报,2011,31(4):369-374.ZHANG H,DENG J X,WU Z,et al.Friction and wear behavior of Al2O3/TiC ceramic tool material at elevated temperature[J].Tribology,2011,31(4):369-374(in Chinese).
参考文献 37
周松青,肖汉宁.碳化硅及其复相陶瓷高温摩擦化学的研究[J].中国陶瓷工业,2002,9(1):16-20.ZHOU S Q,XIAO H N.Tribo-chemistry of silicon carbide and its multiphase ceramic at elevated temperature[J].China Ceramic Industry,2002,9(1):16-20(in Chinese).
参考文献 38
MARUI E,ENDO H,OHIRA A.Wear test of cemented tungsten carbide at high atmospheric temperature(400℃)[J].Tribology Letters,2000,8(2-3):139-145.
参考文献 39
ZHANG H,DENG J X,LI G Y,et al.Effect of ambient temperature on wear of cemented carbide tool material[C]∥ Advanced Materials Research.Shenzhen:China.2010,148-149:276-279.
参考文献 40
CHEN Y J,WANG S H,HAO Y,et al.Friction and wear behavior of CrN coating on 316L stainless steel in liquid sodium at elevated temperature [J].Tribology International,2020,143:106079.
参考文献 41
KUO C C,LIN Y T,CHAN A,et al.High temperature wear behavior of titanium nitride coating deposited using high power impulse Magnetron Sputtering [J].Coatings,2019,9(9):555.
参考文献 42
ZHU J N,ZENG Q F,WANG Y F,et al.Nano-crystallization-driven high temperature self-lubricating properties of magnetron-sputtered WS2 coatings [J].Tribology Letters,2020,68(1):50.
参考文献 43
HE N R,LI H X,JI L,et al.High temperature tribological properties of TiAlSiN coatings produced by hybrid PVD technology[J].Tribology International,2016,98:133-143.
参考文献 44
DING Z,MIAO Q,LIANG W P,et al.Tribological behavior of TiAlN-coated TA19 alloy at elevated temperatures[ C]∥ IOP Conference Series:Materials Science and Engineering.Sanya:China.2020,770:012-085.
参考文献 45
ZHANG Y K,LI J L,XIONG D S,et al.Influence of boron nitride on tribological behavior of nickel-base composite coatings at high temperature [ C] ∥ Materials Science Forum.Qingdao:China.2011,686:711-715.
参考文献 46
LIU X B,LIU H Q,LIU Y F,et al.Effects of temperature and normal load on tribological behavior of nickel-based high temperature self-lubricating wear-resistant composite coating [J].Composites Part B-Engineering,2013,53:347-354.
参考文献 47
HOVSEPIAN P E,MANDAL P,EHIASARIAN A P,et al.Friction and wear behavior of Mo-W doped carbon-based coating during boundary lubricated sliding[J].Applied Surface Science,2016,366:260-274.
参考文献 48
刘爱华.PVD 氮化物涂层的高温摩擦磨损特性及机理研究[D].济南:山东大学,2012.LIU A H.Friction and wear behaviors of PVD nitride coatings at elevated temperatures[D].Jinan:Shandong University,2012(in Chinese).
参考文献 49
BAZARRAGCHAA I,BYAMBAA S.High temperature friction of materials for bush bearing[C]∥2010 Proceedings of International Forum on Strategic Technology.Ulsan:South Korea.2010:387-389.
参考文献 50
张一兵,柯瀛,燕松山,等.Sn-Ag-Cu 自润滑滚子轴承的高温摩擦学特性[J].润滑与密封,2019,44(12):7-11,80.ZHANG Y B,KE Y,YAN S S,et al.High temperature tribological characteristics of Sn-Ag-Cu self-lubricating roller bearings[J].Lubrication Engineering,2019,44(12):7-11,80(in Chinese).
参考文献 51
WISNIEWSKA-WEINERT H.Friction and wear of porous sliding bearings at high temperature.influence of MoS2 nanoparticle solid lubricant[J].Powder Metallurgy and Metal Ceramics,2013,52(7-8):424-430.
参考文献 52
XU Z S,SHI X L,ZHANG Q X,et al.High-temperature tribological performance of Ti3SiC2/TiAl self-lubricating composite against Si3N4 in air[J].Journal of Materials Engineering and Performance,2014,23(6):2255-2264.
参考文献 53
XU G H,LIANG H,LIU J,et al.Engine tribology and surface modification technology[J].Heat Treatment of Metals,2006(2):1-11.
参考文献 54
NAKADA M.Trends in engine technology and tribology[J].Tribology International,1994,27(1):3-8.
参考文献 55
SHARMA A,SADEGHI F,SHARMA A.Experimental investigation of fretting wear of coated spring clip and inlet ring in land-based gas turbines at elevated temperature [J].Wear,2020,446-447:203200.
参考文献 56
KNAUDER C,ALLMAIER H,SANDER D E,et al.Investigations of the friction losses of different engine concepts.part 1:A combined approach for applying subassembly-resolved friction loss analysis on a modern passenger-car diesel engine[J].Lubricants,2019,7(5):39.
参考文献 57
龚磊.甲醇发动机活塞环摩擦磨损性能实验研究[D].武汉:华中科技大学,2019.GONG L.Experimental study on friction and wear of piston ring of methanol engine[D].Wuhan:Huazhong University of Science and Technology,2019(in Chinese).
参考文献 58
CHEN J X,TAN L L,YU X M,et al.Mechanical properties of magnesium alloys for medical application:A review [J].Journal of the Mechanical Behavior of Biomedical Materials,2018,87:68-79.
参考文献 59
LI W X,XU C,LI Q,et al.Progress on strengthening mechanisms of high performance medical cobalt based alloy [J].Chinese Journal of Nonferrous Metals,2016,26(5):1045-1053.
参考文献 60
VALIEV R Z,PROKOFIEV E A,KAZARINOV N A,et al.Developing nanostructured Ti alloys for innovative implantable medical devices[J].Materials,2020,13(4):967.
参考文献 61
汤菊莉,贺学英.镍合金医疗器械的生物学研究进展 [J].医疗装备,2017,30(13):193-197.TANG J L,HE X Y.Advances in biological research of nickel alloy medical devices[J].Medical Equipment,2017,30(13):193-197(in Chinese).
参考文献 62
SABAHI N,CHEN W L,WANG C H,et al.A Review on additive manufacturing of shape-memory materials for biomedical applications[J].JOM,2020,72(3):1229-1253.
参考文献 63
KASHIN O A,KRUKOVSKII K V,POLETIKA T M.Effect of heat treatments on the structure and properties of a smalldiameter thin-walled tube of a medical nickel titanium alloy [C]∥Journal of Physics:Conference Series.Sochi:Russia.2019,1347:012085.
参考文献 64
LUO X,FANG C,FAN Z,et al.Semi-solid powder moulding for preparing medical Mg-3Zn alloy,microstructure evolution and mechanical properties[J].Materials Research Express,2019,6(7):076528.
参考文献 65
FAN X P,WANG B J,REN X Q,et al.Effect of Sintering temperature on microstructure and mechanical properties of TiMo alloys[J].Materials Science Forum,2015,815:297-300.
参考文献 66
FANG X X,WANG S Q,LI D H,et al.Effect of synovial fluid temperature on the corrosion resistance of Ti6Al4V,Ti6Al7Nb,and CoCrMo alloys[J].Materials and CorrosionWerkstoffe Und Korrosion,2020,71(8):1346-1360.
参考文献 67
LEPICKA M,CISZEWSKI A,GOLAK K,et al.A comparative study of friction and wear processes of model metallic biomaterials including registration of friction-induced temperature response of a tribological pair[J].Materials,2019,12(24):4163.
参考文献 68
TONG Z P,REN X D,ZHOU W F,et al.Effect of laser shock peening on wear behaviors of TC11 alloy at elevated temperature[J].Optics & Laser Technology,2019,109:139-148.
参考文献 69
郝秀清,宋晓路,李亮.表面织构化刀具的研究现状与进展[J].表面技术,2016,45(9):170-181.HAO X Q,SONG X L,LI L.Development and perspective of surface texturing tools[J].Surface Technology,2016,45(9):170-181(in Chinese).
参考文献 70
张玉周.表面织构化改善摩擦学性能研究综述[J].成都大学学报(自然科学版),2013,32(1):64-7+70.ZHANG Y Z.Review of research on surface texturing for improving tribological performance[J].Journal of Chengdu University(Natural Science Edition),2013,32(1):64-7,70(in Chinese).
参考文献 71
王静秋,王晓雷.表面织构创新设计的研究回顾及展望 [J].机械工程学报,2015,51(23):84-95..WANG J Q,WANG X L.State of the art in innovative design of surface texture [J].Journal of Mechanical Engineering,2015,51(23):84-95(in Chinese)..
参考文献 72
SUH N P,MOSLEH M,HOWARD P S.Control of friction [J].Wear,1994,175(1-2):151-158.
参考文献 73
胡天昌,丁齐,胡丽天.激光表面织构化对GCr15钢摩擦磨损性能的影响[J].摩擦学学报,2011,31(5):447-451.HU T C,DING Qi,HU L T.The effect of laser texturing of GCr15 steel surfaces on their tribological properties[J].Tribology,2011,31(5):447-451(in Chinese).
参考文献 74
王晓雷,韩文非.边界润滑条件下表面微细织构减摩特性的研究[J].润滑与密封,2007,32(12):36-39.WANG X L,HAN W F.Effect of surface texture on friction reduction under boundary lubrication[J].Lubrication Engineering,2011,31(5):447-451(in Chinese).
参考文献 75
PETTERSSON U,JACOBSON S.Influence of surface texture on boundary lubricated sliding contacts[C]∥Tribology International.Stockholm:Sweden.2003,36(11):857-864.
参考文献 76
HAMILTON D B,HALOWIT J A.A theory of lubrication by micro irregularities[J].Journal of Basic Engineering,1966,88(1):177-185.
参考文献 77
SUGIHARA T,ENOMOTO T.Crater and flank wear resistance of cutting tools having micro textured surfaces[J].Precision Engineering,2013,37:888-896.
参考文献 78
WANG X L,KATO K.Improving the anti-seizure ability of SiC seal in water with RIE Texturing[J].Tribology Letters,2003,14(4):275-280.
参考文献 79
张恩阳.表面微凹坑阵列对流体动压润滑性能的影响 [D].南京:南京航空航天大学,2013.ZHANG E Y.The impact of surface micro-dimple array on hydrodynamic lubrication[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2013(in Chinese).
参考文献 80
LI J L,ZHANG X F,WANG J,et al.Frictional properties of silver over-coated on surface textured tantalum interlayer at elevated temperatures[C]∥Surface & Coatings Technology.Shanghai:China.2019,365(SI):189-199.
参考文献 81
LI J L,HE Y,XIONG D S,et al.Tribological properties of silver coatings with laser surface textured nickel as interlayer [C].Tribology International.Lyon:France.2016,100:178-185.
参考文献 82
LI J L,XIONG D S,ZHANG Y K,et al.Friction and wear properties of MoS2-overcoated laser surface-textured silvercontaining nickel-based alloy at elevated temperatures [J].Tribology Letters,2011,43(2):221-228.
参考文献 83
华希俊,孙建国,张培耘,等.激光微织构固体润滑表面高温摩擦学性能研究[J].表面技术,2016,45(6):112-118.HUA X J,SUN J G,ZHANG P Y,et al.Tribological properties of the laser micro-texture surface filled with solid lubricant at elevated temperature[J],Surface Technology,2016,45(6):112-118(in Chinese).
参考文献 84
张美琼,王燕,张静,等.润滑油基础油组成对低温性能的影响[J].润滑油,2019,34(5):61-64.ZHANG M Q,WANG Y,ZHANG J,et al.Effect of the composition of lube base oil on low temperature performance [J].Lubrication Oil,2019,34(5):61-64(in Chinese).
参考文献 85
ZHENG F Z,ZHOU S D,XIE F,et al.Analysis on lubricating and viscosity-temperature characteristics of the vegetable oil[J].Applied Mechanics and Materials,2012:1451-1454.
参考文献 86
王文涛,罗蓉,冯光乐,等.旋转黏度试验影响因素与粘温曲线绘制研究[J].武汉理工大学学报(交通科学与工程版),2016,40(3):514-518.WANG W T,LUO R,FENG G L,et al.Impact factors in rotational viscosity tests[J].Journal of Wuhan University of Technology(Transportation Science & Engineering),2016,40(3):514-518(in Chinese).
参考文献 87
张心爱.基础润滑油摩擦学性能及其流变特性分析[D].重庆:重庆大学,2016.ZHANG X A.Tribological and rheological properties of lubricating base oils [ D].Chongqing:Chongqing University,2016(in Chinese).
参考文献 88
李慧.润滑油的性能分析及回收利用[D].长春:东北师范大学,2015.LI H.The performance analysis and recycling of lubricating oil[D].Changchun:Northeast Normal University,2015(in Chinese).
参考文献 89
HIRST W,MOORE A J.The Effect of temperature on traction in elastohydrodynamic lubrication [J].Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences,1980,298(1438):183-208.
参考文献 90
WOS S,KOSZELA W,PAWLUS P,et al.Effects of surface texturing and kind of lubricant on the coefficient of friction at ambient and elevated temperatures [J].Tribology International,2018,117:174-179.
参考文献 91
AMANOV A,WATABE T,TSUBOI R,et al.Improvement in the tribological characteristics of Si-DLC coating by laser surface texturing under oil-lubricated point contacts at various temperatures[J].Surface and Coatings Technology,2013,232:549-60.
参考文献 92
JANSSEN A,DADGAR M,WIETHEGER W.Impact of the oil temperature on the frictional behavior of laser-structured surfaces [J].Tribology Transactions,2019,62(3):443-451.
参考文献 93
ZHENG D,CAI Z B,SHEN M X,et al.Investigation of the tribology behavior of the graphene nanosheets as oil additives on textured alloy cast iron surface[J].Applied Surface Science,2016,387:66-75.
参考文献 94
NGO C V,CHUN D M.Fast wettability transition from hydrophilic to superhydrophobic laser-textured stainless steel surfaces under low-temperature annealing[J].Applied Surface Science,2017,409:232-240.
参考文献 95
NGO C V,CHUN D M.Effect of heat treatment temperature on the wettability transition from hydrophilic to superhydrophobic on laser-ablated metallic surfaces[J].Advanced Engineering Materials,2018,20(7):1701086.
参考文献 96
LIU W J,CAI M Y,LUO X,et al.Wettability transition modes of aluminum surfaces with various micro/nanostructures produced by a femtosecond laser[J].Journal of Laser Applications,2019,31(2):UNSP 022503.
参考文献 97
LI X Y,JIANG Y,JIANG Z H,et al.Reversible wettability transition between superhydrophilicity and superhydrophobicity through alternate heating-reheating cycle on laser-ablated brass surface [J].Applied Surface Science,2019,492:349-361.
参考文献 98
LONG J Y,ZHONG M L,ZHANG H J,et al.Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air [J].Journal of Colloid and Interface Science,2015,441:1-9.
参考文献 99
LIU Z A,YANG X L,PANG G B,et al.Temperature-based adhesion tuning and superwettability switching on superhydrophobic aluminum surface for droplet manipulations[J].Surface & Coatings Technology,2019,375:527-533.
参考文献 100
周峰,吴杨.“润滑”之新解[J].摩擦学学报,2016,36(1):132-136.ZHOU F,WU Y.A novel insight into “ Lubrication” [J].Tribology,2016,36(1):132-136(in Chinese).
参考文献 101
XUE Y H,WU Y,PEI X W,et al.How solid-liquid adhesive property regulates liquid slippage on solid surfaces?[J].Langmuir the ACS Journal of Surfaces & Colloids,2015,31(1):226-32.
参考文献 102
PAWLAK Z,URBANIAK W,OLOYEDE A.The relationship between friction and wettability in aqueous environment [C]∥Wear,2011,271(9-10):1745-1749.
参考文献 103
PANG M H,LIU X J,LIU K.Effect of Wettability on the friction of a laser-textured cemented carbide surface in dilute cutting fluid [J].Advances in Mechanical Engineering,2017,9(12):1-9.
参考文献 104
GE D L,DENG J X,DUAN R,et al.Effect of surface wettability on tribological properties of Al2O3/TiC ceramic under wet lubrication[J].Ceramics International,2019,45(18):24554-24563.
参考文献 105
HAO X Q,LI H L,YANG Y F,et al.Experiment on cutting performance of textured cemented carbide tools with various wettability levels[J].The International Journal of Advanced Manufacturing Technology,2019,103(1-4):757-768.
参考文献 106
王权岱,李志龙,郭兵兵,等.不同润滑状态下表面润湿性的摩擦学特性研究[J].摩擦学学报,2018,38(6):665-672.WANG Q D,LI Z L,GUO B B,et al.Tribological properties of surface wettability under different lubrication regimes [J].Tribology,2018,38(6):665-672(in Chinese).
目录contents

    摘要

    摩擦磨损是造成材料失效的主要原因之一,减小摩擦磨损对工业发展与环境保护等方面有着重要意义。 而温度作为摩擦磨损试验的其中一个主要参数,对摩擦磨损过程具有重要影响。 该论文重点描述了温度对摩擦副摩擦学性能的影响,并分析了产生影响的机理和原因。 首先,温度会影响表面材料的理化性质,从而影响表面组织结构或者表面涂层;其次,摩擦副之中的固体或液体润滑剂性质随温度的变化发生改变并影响摩擦磨损性质,且在织构表面尤其明显。 最后,温度会对基底表面润湿性产生影响从而影响表面摩擦磨损性能。 该研究对在高温极限条件下工作的摩擦副的材料与润滑方式的选取,以及发动机、火箭等新型科技的发展具有重要意义。

    Abstract

    Friction and wear is one of the main failure modes of materials. Reducing friction and wear is significant for industrial development and environmental protection. The temperature is one of the major parameters in the friction and wear test, which has a great influence on the process of friction and wear. The influence of temperature on friction and wear performance is described and the mechanism and reason are analyzed. First of all, the temperature will affect the physical and chemical properties of the surface materials, which could affect the surface structure and coating. Secondly, the properties of solid or liquid lubricants in the friction pair can be changed with the increase of temperature and the friction and wear properties could be observably influenced, especially on the textured surface. At last, temperature will affect the surface friction and wear properties by changing the wettability of the base surface. The research is important to the selection of materials and lubrication modes of friction pairs working under high temperature, as well as the development of new technologies such as engines and rockets.

  • 0 引言

  • 摩擦磨损现象是材料的3种主要失效形式之一,所造成的经济损失巨大。全世界大约有1/3~1/2的一次能源消耗在摩擦磨损上,约有80%的机械零件因为各种磨损而失效[1-2]。根据不完全统计,2018年因摩擦磨损所造成的GDP损失占2%~7%,总损失达到17万~60万亿美元[3],全世界每年花费在乘用车克服摩擦的燃料上的金额高达3万亿美元[3-4],在英国每年因为摩擦磨损而损失的硬质合金刀具可达2000余万件,价值5000万英镑以上[5]。因此对摩擦磨损进行研究有助于提高机器与零件的使用寿命和使用效率,可以提高生产力和生产效率,节约能源,减少浪费,减轻环境污染,对工业发展、经济增长、环境保护等方面具有重要意义。

  • 随着时代的发展,新技术与新行业的诞生例如新型喷气式发动机[6]、大型发电站[7]、航空发动机[8]、燃气轮机[9]、工业上高速切削技术[10-12] 等, 其机械机构设备长期处于高温工作状态,最高工作温度可达到几百度甚至上千度,因此要求机器零部件可以在高温下正常工作并且具有优秀的高温下摩擦磨损能力。所以选择合适的摩擦副材料是提高摩擦副寿命从而提高机器稳定性的关键部分。对于航空发动机来说,高温轴承是关键易损件,其性能直接决定整个发动机的性能和寿命。李波[8]使用了耐高温材料Cr12MoV, 并在其表面溅射镍-氧化锆薄膜-二硫化钼三层涂层的方法提高轴承寿命。研究表明Cr12MoV在550℃时,仍具有HRC56的热硬度,可以满足工作要求;镍和氧化锆层起到提高涂层与滚动体基体的结合力和耐高温作用,二硫化钼起到高温下提高摩擦磨损性能的作用。此外,随着燃气轮机进气温度的进一步提高,其所需要的高温新型材料要求进一步升高,目前先进的燃气轮机仍然采用高温合金材料,但是通过开发冷却技术和热障涂层技术,使其工作温度提升到1200℃ [9]。对于高速加工,刀具处于高温高压的切削环境之中,刀具材料选择十分重要。目前研究者们发现[11-12],陶瓷刀具在高温下优秀的稳定性与耐磨性,并且相比于硬质合金刀具与具有很好的化学稳定性,因此可应用与高速切削铸铁、合金钢、高温合金等材料加工。

  • 对于摩擦磨损试验来说,摩擦磨损试验基本系统包括工作运转变量、表面特性和测试参数[13],其中温度对系统摩擦磨损过程具有重要影响。因此研究温度对表面摩擦磨损性能的作用具有重要意义。对于摩擦磨损研究,常用的方法是通过摩擦磨损试验机进行摩擦磨损试验。摩擦磨损试验按照主要接触形式包括面接触、线接触和点接触三种,试件之间的相对运动可以是纯滑动、纯滚动或者滚动伴随滑动,试验机的试件可以采用旋转运动或者往复运动等。对于一些特殊工况下的摩擦磨损研究,需要特定的特种摩擦磨损试验机,包括高温摩擦磨损试验机、高速摩擦磨损试验机、真空摩擦磨损试验机以满足高温、高速、真空的要求。目前摩擦磨损试验机的研制已经取得了很大的进展,高温摩擦磨损试验机的发展为高温下摩擦磨损性能的研究打下了基础,对高温下摩擦性能的研究也促进了高温摩擦磨损试验机的快速发展。

  • 目前有众多学者和研究人员对温度影响表面摩擦磨损性能进行了研究,但是对温度与摩擦磨损特性的综述却很少有人涉及。文中分别从温度对摩擦副表面制备、无织构摩擦副、带织构摩擦副以及润湿性表面等方面的摩擦磨损性能产生的影响进行概述,并对其机理进行分析。

  • 1 温度影响摩擦副表面制备

  • 在对表面进行处理时,采用的工艺温度会影响金属的表面组织结构或者表面涂层的形成,从而影响加工后的表面质量,进而影响表面摩擦磨损性能和其他工作特性。

  • 在目前金属材料的发展过程之中,热处理是重要的改善材料表面性能的应用方法之一,大部分接触的材料例如碳钢、高速钢、轴承钢等金属材料都需要热处理来提升其性能,应用范围十分广泛。常用的方法包括正火、退火、回火、淬火, 热处理温度会影响工件的金相组织和力学性能, 从而影响耐磨性[14-17]。 WANG T S等[17] 发现在干滑动摩擦的过程中,低温等温淬火9SiCr钢的表层会产生极细的纳米晶粒,表层纳米晶粒的平均尺寸约为3nm,这种颗粒具有良好的耐磨性。 WEI X L等[18] 研究了加热温度对铜纤维组织和表面形貌的影响,随着温度的升高,组织在不同的温度范围内发生了很大的变化,在不同温度下加工后表面如图1( a) 所示。纤维在500℃ 至700℃ 发生再结晶并产生了等轴晶粒结构,抗拉强度随温度的升高而逐渐降低,并高于原材料的抗拉强度,当温度超过再结晶温度900℃ 时,晶粒会继续长大并发生二次结晶,强度大大降低。 CUI G D等[19] 在530、550和570℃ 温度下采用低温气体多组分热化学处理45CrMoV合金钢组织,发现在组织样品表面形成氧化层、复合层和扩散层,微观结构有了明显改善,机械性能略有下降但耐腐蚀性显著增强,其中采用570℃ 为最优参数。

  • 渗氮工艺是工业上常用的化学热处理手段, 通过在表面生成氧化层从而增加金属抗疲劳、抗磨损和抗腐蚀性能,而温度对扩散层、化合物的层深、硬度等条件起着至关重要的作用[20]。高温下表面渗碳工艺对增加表面硬度、降低表面磨损有显著的提高作用,但是随着温度的升高摩擦磨损性能达到峰值,温度继续升高之后硬度的提升并不明显,甚至会有所下降[20-25]。因此需要寻求不同材料下的最佳加工温度。

  • 黎国猛[20]在不同参数下渗碳、热处理、渗氮复合渗下的M50NiL钢表面进行了研究,温度从460℃升至540℃ 后氮原子扩散速率降低,复合层厚度降低。如图1( b) 所示,通过不同载荷下球盘摩擦磨损试验可知,在20N载荷下、460℃ 的样品具有最佳磨损率, 而在40N载荷下、 500℃的试样具有最佳磨损率。其主要原因为20N下磨损为氧化磨损,460℃ 表面硬度最低, 氧化层剥落再生成导致氧化层变厚。而40N下磨损为磨粒磨损,540℃ 下试样具有更厚的化合物层和最优的硬度,因此抗磨能力最强。 XU L等[26]采用直流等离子渗氮工艺对医用CoCrMo合金进行渗氮处理,可以在生物医用钴铬合金上制备更厚更硬的耐磨层。如图1( c) 所示,随着渗氮温度和渗氮时间的增加,在不同载荷作用下,所有等离子体氮化试样的显微硬度都有所提高。此外渗氮层深度、厚度、表面粗糙度、耐磨性增加,主要的磨损机理从黏着磨损转变为疲劳磨损、磨粒磨损和轻微黏着磨损。渗氮试样耐磨性提高的原因与渗氮层中形成的CrN和Cr2N相有关,随着渗氮温度增加,CrN和Cr2N相具有高硬度和更好的附着力,导致磨损痕宽度均明显减小。

  • 图1 不同温度下材料的表面形貌和磨损率[18,20,26]

  • Fig.1 Surface morphologies and wear rate of materials at different temperatures [18,20,26]

  • 此外,众多研究表明[27-32],涂层经过适当的高温热处理之后会改变表面的摩擦磨损性能。王期超等[29]在45钢上用不同的温度处理镍-磷-石墨烯复合镀层,结果表明温度升高会使表面由非晶结构转化为晶体并提高摩擦性能,并在400℃时耐磨性能最好。 MUKHOPADHYAY A等[30] 在1040钢上加工了Ni-B-Mo涂层,在不同温度下进行热处理后进行不同温度下的摩擦磨损试验(图2)。 350℃热处理后涂层的显微硬度略有提高,但在400℃/450℃温度下热处理后显微硬度没有进一步提高。 100~500℃ 下热处理改善了Ni-B-Mo涂层的摩擦磨损性能,而不同温度下摩擦磨损试验并没有造成太多影响,证明涂层具有良好的热稳定性,摩擦性能提高的主要原因是Mo元素的存在,由Mo组成的涂层形成和组织的改变提高了Ni-B-Mo涂层的高温摩擦磨损性能。 ZAITSEV S V等[31] 用双磁控溅射法在白光波导衬底上合成的TiN薄膜,然后分别在600、700、 800和900℃ 真空退火2min。研究发现退火温度影响了TiN膜的微观结构、晶粒尺寸和表面粗糙度, 600℃ 时粗糙度最小为3.48nm而到700℃时表面粗糙度增加到了5.92nm,其晶粒结构也明显变大。 VASHISH-THA N等[32]研究了热处理温度WC-12Co和Cr3C2-25NiCr涂层的摩擦磨损行为。涂层在300、550、750和950℃下加热1h后缓慢冷却,随后进行销盘磨损试验,试验证明WC-12Co涂层在550℃时、Cr3C2-25NiCr涂层在750℃ 时摩擦磨损性能可以达到最好,低温热处理可提高涂层在良性磨料磨损条件下的耐磨性,而高温热处理对摩擦和耐磨性有害。

  • 图2 不同热处理温度后Ni-B-Mo涂层表面形貌以及在不同温度下摩擦磨损试验后磨损率、摩擦因数和表面形貌[30]

  • Fig.2 Surface morphologies of Ni-B-Mo coatings at different heat-treatment-temperatures and wear rate, friction coefficient and surface morphologies after friction and wear test at different temperatures [30]

  • 综上所述,表面温度对样品表面的组织结构影响强烈,分子高温时会产生更剧烈的运动并且容易被外部元素渗入,产生的表面组织和晶体结构会对表面硬度以及耐磨性产生影响,经过适当温度的处理后表面晶体结构变得有序,使其摩擦磨损性能提高。但当温度过高时可能导致晶粒尺寸粗大而表面性能下降,因此寻找每种材料合适的热处理温度是十分重要的。

  • 2 温度对无织构摩擦副表面摩擦特性的影响

  • 2.1 温度对无织构平面摩擦副摩擦特性的影响

  • 平面摩擦副是日常生活和工业生产之中最常见、也是应用最广泛的摩擦形式。从人在地面上行走,到工业中的切削铣削等都存在平面摩擦副。一般的摩擦磨损试验机所采用的摩擦副,如环面摩擦、销盘摩擦等也都属于平面摩擦副。

  • 随着制造业的发展,高速切削等先进的加工技术越来越多地应用于各类金属的加工之中。在加工过程中,尤其是在高速切削加工的过程中,刀具的磨损是个非常重要的课题。一方面, 高切削温度和切削过程中切削区域的剧烈摩擦会加快刀具磨损,影响加工表面质量;另一方面, 高切削温度会对刀具本身造成伤害,影响刀具的使用寿命,从而制约了高速切削技术的进一步发展。因此,国内外学者已经针对刀具的温度与摩擦学特性,进行了诸多理论与实验方面的研究。目前主要的刀具材料包括金刚石刀具、陶瓷刀具、硬质合金刀具等。由于不同种类的刀具其材料与性能差异很大,物理化学性能也不同,导致其高温下的摩擦磨损特性和原理也不同。

  • 金刚石刀具拥有常温条件下最好的硬度和耐磨性,因此被广泛使用。 BROOKES E J等[33] 研究了常温下和高温下聚晶金刚石( PCD) 的滑动摩擦磨损特性,PCD在常温下与单晶金刚石、立方氮化硼(CBN) 和碳化硼(B4C) 这3种材料对摩的摩擦因数分别为0.6、0.6和0.1,而在1100℃高温下与这3种材料对摩的摩擦因数分别为0.3、0.3和0.8。可能的原因是PCD从常温下的“沿晶磨损”转化为高温高压下的“穿晶磨损”。 DENG J X等[34]对PCD刀具在高温下的摩擦磨损特性进行了研究,PCD刀具从200℃ 升到700℃高温时,对Al2O3 摩擦的摩擦因数从0.65降至0.16,试验结果如图3所示。高温下由于金刚石与作为连接剂的Co元素热膨胀系数不同, 导致高温下刀具产生裂纹并失效,此外,在温度高于700℃ 时金刚石刀具会发生石墨化现象导致刀具失效变快而摩擦因数降低。

  • 氧化铝等陶瓷刀具有很高的熔点和硬度,可以加工传统刀具难以加工的高硬材料,并且高温下性能较好。 DENG J X等[35]通过高温摩擦学试验,研究了Al2O3/TiC陶瓷刀具材料在800℃ 以下空气中的非润滑摩擦磨损行为。摩擦因数随温度升高而减小,在800℃ 温度下,Al2O3/TiC陶瓷的摩擦因数最低,如图4所示。张辉等[36]研究了Al2O3/TiC基陶瓷刀具材料在200℃至600℃ 范围内的高温摩擦磨损性能,随着温度升高摩擦因数呈现先升高后降低的趋势,在500℃ 时摩擦因数达到最大值,600℃ 时摩擦因数有所下降且摩擦因数的数值处于0.1~0.4,在600℃ 时摩擦因数较小且速度对摩擦因数的影响变小,而磨损量随着温度的增大而增大。根据研究表明[37], Al2O3/TiC基的陶瓷材料在600℃ 以下强度基本没有变化,而在600℃ 以上强度开始下降,至800℃时,强度下降约四分之一。材料在200℃ 以下为磨粒磨损,随着温度升高材料开始出现剥落,在600℃时,裂纹现象严重,大量晶粒从材料表面脱落,且发生了氧化现象。

  • 图3 不同温度下PCD刀具在大景深数码相机滑动5min后观察到的PCD光盘光学图像、摩擦因数和磨损后表面形态[34]

  • Fig.3 The optical images, friction coefficient and surface morphologies of the PCD disc observed by large depth of field digital camera.PCD tools were slid for 5min at different temperatures [34]

  • 图4 不同温度下Al2O3/TiC陶瓷刀具摩擦因数和磨损表面[35]

  • Fig.4 Friction coefficient and surface wear of Al2O3/TiC ceramic tool at different temperatures [35]

  • 合金也是一种常用的刀具材料,硬质合金种类繁多且具有均衡的硬度与韧性。 MARUI E等[38]研究了钨钴( WC-Co) 硬质合金在高温下的磨损性能,在400℃ 下该合金与45钢进行摩擦磨损试验,发现随着温度升高,摩擦因数减小且保持在0.5~1.0,主要原因是温度的升高导致Co转移到摩擦副表面从而减弱了刀的强度。 ZHANG H等[39]对硬质合金刀具与陶瓷材料在高温环境下的球盘磨损进行了研究,如图5所示,材料的摩擦因数随温度和滑动速度的增加而减小,滑动磨损率随着环境温度的升高而增大。相比于没有添加TiC的试样,加入TiC的试样在高温下表现出较好的耐磨性, 在200~400℃ 该试样磨损率下降了接近50%,在500~600℃ 下降了三分之二。同时研究发现,在较低温度下磨损率的增加主要是由于硬度的降低,在高温下的原因是物理和化学氧化作用的双重影响。

  • 综上,不同材料的刀具具有不同的摩擦磨损性能。金刚石刀具在温度较低的时候具有优秀的摩擦磨损性能,而在高温下刀具会产生粘结相析出、表面氧化的问题,温度继续升高刀具会发生石墨化导致表面失效,故适用于较低的切削温度。对于陶瓷刀具来说,大部分陶瓷刀具在高温下摩擦磨损性能优异,而且可以在700℃ 甚至1000℃高温下保持优秀的性能,适合用在高温的工作情况下,其主要原因可能与高温下金属氧化物的耐磨特性有关。对于硬质合金刀具, 在400℃以下高温摩擦磨损性能比较稳定,在500℃ 以上时,磨损主要体现为氧化磨损,材料的磨损率明显升高,因此不适用于高温下的加工条件。

  • 图5 不同温度下WC-Co滑动试验摩擦因数和磨损率(FN=10N) [39]

  • Fig.5 Friction coefficient and wear rate of WC-CO at different temperatures(FN=10N) [39]

  • 近些年随着表面技术的发展,涂层技术由于具有提高表面硬度、耐腐蚀、耐高温、减摩降磨、综合性能良好等优点,被广泛应用于刀具、齿轮、模具等工作条件恶劣的零件,可以有效提高零件寿命,从而节省材料、降低成本。 CHEN Y J等[40] 研究了CrN涂层在250℃ 和550℃ 下在液态钠溶液中的摩擦磨损行为。涂层在250℃ 和500℃下摩擦因数约为0.2和0.5, 磨损率约为1.34×10-14 和4.55×10-14 m 3/N·m。液态钠中的氧化杂质与CrN涂层发生摩擦化学反应形成的氧化膜在250℃有利于摩擦,而在550℃ 下不利于摩擦。 KUO C C等[41] 研究了高温沉积TiN薄膜的高温磨损行为,在450℃ 以下涂层保持了良好的机械性能和摩擦磨损性能;当温度升高到600℃时,涂层完全氧化且很容易破裂。 ZHU J N等[42]研究了在高速钢表面沉积2.2mm的WS2 涂层,并测试了不同的温度下测试表面的摩擦因数,涂层在100℃、200℃、300℃ 都保持着低于0.2的较低摩擦因数,但在400℃的温度下,摩擦因数从开始的0.07经过600s后达到了0.7;在500℃时,摩擦因数在初始阶段低至0.07,100s后增加到0.3,最后逐渐下降到0.2。图6( a)展示了不同温度下涂层磨损后的形貌及磨损率,随着温度的升高和摩擦热的积累,WS2 涂层的耐磨性逐渐降低。摩擦过程和摩擦原理示意图如图6(b)、6(c),WS2 涂层在100~400℃ 时具有良好的抗磨性能,在载荷和摩擦的协同作用下,WS2 非晶涂层的表面由短期有序结构向(002)晶面取向转变,形成润滑膜。但随着温度的升高,摩擦化学反应强烈,导致WO3 粒子增多,破坏了涂层的结构,导致其高温耐磨性下降;当温度达到500℃时,涂层的弹性模量和硬度大大降低,涂层孔隙中的氧完全氧化了WS2, 形成了疏松的WO3,导致涂层的润滑迅速失效,产生高的摩擦因数。

  • 除了单一涂层,还可以在表面加工复合涂层。复合涂层可以综合涂层之中各个部分的性能,使得涂层的高温摩擦磨损性能得到提升。 HE N R等[43] 采用混合PVD技术制备了不同铝、硅含量的TiAlSiN涂层。室温下的SiO2·nH2O涂层、600℃下产生的Al2O3 和SiO2、 800℃下产生的TiO2 相均可以起到润滑作用。 DING Z等[44] 在TA19钛合金表面沉积了厚度为5 μm TiAlN涂层,涂层和基体在300℃ 和500℃ 下发生摩擦氧化但没有发生失效现象,证明其拥有良好的高温摩擦磨损能力,原因是TiAlN涂层的H( 硬度),H/E(硬度/弹性模量)和H 3/E 2 值远远高于基体。 ZHANG Y K等[45]制备了镍基氮化硼复合镀层,其中氮化硼使得涂层表面显微硬度增加、摩擦因数和磨损率降低。经过球盘摩擦磨损试验,涂层在室温下的摩擦因数约为0.2,在600℃ 时摩擦因数约为0.4~0.5。此外,在基体与复合涂层之间镀镍过渡层可显著提高摩擦磨损性能。 LIU X B等[46] 用NiCr/Cr3C2-WS2-CaF2 粉末在不锈钢表面采用激光熔覆法制备了涂层并在球盘磨损试验机上进行了摩擦磨损试验,从室温到600℃,涂层的摩擦因数随温度的升高而降低,而磨损率在300℃ 达到最小。主要原因是涂层由于激光的高能量而分解形成了CrS,有效提高了摩擦磨损性能。 HOVSEPIAN P E等[47]开发了一种钼钨掺杂碳基涂层( Mo-W-C) 来提高高温下M2高速钢的摩擦磨损性能,经过销盘摩擦磨损试验验证,200℃ 高温下涂层的摩擦磨损系数显著降低,其原因可能是在高温下涂层中的Mo和W与润滑油中的S形成了WS2 和MoS2,从而降低摩擦磨损。刘爱华[48] 研究了温度在200~700℃ 范围内TiN、TiAlN、AlTiN、CrN和CrAlN 5种PVD氮化物涂层在高温下的摩擦磨损性能。经过球盘摩擦磨损试验测试结果如图7(a)~7(e)所示, 由于金属氧化物的形成,多数情况下摩擦因数呈下降趋势。 TiN涂层在小于400℃的稳定阶段摩擦因数随温度升高而升高,而600℃ 下摩擦因数下降且相对平稳;TiAlN涂层摩擦因数随温度升高而逐渐下降,温度高于600℃ 摩擦因数非常不稳定;AlTiN涂层稳定阶段的摩擦因数随温度的升高而逐渐下降且波动较小;CrN涂层的摩擦因数随温度升高而升高且在低温下平稳,高温下摩擦因数产生波动但总体在0.1~0.3之间;CrAlN涂层的摩擦因数随温度升高而下降,但在高温下波动说明高温下摩擦因数不稳定。如图7( f)所示,表面的最高温度一定会高于磨损时的环境温度,当温度小于400℃ 时,温度对磨损率影响很小,而当温度继续升高,涂层的氧化反应变得剧烈并且磨损率增加,由于不同元素生成的氧化物具有不同的硬度和物理性能,如图7( g)所示,高温下其氧化物对摩擦磨损性能有害。综合对比以上5种材料,TiN和CrN涂层在高温下耐磨性较差,AlTiN涂层在高温涂层下有最好的耐磨性, TiAlN和CrAlN涂层在500~600℃ 环境下磨损率较大而在700℃时磨损率反而低。

  • 图6 不同温度下磨损后表面形貌、摩擦过程示意图和摩擦原理示意图[42]

  • Fig.6 Surface morphologies, schematic diagrams of friction process and schematic diagrams of friction principle at different temperatures [42]

  • 图7 不同温度下涂层摩擦因数的变化(10N,100m/min)不同涂层表面最高温度和表面磨损原理图[48]

  • Fig.7 Different friction coefficient and maximum surface tempertaure of coating at different test temperature(10N, 100m/min) and surface wear schematic of different coatings [48]

  • 通过研究温度与磨损的关系可以发现,温度对平面摩擦副的摩擦磨损的影响,与摩擦副本身或者涂层的材料关系密切。对于摩擦副表面的金属来说,摩擦作用产生高温,高温与其所受到的载荷的共同作用使得表面的材料极易与空气发生反应。一些材料表面或表面涂层之中的金属会氧化形成氧化膜,其中一部分金属材料,形成的氧化物比较疏松且硬度较低,因此导致高温下的摩擦磨损性能下降;而对于Al、Cr等金属, 在高温下反应生成的Al2O3、Cr2O3 氧化物,表面致密且抗磨性强,因此可以提高高温下摩擦磨损性能。但是,高温下的摩擦磨损性能的变化与机理十分复杂,并不只与其氧化过程相关,还与表面状况、采用的润滑剂种类等等因素有关,需进一步研究探索。

  • 2.2 温度对曲面摩擦副的摩擦特性的影响

  • 曲面摩擦副在生产生活中应用广泛,且相当一部分应用在恶劣的工作环境之中。例如,发动机在工作的过程之中最高温度超过2000℃,而运输液态天然气、液态二氧化碳、液氮等低温液体的阀门,火箭液态燃料发动机之中的轴承等低温下工作的摩擦副,最低温度会达到零下几十甚至上百摄氏度。此外对于新兴医疗生物合金,由于其应用于人体内,由于其人体内环境的特殊性,其对应用环境极其敏感,不但要求摩擦副在人体环境下能够正常工作,也要求其在长时间工作的过程之中不能有明显的温升和摩擦损耗。其广泛的应用环境使得很多科学家对温度和曲面摩擦副摩擦特性展开了研究。

  • 轴承是当代机械工业设备中支撑旋转轴的重要部分,轴承在高速旋转的过程中,其曲面需在高速高温下稳定工作。 BAZARRAGCHAA I等[49]研究了滑动轴承在高温条件下的使用情况,轴承的摩擦因数和磨损量在200℃ 和300℃ 下都有所降低,而在400℃ 和500℃ 显著升高, 原因是氧化层的形成导致材料变软。并且在轴承表面镀了一层高温下的抗磨材料MoO3 后,其500℃下轴承的摩擦磨损特性被明显改善。张一兵等[50]将Sn、Ag、Cu固体金属粉末与预先烧结制备的多孔金属陶瓷基体滚子高温浸渍后加工, 在400℃至600℃的范围内,轴承摩擦因数随温度的升高而逐渐减小,摩擦因数在600℃ 时达到最小值0.024,主要的原因是高温使滚子中析出的润滑剂合金更容易涂覆到更多的摩擦表面上。 WISNIEWSKA-WEINERT H [51] 制作了以MoS2 粉末为固体润滑剂的粉末润滑滑动轴承套,并进行了摩擦磨损试验研究,其在300℃ 高温下摩擦因数为0.04,具有良好的摩擦磨损性能。 XU Z S等[52] 对轴承材料Ti3 SiC2/TiAl复合材料( TTC)在25℃ 至800℃ 下的摩擦磨损特性进行了研究,TTC的摩擦因数和磨损率在400℃ 前随着温度的升高而上升,在400℃ 时候达到峰值,然后随着温度升高而下降。相比单纯的TiAl合金(TA),其摩擦因数与磨损率都有一定降低,表面形貌也有一定改善,如图8( a) 所示。其主要原因是在600℃以上的高温下Ti3 SiC2 形成了一层致密的氧化膜从而降低了摩擦因数。

  • 对于内燃机来说,摩擦损失是影响燃料消耗的一个主要因素。以发动机为例,在一个典型的发动机系统中, 摩擦引起的损失超过总功率的40%[53]。发动机的主要摩擦损失发生在活塞和活塞环,占发动机总摩擦损失的50%~60%;其次是配气机构,其余附件部分、气门机构、油封系统等也存在摩擦磨损[54]。因此其高温下摩擦磨损研究也受到广泛研究。 SHARMA A [55] 等研究了燃气轮机上使用的进气环和弹簧的摩擦学性能,使用等离子喷涂(APS) Cr3C2-NiCr(25%质量分数)、高速火焰喷涂( HVOF) Cr3C2-NiCr(25%质量分数)、HVOF喷涂T-800、APS喷涂PS400这4种进气环涂层与HVOF喷涂Cr3C2-NiCr弹簧配合在500℃ 高温下进行微动摩擦磨损试验,证明相比其他涂层,APS喷涂PS400进气环与HVOF喷涂Cr3C2-NiCr弹簧配合在高温下摩擦因数降低了50%,高温下表面形成的高硬度Cr2O3 氧化物可以有效地降低磨损。 KNAUDER C等[56]提出了一种研究现代四缸柴油机摩擦损失的方法,结合了发动机摩擦测量结果和轴承试验结果。对于所研究的柴油发动机,当发动机转速高于1500r/min和部分负载工况下,将发动机介质供应温度从70℃ 提高到110℃ 时,摩擦减少可达21%。在发动机低速和高负荷运行时, 摩擦损失大大降低至8%。龚磊[57] 研究了甲醛发动机活塞环摩擦磨损性能,在不同种类的润滑油下测量了活塞环-缸套的摩擦因数,其温度梯度和试验结果如图8(b)所示。摩擦因数随着温度升高而升高,并且温度达到60℃ 后增速减小。其主要原因是温度升高会降低润滑油的黏度,导致其表面难以形成润滑膜,从而导致表面固体凸峰接触从而提高摩擦因数,而超过60℃ 后表面凸峰接触速度放缓,其增速也放缓。

  • 医疗合金必须满足优秀的耐腐蚀性、出色的生物相容性、良好力学和摩擦磨损性能。常用的医疗合金主要包括镁合金、钴合金、钛合金、镍合金等[58-61]。此外,形状记忆合金具有在一定温度下记忆和恢复自己的形状的能力,可以应用于组织工程、血管内外科、正畸、骨科等[62],具有十分广阔的前景。但温度会影响医疗合金的内部组织性能[63-65]、耐蚀性[66]等,因此除了减摩抗磨以外,还需要控制合金的温升,避免其对人体造成损害。 LEPICKA M [67] 等对常用的医疗合金——— 316L不锈钢、CoCrMo合金以及Gr.2Ti合金分别进行试验。作者在摩擦速度0.1m/s、载荷50N、质量分数0.9%NaCl溶液润滑的条件下进行了销盘摩擦磨损试验,使试验环境接近于人体,试验结果表示316L不锈钢具有最好的减摩降磨性能,但是合金的温度会在20min内提高5℃,可能会对人体产生影响。 TONG Z P [68] 等对TC11医疗合金进行激光冲击强化加工(LSP)并进行了摩擦磨损试验,研究了载荷和温度对表面的影响。如图8( c)所示,试验证明LSP能有效提高摩擦磨损性能,并且试样在500℃ 处的外加载荷为15N时磨损率最低。

  • 图8 TA、TTC、活塞环和试样随温度变化的摩擦参数曲线[52,57,68]

  • Fig.8 Friction parameters curve of TA,TTC, piston ring and samples at different temperature [52,57,68]

  • 对于曲面摩擦副,温度对摩擦磨损的影响与平面摩擦副原理大致相同,主要与摩擦副本身的材料和润滑剂有关。若要提高高温下摩擦副的摩擦磨损性能,可以选择改善合金材料、附加涂层、采用更加有效的润滑方式、更改润滑剂等方法。

  • 3 温度对表面织构摩擦副的影响

  • 近些年来,表面织构技术已经得到国外科研人员的广泛关注。表面织构技术是指在表面加工出不同几何参数和分布特征的微凹坑、微沟槽等阵列结构[65]。随着表面织构技术的越发成熟,目前有多种表面织构的制备方法,包括机械加工法、刻蚀法、电化学刻蚀法、沉积法、水热法、喷涂法等[69-71]。合适的表面织构可以增强摩擦副的承载力、降低摩擦因数、改善摩擦学性能,在微/纳领域也可以改善微构件间的表面张力、摩擦力和黏着力,从而改善微/纳结构的可靠性和使用寿命[70]。作为一种改善机械零件和摩擦磨损性能的有效手段,表面织构技术已经可以应用到机械加工、材料加工、电子信息工程等多种领域,具体应用包括机械加工刀具、轴承、计算机磁盘存储器、MENS系统等,尤其是对于刀具与轴承等工件,要求其具有在高温下稳定工作且具有稳定减摩降磨的能力,这对学者们的研究提出了新的挑战。

  • 学者们研究认为在不同的摩擦条件下表面织构改善摩擦磨损的机理不尽相同。摩擦条件根据表面润滑状态的不同可以分为干摩擦、边界摩擦和流体摩擦。在干摩擦条件下表面的微结构具有容纳储存脱落的磨屑的作用避免产生剧烈磨损[72-74],还具有减少两固体表面直接接触的作用[75]。在流体润滑的条件下,主要为附加流体动压效应。 HAMILTON D B等[76]在1966年首次提出了附加流体动压效应理论,在表面加工出微织构能够增加摩擦副表面的动压效应,相当于在表面形成了一层润滑膜,并且通过电流测量的方法判断出了有效润滑膜的存在。而在边界润滑条件下摩擦副起到“二次润滑”的作用,使得润滑油进入摩擦表面形成油膜从而改善表面摩擦性能[77-79]

  • 3.1 固体润滑下高温对微织构表面摩擦磨损性能的影响

  • 表面微织构与固体润滑剂的复合应用具有显著的减摩降磨效果,表面织构具有储存固体润滑剂,并且为摩擦副提供持续润滑的作用。常用的固体润滑剂包括石墨、MoS2 、WS2 等层状固态物质,塑料、树脂等高分子材料和软金属等等。部分固体润滑剂具有很好的高温特性,在高温下能够有效降低表面的摩擦因数和磨损率;而另一部分的固体润滑剂在高温下易于分解或氧化从而失效。

  • LI J L等[80-81] 分别在钽涂层钢和镍涂层钢表面加工出不同密度的微织构,并且在其表面沉积了银涂层。分别对其表面进行不同温度下摩擦磨损试验,如图9( a)、9( b),两种涂层表面摩擦因数分别在600℃ 和700℃ 下保持在0.2左右。其主要原因是表面织构的涂层表面具有储存固体润滑剂并且容纳因摩擦磨损而产生的银颗粒的作用,从而为后续摩擦提供润滑;而高温下银会变软从而降低摩擦因数,提高摩擦磨损性能。此外在高温摩擦中会产生具有优秀润滑能力的AgTaO3 化合物,因此具有良好的高温摩擦磨损性能。其课题组[82] 还用脉冲激光在含银镍基合金表面加工出了微坑织构并用二硫化钼粉末填充微坑中,在不同温度下用圆盘式摩擦磨损试验机对合金进行了摩擦磨损性能测试,发现摩擦因数与微织构密度和温度都有很大关系。织构密度为11.2%的试样磨损率最低,磨损寿命最长,而随着温度的升高,织构表面的摩擦因数也随之增大。

  • 华希俊等[83]在Cr4Mo4V高温轴承钢表面进行织构化处理,并填充二硫化钼(MoS2)-聚酰亚胺(PI)和含量不同的碳纳米管添加剂(CNT)的MoS2-PI-CNTs复合固体润滑剂后进行了的滑动摩擦性能试验,试验结果发现填充了纳米MoS2 的微织构自润滑表面的摩擦因数比填充等量普通MoS2 的低35%左右。随着碳纳米管含量的增加,微织构自润滑表面的摩擦因数先减小后增大,当碳纳米管质量分数为6%时,其摩擦因数最小,且比无碳纳米管的低37%左右。此外,作者还研究了微织构纳米复合固体润滑表面耐高温滑动摩擦性能。环境温度从室温到400℃ 时,填充微米MoS2-PI复合固体的表面,以及当环境温度从室温到300℃ 时,微织构填充普通MoS2-PI复合润滑剂试样表面摩擦因数都较低,但400℃ 时,它们的摩擦因数较大。对填充了纳米MoS2-PI-CNTs复合微织构,表面环境温度从室温至400℃ 时, 试样表面的摩擦因数均较小, 且在200℃时,试样表面的摩擦因数最小。碳纳米管在减摩过程中起着重要作用,其短碳-碳共价键和极小管径,使其结构致密并具有极高的强度和极大的韧性,并且管状体可以通过滚动使得润滑膜在试样表面更加均匀和致密;此外其在一维方向的高传热速度使得表面的润滑剂具有极高耐热性。

  • 图9 钽涂层和镍涂层表面用激光加工微坑后沉积银涂层,高温下摩擦磨损试验后表面形貌与摩擦因数[80-81]

  • Fig.9 Tantalum coating and Nickel coating [81] with silver coating deposited after laser processing of micropits, and surface morphologies and friction coefficient after friction and wear test at high temperature [80-81]

  • 综上,相对于表面无织构的摩擦副来说,表面织构在摩擦过程中起着存储固体润滑剂、存储磨屑和提供自润滑与持续润滑效果的作用。相比于无织构表面,摩擦热量会对存在于微织构之中的固体润滑剂产生更多影响,从而影响表面的摩擦磨损性能。

  • 3.2 液体润滑下高温对微织构表面摩擦磨损性能的影响

  • 液体润滑是各类机械常用的润滑方式之一, 而液体润滑中润滑油的性质对摩擦磨损性能具有重要的作用,选择合适的润滑油可以有效改善润滑状态、降低摩擦副之间的磨损并延长零件的使用寿命。而润滑油的黏度和黏度系数会对润滑油油膜的形成产生影响影响,从而影响摩擦磨损性能。一般来说,对于同一类型的油品,黏度较高的油品对应的摩擦因数相对较小。而润滑油组成会对其温度性能产生影响[84],其中温度影响最大的就是黏度,粘温曲线是众多学者们研究的热点[85-87](图10)。另外温度也会影响润滑油倾点[88]、流体牵引力[89]等因素。

  • 图10 不同油的粘温曲线[87]

  • Fig.10 Viscose-temperature curves for different liquids [87]

  • WOS S等[90] 研究了室温和高温下42CrMo4钢在不同黏度油润滑下有织构和无织构(抛光) 的圆盘滑动副的摩擦学行为(图11( a))。在油润滑的条件下,表面织构能使摩擦因数在高温环境下降低并保持稳定,尤其在较小的载荷和较高的温度下, 表面变形效果最好。 AMANOV A等[91] 讨论了无织构和有织构硅类金刚石( SiDLC)涂层在室温至200℃ 范围内的摩擦学特性,通过对油润滑下Al2O3 球的球盘摩擦磨损试验,发现表面具有微织构的样品具有更好的摩擦磨损性能(图11( b))。 JANSSEN A [92] 等研究了激光加工表面微观组织对摩擦的有利影响随油温的变化规律。采用激光加工的方法在不锈钢表面加工出微坑结构,试验表明激光微坑的3个参数:直径、深度和覆盖面积对摩擦磨损的性能的影响强烈依赖于润滑油温度,主要原因是从30℃到90℃,黏度下降90%以上,油温越高,混合摩擦和液体摩擦的摩擦因数越高。 ZHENG D等[93]研究了100℃下石墨烯(GNS)作为润滑油添加剂和激光加工微织构对降低摩擦磨损的共同作用,试验证明添加石墨烯后的油在普通表面可以降低50%磨损,在微织构表面可以降低90%以上的磨损,具有良好的摩擦学性能(图11(c)),其主要原因是石墨烯在表面形成了一层保护膜保护了表面。

  • 图11 有无织构圆盘表面、有无织构Si-DLC涂层和不同添加剂的PAO4油在织构表面的摩擦参数曲线和表面形貌[90-91,93]

  • Fig.11 Friction parameters curves and surface morphologies of surface of textured and non-textured, non-textured and textured SI-DLC coatings and different additives for PAO4oilon the textured surface [90-91,93]

  • 从目前的研究可以看出,对于大部分的润滑油来说随着温度的升高,润滑油的黏度降低,导致摩擦副表面的油膜形成困难,摩擦副的摩擦磨损性能大幅降低。但是在表面上加工出微织构之后,表面的微坑织构有助于帮助润滑油表面形成油膜,从而大幅提高高温下表面的摩擦磨损性能。

  • 4 温度对不同润湿性表面摩擦学特性的影响

  • 众多研究者已经发现了在高温下金属润湿性的转变现象。在摩擦副表面加工微结构除改变原有形貌外,还会对表面的润湿性造成影响。用激光在金属表面加工出特定的微织构后,加工表面呈现超亲水性,而采用加热的方法可以将表面的超亲水性转化为超疏水性, 如图12( a)、 12(b)所示。目前科学家们已经在不锈钢[94]、铝[95-96]、钛[95]、铜[95,97]表面发现了这种现象,证明了温度会对表面的润湿性能产生影响。科学家们研究发现,将加工过后的超亲水性表面暴露在空气,其表面超亲水性会失效甚至转化为超疏水性,而温度的升高加速了这一过程,使得正常情况下需要的30d以上的时间缩短到了2h左右,其主要与空气中的有机物有关,其与表面结合使得表面的亲水性转换为超疏水性,如图12(c), 其中微织构起着辅助作用[97-98]。此外,LIU Z A等[99]采用激光蚀刻和硬脂酸改性相结合的方法制备了超疏水铝表面,不但其表面的超疏水性随着温度的升高而降低,而且超疏水表面的水粘附能力可以在27℃ 时的低粘附能力和49℃ 时的高粘附能力之间进行调整,如图12(d)所示。

  • 图12 不同材料表面的润湿性和粘附性转变[94,97,99]

  • Fig.12 Wettability and adhesion transition of different materials [94,97,99]

  • 表面织构的润湿性分为亲液和疏液两种。润湿性可通过影响接触表面的表面张力和摩擦副接触表面的润滑油供给情况,从而影响摩擦副表面的接触及其润滑状态和摩擦磨损性能。

  • 周峰等[100] 提出了表面“润” 与“滑” 的新见解,固-固接触摩擦为“润”而“滑”,固-液接触摩擦为“润”而“黏”,“去润”而“滑”。即固-固接触时超亲水的表面可以降低摩擦因数,当表面与水的亲和性变差而表面变得更疏水时,摩擦因数增加;固-液接触表面降低表面润湿性可以减小固液界面分子相互作用从而降低摩擦。作者引用了XUE Y H等[101]的研究证明了边界滑移长度随着接触角减小而快速衰减(图13(a))。 PAWLAKA Z等[102]发现了表面润湿性和表面能对水环境中的摩擦副摩擦因数有重要影响(图13( b))。 PANG M H等[103]发现稀切削液中摩擦因数随变形硬质合金表面接触角的减小和两个滑动表面间的润湿性的增大而减小,如图13(c)所示。 GE D L等[104]发现氧化铝/TiC陶瓷的摩擦因数随着表面润湿性的提高而降低,表面亲水性促进了润滑液的扩散能力,可以在摩擦界面处形成连续的润滑膜从而提供减摩作用,其摩擦磨损原理如图13(d)所示。 HAO X Q等[105] 在YT15硬质合金表面加工出疏水表面,与未处理表面相比,切削过程中亲疏复合表面的摩擦因数和磨损量分别降低了21.6%和36.42%,证明了表面润湿性设计对减摩降磨具有重要作用,原理如图13( e)所示。王权岱等[106]用纳秒紫外激光在锡青铜表面制备了超疏水和亲水表面并进行了销盘磨损试验,发现在边界润滑条件下由于疏水表面难以生成润滑膜,亲水表面摩擦因数小于疏水表面,平均摩擦因数减少6.79%;而流体动压润滑下疏水表面固液界面发生滑移,超疏水表面摩擦性能更高,摩擦因数减少10%。

  • 图13 表面润湿性对摩擦性能影响的试验结果与原理图[100-105]

  • Fig.13 Experimental results and schematic diagrams of the effect of surface wettability on friction properties [100-105]

  • 综上,摩擦副的润湿性会对其摩擦副的摩擦磨损性能产生影响,而温度与表面润湿性的关系密不可分,因此温度会与表面润湿性相互作用从而影响表面的摩擦磨损性能。

  • 5 目前研究存在的问题

  • 尽管学者们已经进行了很多研究并取得了丰硕成果,但是目前还有许多问题亟待解决。

  • (1) 材料本身对高温下的摩擦磨损性能影响巨大,即使材料在高温下可以形成较硬的氧化层,其高温下摩擦磨损性能也未必可以达到更好,需要进一步探明不同材料对摩擦磨损性能不同影响的原因,并采取试验方式进行验证,才能更好地根据工作环境挑选合适的材料,达到所需要的性能。

  • (2) 不同的液体或固体润滑剂具有不同的高温润滑性能,并与自身性质相关。需要探究液体或固体润滑剂在高温下的润滑性能,从而为特定高温使用环境下润滑剂的选取提供建议和指导方案。

  • (3) 对于在摩擦副表面加工微织构的方法, 仍需研究表面微织构的形状、尺寸、分布位置、加工方式等参数,以及多参数间的耦合作用,以指导摩擦副表面织构的设计,达到更好的减摩降磨效果。另外表面微织构存在容易磨损失效的问题,也需要进一步研究。

  • (4) 目前对于高温下润湿性与表面摩擦磨损之间关系的研究还处于起步阶段,众多研究者研究了温度与润湿性的关系和表面润湿性与摩擦磨损的关系,但是将温度润湿性与摩擦磨损性能联系起来的研究很少。还需深入研究不同温度下表面润湿性与摩擦磨损性能的联系并深入探索其机理。

  • 6 结论

  • 目前国内外专家学者对温度影响摩擦磨损性能进行了大量的研究,本文详细描述了国内外关于温度对表面摩擦磨损性能影响的研究,其主要的内容如下。

  • (1) 温度会对表面处理中的表面组织结构或者表面涂层的形成产生影响,从而影响加工后的表面质量,进而影响表面摩擦磨损性能。

  • (2) 对于无织构表面来说,温度主要通过影响表面的材料和表面润滑液的性质来影响摩擦磨损性能。摩擦过程中由于高温表面的金属材料易在空气中氧化并生成氧化层从而影响表面摩擦磨损性能;而润滑剂在高温下理化性能的变化会对表面摩擦磨损性能产生影响。

  • (3) 对于织构表面来说,表面织构具有存储固体润滑剂和辅助液体润滑剂形成油膜的作用, 可以降低因为高温下部分固体润滑剂的分解或液体润滑剂的黏度变低对表面摩擦磨损性能造成的影响,加工合适的表面织构可以有效改善表面的高温摩擦磨损性能。

  • (4) 表面润湿性对材料本身的摩擦磨损性能具有重要影响,而高温又会使表面的润湿性发生变化,使得表面的摩擦磨损性能发生变化,但是目前的研究较少涉及这一方面。

  • 综上所述,温度会对表面的摩擦磨损性能产生重要影响,未来的研究重点应在温度对不同材料、润滑剂的影响机理和温度对微织构表面与润湿性表面的影响方面。研究高温下表面摩擦性能,可以应用于在高速加工、航空发动机等需要高温摩擦性能高精尖热点领域,在提高表面耐用度、延长零件寿命、降低成本等方面具有巨大的作用和深远的意义。

  • 参考文献

    • [1] 邱明,钱亚明.摩擦学原理与设计[M].北京:国防工业出版社.2013.QIU M.QIAN Y M.Tribology principle and design[M].Beijing:National Defense Industry Press.2013(in Chinese).

    • [2] JOST H P.Tribology micro and macro economics:A road to economic savings[J].Tribology & Lubrication Technology,2005,61(10):18-22.

    • [3] LUO J B,ZHOU X.Superlubricitive engineering-future industry nearly getting rid of wear and frictional energy consumption[J].Friction,2020,8(4):643-665.

    • [4] HOLMBERG K,ERDEMIR A.Influence of tribology on global energy consumption,costs and emissions [J].Friction,2017,5(3):263-284.

    • [5] 赵钊.非匀速摩擦磨损试验系统的设计与研究[D].北京:北京化工大学,2006.ZHAO Z.Design and Study of the non-uniform speed friction & wearing testing system[D].Beijing:Beijing University of Chemical Technology,2006(in Chinese).

    • [6] JURAJ B,LENKA K,ALAN V,et al.The Influence of high temperature on DV-2 Jet engine Ni-based superalloy turbine blade degradation[J].Materials Today:Proceedings,2017,4(5):5743-5748.

    • [7] MEHRPOOYA M,GHORBANI B,BAHNAMIRI F K.Basic design and thermodynamic analysis of a high helium content natural gas-fuel cell power plant[J].Journal of Cleaner Production,2020,262:121401.

    • [8] 李波.航空发动机用高温轴承改造方案的研究[J].现代制造技术与装备,2019(6):5-6.LI B.Study on the modification scheme of high temperature bearing for aero-engine[J].Modern Manufacturing Technology and Equipment,2019(6):5-6(in Chinese).

    • [9] 汪超,沈红卫,梅林波.高温材料在发电燃气轮机中的应用和发展[J].热力透平,2014,43(2):94-100.WANG C,SHEN H W,MEI L B.Application and development of high temperature material for power generation gas turbines[J].Thermal Turbine,2014,43(2):94-100(in Chinese).

    • [10] SU G S,XIAO X D,DU J,et al.On cutting temperatures in high and ultrahigh-speed machining [J].The International Journal of Advanced Manufacturing Technology,2020,107(1-2):73-83.

    • [11] 王哲.基于高温力学行为的陶瓷刀具制备及其性能研究 [D].济南:山东大学,2020.WANG Z.Study on the preparation and performance of ceramic cutting tools based on high temperature mechanical behavior [D].Jinan:Shandong University,2020(in Chinese).

    • [12] 黄云战.新型陶瓷刀具的应用分析及其研究[J].机械工程师,2003(4):10-12.HUANG Y Z.Analysis on application of new types of ceramic cutting tools[J].Mechanical Engineer,2003(4):10-12(in Chinese).

    • [13] 桂长林,沈健.摩擦磨损试验机设计的基础 Ⅰ.摩擦磨损试验机的分类和特点分析[J].固体润滑,1990(1):48-55.GUI C L,SHEN J.The base of friction-wear tester design I.the classification and properties analysis of friction-wear testers[J].Journal of Solid Lubrication,1990(1):48-55(in Chinese).

    • [14] 王红星,王章忠,钱百能,等.正火温度对高碳钢组织与耐磨性能的影响[J].材料热处理学报,2018,39(12):71-77.WANG H X,WANG Z Z,QIAN B N,et al.Effect of normalizing temperature on microstructure and wear resistance of high carbon steel [J].Transactions of materials and heat treatment,2018,39(12):71-77(in Chinese).

    • [15] 秦强波,贾文静,陈松,等.退火温度对球墨铸铁的组织与力学性能的影响[J].重庆科技学院学报(自然科学版),2020,22(3):114-118.QIN Q B,JIA W J,CHEN S,et al.Effect of annealing temperature on microstructure and mechanical properties of nodular cast iron[J].Journal of Chongqing University of Science and Technology(Natural Sciences Edition),2020,22(3):114-118(in Chinese).

    • [16] 王成林,王勇澎,牛志强,等.回火温度对40CrNi2Mo钢力学性能和干摩擦性能的影响[J].材料热处理学报,2020,41(4):75-82.WANG C L,WANG Y P,NIU Z Q,et al.Effect of tempering temperature on mechanical properties and dry friction properties of 40CrNi2Mo steel[J].Transactions of Materials and Heat Treatment,2020,41(4):75-82(in Chinese).

    • [17] WANG T S,YANG J,SHANG C J,et al.Sliding friction surface microstructure and wear resistance of 9SiCr steel with low-temperature austempering treatment[J].Surface & Coatings Technology,2008,202(16):4036-4040.

    • [18] WEI X L,PAN M Q,ZENG D H,et al.Effect of heating temperature on microstructure and mechanical properties of continuous copper fiber[C]∥International Conference on Industrial Mechatronics and Automation.Chengdu,China.2009:475-478.

    • [19] CUI G D,ZHANG H B,JIANG T B,et al.Effect of process temperature on the microstructure and properties of low-temperature gas multi-component thermochemical treatment 45CrMoV alloy steel [ C]∥Advances in Chemical,Material and Metallurgical Engineering,Pts 1-5.Advanced Materials Research.Kunming,China.2013,(634-638):1712-1717.

    • [20] 黎国猛.M50NiL 钢表面复合渗层组织与性能研究[D].贵阳:贵州大学,2019.LI G M.Study on microstructure and properties of M50NiL composite permeation layer on steel surface[D].Guiyang:Guizhou University,2019(in Chinese).

    • [21] LI G M,LIANG Y L,SUN H,et al.Effect of pre-existing carbides prepared by different heat treatments on the nitriding behavior during a carburizing and nitriding duplex treatment of an M50NiL steel[J].Surface and Coatings Technology,2020,395:125930.

    • [22] ZAGONEL L F,FIGUEROA C A,DROPPA R,et al.Influence of the process temperature on the steel microstructure and hardening in pulsed plasma nitriding [J].Surface & Coatings Technology,2006,201(1):452-457.

    • [23] 胡蓉.影响渗氮质量的工艺参数[J].装备制造技术,2015(9):82-84.HU R.The process parameters affecting the quality of nitriding[J].Equipment Manufacturing Technology,2015(9):82-84(in Chinese).

    • [24] 刘建睿,严宏志,李算,等.离子渗氮工艺参数对4Cr5MoSiV钢表层组织与性能的影响[J].表面技术,2019,48(8):199-205.LIU J R,YAN H Z,LI S,et al.Effect of ion nitriding process parameters on surface properties of 4Cr5MoSiV steel[J].Surface Technology,2019,48(8):199-205(in Chinese).

    • [25] PANG G X,LI Z L,CHEN Z Y.Research on ion nitriding temperature effect on wear resistance of Cr12MoV steel[J].Physics Procedia,2013,50:120-123.

    • [26] XU L,BA D C,WANG Q,et al.Microstructure and tribological properties of plasma nitrided biomedical CoCrMo alloys[J].Rare Metal Materials and Engineering,2017,46(1):51-56.

    • [27] GADHARI P,SAHOO P.Effect of annealing temperature and alumina particles on mechanical and tribological properties of Ni-P-Al2O3 composite coatings[J].Silicon,2017,9(5):761-774.

    • [28] HOU G L,AN Y L,ZHAO X Q,et al.Effect of heat treatment on wear behavior of WC-(W,Cr) 2C-Ni coating[J].Surface Engineering,2012,28(10):786-790.

    • [29] 王期超,黄燕滨,卢士勇,等.热处理温度对镍–磷–石墨烯复合镀层性能的影响[J],电镀与涂饰,2017,36(11):562-566.WANG Q C,HUANG Y B,LU S Y,et al.Effect of heat treatment temperature on properties of nickel-phosphorus-graphene composite coating [J].Electroplating & Finishing,2017,36(11):562-566(in Chinese).

    • [30] MUKHOPADHYAY A,BARMAN T K,SAHOO P,et al.Effect of heat treatment on tribological behavior of electroless Ni-B-Mo coatings at different operating temperatures[J].Silicon,2018,10(3):1203-1215.

    • [31] ZAITSEV S V,VASHCHILIN V S,PROKHORENKOV D S,et al.Influence of annealing temperature on the microstructure and morphology of TiN films synthesized by dual magnetron sputtering[J].Technical Physics,2018,63(8):1189-1193.

    • [32] VASHISHTHA N,SAPATE S G,BAGDE P,et al.Effect of heat treatment on friction and abrasive wear behavior of WC12Co and Cr3C2-25NiCr coatings[J].Tribology International,2018,118:381-399.

    • [33] BROOKES E J,GREENWOOD P,XING G.Friction and wear of synthetic diamond[J].International Journal of Refractory Metal & Hard Materials,1999,17(1-3):69-77.

    • [34] DENG J X,ZHANG H,WU Z,et al.Friction and wear behavior of polycrystalline diamond at temperatures up to 700℃ [J].International Journal of Refractory Metals & Hard Materials,2011,29(5):631-638.

    • [35] DENG J X,ZHANG H,WU Z,et al.Unlubricated friction and wear behaviors of Al2O3/TiC ceramic cutting tool materials from high temperature tribological tests[J].International Journal of Refractory Metals and Hard Materials,2012,35:17-26.

    • [36] 张辉,邓建新,吴泽,等.Al2O3/TiC 基陶瓷刀具材料的高温摩擦磨损性能研究[J].摩擦学学报,2011,31(4):369-374.ZHANG H,DENG J X,WU Z,et al.Friction and wear behavior of Al2O3/TiC ceramic tool material at elevated temperature[J].Tribology,2011,31(4):369-374(in Chinese).

    • [37] 周松青,肖汉宁.碳化硅及其复相陶瓷高温摩擦化学的研究[J].中国陶瓷工业,2002,9(1):16-20.ZHOU S Q,XIAO H N.Tribo-chemistry of silicon carbide and its multiphase ceramic at elevated temperature[J].China Ceramic Industry,2002,9(1):16-20(in Chinese).

    • [38] MARUI E,ENDO H,OHIRA A.Wear test of cemented tungsten carbide at high atmospheric temperature(400℃)[J].Tribology Letters,2000,8(2-3):139-145.

    • [39] ZHANG H,DENG J X,LI G Y,et al.Effect of ambient temperature on wear of cemented carbide tool material[C]∥ Advanced Materials Research.Shenzhen:China.2010,148-149:276-279.

    • [40] CHEN Y J,WANG S H,HAO Y,et al.Friction and wear behavior of CrN coating on 316L stainless steel in liquid sodium at elevated temperature [J].Tribology International,2020,143:106079.

    • [41] KUO C C,LIN Y T,CHAN A,et al.High temperature wear behavior of titanium nitride coating deposited using high power impulse Magnetron Sputtering [J].Coatings,2019,9(9):555.

    • [42] ZHU J N,ZENG Q F,WANG Y F,et al.Nano-crystallization-driven high temperature self-lubricating properties of magnetron-sputtered WS2 coatings [J].Tribology Letters,2020,68(1):50.

    • [43] HE N R,LI H X,JI L,et al.High temperature tribological properties of TiAlSiN coatings produced by hybrid PVD technology[J].Tribology International,2016,98:133-143.

    • [44] DING Z,MIAO Q,LIANG W P,et al.Tribological behavior of TiAlN-coated TA19 alloy at elevated temperatures[ C]∥ IOP Conference Series:Materials Science and Engineering.Sanya:China.2020,770:012-085.

    • [45] ZHANG Y K,LI J L,XIONG D S,et al.Influence of boron nitride on tribological behavior of nickel-base composite coatings at high temperature [ C] ∥ Materials Science Forum.Qingdao:China.2011,686:711-715.

    • [46] LIU X B,LIU H Q,LIU Y F,et al.Effects of temperature and normal load on tribological behavior of nickel-based high temperature self-lubricating wear-resistant composite coating [J].Composites Part B-Engineering,2013,53:347-354.

    • [47] HOVSEPIAN P E,MANDAL P,EHIASARIAN A P,et al.Friction and wear behavior of Mo-W doped carbon-based coating during boundary lubricated sliding[J].Applied Surface Science,2016,366:260-274.

    • [48] 刘爱华.PVD 氮化物涂层的高温摩擦磨损特性及机理研究[D].济南:山东大学,2012.LIU A H.Friction and wear behaviors of PVD nitride coatings at elevated temperatures[D].Jinan:Shandong University,2012(in Chinese).

    • [49] BAZARRAGCHAA I,BYAMBAA S.High temperature friction of materials for bush bearing[C]∥2010 Proceedings of International Forum on Strategic Technology.Ulsan:South Korea.2010:387-389.

    • [50] 张一兵,柯瀛,燕松山,等.Sn-Ag-Cu 自润滑滚子轴承的高温摩擦学特性[J].润滑与密封,2019,44(12):7-11,80.ZHANG Y B,KE Y,YAN S S,et al.High temperature tribological characteristics of Sn-Ag-Cu self-lubricating roller bearings[J].Lubrication Engineering,2019,44(12):7-11,80(in Chinese).

    • [51] WISNIEWSKA-WEINERT H.Friction and wear of porous sliding bearings at high temperature.influence of MoS2 nanoparticle solid lubricant[J].Powder Metallurgy and Metal Ceramics,2013,52(7-8):424-430.

    • [52] XU Z S,SHI X L,ZHANG Q X,et al.High-temperature tribological performance of Ti3SiC2/TiAl self-lubricating composite against Si3N4 in air[J].Journal of Materials Engineering and Performance,2014,23(6):2255-2264.

    • [53] XU G H,LIANG H,LIU J,et al.Engine tribology and surface modification technology[J].Heat Treatment of Metals,2006(2):1-11.

    • [54] NAKADA M.Trends in engine technology and tribology[J].Tribology International,1994,27(1):3-8.

    • [55] SHARMA A,SADEGHI F,SHARMA A.Experimental investigation of fretting wear of coated spring clip and inlet ring in land-based gas turbines at elevated temperature [J].Wear,2020,446-447:203200.

    • [56] KNAUDER C,ALLMAIER H,SANDER D E,et al.Investigations of the friction losses of different engine concepts.part 1:A combined approach for applying subassembly-resolved friction loss analysis on a modern passenger-car diesel engine[J].Lubricants,2019,7(5):39.

    • [57] 龚磊.甲醇发动机活塞环摩擦磨损性能实验研究[D].武汉:华中科技大学,2019.GONG L.Experimental study on friction and wear of piston ring of methanol engine[D].Wuhan:Huazhong University of Science and Technology,2019(in Chinese).

    • [58] CHEN J X,TAN L L,YU X M,et al.Mechanical properties of magnesium alloys for medical application:A review [J].Journal of the Mechanical Behavior of Biomedical Materials,2018,87:68-79.

    • [59] LI W X,XU C,LI Q,et al.Progress on strengthening mechanisms of high performance medical cobalt based alloy [J].Chinese Journal of Nonferrous Metals,2016,26(5):1045-1053.

    • [60] VALIEV R Z,PROKOFIEV E A,KAZARINOV N A,et al.Developing nanostructured Ti alloys for innovative implantable medical devices[J].Materials,2020,13(4):967.

    • [61] 汤菊莉,贺学英.镍合金医疗器械的生物学研究进展 [J].医疗装备,2017,30(13):193-197.TANG J L,HE X Y.Advances in biological research of nickel alloy medical devices[J].Medical Equipment,2017,30(13):193-197(in Chinese).

    • [62] SABAHI N,CHEN W L,WANG C H,et al.A Review on additive manufacturing of shape-memory materials for biomedical applications[J].JOM,2020,72(3):1229-1253.

    • [63] KASHIN O A,KRUKOVSKII K V,POLETIKA T M.Effect of heat treatments on the structure and properties of a smalldiameter thin-walled tube of a medical nickel titanium alloy [C]∥Journal of Physics:Conference Series.Sochi:Russia.2019,1347:012085.

    • [64] LUO X,FANG C,FAN Z,et al.Semi-solid powder moulding for preparing medical Mg-3Zn alloy,microstructure evolution and mechanical properties[J].Materials Research Express,2019,6(7):076528.

    • [65] FAN X P,WANG B J,REN X Q,et al.Effect of Sintering temperature on microstructure and mechanical properties of TiMo alloys[J].Materials Science Forum,2015,815:297-300.

    • [66] FANG X X,WANG S Q,LI D H,et al.Effect of synovial fluid temperature on the corrosion resistance of Ti6Al4V,Ti6Al7Nb,and CoCrMo alloys[J].Materials and CorrosionWerkstoffe Und Korrosion,2020,71(8):1346-1360.

    • [67] LEPICKA M,CISZEWSKI A,GOLAK K,et al.A comparative study of friction and wear processes of model metallic biomaterials including registration of friction-induced temperature response of a tribological pair[J].Materials,2019,12(24):4163.

    • [68] TONG Z P,REN X D,ZHOU W F,et al.Effect of laser shock peening on wear behaviors of TC11 alloy at elevated temperature[J].Optics & Laser Technology,2019,109:139-148.

    • [69] 郝秀清,宋晓路,李亮.表面织构化刀具的研究现状与进展[J].表面技术,2016,45(9):170-181.HAO X Q,SONG X L,LI L.Development and perspective of surface texturing tools[J].Surface Technology,2016,45(9):170-181(in Chinese).

    • [70] 张玉周.表面织构化改善摩擦学性能研究综述[J].成都大学学报(自然科学版),2013,32(1):64-7+70.ZHANG Y Z.Review of research on surface texturing for improving tribological performance[J].Journal of Chengdu University(Natural Science Edition),2013,32(1):64-7,70(in Chinese).

    • [71] 王静秋,王晓雷.表面织构创新设计的研究回顾及展望 [J].机械工程学报,2015,51(23):84-95..WANG J Q,WANG X L.State of the art in innovative design of surface texture [J].Journal of Mechanical Engineering,2015,51(23):84-95(in Chinese)..

    • [72] SUH N P,MOSLEH M,HOWARD P S.Control of friction [J].Wear,1994,175(1-2):151-158.

    • [73] 胡天昌,丁齐,胡丽天.激光表面织构化对GCr15钢摩擦磨损性能的影响[J].摩擦学学报,2011,31(5):447-451.HU T C,DING Qi,HU L T.The effect of laser texturing of GCr15 steel surfaces on their tribological properties[J].Tribology,2011,31(5):447-451(in Chinese).

    • [74] 王晓雷,韩文非.边界润滑条件下表面微细织构减摩特性的研究[J].润滑与密封,2007,32(12):36-39.WANG X L,HAN W F.Effect of surface texture on friction reduction under boundary lubrication[J].Lubrication Engineering,2011,31(5):447-451(in Chinese).

    • [75] PETTERSSON U,JACOBSON S.Influence of surface texture on boundary lubricated sliding contacts[C]∥Tribology International.Stockholm:Sweden.2003,36(11):857-864.

    • [76] HAMILTON D B,HALOWIT J A.A theory of lubrication by micro irregularities[J].Journal of Basic Engineering,1966,88(1):177-185.

    • [77] SUGIHARA T,ENOMOTO T.Crater and flank wear resistance of cutting tools having micro textured surfaces[J].Precision Engineering,2013,37:888-896.

    • [78] WANG X L,KATO K.Improving the anti-seizure ability of SiC seal in water with RIE Texturing[J].Tribology Letters,2003,14(4):275-280.

    • [79] 张恩阳.表面微凹坑阵列对流体动压润滑性能的影响 [D].南京:南京航空航天大学,2013.ZHANG E Y.The impact of surface micro-dimple array on hydrodynamic lubrication[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2013(in Chinese).

    • [80] LI J L,ZHANG X F,WANG J,et al.Frictional properties of silver over-coated on surface textured tantalum interlayer at elevated temperatures[C]∥Surface & Coatings Technology.Shanghai:China.2019,365(SI):189-199.

    • [81] LI J L,HE Y,XIONG D S,et al.Tribological properties of silver coatings with laser surface textured nickel as interlayer [C].Tribology International.Lyon:France.2016,100:178-185.

    • [82] LI J L,XIONG D S,ZHANG Y K,et al.Friction and wear properties of MoS2-overcoated laser surface-textured silvercontaining nickel-based alloy at elevated temperatures [J].Tribology Letters,2011,43(2):221-228.

    • [83] 华希俊,孙建国,张培耘,等.激光微织构固体润滑表面高温摩擦学性能研究[J].表面技术,2016,45(6):112-118.HUA X J,SUN J G,ZHANG P Y,et al.Tribological properties of the laser micro-texture surface filled with solid lubricant at elevated temperature[J],Surface Technology,2016,45(6):112-118(in Chinese).

    • [84] 张美琼,王燕,张静,等.润滑油基础油组成对低温性能的影响[J].润滑油,2019,34(5):61-64.ZHANG M Q,WANG Y,ZHANG J,et al.Effect of the composition of lube base oil on low temperature performance [J].Lubrication Oil,2019,34(5):61-64(in Chinese).

    • [85] ZHENG F Z,ZHOU S D,XIE F,et al.Analysis on lubricating and viscosity-temperature characteristics of the vegetable oil[J].Applied Mechanics and Materials,2012:1451-1454.

    • [86] 王文涛,罗蓉,冯光乐,等.旋转黏度试验影响因素与粘温曲线绘制研究[J].武汉理工大学学报(交通科学与工程版),2016,40(3):514-518.WANG W T,LUO R,FENG G L,et al.Impact factors in rotational viscosity tests[J].Journal of Wuhan University of Technology(Transportation Science & Engineering),2016,40(3):514-518(in Chinese).

    • [87] 张心爱.基础润滑油摩擦学性能及其流变特性分析[D].重庆:重庆大学,2016.ZHANG X A.Tribological and rheological properties of lubricating base oils [ D].Chongqing:Chongqing University,2016(in Chinese).

    • [88] 李慧.润滑油的性能分析及回收利用[D].长春:东北师范大学,2015.LI H.The performance analysis and recycling of lubricating oil[D].Changchun:Northeast Normal University,2015(in Chinese).

    • [89] HIRST W,MOORE A J.The Effect of temperature on traction in elastohydrodynamic lubrication [J].Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences,1980,298(1438):183-208.

    • [90] WOS S,KOSZELA W,PAWLUS P,et al.Effects of surface texturing and kind of lubricant on the coefficient of friction at ambient and elevated temperatures [J].Tribology International,2018,117:174-179.

    • [91] AMANOV A,WATABE T,TSUBOI R,et al.Improvement in the tribological characteristics of Si-DLC coating by laser surface texturing under oil-lubricated point contacts at various temperatures[J].Surface and Coatings Technology,2013,232:549-60.

    • [92] JANSSEN A,DADGAR M,WIETHEGER W.Impact of the oil temperature on the frictional behavior of laser-structured surfaces [J].Tribology Transactions,2019,62(3):443-451.

    • [93] ZHENG D,CAI Z B,SHEN M X,et al.Investigation of the tribology behavior of the graphene nanosheets as oil additives on textured alloy cast iron surface[J].Applied Surface Science,2016,387:66-75.

    • [94] NGO C V,CHUN D M.Fast wettability transition from hydrophilic to superhydrophobic laser-textured stainless steel surfaces under low-temperature annealing[J].Applied Surface Science,2017,409:232-240.

    • [95] NGO C V,CHUN D M.Effect of heat treatment temperature on the wettability transition from hydrophilic to superhydrophobic on laser-ablated metallic surfaces[J].Advanced Engineering Materials,2018,20(7):1701086.

    • [96] LIU W J,CAI M Y,LUO X,et al.Wettability transition modes of aluminum surfaces with various micro/nanostructures produced by a femtosecond laser[J].Journal of Laser Applications,2019,31(2):UNSP 022503.

    • [97] LI X Y,JIANG Y,JIANG Z H,et al.Reversible wettability transition between superhydrophilicity and superhydrophobicity through alternate heating-reheating cycle on laser-ablated brass surface [J].Applied Surface Science,2019,492:349-361.

    • [98] LONG J Y,ZHONG M L,ZHANG H J,et al.Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air [J].Journal of Colloid and Interface Science,2015,441:1-9.

    • [99] LIU Z A,YANG X L,PANG G B,et al.Temperature-based adhesion tuning and superwettability switching on superhydrophobic aluminum surface for droplet manipulations[J].Surface & Coatings Technology,2019,375:527-533.

    • [100] 周峰,吴杨.“润滑”之新解[J].摩擦学学报,2016,36(1):132-136.ZHOU F,WU Y.A novel insight into “ Lubrication” [J].Tribology,2016,36(1):132-136(in Chinese).

    • [101] XUE Y H,WU Y,PEI X W,et al.How solid-liquid adhesive property regulates liquid slippage on solid surfaces?[J].Langmuir the ACS Journal of Surfaces & Colloids,2015,31(1):226-32.

    • [102] PAWLAK Z,URBANIAK W,OLOYEDE A.The relationship between friction and wettability in aqueous environment [C]∥Wear,2011,271(9-10):1745-1749.

    • [103] PANG M H,LIU X J,LIU K.Effect of Wettability on the friction of a laser-textured cemented carbide surface in dilute cutting fluid [J].Advances in Mechanical Engineering,2017,9(12):1-9.

    • [104] GE D L,DENG J X,DUAN R,et al.Effect of surface wettability on tribological properties of Al2O3/TiC ceramic under wet lubrication[J].Ceramics International,2019,45(18):24554-24563.

    • [105] HAO X Q,LI H L,YANG Y F,et al.Experiment on cutting performance of textured cemented carbide tools with various wettability levels[J].The International Journal of Advanced Manufacturing Technology,2019,103(1-4):757-768.

    • [106] 王权岱,李志龙,郭兵兵,等.不同润滑状态下表面润湿性的摩擦学特性研究[J].摩擦学学报,2018,38(6):665-672.WANG Q D,LI Z L,GUO B B,et al.Tribological properties of surface wettability under different lubrication regimes [J].Tribology,2018,38(6):665-672(in Chinese).

  • 参考文献

    • [1] 邱明,钱亚明.摩擦学原理与设计[M].北京:国防工业出版社.2013.QIU M.QIAN Y M.Tribology principle and design[M].Beijing:National Defense Industry Press.2013(in Chinese).

    • [2] JOST H P.Tribology micro and macro economics:A road to economic savings[J].Tribology & Lubrication Technology,2005,61(10):18-22.

    • [3] LUO J B,ZHOU X.Superlubricitive engineering-future industry nearly getting rid of wear and frictional energy consumption[J].Friction,2020,8(4):643-665.

    • [4] HOLMBERG K,ERDEMIR A.Influence of tribology on global energy consumption,costs and emissions [J].Friction,2017,5(3):263-284.

    • [5] 赵钊.非匀速摩擦磨损试验系统的设计与研究[D].北京:北京化工大学,2006.ZHAO Z.Design and Study of the non-uniform speed friction & wearing testing system[D].Beijing:Beijing University of Chemical Technology,2006(in Chinese).

    • [6] JURAJ B,LENKA K,ALAN V,et al.The Influence of high temperature on DV-2 Jet engine Ni-based superalloy turbine blade degradation[J].Materials Today:Proceedings,2017,4(5):5743-5748.

    • [7] MEHRPOOYA M,GHORBANI B,BAHNAMIRI F K.Basic design and thermodynamic analysis of a high helium content natural gas-fuel cell power plant[J].Journal of Cleaner Production,2020,262:121401.

    • [8] 李波.航空发动机用高温轴承改造方案的研究[J].现代制造技术与装备,2019(6):5-6.LI B.Study on the modification scheme of high temperature bearing for aero-engine[J].Modern Manufacturing Technology and Equipment,2019(6):5-6(in Chinese).

    • [9] 汪超,沈红卫,梅林波.高温材料在发电燃气轮机中的应用和发展[J].热力透平,2014,43(2):94-100.WANG C,SHEN H W,MEI L B.Application and development of high temperature material for power generation gas turbines[J].Thermal Turbine,2014,43(2):94-100(in Chinese).

    • [10] SU G S,XIAO X D,DU J,et al.On cutting temperatures in high and ultrahigh-speed machining [J].The International Journal of Advanced Manufacturing Technology,2020,107(1-2):73-83.

    • [11] 王哲.基于高温力学行为的陶瓷刀具制备及其性能研究 [D].济南:山东大学,2020.WANG Z.Study on the preparation and performance of ceramic cutting tools based on high temperature mechanical behavior [D].Jinan:Shandong University,2020(in Chinese).

    • [12] 黄云战.新型陶瓷刀具的应用分析及其研究[J].机械工程师,2003(4):10-12.HUANG Y Z.Analysis on application of new types of ceramic cutting tools[J].Mechanical Engineer,2003(4):10-12(in Chinese).

    • [13] 桂长林,沈健.摩擦磨损试验机设计的基础 Ⅰ.摩擦磨损试验机的分类和特点分析[J].固体润滑,1990(1):48-55.GUI C L,SHEN J.The base of friction-wear tester design I.the classification and properties analysis of friction-wear testers[J].Journal of Solid Lubrication,1990(1):48-55(in Chinese).

    • [14] 王红星,王章忠,钱百能,等.正火温度对高碳钢组织与耐磨性能的影响[J].材料热处理学报,2018,39(12):71-77.WANG H X,WANG Z Z,QIAN B N,et al.Effect of normalizing temperature on microstructure and wear resistance of high carbon steel [J].Transactions of materials and heat treatment,2018,39(12):71-77(in Chinese).

    • [15] 秦强波,贾文静,陈松,等.退火温度对球墨铸铁的组织与力学性能的影响[J].重庆科技学院学报(自然科学版),2020,22(3):114-118.QIN Q B,JIA W J,CHEN S,et al.Effect of annealing temperature on microstructure and mechanical properties of nodular cast iron[J].Journal of Chongqing University of Science and Technology(Natural Sciences Edition),2020,22(3):114-118(in Chinese).

    • [16] 王成林,王勇澎,牛志强,等.回火温度对40CrNi2Mo钢力学性能和干摩擦性能的影响[J].材料热处理学报,2020,41(4):75-82.WANG C L,WANG Y P,NIU Z Q,et al.Effect of tempering temperature on mechanical properties and dry friction properties of 40CrNi2Mo steel[J].Transactions of Materials and Heat Treatment,2020,41(4):75-82(in Chinese).

    • [17] WANG T S,YANG J,SHANG C J,et al.Sliding friction surface microstructure and wear resistance of 9SiCr steel with low-temperature austempering treatment[J].Surface & Coatings Technology,2008,202(16):4036-4040.

    • [18] WEI X L,PAN M Q,ZENG D H,et al.Effect of heating temperature on microstructure and mechanical properties of continuous copper fiber[C]∥International Conference on Industrial Mechatronics and Automation.Chengdu,China.2009:475-478.

    • [19] CUI G D,ZHANG H B,JIANG T B,et al.Effect of process temperature on the microstructure and properties of low-temperature gas multi-component thermochemical treatment 45CrMoV alloy steel [ C]∥Advances in Chemical,Material and Metallurgical Engineering,Pts 1-5.Advanced Materials Research.Kunming,China.2013,(634-638):1712-1717.

    • [20] 黎国猛.M50NiL 钢表面复合渗层组织与性能研究[D].贵阳:贵州大学,2019.LI G M.Study on microstructure and properties of M50NiL composite permeation layer on steel surface[D].Guiyang:Guizhou University,2019(in Chinese).

    • [21] LI G M,LIANG Y L,SUN H,et al.Effect of pre-existing carbides prepared by different heat treatments on the nitriding behavior during a carburizing and nitriding duplex treatment of an M50NiL steel[J].Surface and Coatings Technology,2020,395:125930.

    • [22] ZAGONEL L F,FIGUEROA C A,DROPPA R,et al.Influence of the process temperature on the steel microstructure and hardening in pulsed plasma nitriding [J].Surface & Coatings Technology,2006,201(1):452-457.

    • [23] 胡蓉.影响渗氮质量的工艺参数[J].装备制造技术,2015(9):82-84.HU R.The process parameters affecting the quality of nitriding[J].Equipment Manufacturing Technology,2015(9):82-84(in Chinese).

    • [24] 刘建睿,严宏志,李算,等.离子渗氮工艺参数对4Cr5MoSiV钢表层组织与性能的影响[J].表面技术,2019,48(8):199-205.LIU J R,YAN H Z,LI S,et al.Effect of ion nitriding process parameters on surface properties of 4Cr5MoSiV steel[J].Surface Technology,2019,48(8):199-205(in Chinese).

    • [25] PANG G X,LI Z L,CHEN Z Y.Research on ion nitriding temperature effect on wear resistance of Cr12MoV steel[J].Physics Procedia,2013,50:120-123.

    • [26] XU L,BA D C,WANG Q,et al.Microstructure and tribological properties of plasma nitrided biomedical CoCrMo alloys[J].Rare Metal Materials and Engineering,2017,46(1):51-56.

    • [27] GADHARI P,SAHOO P.Effect of annealing temperature and alumina particles on mechanical and tribological properties of Ni-P-Al2O3 composite coatings[J].Silicon,2017,9(5):761-774.

    • [28] HOU G L,AN Y L,ZHAO X Q,et al.Effect of heat treatment on wear behavior of WC-(W,Cr) 2C-Ni coating[J].Surface Engineering,2012,28(10):786-790.

    • [29] 王期超,黄燕滨,卢士勇,等.热处理温度对镍–磷–石墨烯复合镀层性能的影响[J],电镀与涂饰,2017,36(11):562-566.WANG Q C,HUANG Y B,LU S Y,et al.Effect of heat treatment temperature on properties of nickel-phosphorus-graphene composite coating [J].Electroplating & Finishing,2017,36(11):562-566(in Chinese).

    • [30] MUKHOPADHYAY A,BARMAN T K,SAHOO P,et al.Effect of heat treatment on tribological behavior of electroless Ni-B-Mo coatings at different operating temperatures[J].Silicon,2018,10(3):1203-1215.

    • [31] ZAITSEV S V,VASHCHILIN V S,PROKHORENKOV D S,et al.Influence of annealing temperature on the microstructure and morphology of TiN films synthesized by dual magnetron sputtering[J].Technical Physics,2018,63(8):1189-1193.

    • [32] VASHISHTHA N,SAPATE S G,BAGDE P,et al.Effect of heat treatment on friction and abrasive wear behavior of WC12Co and Cr3C2-25NiCr coatings[J].Tribology International,2018,118:381-399.

    • [33] BROOKES E J,GREENWOOD P,XING G.Friction and wear of synthetic diamond[J].International Journal of Refractory Metal & Hard Materials,1999,17(1-3):69-77.

    • [34] DENG J X,ZHANG H,WU Z,et al.Friction and wear behavior of polycrystalline diamond at temperatures up to 700℃ [J].International Journal of Refractory Metals & Hard Materials,2011,29(5):631-638.

    • [35] DENG J X,ZHANG H,WU Z,et al.Unlubricated friction and wear behaviors of Al2O3/TiC ceramic cutting tool materials from high temperature tribological tests[J].International Journal of Refractory Metals and Hard Materials,2012,35:17-26.

    • [36] 张辉,邓建新,吴泽,等.Al2O3/TiC 基陶瓷刀具材料的高温摩擦磨损性能研究[J].摩擦学学报,2011,31(4):369-374.ZHANG H,DENG J X,WU Z,et al.Friction and wear behavior of Al2O3/TiC ceramic tool material at elevated temperature[J].Tribology,2011,31(4):369-374(in Chinese).

    • [37] 周松青,肖汉宁.碳化硅及其复相陶瓷高温摩擦化学的研究[J].中国陶瓷工业,2002,9(1):16-20.ZHOU S Q,XIAO H N.Tribo-chemistry of silicon carbide and its multiphase ceramic at elevated temperature[J].China Ceramic Industry,2002,9(1):16-20(in Chinese).

    • [38] MARUI E,ENDO H,OHIRA A.Wear test of cemented tungsten carbide at high atmospheric temperature(400℃)[J].Tribology Letters,2000,8(2-3):139-145.

    • [39] ZHANG H,DENG J X,LI G Y,et al.Effect of ambient temperature on wear of cemented carbide tool material[C]∥ Advanced Materials Research.Shenzhen:China.2010,148-149:276-279.

    • [40] CHEN Y J,WANG S H,HAO Y,et al.Friction and wear behavior of CrN coating on 316L stainless steel in liquid sodium at elevated temperature [J].Tribology International,2020,143:106079.

    • [41] KUO C C,LIN Y T,CHAN A,et al.High temperature wear behavior of titanium nitride coating deposited using high power impulse Magnetron Sputtering [J].Coatings,2019,9(9):555.

    • [42] ZHU J N,ZENG Q F,WANG Y F,et al.Nano-crystallization-driven high temperature self-lubricating properties of magnetron-sputtered WS2 coatings [J].Tribology Letters,2020,68(1):50.

    • [43] HE N R,LI H X,JI L,et al.High temperature tribological properties of TiAlSiN coatings produced by hybrid PVD technology[J].Tribology International,2016,98:133-143.

    • [44] DING Z,MIAO Q,LIANG W P,et al.Tribological behavior of TiAlN-coated TA19 alloy at elevated temperatures[ C]∥ IOP Conference Series:Materials Science and Engineering.Sanya:China.2020,770:012-085.

    • [45] ZHANG Y K,LI J L,XIONG D S,et al.Influence of boron nitride on tribological behavior of nickel-base composite coatings at high temperature [ C] ∥ Materials Science Forum.Qingdao:China.2011,686:711-715.

    • [46] LIU X B,LIU H Q,LIU Y F,et al.Effects of temperature and normal load on tribological behavior of nickel-based high temperature self-lubricating wear-resistant composite coating [J].Composites Part B-Engineering,2013,53:347-354.

    • [47] HOVSEPIAN P E,MANDAL P,EHIASARIAN A P,et al.Friction and wear behavior of Mo-W doped carbon-based coating during boundary lubricated sliding[J].Applied Surface Science,2016,366:260-274.

    • [48] 刘爱华.PVD 氮化物涂层的高温摩擦磨损特性及机理研究[D].济南:山东大学,2012.LIU A H.Friction and wear behaviors of PVD nitride coatings at elevated temperatures[D].Jinan:Shandong University,2012(in Chinese).

    • [49] BAZARRAGCHAA I,BYAMBAA S.High temperature friction of materials for bush bearing[C]∥2010 Proceedings of International Forum on Strategic Technology.Ulsan:South Korea.2010:387-389.

    • [50] 张一兵,柯瀛,燕松山,等.Sn-Ag-Cu 自润滑滚子轴承的高温摩擦学特性[J].润滑与密封,2019,44(12):7-11,80.ZHANG Y B,KE Y,YAN S S,et al.High temperature tribological characteristics of Sn-Ag-Cu self-lubricating roller bearings[J].Lubrication Engineering,2019,44(12):7-11,80(in Chinese).

    • [51] WISNIEWSKA-WEINERT H.Friction and wear of porous sliding bearings at high temperature.influence of MoS2 nanoparticle solid lubricant[J].Powder Metallurgy and Metal Ceramics,2013,52(7-8):424-430.

    • [52] XU Z S,SHI X L,ZHANG Q X,et al.High-temperature tribological performance of Ti3SiC2/TiAl self-lubricating composite against Si3N4 in air[J].Journal of Materials Engineering and Performance,2014,23(6):2255-2264.

    • [53] XU G H,LIANG H,LIU J,et al.Engine tribology and surface modification technology[J].Heat Treatment of Metals,2006(2):1-11.

    • [54] NAKADA M.Trends in engine technology and tribology[J].Tribology International,1994,27(1):3-8.

    • [55] SHARMA A,SADEGHI F,SHARMA A.Experimental investigation of fretting wear of coated spring clip and inlet ring in land-based gas turbines at elevated temperature [J].Wear,2020,446-447:203200.

    • [56] KNAUDER C,ALLMAIER H,SANDER D E,et al.Investigations of the friction losses of different engine concepts.part 1:A combined approach for applying subassembly-resolved friction loss analysis on a modern passenger-car diesel engine[J].Lubricants,2019,7(5):39.

    • [57] 龚磊.甲醇发动机活塞环摩擦磨损性能实验研究[D].武汉:华中科技大学,2019.GONG L.Experimental study on friction and wear of piston ring of methanol engine[D].Wuhan:Huazhong University of Science and Technology,2019(in Chinese).

    • [58] CHEN J X,TAN L L,YU X M,et al.Mechanical properties of magnesium alloys for medical application:A review [J].Journal of the Mechanical Behavior of Biomedical Materials,2018,87:68-79.

    • [59] LI W X,XU C,LI Q,et al.Progress on strengthening mechanisms of high performance medical cobalt based alloy [J].Chinese Journal of Nonferrous Metals,2016,26(5):1045-1053.

    • [60] VALIEV R Z,PROKOFIEV E A,KAZARINOV N A,et al.Developing nanostructured Ti alloys for innovative implantable medical devices[J].Materials,2020,13(4):967.

    • [61] 汤菊莉,贺学英.镍合金医疗器械的生物学研究进展 [J].医疗装备,2017,30(13):193-197.TANG J L,HE X Y.Advances in biological research of nickel alloy medical devices[J].Medical Equipment,2017,30(13):193-197(in Chinese).

    • [62] SABAHI N,CHEN W L,WANG C H,et al.A Review on additive manufacturing of shape-memory materials for biomedical applications[J].JOM,2020,72(3):1229-1253.

    • [63] KASHIN O A,KRUKOVSKII K V,POLETIKA T M.Effect of heat treatments on the structure and properties of a smalldiameter thin-walled tube of a medical nickel titanium alloy [C]∥Journal of Physics:Conference Series.Sochi:Russia.2019,1347:012085.

    • [64] LUO X,FANG C,FAN Z,et al.Semi-solid powder moulding for preparing medical Mg-3Zn alloy,microstructure evolution and mechanical properties[J].Materials Research Express,2019,6(7):076528.

    • [65] FAN X P,WANG B J,REN X Q,et al.Effect of Sintering temperature on microstructure and mechanical properties of TiMo alloys[J].Materials Science Forum,2015,815:297-300.

    • [66] FANG X X,WANG S Q,LI D H,et al.Effect of synovial fluid temperature on the corrosion resistance of Ti6Al4V,Ti6Al7Nb,and CoCrMo alloys[J].Materials and CorrosionWerkstoffe Und Korrosion,2020,71(8):1346-1360.

    • [67] LEPICKA M,CISZEWSKI A,GOLAK K,et al.A comparative study of friction and wear processes of model metallic biomaterials including registration of friction-induced temperature response of a tribological pair[J].Materials,2019,12(24):4163.

    • [68] TONG Z P,REN X D,ZHOU W F,et al.Effect of laser shock peening on wear behaviors of TC11 alloy at elevated temperature[J].Optics & Laser Technology,2019,109:139-148.

    • [69] 郝秀清,宋晓路,李亮.表面织构化刀具的研究现状与进展[J].表面技术,2016,45(9):170-181.HAO X Q,SONG X L,LI L.Development and perspective of surface texturing tools[J].Surface Technology,2016,45(9):170-181(in Chinese).

    • [70] 张玉周.表面织构化改善摩擦学性能研究综述[J].成都大学学报(自然科学版),2013,32(1):64-7+70.ZHANG Y Z.Review of research on surface texturing for improving tribological performance[J].Journal of Chengdu University(Natural Science Edition),2013,32(1):64-7,70(in Chinese).

    • [71] 王静秋,王晓雷.表面织构创新设计的研究回顾及展望 [J].机械工程学报,2015,51(23):84-95..WANG J Q,WANG X L.State of the art in innovative design of surface texture [J].Journal of Mechanical Engineering,2015,51(23):84-95(in Chinese)..

    • [72] SUH N P,MOSLEH M,HOWARD P S.Control of friction [J].Wear,1994,175(1-2):151-158.

    • [73] 胡天昌,丁齐,胡丽天.激光表面织构化对GCr15钢摩擦磨损性能的影响[J].摩擦学学报,2011,31(5):447-451.HU T C,DING Qi,HU L T.The effect of laser texturing of GCr15 steel surfaces on their tribological properties[J].Tribology,2011,31(5):447-451(in Chinese).

    • [74] 王晓雷,韩文非.边界润滑条件下表面微细织构减摩特性的研究[J].润滑与密封,2007,32(12):36-39.WANG X L,HAN W F.Effect of surface texture on friction reduction under boundary lubrication[J].Lubrication Engineering,2011,31(5):447-451(in Chinese).

    • [75] PETTERSSON U,JACOBSON S.Influence of surface texture on boundary lubricated sliding contacts[C]∥Tribology International.Stockholm:Sweden.2003,36(11):857-864.

    • [76] HAMILTON D B,HALOWIT J A.A theory of lubrication by micro irregularities[J].Journal of Basic Engineering,1966,88(1):177-185.

    • [77] SUGIHARA T,ENOMOTO T.Crater and flank wear resistance of cutting tools having micro textured surfaces[J].Precision Engineering,2013,37:888-896.

    • [78] WANG X L,KATO K.Improving the anti-seizure ability of SiC seal in water with RIE Texturing[J].Tribology Letters,2003,14(4):275-280.

    • [79] 张恩阳.表面微凹坑阵列对流体动压润滑性能的影响 [D].南京:南京航空航天大学,2013.ZHANG E Y.The impact of surface micro-dimple array on hydrodynamic lubrication[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2013(in Chinese).

    • [80] LI J L,ZHANG X F,WANG J,et al.Frictional properties of silver over-coated on surface textured tantalum interlayer at elevated temperatures[C]∥Surface & Coatings Technology.Shanghai:China.2019,365(SI):189-199.

    • [81] LI J L,HE Y,XIONG D S,et al.Tribological properties of silver coatings with laser surface textured nickel as interlayer [C].Tribology International.Lyon:France.2016,100:178-185.

    • [82] LI J L,XIONG D S,ZHANG Y K,et al.Friction and wear properties of MoS2-overcoated laser surface-textured silvercontaining nickel-based alloy at elevated temperatures [J].Tribology Letters,2011,43(2):221-228.

    • [83] 华希俊,孙建国,张培耘,等.激光微织构固体润滑表面高温摩擦学性能研究[J].表面技术,2016,45(6):112-118.HUA X J,SUN J G,ZHANG P Y,et al.Tribological properties of the laser micro-texture surface filled with solid lubricant at elevated temperature[J],Surface Technology,2016,45(6):112-118(in Chinese).

    • [84] 张美琼,王燕,张静,等.润滑油基础油组成对低温性能的影响[J].润滑油,2019,34(5):61-64.ZHANG M Q,WANG Y,ZHANG J,et al.Effect of the composition of lube base oil on low temperature performance [J].Lubrication Oil,2019,34(5):61-64(in Chinese).

    • [85] ZHENG F Z,ZHOU S D,XIE F,et al.Analysis on lubricating and viscosity-temperature characteristics of the vegetable oil[J].Applied Mechanics and Materials,2012:1451-1454.

    • [86] 王文涛,罗蓉,冯光乐,等.旋转黏度试验影响因素与粘温曲线绘制研究[J].武汉理工大学学报(交通科学与工程版),2016,40(3):514-518.WANG W T,LUO R,FENG G L,et al.Impact factors in rotational viscosity tests[J].Journal of Wuhan University of Technology(Transportation Science & Engineering),2016,40(3):514-518(in Chinese).

    • [87] 张心爱.基础润滑油摩擦学性能及其流变特性分析[D].重庆:重庆大学,2016.ZHANG X A.Tribological and rheological properties of lubricating base oils [ D].Chongqing:Chongqing University,2016(in Chinese).

    • [88] 李慧.润滑油的性能分析及回收利用[D].长春:东北师范大学,2015.LI H.The performance analysis and recycling of lubricating oil[D].Changchun:Northeast Normal University,2015(in Chinese).

    • [89] HIRST W,MOORE A J.The Effect of temperature on traction in elastohydrodynamic lubrication [J].Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences,1980,298(1438):183-208.

    • [90] WOS S,KOSZELA W,PAWLUS P,et al.Effects of surface texturing and kind of lubricant on the coefficient of friction at ambient and elevated temperatures [J].Tribology International,2018,117:174-179.

    • [91] AMANOV A,WATABE T,TSUBOI R,et al.Improvement in the tribological characteristics of Si-DLC coating by laser surface texturing under oil-lubricated point contacts at various temperatures[J].Surface and Coatings Technology,2013,232:549-60.

    • [92] JANSSEN A,DADGAR M,WIETHEGER W.Impact of the oil temperature on the frictional behavior of laser-structured surfaces [J].Tribology Transactions,2019,62(3):443-451.

    • [93] ZHENG D,CAI Z B,SHEN M X,et al.Investigation of the tribology behavior of the graphene nanosheets as oil additives on textured alloy cast iron surface[J].Applied Surface Science,2016,387:66-75.

    • [94] NGO C V,CHUN D M.Fast wettability transition from hydrophilic to superhydrophobic laser-textured stainless steel surfaces under low-temperature annealing[J].Applied Surface Science,2017,409:232-240.

    • [95] NGO C V,CHUN D M.Effect of heat treatment temperature on the wettability transition from hydrophilic to superhydrophobic on laser-ablated metallic surfaces[J].Advanced Engineering Materials,2018,20(7):1701086.

    • [96] LIU W J,CAI M Y,LUO X,et al.Wettability transition modes of aluminum surfaces with various micro/nanostructures produced by a femtosecond laser[J].Journal of Laser Applications,2019,31(2):UNSP 022503.

    • [97] LI X Y,JIANG Y,JIANG Z H,et al.Reversible wettability transition between superhydrophilicity and superhydrophobicity through alternate heating-reheating cycle on laser-ablated brass surface [J].Applied Surface Science,2019,492:349-361.

    • [98] LONG J Y,ZHONG M L,ZHANG H J,et al.Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air [J].Journal of Colloid and Interface Science,2015,441:1-9.

    • [99] LIU Z A,YANG X L,PANG G B,et al.Temperature-based adhesion tuning and superwettability switching on superhydrophobic aluminum surface for droplet manipulations[J].Surface & Coatings Technology,2019,375:527-533.

    • [100] 周峰,吴杨.“润滑”之新解[J].摩擦学学报,2016,36(1):132-136.ZHOU F,WU Y.A novel insight into “ Lubrication” [J].Tribology,2016,36(1):132-136(in Chinese).

    • [101] XUE Y H,WU Y,PEI X W,et al.How solid-liquid adhesive property regulates liquid slippage on solid surfaces?[J].Langmuir the ACS Journal of Surfaces & Colloids,2015,31(1):226-32.

    • [102] PAWLAK Z,URBANIAK W,OLOYEDE A.The relationship between friction and wettability in aqueous environment [C]∥Wear,2011,271(9-10):1745-1749.

    • [103] PANG M H,LIU X J,LIU K.Effect of Wettability on the friction of a laser-textured cemented carbide surface in dilute cutting fluid [J].Advances in Mechanical Engineering,2017,9(12):1-9.

    • [104] GE D L,DENG J X,DUAN R,et al.Effect of surface wettability on tribological properties of Al2O3/TiC ceramic under wet lubrication[J].Ceramics International,2019,45(18):24554-24563.

    • [105] HAO X Q,LI H L,YANG Y F,et al.Experiment on cutting performance of textured cemented carbide tools with various wettability levels[J].The International Journal of Advanced Manufacturing Technology,2019,103(1-4):757-768.

    • [106] 王权岱,李志龙,郭兵兵,等.不同润滑状态下表面润湿性的摩擦学特性研究[J].摩擦学学报,2018,38(6):665-672.WANG Q D,LI Z L,GUO B B,et al.Tribological properties of surface wettability under different lubrication regimes [J].Tribology,2018,38(6):665-672(in Chinese).

  • 手机扫一扫看