- 工程前沿 -
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

杨柏俊(1981—),男(汉),副研究员,博士;研究方向:金属材料工程;E-mail:bjyang@imr.ac.cn

中图分类号:TG156.88;TB114.2

文献标识码:A

文章编号:1007-9289(2020)05-0115-08

DOI:10.11933/j.issn.1007-9289.20200819001

参考文献 1
卢秉恒,李涤尘.增材制造(3D 打印)技术发展[J].机械制造与自动化,2013,42(4):1-4.LU B H,LI D C.Development of the additive manufacturing(3D printing)technology[J].Machine Building & Automa-tion,2013,42(4):1-4(in Chinese).
参考文献 2
WU X H,LIANG J,MEI J,et al,Microstructures of laser-deposited Ti-6Al-4V[J].Material & Design,2004,25:137-144.
参考文献 3
QU H P,LI P,ZHANG S Q,et al.Microstructure and me-chanical property of laser melting deposition(LMD)Ti/TiAl structural gradient material[J].Material & Design,2010,31(1):574-582.
参考文献 4
BUCHBINDER D,SCHLEIFENBAUM H,HEIDRICH S,et al.High power selective laser melting(HP SLM)of alumi-num parts[J].Physics Procedia,2011,12:271-278.
参考文献 5
MARTIN J H,YAHATA B D,HUNDLEY J M,et al.3D printing of high-strength aluminium alloys [J].Nature,2017,549:365-369.
参考文献 6
DINDA G P,DASGUPTA A K,MAZUMDER J,Laser aideddirect metal deposition of Inconel 625 superalloy:microstruc-tural evolution and thermal stability [J].Materials Science and Engineering:A,2009,509(1):98-104.
参考文献 7
LI J,WANG H M,Microstructure and mechanical properties of rapid directionally solidified Ni-base superalloy Rene’ 41 by laser melting deposition manufacturing[J].Materials Sci-ence and Engineering:A,2010,527(18):4823-4829.
参考文献 8
JARVINEN J P,MATILAINEN V,LI X Y,et al.Charac-terization of effect of support structures in laser additive man-ufacturing of stainless steel [J].Physics Procedia,2014,56:72-81.
参考文献 9
ZIETALA M,DUREJKO T,POLANSKI M,et al.The mi-crostructure,mechanical properties and corrosion resistance of 316 L stainless steel fabricated using laser engineered net shaping[J].Materials Science and Engineering:A,2010,677:1-10.
参考文献 10
杨延华.增材制造(3D 打印)分类及研究进展[J],航空工程进展,2019,10(3):309-318.YANG Y H.Analysis of classifications and characteristic of additive manufacturing(3D Print)[J].Advances in Aero-nautical Science and Engineering,2019,10(3):309-318(in Chinese).
参考文献 11
赵霄昊,左振博,韩志宇.粉末钛合金3D打印技术研究进展[J].材料导报,2016,30(23):120-126.ZHAO X H,ZUO Z B,HAN Z Y.A Review on powder tita-nium alloy 3D printing technology [J].Materials Review,2016,30(23):120-126(in Chinese).
参考文献 12
郑增,王联凤,严彪.3D 打印金属材料研究进展[J].上海有色金属,2016,37(1):57-60.ZHENG Z,WANG L F,YAN B.Research progress of metal materials for 3D printing[J].Shanghai Nonferrous Metals,2016,37(1):57-60(in Chinese).
参考文献 13
HERNANDEZ J,LI S J,MARTINEZ E,et al.Microstruc-tures and hardness properties for β-phase Ti-24Nb-4Zr-7.9Sn alloy fabricated by electron beam melting[J],Journal Materials Science Technology,2013,29(11):1011-1015.
参考文献 14
范立坤.増材制造用金属粉末材料的关键影响因素分析 [J].理化检验:物理分册,2015,51(7):480-485.FAN L K.Analysis on key factors of metal powders for addi-tive manufacturing [J].PTCA(Part A:Physicals Test),2015,51(7):480-485(in Chinese).
参考文献 15
THIJS L,VERHAEGHE F,CRAEGHS T,et al.A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J].Acta Materialia,2010,58(9):3303.
参考文献 16
LOUVIS E,FOX P,SUTCLIFFE C J.Selective laser melt-ing of aluminium components[J].Journal of Materials Pro-cessing Technology,2011,211:275-284.
参考文献 17
GU D,DAI D.Role of melt behavior in modifying oxidation distribution using an interface incorporated model in selective laser melting of aluminum-based material[J].Journal of Ap-plied Physics,2016,120:83-104.
参考文献 18
JELIS E,CLEMENTE M,KERWIEN S,et al.Metallurgical and mechanical evaluation of 4340 steel produced by direct metal laser sintering[J].JOM,2015,67:582-589.
参考文献 19
OLAKANMI E O,COCHRANE R F,DALGARNO K W,et al.A review on selective laser sintering/melting(SLS/SLM)of aluminium alloy powders:Processing,microstructure,and properties[J].Progress in Materials Science,2015,74:401-477.
参考文献 20
TAN J H,WONG W L E,DALGARNO K W.An overview of powder granulometry on feedstock and part performance in the selective laser melting process[J].Additive Manufactur-ing,2017,18:228-255.
参考文献 21
SIMCHI A,POHL A.Effects of laser sintering processing parameters on the microstructure and densification of iron powder[J].Materials Science and Engineering,2013,359:119-128.
参考文献 22
GRELL W A,SOLIS-RAMOS E,CLARK E,et al.Effect of powder oxidation on the impact toughness of electron beam melting Ti-6Al-4V [J].Additive Manufacturing,2017,17:123-134.
参考文献 23
LEUNG C L A,MARUSSI S,TOWRIE M,et al.The effect of powder oxidation on defect formation in laser additive Man-ufacturing[J].Acta Materialia,2019,166:294-305.
参考文献 24
DONG Z,KANG H,XIE Y,et al.Effect of powder oxygen content on microstructure and mechanical properties of a laser additively-manufactured 12CrNi2 alloy steel [J].Materials Letters,2019,236:214-217.
参考文献 25
ANTONY L V M,REDDY R G.Processes for production of high-purity metal powders[J].JOM,2003,55(3):14-18.
参考文献 26
KASSYM K,PERVEEN A.Atomization processes of metal powders for 3D printing[J].Materials Today:Proceedings,2020,26:1727-1733.
参考文献 27
DONG Z H,ZHANG W,KANG H W,et al.Surface hard-ening of laser melting deposited 12CrNi2 alloy steel by en-hanced plasma carburizing via hollow cathode discharge[J].Surface & Coatings Technology,2020,397:125976.
参考文献 28
薛正良,齐江华,高俊波.超低氧钢熔炼过程中炉衬与钢液的相互作用[J].武汉科技大学学报(自然科学版),2005(2):119-121.XUE Z L,QI J H,GAO J B.Deoxidizing law of aluminum-containing steel during VIM[J].Journal of Wuhan University of Science & Technology(Natural Science Edition),2005(2):119-121(in Chinese).
参考文献 29
薛正良,齐江华,周国凡,等.真空感应熔炼含铝钢的脱氧规律[J].钢铁研究学报,2007(11):18-20.XUE Z L,QI J H,ZHOU G F,et al.Deoxidizing law of alu-minum-containing steel during VIM[J].Journal of Iron and Steel Research,2007(11):18-20(in Chinese).
参考文献 30
董世通.真空感应炉冶炼Cr12钢工艺研究[D].沈阳:东北大学,2014.DONG S T.Research on smelting process of Crl2 steel by vacuum induction furnace[D].Shenyang:Northeasten Uni-versity,2014(in Chinese).
目录contents

    摘要

    分别采用真空感应熔炼惰性气体雾化(VIGA)和无坩埚电极感应熔化气体雾化(EIGA)两种气雾化方式制备增材制造用 12CrNi2 低合金钢粉末。 对比获得粉末的粒径分布、球形度、截面形貌及氧形态,结果表明:两种粉末球形度良好,VIGA 粉末有微量卫星粉存在;对 0~ 53 μm、53 ~ 180 μm 范围内粉末进行粒度分析,发现 EIGA 粉末中值粒径 d50 分别为 34. 8 和 127 μm,VIGA 粉末中值粒径 d50 分别为 40. 7 和 126. 3 μm。 通过 XPS 分析 Fe 2p 与氧元素的结合状态, 结果表明:对比 VIGA 粉末,EIGA 粉末表面氧化膜中金属态 Fe 0 的含量更高,氧化态 Fe 2+和 Fe 3+的含量更低。 此外,对比不同溅射时间下 Fe 2p 氧化态峰的状态,发现氧元素在 VIGA 粉末中渗透更深,并可能生成了氧化物,这一推测通过 XRD 相组织分析得到了验证。

    Abstract

    Vacuum induction gas atomization (VIGA) and electrode induction gas atomization (EIGA) methods were used to prepare low alloy steel powder 12CrNi2 for additive manufacturing. The particle size distribution, sphericity, cross-sectional morphology and oxygen content of the powders were compared. The results show that the two powders present an approximate sphericity within an trace satellite powder accompanied in the VIGA powders. The median particle size d50 of VIGA and EIGA powder in the range of 0~ 53 μm according to the particle size distribution curve shows that the values are as 40. 7 and 34. 8 μm respectively, and the values are as 126. 3 and 127 μm in the range of 53~ 180 μm respectively. The combination state of Fe 2p and oxygen element was analyzed by XPS, and the results show that the relative content of metallic Fe 0 in surface oxide film of EIGA powder is higher than that of VIGA powder, and the relative content of Fe 2+ and Fe 3+ in oxidation state is lower. In addition, comparison of the oxidation peaks of Fe 2p at different sputtering times indicating that oxygen element penetrates deeper in VIGA powder and may have formed oxide compounds and is confirmed by the subsequent phase structure analysis of XRD.

  • 0 引言

  • 增材制造(Additive manufacturing,AM)技术是一种“自下而上”材料累加的制造方法[1],近年来发展迅速,尤其是金属材料增材制造的工业应用最为广泛,其中Ti [2-3]、Al [4-5]、Ni基合金[6-7]和不锈钢[8-9] 在航空、航天、医学等领域均有应用[10]。而金属零件是否顺利成形以及成形后的组织、力学性能与粉末原料的质量有关[11-12]。粉末的氧含量、球形度、粒度均会影响3D打印件的质量[13-15] :研究表明,氧化粉末在增材制造成形后会形成缺陷,如气孔和裂纹[16-19],降低粉末的流动性,导致粉末填料密度差[20],降低熔池的润湿性,导致球化[17,21],增大零件[16] 的表面粗糙度值,损害整体力学性能[18,22]。 Leung等[23] 通过原位X射线成像技术研究验证了粉末原料中过量的氧会导致增材制造零件内缺陷的形成。 Dong等[24]证明了在12CrNi2 低合金钢3D打印过程中,采用低氧含量粉末打印获得的合金钢无气孔,抗拉强度及韧性均较高,说明低氧含量粉末打印件优异;同时粉末颗粒的球形度及流动性好,在打印时铺粉及送粉更容易进行。

  • 目前金属粉末的主要制备技术有:气体雾化、水雾化、离心雾化、等离子雾化、机械摩擦和合金化、熔体纺丝、旋转电极工艺以及各种化学工艺[25],其中等离子雾化生产的粉末具有良好的球状形状,但其成本较高,而气体雾化生产的粉末具有合适的成本和最佳的形状[26]。气雾化法作为生产打印粉体的主要方式,按照设备加热元件的不同可分为如下几种:真空感应熔炼惰性气体雾化法(VIGA法)、等离子熔炼感应气体雾化法(PIGA法)、无坩埚电极感应熔化气体雾化法(EIGA法) 和等离子火炬雾化法(PA法),其中最适合增材制造专用低合金钢金属粉末的制备方法即VIGA和EIGA两种方法。 VIGA法由于硬件设备和坩埚的限制,加热温度往往只能达到1500~1600℃,并且使用陶瓷坩埚和导流嘴时会在合金熔体中带入杂质,从而影响制备金属粉体的纯净度。 EIGA法是将预制合金棒作为电极,通过感应熔炼线圈和控制垂直送料速度的参数将旋转的棒料电极熔化并雾化的过程。 EIGA法的优点在于不使用陶瓷坩埚,可减少母合金中的杂质,从而可显著提高雾化粉体的纯净度,但目前尚无有关VIGA和EIGA两种方法制备获得的增材制造专用金属粉末性能的系统性对比研究工作。

  • 12CrNi2 低合金钢具有良好的韧性,结合增材制造技术,可用于制造核电应急柴油机凸轮轴等关键零部件[27]。文中以12CrNi2 低合金钢粉末为研究对象,分别采用VIGA和EIGA两种气雾化方法制备,选择相同的气体压力、雾化温度及导流管直径等参数,对比获得粉末的粒径分布、球形度、截面形貌、流动性等基本特性,通过SEM、XPS结合XRD分析粉末中氧形态、氧化膜厚度及渗透深度,来确定VIGA和EIGA两种方法中最适合制备增材制造专用高球形度、细粒径、低氧含量12CrNi2 低合金钢粉末的雾化方式。

  • 1 试验步骤

  • 1.1 粉末制备

  • 采用VIGA法制备粉末时,按照名义成分称取原材料,将配好的原料投入坩埚,采用EIGA法时,按照名义成分预先制备母合金锭,然后进行去氧化皮处理,将打磨后的铸锭放入加热装置。制备粉末时,雾化室内抽真空至3~5 Pa,加热母合金/原材料至完全熔化状态后开始雾化,两种雾化方法采用相同的雾化压力8 MPa,雾化温度均选择1550℃。粉末制备完成后,通过自动筛分机对雾化的粉体进行分级筛选,以获得不同粒径范围的粉末材料。粉末成分采用ICP原子发射光谱仪(8300)分析,氧含量采用TCH600 氧氮氢分析仪测得,具体结果如表1 所示。

  • 表1 VIGA/EIGA制得12CrNi2 低合金钢粉末成分及氧含量

  • Table1 Composition and oxygen content of 12CrNi2 low alloy steel powder produced by VIGA/EIGA(w/%)

  • 1.2 粒度分布分析

  • 采用准确性误差不超过0.5%的高精度Bettersize2000 激光粒度分布仪进行粉末的粒度分布检测。

  • 1.3 粉末形貌及相结构分析

  • 使用场发射扫描电子显微镜( SUPRA 55 SAPPHIRE)配备能谱(EDS),对合金钢粉末进行组织结构表征、形貌观测以及成分分析。使用日产Rigaku-D/max 2400X射线衍射仪,采用Cu Kα 射线源(λ=0.1 nm),步进为0.02°,扫描速率为2°/min, 对获得的低合金钢粉末进行相结构分析。

  • 1.4 X射线电子能谱分析(XPS)

  • 金属粉末氧与基体元素结合状态的电子能谱采用ESCALAB250 光电子谱分析仪测试(光子能量 hv=1486.6 eV),以C原子1s轨道对应的结合能284.6 eV为基准校正其他谱线位置,元素定量分析采用Scofield标准数据库。

  • 2 结果与分析

  • 2.1 粉末微观形貌

  • 采用EIGA和VIGA两种方法制备获得的12CrNi2 低合金钢粉末形貌如图1 所示, 由图1(a)(b)可以看出,采用EIGA法制备的粉末形貌均具备良好的球形度,粒径分布较为均匀, 符合增材制造的要求;采用VIGA法制备的粉末微观形貌如图1(c)(d)所示,粉末具备良好的球形度,且粉末粒径比较均匀,但视场中发现有一定比例的卫星粉存在。

  • 图1 两种工艺获得粉末形貌对比

  • Fig.1 Comparison of powder morphology prepared by two processes

  • 2.2 粉末粒度分布对比

  • 图2 为采用两种雾化方法获得的粉末粒径分布,以53 μm(对应270 目标准筛) 为界,分别对0~53 μm、53~180 μm范围内粉末进行粒度分析,发现EIGA雾化法在两种粒度范围内获得的粉末中值粒径 d50 分别为34.8 μm及127 μm; VIGA雾化法在两种粒度范围内获得的粉末中值粒径 d50 分别为40.7 μm及126.3 μm,由此可知,EIGA雾化法制备的粉末粒径比VIGA雾化法获得的粉末粒径小。由图2(a)( b) 可以看出, EIGA法制得的细粉粒度(0~53 μm)分布窄,较比VIGA法得到的粉末粒度分布更加集中,53~180 μm范围内粉末粒度分布差别不大。

  • 图2 EIGA和VIGA雾化法制备粉末粒度分布对比

  • Fig.2 Comparison of particle size distribution of powder prepared by EIGA and VIGA methods

  • 2.3 粉末流动性

  • 采用霍尔流速计对两种粉末的流动性进行分析对比,取50 g全粒度范围内的粉末,记录粉末完全从沙漏中流出所用的时间,测试结果如表2 所示,可以得知,EIGA粉末平均流动性约为每50 g用时13.8 s,VIGA粉末平均流动性约为每50 g用时14.3 s。

  • 表2 VIGA/EIGA制得12CrNi2 低合金钢粉末流动性测试结果

  • Table2 VIGA/EIGA made12CrNi2 low alloy steel powder flowability test results

  • 2.4 粉末截面形貌及元素分布

  • 为分析EIGA和VIGA雾化法获得粉末的成分均匀性,对两种方法制得的粉末截面进行了EDS元素面扫描,分析了元素Fe、C、Cr、Mn、Ni及O元素的分布情况,结果如图3、图4 所示,两种雾化粉末的截面形貌致密,无孔隙缺陷,同时元素分布均匀,还可发现氧元素呈均匀弥散分布, 表明粉末中的氧含量较低,因此,接下来采用XPS对样品的氧含量进行较为精确的分析。

  • 2.5 XPS氧元素形态分析

  • 从图3、图4 中可以得知,采用EIGA和VIGA雾化法制备获得的低合金钢粉末内部均有少量氧元素的分布,这些氧元素是以游离态的形态存在还是氧化物的形式存在需要进一步观察分析,并且其分布在粉末的表面还是内部也需要进一步明确。 XPS技术能够区分某一给定元素的不同氧化程度,以确定其氧化状态。为了确定样品表面的组成,对EIGA和VIGA样品进行了XPS实验,并观察分析了不同样品中氧元素结合状态及组分的区别。

  • XPS结果表明,4 种样品表面中主要元素为Fe,其他元素含量没有明显差别,因此以Fe2p为例分析其与氧元素的结合状态。图5 所示为EIGA和VIGA样品表面Fe2p的XPS深度分析结果,图中红色虚线所处的结合能位置是Fe2p的氧化态峰, 黑色虚线所处的结合能位置是Fe2p的金属态峰。 XPS深度分析采用的Ar +溅射的溅射速率为0.2 nm/s。随着溅射时间t的增加(其中 t=0 的曲线表示亚离子溅射之前的数据信息),Fe2p氧化态峰的强度逐渐降低,其金属态峰的强度逐渐升高,溅射一段时间后几乎观察不到氧化态峰,说明样品表面有一层氧化膜。其中,EIGA( 53~180 μm)、 EIGA( 0~53 μm) 和VIGA(53~180 μm)3 种样品在溅射50 s时Fe2p氧化态峰消失,3 种样品表面氧化膜的厚度约为10 nm,而VIGA(0~53 μm)样品在溅射70 s时氧化态峰消失,表面氧化膜的厚度约为14 nm。这说明氧元素在VIGA(0~53 μm) 样品中渗透更深、氧含量更高并且可能形成稳定的氧化物。

  • 图3 EIGA粉末的截面形貌及元素分布

  • Fig.3 Cross-section morphology and element distribution of EIGA powder

  • 图4 VIGA粉末的截面形貌及元素分布

  • Fig.4 Cross-section morphology and element distribution of VIGA powder

  • 图5 EIGA和VIGA粉末元素Fe2p的XPS全谱扫描

  • Fig.5 XPS full spectra scan for element Fe2p of EIGA and VIGA powder

  • 为了进一步分析4 种样品表面氧化膜的差异,选取溅射时间 t =30 s的峰谱进行Fe2p精细谱分析,如图6 所示,EIGA和VIGA样品表面的Fe2p谱均由3 部分组成,分别是金属态的Fe 0、氧化态的Fe2+和Fe3+。 Fe2p谱3 种状态的结合能及含量见表3。 XPS测试时X射线的探测范围即X射线束的截面积是不变的, X射线的探测深度也相同,因此,Fe2p的三组分含量可以由XPS探测区域的纵截面面积表示。

  • 图6 溅射时间30 s的Fe2p峰谱精细谱分析

  • Fig.6 Precision analysis of Fe2p peak spectrum with sputtering time30 s

  • 表3 EIGA和VIGA样品Fe2p不同状态的结合能及其含量

  • Table3 Binding energy and content of Fe2p in different states of EIGA and VIGA samples

  • 图6 结果表明,与VIGA样品相比,EIGA样品表面氧化膜中金属态Fe 0 的含量更高,氧化态Fe2+ 、Fe3+的含量更低。由表3 可知,在细粒径(0~53 μm)粉末中,两种样品的表面氧化膜中氧化态Fe2+、Fe3+的含量差异更为明显,这可能与细粒径粉末更易氧化有关。根据上述分析,说明EIGA粉末氧化程度更低,这与表1 中通过氢氮氧测试仪测定EIGA粉末氧含量比VIGA粉末氧含量低的结果吻合。

  • 2.6 XRD相组织分析

  • 图7 为低合金钢粉末的XRD相分析图谱, 从图中可以看出,采用EIGA雾化法制备低合金钢粉末时,0~53 μm及53~180 μm粒径范围内的粉末并未形成氧化物;而采用VIGA雾化法制备低合金钢粉末时,在0~53 μm粒径范围内的粉末XRD衍射图谱中可以发现有少量的Fe3O4 氧化物形成,与图5、图6 的XPS电子能谱分析结果一致,由此可知,采用VIGA雾化法制备低合金钢粉末时,0~53 μm的细粒径粉末内氧含量过高,将会形成氧化物夹杂,从而影响12CrNi2 粉末的增材制造成形应用。

  • 图7 两种粉末的XRD相组织分析

  • Fig.7 XRD phase structure analysis of two powders

  • 2.7 VIGA粉末高氧含量机理分析

  • 在低合金钢熔炼过程中,氧进入钢液的主要途径有3 种:① 吸附分解气氛中的氧,溶入钢液: O2(g)→2[O];② 原材料中的氧化夹杂会随着温度的升高逐渐熔化进入钢液;③ 真空环境下,坩埚材料向钢液供氧,以常见熔炼低合金钢坩埚材料MgO、 CaO为例, 在真空下, 当温度超过1600℃时,坩埚中的MgO、CaO在各自的分解压力下会发生分解反应:MexOy=x[Me] +y[O],反应产物中的Mg、Ca以蒸气状态从钢液溢出,形成氧化物沉积并附着在坩埚壁表面,而反应产物中的[O]则溶于钢液[28-30]

  • VIGA雾化法需要通过坩埚熔炼的方式将原材料熔化,随后将钢液倾倒至中间包经由雾化喷模雾化成液滴,经过飞行凝固阶段后形成金属粉末。制备增材制造专用12CrNi2 低合金钢粉末时,采用真空熔炼方式,同时原材料纯净度很高, 所以气氛中的氧以及原材料中携带的氧不是钢液中氧含量提高的主要原因。主要途径是由于采用VIGA雾化法制备12CrNi2 低合金钢粉末时,在熔炼过程中钢液不可避免地与坩埚材料接触,为氧渗入钢液提供了渠道,较EIGA无坩埚的雾化方式增加了氧渗透的主要途径。

  • 3 结论

  • (1) 以12CrNi2 低合金钢为对象,采用VIGA和EIGA两种雾化方法制备获得的粉末的球形度良好,VIGA粉末有微量卫星粉存在。

  • (2) 对0~53 μm、53~180 μm范围内粉末进行粒度分析,发现EIGA粉末中值粒径 d50 分别为34.8 和127 μm;VIGA粉末中值粒径 d50 分别为40.7 和126.3 μm,且EIGA制得的0~53 μm的细粉粒度分布窄,较比VIGA粉末粒度分布更加集中。同时EIGA粉末平均流动性约为每50 g用时13.8 s,VIGA粉末平均流动性约为每50 g用时14.3 s。

  • (3) 通过XPS分析Fe2p与氧元素的结合状态,发现EIGA和VIGA粉末表面都存在厚度约为10~14 nm的氧化膜,相较于VIGA样品, EIGA粉末的金属态Fe 0 的含量更高,氧化态Fe2+ 和Fe3+的含量更低,同时VIGA(0~53 μm)样品中Fe2p氧化态峰的转变发生在溅射时间50~70 s之间,说明氧元素在VIGA粉末中渗透更深, 并可能生成了Fe氧化物,这一推测通过XRD相组织分析得到了证实。可见EIGA气雾化粉末较比VIGA气雾化粉末氧含量更低、粒度分布集中且具备良好球形度和粉末形貌,EIGA雾化法较比VIGA雾化法更适合制备增材制造专用12CrNi2 低合金钢粉末。

  • 参考文献

    • [1] 卢秉恒,李涤尘.增材制造(3D 打印)技术发展[J].机械制造与自动化,2013,42(4):1-4.LU B H,LI D C.Development of the additive manufacturing(3D printing)technology[J].Machine Building & Automa-tion,2013,42(4):1-4(in Chinese).

    • [2] WU X H,LIANG J,MEI J,et al,Microstructures of laser-deposited Ti-6Al-4V[J].Material & Design,2004,25:137-144.

    • [3] QU H P,LI P,ZHANG S Q,et al.Microstructure and me-chanical property of laser melting deposition(LMD)Ti/TiAl structural gradient material[J].Material & Design,2010,31(1):574-582.

    • [4] BUCHBINDER D,SCHLEIFENBAUM H,HEIDRICH S,et al.High power selective laser melting(HP SLM)of alumi-num parts[J].Physics Procedia,2011,12:271-278.

    • [5] MARTIN J H,YAHATA B D,HUNDLEY J M,et al.3D printing of high-strength aluminium alloys [J].Nature,2017,549:365-369.

    • [6] DINDA G P,DASGUPTA A K,MAZUMDER J,Laser aideddirect metal deposition of Inconel 625 superalloy:microstruc-tural evolution and thermal stability [J].Materials Science and Engineering:A,2009,509(1):98-104.

    • [7] LI J,WANG H M,Microstructure and mechanical properties of rapid directionally solidified Ni-base superalloy Rene’ 41 by laser melting deposition manufacturing[J].Materials Sci-ence and Engineering:A,2010,527(18):4823-4829.

    • [8] JARVINEN J P,MATILAINEN V,LI X Y,et al.Charac-terization of effect of support structures in laser additive man-ufacturing of stainless steel [J].Physics Procedia,2014,56:72-81.

    • [9] ZIETALA M,DUREJKO T,POLANSKI M,et al.The mi-crostructure,mechanical properties and corrosion resistance of 316 L stainless steel fabricated using laser engineered net shaping[J].Materials Science and Engineering:A,2010,677:1-10.

    • [10] 杨延华.增材制造(3D 打印)分类及研究进展[J],航空工程进展,2019,10(3):309-318.YANG Y H.Analysis of classifications and characteristic of additive manufacturing(3D Print)[J].Advances in Aero-nautical Science and Engineering,2019,10(3):309-318(in Chinese).

    • [11] 赵霄昊,左振博,韩志宇.粉末钛合金3D打印技术研究进展[J].材料导报,2016,30(23):120-126.ZHAO X H,ZUO Z B,HAN Z Y.A Review on powder tita-nium alloy 3D printing technology [J].Materials Review,2016,30(23):120-126(in Chinese).

    • [12] 郑增,王联凤,严彪.3D 打印金属材料研究进展[J].上海有色金属,2016,37(1):57-60.ZHENG Z,WANG L F,YAN B.Research progress of metal materials for 3D printing[J].Shanghai Nonferrous Metals,2016,37(1):57-60(in Chinese).

    • [13] HERNANDEZ J,LI S J,MARTINEZ E,et al.Microstruc-tures and hardness properties for β-phase Ti-24Nb-4Zr-7.9Sn alloy fabricated by electron beam melting[J],Journal Materials Science Technology,2013,29(11):1011-1015.

    • [14] 范立坤.増材制造用金属粉末材料的关键影响因素分析 [J].理化检验:物理分册,2015,51(7):480-485.FAN L K.Analysis on key factors of metal powders for addi-tive manufacturing [J].PTCA(Part A:Physicals Test),2015,51(7):480-485(in Chinese).

    • [15] THIJS L,VERHAEGHE F,CRAEGHS T,et al.A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J].Acta Materialia,2010,58(9):3303.

    • [16] LOUVIS E,FOX P,SUTCLIFFE C J.Selective laser melt-ing of aluminium components[J].Journal of Materials Pro-cessing Technology,2011,211:275-284.

    • [17] GU D,DAI D.Role of melt behavior in modifying oxidation distribution using an interface incorporated model in selective laser melting of aluminum-based material[J].Journal of Ap-plied Physics,2016,120:83-104.

    • [18] JELIS E,CLEMENTE M,KERWIEN S,et al.Metallurgical and mechanical evaluation of 4340 steel produced by direct metal laser sintering[J].JOM,2015,67:582-589.

    • [19] OLAKANMI E O,COCHRANE R F,DALGARNO K W,et al.A review on selective laser sintering/melting(SLS/SLM)of aluminium alloy powders:Processing,microstructure,and properties[J].Progress in Materials Science,2015,74:401-477.

    • [20] TAN J H,WONG W L E,DALGARNO K W.An overview of powder granulometry on feedstock and part performance in the selective laser melting process[J].Additive Manufactur-ing,2017,18:228-255.

    • [21] SIMCHI A,POHL A.Effects of laser sintering processing parameters on the microstructure and densification of iron powder[J].Materials Science and Engineering,2013,359:119-128.

    • [22] GRELL W A,SOLIS-RAMOS E,CLARK E,et al.Effect of powder oxidation on the impact toughness of electron beam melting Ti-6Al-4V [J].Additive Manufacturing,2017,17:123-134.

    • [23] LEUNG C L A,MARUSSI S,TOWRIE M,et al.The effect of powder oxidation on defect formation in laser additive Man-ufacturing[J].Acta Materialia,2019,166:294-305.

    • [24] DONG Z,KANG H,XIE Y,et al.Effect of powder oxygen content on microstructure and mechanical properties of a laser additively-manufactured 12CrNi2 alloy steel [J].Materials Letters,2019,236:214-217.

    • [25] ANTONY L V M,REDDY R G.Processes for production of high-purity metal powders[J].JOM,2003,55(3):14-18.

    • [26] KASSYM K,PERVEEN A.Atomization processes of metal powders for 3D printing[J].Materials Today:Proceedings,2020,26:1727-1733.

    • [27] DONG Z H,ZHANG W,KANG H W,et al.Surface hard-ening of laser melting deposited 12CrNi2 alloy steel by en-hanced plasma carburizing via hollow cathode discharge[J].Surface & Coatings Technology,2020,397:125976.

    • [28] 薛正良,齐江华,高俊波.超低氧钢熔炼过程中炉衬与钢液的相互作用[J].武汉科技大学学报(自然科学版),2005(2):119-121.XUE Z L,QI J H,GAO J B.Deoxidizing law of aluminum-containing steel during VIM[J].Journal of Wuhan University of Science & Technology(Natural Science Edition),2005(2):119-121(in Chinese).

    • [29] 薛正良,齐江华,周国凡,等.真空感应熔炼含铝钢的脱氧规律[J].钢铁研究学报,2007(11):18-20.XUE Z L,QI J H,ZHOU G F,et al.Deoxidizing law of alu-minum-containing steel during VIM[J].Journal of Iron and Steel Research,2007(11):18-20(in Chinese).

    • [30] 董世通.真空感应炉冶炼Cr12钢工艺研究[D].沈阳:东北大学,2014.DONG S T.Research on smelting process of Crl2 steel by vacuum induction furnace[D].Shenyang:Northeasten Uni-versity,2014(in Chinese).

  • 参考文献

    • [1] 卢秉恒,李涤尘.增材制造(3D 打印)技术发展[J].机械制造与自动化,2013,42(4):1-4.LU B H,LI D C.Development of the additive manufacturing(3D printing)technology[J].Machine Building & Automa-tion,2013,42(4):1-4(in Chinese).

    • [2] WU X H,LIANG J,MEI J,et al,Microstructures of laser-deposited Ti-6Al-4V[J].Material & Design,2004,25:137-144.

    • [3] QU H P,LI P,ZHANG S Q,et al.Microstructure and me-chanical property of laser melting deposition(LMD)Ti/TiAl structural gradient material[J].Material & Design,2010,31(1):574-582.

    • [4] BUCHBINDER D,SCHLEIFENBAUM H,HEIDRICH S,et al.High power selective laser melting(HP SLM)of alumi-num parts[J].Physics Procedia,2011,12:271-278.

    • [5] MARTIN J H,YAHATA B D,HUNDLEY J M,et al.3D printing of high-strength aluminium alloys [J].Nature,2017,549:365-369.

    • [6] DINDA G P,DASGUPTA A K,MAZUMDER J,Laser aideddirect metal deposition of Inconel 625 superalloy:microstruc-tural evolution and thermal stability [J].Materials Science and Engineering:A,2009,509(1):98-104.

    • [7] LI J,WANG H M,Microstructure and mechanical properties of rapid directionally solidified Ni-base superalloy Rene’ 41 by laser melting deposition manufacturing[J].Materials Sci-ence and Engineering:A,2010,527(18):4823-4829.

    • [8] JARVINEN J P,MATILAINEN V,LI X Y,et al.Charac-terization of effect of support structures in laser additive man-ufacturing of stainless steel [J].Physics Procedia,2014,56:72-81.

    • [9] ZIETALA M,DUREJKO T,POLANSKI M,et al.The mi-crostructure,mechanical properties and corrosion resistance of 316 L stainless steel fabricated using laser engineered net shaping[J].Materials Science and Engineering:A,2010,677:1-10.

    • [10] 杨延华.增材制造(3D 打印)分类及研究进展[J],航空工程进展,2019,10(3):309-318.YANG Y H.Analysis of classifications and characteristic of additive manufacturing(3D Print)[J].Advances in Aero-nautical Science and Engineering,2019,10(3):309-318(in Chinese).

    • [11] 赵霄昊,左振博,韩志宇.粉末钛合金3D打印技术研究进展[J].材料导报,2016,30(23):120-126.ZHAO X H,ZUO Z B,HAN Z Y.A Review on powder tita-nium alloy 3D printing technology [J].Materials Review,2016,30(23):120-126(in Chinese).

    • [12] 郑增,王联凤,严彪.3D 打印金属材料研究进展[J].上海有色金属,2016,37(1):57-60.ZHENG Z,WANG L F,YAN B.Research progress of metal materials for 3D printing[J].Shanghai Nonferrous Metals,2016,37(1):57-60(in Chinese).

    • [13] HERNANDEZ J,LI S J,MARTINEZ E,et al.Microstruc-tures and hardness properties for β-phase Ti-24Nb-4Zr-7.9Sn alloy fabricated by electron beam melting[J],Journal Materials Science Technology,2013,29(11):1011-1015.

    • [14] 范立坤.増材制造用金属粉末材料的关键影响因素分析 [J].理化检验:物理分册,2015,51(7):480-485.FAN L K.Analysis on key factors of metal powders for addi-tive manufacturing [J].PTCA(Part A:Physicals Test),2015,51(7):480-485(in Chinese).

    • [15] THIJS L,VERHAEGHE F,CRAEGHS T,et al.A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J].Acta Materialia,2010,58(9):3303.

    • [16] LOUVIS E,FOX P,SUTCLIFFE C J.Selective laser melt-ing of aluminium components[J].Journal of Materials Pro-cessing Technology,2011,211:275-284.

    • [17] GU D,DAI D.Role of melt behavior in modifying oxidation distribution using an interface incorporated model in selective laser melting of aluminum-based material[J].Journal of Ap-plied Physics,2016,120:83-104.

    • [18] JELIS E,CLEMENTE M,KERWIEN S,et al.Metallurgical and mechanical evaluation of 4340 steel produced by direct metal laser sintering[J].JOM,2015,67:582-589.

    • [19] OLAKANMI E O,COCHRANE R F,DALGARNO K W,et al.A review on selective laser sintering/melting(SLS/SLM)of aluminium alloy powders:Processing,microstructure,and properties[J].Progress in Materials Science,2015,74:401-477.

    • [20] TAN J H,WONG W L E,DALGARNO K W.An overview of powder granulometry on feedstock and part performance in the selective laser melting process[J].Additive Manufactur-ing,2017,18:228-255.

    • [21] SIMCHI A,POHL A.Effects of laser sintering processing parameters on the microstructure and densification of iron powder[J].Materials Science and Engineering,2013,359:119-128.

    • [22] GRELL W A,SOLIS-RAMOS E,CLARK E,et al.Effect of powder oxidation on the impact toughness of electron beam melting Ti-6Al-4V [J].Additive Manufacturing,2017,17:123-134.

    • [23] LEUNG C L A,MARUSSI S,TOWRIE M,et al.The effect of powder oxidation on defect formation in laser additive Man-ufacturing[J].Acta Materialia,2019,166:294-305.

    • [24] DONG Z,KANG H,XIE Y,et al.Effect of powder oxygen content on microstructure and mechanical properties of a laser additively-manufactured 12CrNi2 alloy steel [J].Materials Letters,2019,236:214-217.

    • [25] ANTONY L V M,REDDY R G.Processes for production of high-purity metal powders[J].JOM,2003,55(3):14-18.

    • [26] KASSYM K,PERVEEN A.Atomization processes of metal powders for 3D printing[J].Materials Today:Proceedings,2020,26:1727-1733.

    • [27] DONG Z H,ZHANG W,KANG H W,et al.Surface hard-ening of laser melting deposited 12CrNi2 alloy steel by en-hanced plasma carburizing via hollow cathode discharge[J].Surface & Coatings Technology,2020,397:125976.

    • [28] 薛正良,齐江华,高俊波.超低氧钢熔炼过程中炉衬与钢液的相互作用[J].武汉科技大学学报(自然科学版),2005(2):119-121.XUE Z L,QI J H,GAO J B.Deoxidizing law of aluminum-containing steel during VIM[J].Journal of Wuhan University of Science & Technology(Natural Science Edition),2005(2):119-121(in Chinese).

    • [29] 薛正良,齐江华,周国凡,等.真空感应熔炼含铝钢的脱氧规律[J].钢铁研究学报,2007(11):18-20.XUE Z L,QI J H,ZHOU G F,et al.Deoxidizing law of alu-minum-containing steel during VIM[J].Journal of Iron and Steel Research,2007(11):18-20(in Chinese).

    • [30] 董世通.真空感应炉冶炼Cr12钢工艺研究[D].沈阳:东北大学,2014.DONG S T.Research on smelting process of Crl2 steel by vacuum induction furnace[D].Shenyang:Northeasten Uni-versity,2014(in Chinese).

  • 手机扫一扫看