- 工程前沿 -
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

刘玲(1982—),女(汉),副教授,博士;研究方向:超高温陶瓷涂层;E-mail:richard@bit.edu.cn

中图分类号:TG174.2+3

文献标识码:A

文章编号:1007-9289(2020)05-0099-16

DOI:10.11933/j.issn.1007-9289.20200624002

参考文献 1
张立同,成来飞,徐永东,等.自愈合碳化硅陶瓷基复合材料研究及应用进展[J].航空材料学报,2006,26(3):226-232.ZHANG L T,CHENG L F,XU Y D,et al.Progress on self-healing silicon carbide ceramic matrix composites and its ap-plications[J].Journal of Aeronautical Materials,2006,26(3):226-232(in Chinese).
参考文献 2
PLYASUNOV A V,ZYUBIN A S,ZYUBINA T S.Thermo-dynamic properties of Si(OH)4(g)based on combined ex-perimental and quantum chemistry data [J].Journal of the American Ceramic Society,2018,101(11):4921-4926.
参考文献 3
FEDERER J I.Alumina base coatings for protection of SiC ceramics[J].Journal of Materials Engineering,1990,12(2):141-149.
参考文献 4
LEE K N.Current status of environmental barrier coatings for Si-Based ceramics [J].Surface and Coatings Technology,2000,133-134:1-7.
参考文献 5
LEE K N,MILLER R A.Development and environmental durability of mullite and mullite/YSZ dual layer coatings for SiC and Si3N4 ceramics[J].Surface and Coatings Technolo-gy,1996,86-87(part-P1):142-148.
参考文献 6
LEE K N,MILLER R A,JACOBSON N S.New generation of plasma-sprayed mullite coatings on silicon-carbide [J].Journal of the American Ceramic Society,1995,78(3):705-710.
参考文献 7
OPILA E J.Paralinear Oxidation of CVD SiC in Water Vapor [J].Journal of the American Ceramic Society,1997,80(1):197-205.
参考文献 8
RICHARDS B T,WADLEY H N G.Plasma spray deposition of tri-layer environmental barrier coatings[J].Journal of the European Ceramic Society,2014,34(12):3069-3083.
参考文献 9
LIU L,ZHENG W,MA Z,et al.Study on water corrosion behavior of ZrSiO4 materials[J].Journal of Advanced Ce-ramics,2018,7(4):336-342.
参考文献 10
KLEMM H.Corrosion of silicon nitride materials in gas tur-bine environment[J].Journal of the European Ceramic Soci-ety,2002,22:2735-2740.
参考文献 11
马壮,刘玲,郑伟.航空发动机环境障涂层:材料及性能 [J].现代技术陶瓷,2019,40(5):331-344.MA Z,LIU L,ZHENG W.Environmental barrier coating for aeroengines:materials and properties [J].Advanced Ceram-ics,2019,40(5):331-344(in Chinese).
参考文献 12
LEE K N,MILLER R A,JACOBSON N S.Plasma sprayed mullite coatings on silicon-base ceramics[EB/OL].https://ntrs.nasa.gov/search.jsp?R= 20080005971.
参考文献 13
LEE K N,MILLER R A,JACOBSON N S,et al.Environ-mental Durability of Mullite Coating/SiC and Mullite-YSZ Coating/SiC Systems [ M].John Wiley & Sons,Inc.,1995.
参考文献 14
LEE K N.Environmental Barrier Coatings Having a YSZ Top Coat[J].Proceedings of IGTI,2002:GT-2002-30626.
参考文献 15
LEE K N.Key durability issues with mullite-based environ-mental barrier coatings for Si-based ceramics[J].Journal of Engineering for Gas Turbines and Power,2000,122(4):632-636.
参考文献 16
LEE K N.Contamination effects on interfacial porosity during cyclic oxidation of mullite-coated silicon carbide[J].Journal of the American Ceramic Society,1998,81(12):2232-3329.
参考文献 17
LEE K N,FOX D S,ELDRIDGE J I,et al.Upper tempera-ture limit of environmental barrier coatings based on mullite and BSAS [J].Journal of the American Ceramic Society,2003(8):1299-1306.
参考文献 18
王超,乔瑞庆,吴玉胜,等.Si 基陶瓷表面环境障涂层的研究进展[J].中国陶瓷工业,2017,24(2):28-33.WANG C,QIAO R Q,WU Y S,et al.Developments of en-vironmental barrier coatings on the Si-based ceramics [J].China Ceramic Industry,2017,24(2):28-33(in Chi-nese).
参考文献 19
贺世美,牟仁德,陆峰,等.BSAS 环境障涂层抗水蒸汽性及其失效机理[J].失效分析与预防,2011,6(1):44-49.HE S M,MU R D,LU F,et al.Vapor resistance and failure mechanism of BSAS environment barrier coatings[J].Failure Analysis and Prevention,2011,6(1):44-49(in Chinese).
参考文献 20
LU L,CHENG L,HONG Z,et al.Fabrication and Water-vapor Corrosion Resistance of Ba0.25 Sr0.75Al2 Si2O8 Environ-mental Barrier Coating[J].Journal of Inorganic Materials,2011,26(7):701-706.
参考文献 21
LEE K N,FOX D S,BANSAL N P.Rare earth silicate envi-ronmental barrier coatings for SiC/SiC composites and Si3N4 ceramics [J].Journal of the European Ceramic Society,2005,25(10):1705-1715.
参考文献 22
田志林,王京阳.稀土硅酸盐陶瓷材料研究进展[J].现代陶瓷技术,2018,39(5):295-320.TIAN Z L,WANG J Y.Research progress of rare earth sili-cate ceramics[J].Advanced Ceramics,2018,39(5):295-320(in Chinese).
参考文献 23
LI Y,LUO Y,TIAN Z,et al.Theoretical exploration of the abnormal trend in lattice thermal conductivity for monosili-cates RE2 SiO5(RE = Dy,Ho,Er,Tm,Yb and Lu)[J].Journal of the European Ceramic Society,2018,38(10):3539-3546.
参考文献 24
AL NASIRI N,PATRA N,JAYASEELAN D D,et al.Wa-ter vapour corrosion of rare earth monosilicates for environ-mental barrier coating application[J].Ceramics Internation-al,2017,43(10):7393-7400.
参考文献 25
TIAN Z,ZHENG L,WANG J,et al.Theoretical and experi-mental determination of the major thermo-mechanical proper-ties of RE2 SiO5(RE = Tb,Dy,Ho,Er,Tm,Yb,Lu,and Y)for environmental and thermal barrier coating applications [J].Journal of the European Ceramic Society,2016,36(1):189-202.
参考文献 26
AL NASIRI N,PATRA N,HORLAIT D,et al.Thermal Properties of Rare-Earth Monosilicates for EBC on Si-Based Ceramic Composites [J].Journal of the American Ceramic Society,2016,99(2):589-596.
参考文献 27
SUN Z,LI M,ZHOU Y.Thermal properties of single-phase Y2 SiO5 [J].Journal of the European Ceramic Society,2009,29(4):551-557.
参考文献 28
FERNÁNDEZ-CARRIÓN A J,ALLIX M,BECERRO A I,et al.Thermal Expansion of Rare-Earth Pyrosilicates [J].Journal of the American Ceramic Society,2013,96(7):2298-2305.
参考文献 29
WANG Y,LIU J.First-principles investigation on the corro-sion resistance of rare earth disilicates in water vapor [J].Journal of the European Ceramic Society,2009,29(11):2163-2167.
参考文献 30
LUO Y,SUN L,WANG J,et al.Material-genome perspec-tive towards tunable thermal expansion of rare-earth di-sili-cates[J].Journal of the European Ceramic Society,2018,38(10):3547-3554.
参考文献 31
HAN J,WANG Y,LIU R,et al.Study on water vapor cor-rosion resistance of rare earth monosilicates RE2 SiO5(RE = Lu,Yb,Tm,Er,Ho,Dy,Y,and Sc)from first-principles calculations[J].Heliyon,2018,4(10):e857.
参考文献 32
RICHARDS B T,YOUNG K A,de FRANCQUEVILLE F,et al.Response of ytterbium disilicate-silicon environmental barrier coatings to thermal cycling in water vapor[J].Acta Materialia,2016,106:1-14.
参考文献 33
WANG Y,NIU Y,ZHONG X,et al.Water vapor corrosion behaviors of plasma sprayed RE2 SiO5 (RE = Gd,Y,Er)coatings[J].Corrosion Science,2020,167:108529.
参考文献 34
XIAO J,LIU Q,LI J,et al.Microstructure and high-tem-perature oxidation behavior of plasma-sprayed Si/Yb2 SiO5 environmental barrier coatings[J].Chinese Journal of Aero-nautics,2019,32(8):1994-1999.
参考文献 35
GARCIA E,LEE H,SAMPATH S.Phase and microstruc-ture evolution in plasma sprayed Yb2 Si2O7 coatings [J].Journal of the European Ceramic Society,2019,39(4):1477-1486.
参考文献 36
FENG F,JANG B,PARK J Y,et al.Effect of Yb2 SiO5 ad-dition on the physical and mechanical properties of sintered mullite ceramic as an environmental barrier coating material [J].Ceramics International,2016,42(14):15203-15208.
参考文献 37
APARICIO M,DURÁN A.Yttrium Silicate Coatings for Oxi-dation Protection of Carbon-Silicon Carbide Composites[J].Journal of the American Ceramic Society,2000,83(6):1351-1355.
参考文献 38
JANG B,FENG F,LEE K,et al.Thermal behavior and me-chanical properties of Y2 SiO5 environmental barrier coatings after isothermal heat treatment [J].Surface and Coatings Technology,2016,308:24-30.
参考文献 39
KLEMM H.Silicon Nitride for High-Temperature Applica-tions[J].Journal of the American Ceramic Society,2010,93(6):1501-1522.
参考文献 40
MECHNICH P,BRAUE W.Air plasma-sprayed Y2O3 coat-ings for Al2O3/Al2O3 ceramic[J].Journal of the European Ceramic Society,2013,33(13-14):2645-2653.
参考文献 41
VU H D,NANKO M.Crack-healing performance and oxida-tion behavior of SiC dispersed yttrium silicate composites[J].Journal of Asian Ceramic Societies,2020,8(2):298-308.
参考文献 42
COSTA G C C,JACOBSON N S.Mass spectrometric meas-urements of the silica activity in the Yb2O3-SiO2 system and implications to assess the degradation of silicate-based coat-ings in combustion environments[J].Journal of the Europe-an Ceramic Society,2015,35(15):4259-4267.
参考文献 43
BAKAN E,SOHN Y J,KUNZ W,et al.Effect of processing on high-velocity water vapor recession behavior of Yb-silicate environmental barrier coatings[J].Journal of the European Ceramic Society,2019,39(4):1507-1513.
参考文献 44
DAYI E N,AL NASIRI N.Diffusion study of rare-earth ox-ides into silica layer for environmental barrier coating applica-tions[J].Journal of the European Ceramic Society,2019,39(14):4216-4222.
参考文献 45
MAIER N,NICKEL K G,RIXECKER G.High temperature wa-ter vapour corrosion of rare earth disilicates(Y,Yb,Lu)2Si2O7 in the presence of Al(OH)3 impurities[J].Journal of the Euro-pean Ceramic Society,2007,27(7):2705-2713.
参考文献 46
AL NASIRI N,PATRA N,PEZOLDT M,et al.Investiga-tion of a single-layer EBC deposited on SiC/SiC CMCs:Pro-cessing and corrosion behaviour in high-temperature steam [J].Journal of the European Ceramic Society,2019,39(8):2703-2711.
参考文献 47
UENO S,JAYASEELAN D D,OHJI T.Comparison of water vapor corrosion behavior of silicon nitride with various EBC layers[J].Journal of Ceramic Processing Research,2004,5(4):355-359.
参考文献 48
UENO S,JAYASEELAN D D,OHJI T.Development of ox-ide-based EBC for silicon nitride[J].International Journal of Applied Ceramic Technology,2004,1(4):362-373.
参考文献 49
ZHANG W,LIAW P K,ZHANG Y.Science and technology in high-entropy alloys[J].Science China Materials,2018,61(1):2-22.
参考文献 50
REN X,TIAN Z,ZHANG J,et al.Equiatomic quaternary(Y1/4Ho1/4Er1/4Yb1/4 )2 SiO5 silicate:A perspective multi-functional thermal and environmental barrier coating material [J].Scripta Materialia,2019,168:47-50.
参考文献 51
DONG Y,REN K,LU Y,et al.High-entropy environmental barrier coating for the ceramic matrix composites[J].Journal of the European Ceramic Society,2019,39(7):2574-2579.
参考文献 52
TSAI K Y,TSAI M H,YEH J W.Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J].Acta Materialia,2013,61(13):4887-4897.
参考文献 53
DEAL B E,GROVE A S.General Relationship for the Ther-mal Oxidation of Silicon [J].Journal of Applied Physics,1965,36(12):3770-3778.
参考文献 54
ROHBECK N,MORRELL P,XIAO P.Degradation of ytter-bium disilicate environmental barrier coatings in high temper-ature steam atmosphere[J].Journal of the European Ceramic Society,2019,39(10):3153-3163.
参考文献 55
LU Y,WANG Y.Formation and growth of silica layer be-neath environmental barrier coatings under water-vapor envi-ronment[J].Journal of Alloys and Compounds,2018,739:817-826.
参考文献 56
LEE K N.Yb2 Si2O7 environmental barrier coatings with re-duced bond coat oxidation rates via chemical modifications for long life [J].Journal of the American Ceramic Society,2019,102(3):1507-1521.
参考文献 57
LU Y,CAO Y,ZHAO X.Optimal rare-earth disilicates as top coat in multilayer environmental barrier coatings [J].Journal of Alloys and Compounds,2018,769:1026-1033.
参考文献 58
RICHARDS B T,BEGLEY M R,WADLEY H N G,et al.Mechanisms of Ytterbium Monosilicate/Mullite/Silicon Coat-ing Failure During Thermal Cycling in Water Vapor [J].Journal of the American Ceramic Society,2015,98(12):4066-4075.
参考文献 59
ARAI Y,AOKI Y,KAGAWA Y.Effect of cristobalite for-mation on the delamination resistance of an oxide/Si/(SiC/SiC)environmental barrier coating system after cyclic high temperature thermal exposure[J].Scripta Materialia,2017,139:58-62.
参考文献 60
LIU J,ZHANG L,LIU Q,et al.Structure design and fabri-cation of environmental barrier coatings for crack resistance [J].Journal of the European Ceramic Society,2014,34(8):2005-2012.
参考文献 61
HAN J,WANG Y,LIU R,et al.Thermal shock behavior of mixed ytterbium disilicates and ytterbium monosilicates com-posite environmental barrier coatings[J].Surface and Coat-ings Technology,2018,352:348-353.
参考文献 62
SEIFERT H J,WAGNER S,FABRICHNAYA O,et al.Yt-trium Silicate Coatings on Chemical Vapor Deposition-SiC-Precoated C/C-SiC:Thermodynamic Assessment and High-Temperature Investigation[J].Journal of the American Ce-ramic Society,2005,88(2):424-430.
参考文献 63
HARDER B J.Oxidation performance of Si-HfO2 environ-mental barrier coating bond coats deposited via plasma spray-physical vapor deposition[J].Surface & Coatings Technolo-gy,2020,384:8.
参考文献 64
ANTON R,LEISNER V,WATERMEYER P,et al.Hafnia-doped silicon bond coats manufactured by PVD for SiC/SiC CMCs[J].Acta Materialia,2020,183:471-483.
参考文献 65
KLEMM H,SCHONFELD K,KUNZ W.Delayed Formation of Thermally Grown Oxide in Environmental Barrier Coatings for Non-Oxide Ceramic Matrix Composites [J].Coatings,2020,10(1):11.
目录contents

    摘要

    硅基材料具有密度小、高温力学性能优异等特性,在航空发动机热端部件有广阔的应用前景。 由于硅基材料的服役环境中充满高温燃气,硅基基体与高温燃气中的 H2O 发生化学反应生成挥发性 Si(OH)4 被高速燃气冲刷走,使得硅基基体持续暴露在燃气环境中,导致基体被不断侵蚀。 为了减缓高温燃气对硅基基体的侵蚀速率、延长其使用寿命,需要在基体表面制备环境障涂层以隔绝基体与燃气环境,阻止高温燃气与基体直接接触。 文中指出了第一代、第二代环境障涂层在应用中的局限性,阐述了第三代环境障涂层发展中面临的瓶颈问题。 从稀土硅酸盐面层和硅粘结层的角度分别剖析了限制第三代环境障涂层发展的因素并提出相应的改进措施,对新型环境障涂层的发展和面层及粘结层材料的选择具有指导意义。

    Abstract

    Silicon-based ceramic has broad application prospect as high temperature structure materials in aero engines due to low density and excellent mechanical properties. In high-temperature steam environment, silicon-based ceramic will react with high temperature steam to form volatile Si(OH)4 . Si(OH)4 can be brushed away by high velocity steam, leading inner siliconbased ceramic exposing in high temperature steam environment. So we need to prepare environmental barrier coating (EBC) on the surface of silicon based ceramic to protect it from high temperature steam. The limiting factors of the development of first and second generations EBC are clearly pointed out in this review. We highlight the problems the third generation EBC facing from the perspectives of rare earth silicate top layer and silicon bonding layer. The corresponding solutions of the problems the third generation EBC facing are also elaborated. This review is of great significance in the selection of materials of up-to-date EBC.

  • 0 引言

  • 随着航空工业的发展,高推重比航空发动机成为科研工作者关注的重点。当航空发动机涡轮前端温度达到1450℃时,推重比能达到8。为了实现10 以上的高推重比,涡轮前端温度要达到1700℃以上,这远远超过了传统镍基高温合金的使用极限温度。硅基非氧化物陶瓷如SiC、Si3N4及其复合材料具有密度小、耐受温度高、高温力学性能优异等特性,逐渐取代镍基高温合金成为航空发动机热端部件的理想材料。研究表明,将硅基非氧化物陶瓷用在航空发动机热端部件可减少50%~70%的重量,燃烧室的工作温度提高300~500℃,发动机的推力能提高30%~100%[1]

  • 航空发动机热端部件工作在高温、高速燃气冲刷条件下,服役条件十分苛刻。硅基陶瓷与干燥的O2 在高温下会反应生成致密、低O2 渗透率的SiO2 层保护硅基陶瓷不被继续氧化。但高速燃气流中富含水汽。 SiO2 与H2O反应生成挥发性Si(OH)4 [2]被高速气流带走,使得硅基陶瓷持续暴露在燃气环境中,被高温O2、H2O持续侵蚀。为克服硅基陶瓷高温水氧腐蚀抗力差的缺点,需要在其表面制备环境障涂层以阻挡燃气环境与硅基陶瓷直接接触。

  • 环境障涂层是指用在航空发动机热端部件硅基陶瓷表面的具有高水氧腐蚀抗力的涂层。环境障涂层能将燃气环境与硅基陶瓷基体隔绝开来。通过阻止燃气环境与硅基陶瓷直接接触来实现减缓燃气环境侵蚀基体速率、延长硅基陶瓷的使用寿命的目的。自环境障涂层这一概念提出以来,经过30 年的发展,科研工作者在这一领域的研究已经取得很大进展。传统的环境障涂层由于材料自身的局限性,已经被证实无法为硅基基体提供长久有效的保护,需要大力发展新型环境障涂层。然而新型环境障涂层也面临着诸多挑战,其发展的限制因素和对应的改进措施备受科研工作者关注。

  • 1 传统环境障涂层发展的限制因素

  • 最初提出在硅基基体表面制备环境障涂层是为了保护硅基基体不被熔盐腐蚀[3-6]。大气中的碱性化合物如K2O、Na2O及CaO等吸附在航空发动机叶片上,高温下会与基体氧化生成的SiO2 反应生成低熔点(~800℃)、高O2 渗透率的硅酸盐,被高速气流冲刷走,导致硅基基体失效。针对此问题,提出在硅基基体表面制备环境障涂层,保护基体不被碱性化合物侵蚀。 20 世纪90 年代,科研工作者发现航空发动机尾喷管中高温水汽对硅基基体的侵蚀程度远大于从大气中吸附的碱性化合物对基体的损伤,环境障涂层的防护重点逐渐由抗熔盐腐蚀转移到抗水氧腐蚀上[4, 7]

  • 在选择环境障涂层材料时,首先要考虑材料自身的水氧腐蚀抗力。此外,还应尽可能满足以下条件[4, 8-10] :① 与硅基基体相近的热膨胀系数(CTE),减小涂层与基体间因CTE不匹配而开裂的倾向;② 与基体有良好的化学相容性,不与基体发生化学反应;③ 高温稳定存在,能有效隔绝燃气环境与硅基基体接触[10];④ 相结构少,尽可能避免涂层在服役过程中因相变产生内应力。除了选择合适的材料,环境障涂层的结构对其使用性能也有很大影响。为实现更有效的防护,环境障涂层由最初的单层涂层逐渐发展为多层体系。

  • 环境障涂层的发展主要经历了3 个阶段[11]。第一代环境障涂层:以莫来石(3Al2O3·2SiO2)为粘结层、YSZ(ZrO2-8%Y2O3)为面层;第二代环境障涂层:以含BSAS(1-xBaO·xSrO2·Al2O3·2SiO2) 的混合涂层为粘结层、BSAS为面层的双层或三层体系;第三代新型环境障涂层:以硅为粘结层、稀土硅酸盐材料为面层的双层或三层体系。

  • 1.1 第一代环境障涂层:莫来石粘结层/YSZ面层

  • 莫来石具有密度小、CTE与硅基基体相近、与基体的化学相容性好等优势,被最早用作环境障涂层。研究表明莫来石能较好地与基体结合, 且对高温燃气环境有一定的阻挡作用[3, 12]。在大气等离子喷涂制备莫来石涂层的过程中,将硅基基体加热到非晶莫来石晶化温度(~1000℃) 以上,成功得到稳定的晶体莫来石涂层,涂层中裂纹的数目大幅下降[6, 8, 12]。图1 给出了莫来石涂层从室温到1000℃ 考核2 个循环( 24 h/循环)后的截面形貌[6]。从图1(b)可以看出,在从室温到1000℃考核2 个循环(24 h/循环)后,非晶莫来石涂层中布满裂纹,而晶体莫来石涂层中仅存在少量裂纹。这说明晶体化对于提高莫来石涂层的有效使用时长有重要作用。

  • 然而莫来石中的SiO2 活度较高(~0.4),在高温燃气环境中会与H2O反应生成挥发性Si(OH)4 导致莫来石涂层表面出现多孔Al2O3 [13],为高温水汽侵蚀硅基基体提供了通道。 YSZ在高温水氧环境中的稳定性优于莫来石,但CTE(~1×10-5K-1)与硅基基体的CTE((4~5) × 10-6K-1)有较大差异。 CTE差别较大会降低涂层与基体的结合强度,所以需要在基体与YSZ涂层间增加CTE适中的莫来石涂层(~( 6~7) × 10-6K-1)以缓解YSZ面层和基体间CTE不匹配对涂层结合强度的影响[5, 14-16]。考核发现,由于YSZ的更强的抗水氧腐蚀能力,莫来石/YSZ体系的抗水氧腐蚀较单层莫来石涂层而言有很大的提升[5, 13-14]

  • 图1 莫来石涂层从室温到1000℃考核2 个循环(24 h/循环)后的截面形貌[6]

  • Fig.1 Cross-section morphology of mullite coating after two 24 h thermal cycles between room temperature and 1000℃ [6]

  • 1.2 第二代环境障涂层:BSAS混合粘结层/BSAS面层

  • 在第一代环境障涂层体系中,尽管有莫来石层用来缓解硅基基体和YSZ间CTE差别过大带来的应力,但YSZ面层中还是不可避免地出现贯穿性裂纹,加速了环境障涂层失效。第二代环境障涂层的面层材料BSAS正是针对YSZ面层CTE高、易产生裂纹而提出[4, 14, 17-20]。由于BSAS中Si-O键键长较短,材料自身有较高的抗水氧腐蚀能力。此外BSAS与SiO2 反应生成的流动性较好的玻璃相对涂层内部的裂纹有很好的封填作用。以上均说明BSAS涂层能有效阻隔水氧环境。

  • 研究表明考核温度低于1300℃ 时,BSAS涂层能很好地保护硅基基体。但在更高温度下, BSAS会与SiO2 反应生成大量低熔点(~1300℃)、高O2 渗透率的玻璃相。如图2 所示,熔渗连续SiC纤维增强SiC基体(MI CFC) 上的Si/(莫来石+ BSAS)/BSAS环境障涂层在1400℃、 90%H2O-平衡O2 条件考核300 h(1h/循环)后会生成大量玻璃相[17]。试验条件下O2 穿过玻璃相抵达基体后会加速基体的氧化[14, 17, 21]。在真实服役环境中,玻璃相会被航空发动机中的高速燃气冲刷走,给BSAS涂层中留下很多大尺寸孔洞导致涂层失效。玻璃相极大地限制了BSAS涂层的使用温度。

  • 图2 Si/(莫来石+BSAS)/BSAS涂层在1400℃、90%H2O-平衡O2 条件考核300 h(1h/循环)后的截面形貌[17]

  • Fig.2 Cross section of Si/(Mullite+BSAS)/BSAS coatings after 300 h in 90%H2O-balance O2 at 1400℃ with 1 h cycle [17]

  • 1.3 第三代环境障涂层:粘结层/稀土硅酸盐面层体系

  • 为了实现航空发动机的高推重比,科研工作者必须寻找或开发一种能在更高温度的燃气中稳定使用的环境障涂层材料。稀土硅酸盐材料RE2 SiO5、RE2 Si2O7(RE=La、Ce、Pr、Nd、Pm、Sm、 Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y、Sc)凭借其优异的高温力学性能、热性能和水氧腐蚀抗力成为科研工作者的研究重点[21-31]。硅材料的CTE介于硅基基体和稀土硅酸盐材料的CTE之间,且与稀土硅酸盐有很好的化学相容性,通常被用作第三代环境障涂层的粘结层材料。研究发现Si/Yb2 Si2O7 双层环境障涂层在110~1360℃、90%H2O-10%O2 件下考核2000 h后与 α-SiC基体仍紧密结合,表现出杰出的抗水氧腐蚀能力[32];X2-Er2 SiO5(空间群为C2/c)涂层在1400℃、30%H2O-70%空气条件下能稳定使用300 h [33]。以上研究表明第三代环境障涂层能有效提高硅基基体的使用温度、延长其使用时长,是发展新型高推重比航空发动机不可或缺的助力。

  • 尽管第三代环境障涂层有望大幅提高航空发动机热端部件的服役温度和时长,但是受制备工艺及材料自身特性等的影响,第三代环境障涂层的抗水氧腐蚀能力、高温抗氧化性等还有很大的提升空间。因此,筛选、开发或改性高性能的环境障涂层面层和粘结层材料成为环境障涂层领域研究的重中之重。探索合适的制备工艺参数、合理设计涂层组分对于提升涂层质量及服役效果有重要意义,逐渐引起了科研工作者的广泛关注。

  • 2 稀土硅酸盐面层发展面临的问题

  • 稀土硅酸盐材料凭借其出色的抗水氧腐蚀能力大幅度提升了硅基基体的服役时长和服役温度,成为最有应用前景的环境障涂层面层材料。科研工作者对稀土硅酸盐材料的抗氧化性能、抗水氧腐蚀性能、抗CMAS侵蚀性能等方面开展了广泛研究,取得了丰硕成果。总结相关研究发现,环境障涂层面层的状态和面层材料自身的抗水氧腐蚀特性是影响环境障涂层面层材料性能的重要因素。

  • 2.1 涂层状态对面层性能的影响

  • 在环境障涂层的制备及后续热处理过程中, 涂层的组成成分、制备参数及热处理工艺等对涂层的质量有很大影响,决定着涂层的孔隙率和裂纹状态。裂纹和孔洞是高温燃气进入涂层、侵蚀涂层和基体的通道。当面层中存在大尺寸裂纹时,H2O会沿裂纹渗入面层内部与RE2 Si2O7 反应生成高CTE的RE2 SiO5 和挥发性Si(OH)4,给RE2 Si2O7 涂层中留下较多孔洞。此外,RE2 Si2O7 与RE2 SiO5 间的CTE差别很大,会增大面层中的内应力,导致面层中的既有裂纹扩张。当O2 沿裂纹抵达稀土硅酸盐面层与硅粘结层界面后,会与硅粘结层反应生成SiO2( TGO)。 H2O与TGO反应生成挥发性Si(OH)4、TGO相变开裂等原因都会破坏硅粘结层。涂层质量较差时高温水汽从内部破坏涂层,使得涂层在水氧环境中的表现低于预期[8, 34-37]。可见,涂层质量对涂层性能有举足轻重的影响。科研工作者开展了较多研究探究影响涂层质量的因素。

  • Richards等[8] 通过大气等离子喷涂制备了Si/莫来石/Yb2 SiO5 三层环境障涂层。研究发现面层中除了有Yb2 SiO5 外还有少量Yb2O3。莫来石涂层中除了原料成分3Al2O3·2SiO2 外还有少量SiO2 含量较低的2Al2O3·SiO2。在1300℃ 退火后涂层中出现少量裂纹。这是因为喷涂过程中,等离子体焰流中熔融粉体的温度很高。温度越高,Yb2 SiO5 和3Al2O3·2SiO2 的蒸气压越高, SiO2 越容易挥发,所以涂层中出现了Yb2O3 和2Al2O3·SiO2。当涂层在1300℃ 退火后,2Al2O3· SiO2 转变为高温下更稳定的3Al2O3·2SiO2 和Al2O3。 Al2O3 与莫来石的CTE差别很大,导致涂层内部出现微裂纹,降低了涂层的致密度。 Xiao等[34]同样发现在大气等离子喷涂Yb2 SiO5 过程中,由于SiO2 挥发, Yb2 SiO5 面层中出现少量Yb2O3。此外,Xiao等还发现在形成涂层过程中, 熔融Yb2 SiO5 粉体的冷却速度过快使得Yb2 SiO5 涂层呈非晶态,在后续退火过程中,Yb2 SiO5 涂层由非晶态向晶态转变时伴随体积收缩,导致涂层内部出现裂纹。

  • Garcia等[35] 同样发现大气等离子喷涂Yb2 Si2O7 涂层中存在贫SiO2 的Yb2 SiO5 和非晶相,且喷涂辅气流量为9 L/min时,YDS-9H涂层中Yb2 SiO5 和非晶相的含量明显高于辅气流量为3 L/min时YDS-3H涂层中非晶和Yb2 SiO5 的含量。此外,Garcia等还研究了热处理对涂层状态的影响。研究发现,在经过图3 所示的热处理后,YDS-9H涂层的质量明显高于相同热处理条件下YDS-3H涂层的质量。因存在大量非晶, 未热处理的YDS-9H和YDS-3H涂层的CTE(分别为7.6×10-6 K-1 和7.6×10-6 K-1)明显高于基体及硅涂层的CTE,涂层均处于拉应力状态。在1033℃保温过程中,虽然YDS-9H涂层中的非晶相转变为P21/c-Yb2 SiO5 和Yb2 Si2O7 会带来0.8%的体积收缩,但涂层仍处于拉应力状态。尽管YDS-3H涂层中的非晶转变为Yb2 Si2O7 和SiO2 时只带来0.3%体积收缩,但涂层由拉应力转变为压应力状态,裂纹有一定程度闭合。在1200℃继续保温时YDS-9H涂层中亚稳态的P21/c-Yb2 SiO5(晶胞常数为38.508 nm) 转变成稳态的I2/a(晶胞常数为82.88 nm)结构。在随后的1300℃ 保温阶段,涂层中的晶粒有一定程度长大。在相变和晶粒长大过程中YDS-9H涂层体积膨胀2.3%,使得涂层中大部分裂纹闭合, 表现出如图3( c) 所示较致密的截面形貌。在1200℃进行30 次循环考核后YDS-9H涂层中的裂纹、孔隙仍无明显增加,表现出很好的使用性能。 YDS-3H涂层中基本没有Yb2 SiO5,不存在Yb2 SiO5 相变带来的体积膨胀。因此, 在1200℃和1300℃ 保温后YDS-3H涂层的体积膨胀仅0.4%,涂层中仍保留较多裂纹,如图3(b) 所示。由此可见涂层的制备工艺及热处理制度决定了涂层的质量,对环境障涂层的使用性能有很大影响。

  • 图3 YbDS-3H和YbDS-9H环境障涂层的退火制度和截面形貌[35]

  • Fig.3 Designed annealing scheme and cross-section morphologies of YbDS-3H and YbDS-9H EBC systems [35]

  • 为了减少裂纹及孔洞的数量,需要不断调整涂层制备工艺以获得高质量的涂层。 Jang等[38] 通过火焰喷涂制备了Yb2 SiO5 涂层来保护SiC基体上不被热侵蚀和高温水汽侵蚀。研究发现在1180℃和1480℃热处理时,随着保温时间延长, 涂层截面的马氏硬度和杨氏模量都有很大提升, 如图4 所示。并且能在退火后的涂层中观察到 α-Yb2O3,β-Yb2O3。这是因为在喷涂过程中部分SiO2 挥发, 导致涂层整体呈贫SiO2 状态。贫SiO2 相在热处理过程中向更稳定的Yb2 SiO5 转变并析出 β-Yb2O3α-Yb2O3 [39]。高硬度、高杨氏模量的 β-Yb2O3 析出相提升了涂层的整体硬度和杨氏模量[40],且热处理温度越高、时间越长, β-Yb2O3 析出相的数量约多,对涂层的硬度和杨氏模量提升越明显。此外, 热处理过程中Yb2 SiO5 晶粒长大时会伴随轻微的体积膨胀,一定程度上能闭合裂纹。这说明恰当的热处理措施可以提升环境障涂层的质量。

  • Vu等[41]提出制备具有“自愈合” 能力的环境障涂层,涂层中存在的裂纹、孔洞能自行愈合, 使涂层时刻保持致密状态。 Vu等通过脉冲电流烧结制备了Y2 SiO5 +Y2 Si2O7 +SiC混合块体,块体示意图如图5(a)所示。其中,Y2 SiO5 与Y2 Si2O7 粉体的体积比为3 ∶ 7,SiC粉体占块体总体积的5%。用维氏硬度计在块体表面预制尺寸为180~200 μm的裂纹,并在空气中高温氧化研究其高温“自愈合”机理。如图5(b)所示,高温下Y 3+向裂纹表面及块体表面扩散并与O2 反应生成Y2O3。裂纹界面处的SiC被氧化后生成SiO2 时体积膨胀,SiO2 流动并充满裂纹。 SiO2 与裂纹表面Y2O3 及未被氧化的SiC反应后成Y2 Si2O7,有效避免高温水氧条件下SiO2 的挥发,保证裂纹封填相稳定存在。块体表面生成的Y2 Si2O7 薄层增强了混合陶瓷材料对高温水汽的隔绝作用。这为减少涂层裂纹、提高涂层质量提供了新思路。

  • 图4 涂层截面的马氏硬度和杨氏模量[38]

  • Fig.4 Martens hardness and Young’s modulus results of cross-sectional top coating [38]

  • 图5 SiC+Y2 SiO5 +Y2 Si2O7 复合块体的自愈合机理[41]

  • Fig.5 Schematic illustration of self-healing mechanism of SiC+Y2 SiO5 +Y2 Si2O7 composites [41]

  • 2.2 面层材料抗水氧腐蚀特性对涂层性能的影响

  • 环境障涂层最根本的作用便是将航空发动机中的燃气环境与硅基基体隔绝开来,以避免硅基基体及其复合材料的高温水氧环境侵蚀。作为最有应用前景的环境障涂层面层材料,稀土硅酸盐材料整体上都具有较好的抗水氧腐蚀能力。但受稀土原子的原子半径及晶体结构等的影响, 不同的稀土硅酸盐的抗水氧腐蚀能力有一定差别[29, 31, 33, 42-44]

  • Al Nasiri等[24]将RE2O3(RE=Y、Yb、Lu、Er、 Gd)与SiO2 粉末以摩尔比1 ∶1混合均匀后通过冷等静压制备RE2O3 +SiO2 混合块体。将混合块体均置于1580℃ 烧结得到RE2 SiO5 致密块体。 RE2 SiO5 块体在1350℃、90%H2O-10%空气、流速40 mL/min考核条件下的增重如表1 所示。可以发现,在1350℃ 考核50 h后RE2 SiO5 块体都有不同程度的增重。随着氧化时间从50 h增加到166 h,RE2 SiO5 块体的增重量也逐渐增大。此外,可以观察到Gd2 SiO5 在各个阶段的增重量明显大于其他4 种稀土单硅酸盐在1350℃ 的增重量。这是因为Y2 SiO5、 Er2 SiO5、 Yb2 SiO5 和Lu2 SiO5 块体被暴露在高温水汽中时, 少量RE2 SiO5 会与H2O反应生成对应的RE2 Si2O7,带来一定程度的增重。相同条件下氧化166 h后, Gd2 SiO5 则完全转变为Gd4.67 Si3O13,带来更大程度的增重。此外,管式炉刚玉加热管中的部分Al2O3 与H2O反应生成Al(OH)3,Al(OH)3 挥发并沉积在RE2 SiO5 陶瓷块体表面,这对陶瓷块体增重也有轻微影响[45]。研究表明, Y2 SiO5、 Er2 SiO5、Yb2 SiO5、Lu2 SiO5 高温稳定性好,都具有良好的抗水氧腐蚀能力。

  • 表1 1350℃高温水汽条件下稀土硅酸盐的氧化增重[24]

  • Table1 Weigh gain of rare earth silicate corroded on 1350℃ [24]

  • Al Nasiri等[46] 将SiC/SiC基体置于管式炉中氧化,在1350℃ 氧化50 h后基体表面生成(6±0.5) μm厚的SiO2 层。在有SiO2 包覆的基体上刷涂含30vol%RE2O3(RE=Yb、Lu)的RE2O3 + 聚乙二醇+分散剂混合浆料。 1350℃ 烧结后分别得到了Lu2 SiO5 + Lu2 Si2O7 + Lu2O3( LuM) 和Yb2 SiO5 +Yb2 Si2O7 +Yb2O3(YbM) 混合涂层。研究表明,在1350℃、90%H2O考核条件下,LuM和YbM涂层都能为基体提供持续150 h的保护。但在考核150 h后LuM和YbM涂层的厚度发生了很大变化:LuM涂层的厚度由13 μm减少为4 μm, YbM涂层的厚度由20 μm减少为11 μm。涂层厚度减少与基体中的硼元素有关。 SiC基体与纤维是通过纤维表面的氮化硼层连接起来的。高温下BN被氧化生成B2O3,并与SiO2 反应生成硼硅酸盐。稀土离子和稀土氧化物在硼硅酸盐中的溶解度较大,SiO2 也能溶解在硼硅酸盐玻璃中。高温下硼硅酸盐有很强的挥发性,挥发时会带走溶解的RE2O3 和SiO2,导致涂层厚度减小。以上研究说明LuM和YbM涂层的高温稳定性较差,这和稀土硅酸盐块体的高温抗水氧腐蚀能力相悖[46]

  • Han等[31] 通过第一性原理计算了RE2 SiO5(RE=Lu、Yb、Tm、Er、Ho、Dy、Y和Sc) 的抗水氧腐蚀性能。通过计算得出,RE2 SiO5 的本征抗水氧腐蚀性能由强到弱依次为:Sc2 SiO5>Dy2 SiO5> Y2 SiO5> Er2 SiO5> Ho2 SiO5> Tm2 SiO5> Yb2 SiO5> Lu2 SiO5。其中,Lu2 SiO5 的本征抗水氧腐蚀能力远低于其他RE2 SiO5。这是因为RE2 SiO5 的高温抗水氧腐蚀性能与Si-O的Mulliken布居密度(Mulliken布居密度=Mulliken布居/键长)有关。 Si-O键的Mulliken布居密度越高, 对应的RE2 SiO5 的抗水氧腐蚀能力越强。如图6 所示,Lu2 SiO5、 Yb2 SiO5、 Tm2 SiO5、 Ho2 SiO5、 Er2 SiO5、 Y2 SiO5、Dy2 SiO5、Sc2 SiO5 的Mulliken布居密度依次增加,所以其抗水氧腐蚀性能也依次增加。虽然Lu原子半径小,Lu-O键较短,但是Lu2 SiO5 的晶胞体积与其他RE2 SiO5 相近。为了维持晶胞体积不变, Lu2 SiO5 中的Si-O键变长, 使得Lu2 SiO5 的Mulliken布居密度远小于其他RE2 SiO5 的Mulliken布居密度,抗水氧的腐蚀能力小于其他RE2 SiO5。 Wang等还发现用半径较小的Sc 3+取代R2 SiO5(R=Lu、Yb、Y)中RE1 位置的R 3+生成的RScSiO5 的抗水氧腐蚀能力均高于R2 SiO5。用Sc 3+取代Er2 SiO5 中RE1 位置的Er 3+ 后ErScSiO5 的抗水氧腐蚀能力反而下降。这是因为Sc 3+ 的离子半径小,形成RScSiO5(R=Lu、 Yb、Y)后晶格收缩。为了减小体系能量,Si-O键也缩短,使得RScSiO=的Mullliken布居密度增大、抗水氧腐蚀能力增强。但是,ErScSiO5 的晶格收缩主要是通过Er-O或Sc-O键收缩实现的。为了维持体系能量最小,Si-O键反而会有所增大,使得ErScSiO5 的Mulliken布居密度变小、抗水氧腐蚀能力下降。由此可见,通过掺杂构建多组元稀土硅酸盐材料对于提高环境障涂层的抗水氧侵蚀能力有很大帮助。

  • 图6 RE2 SiO5、YbBSiO5(B=Lu、Er、Y和Sc) 和AScSiO5(A=Lu、Er、Y)中Si-O键的Mulliken布居、键长和Mulliken布居密度[31]

  • Fig.6 Mulliken bond populations, bond length and density of Mulliken bond population of Si-O bonds in RE2 SiO5, YbBSiO5(B=Lu,Er,Y,Sc) and AScSiO5(A=Lu、Er、Y) [31]

  • 尽管大部分稀土硅酸盐材料自身有较好的抗水氧腐蚀性能,但受涂层状态的影响,同一种稀土硅酸盐涂层表现出的水氧腐蚀抗力有一定区别[21, 47-48]。此外,由于没有具体、统一的标准衡量涂层的抗水氧腐蚀能力,无法对比不同状态、不同服役条件下涂层的性能。高熵合金具有显著优于传统合金的高强度和高硬度、优异的耐腐蚀性和热稳定性、良好的抗疲劳强度等优异性能[49]。受高熵合金的启发,科研人员对高熵稀土硅酸盐陶瓷材料展开研究,希望通过掺杂多种稀土原子开发出一种水氧腐蚀抗力足够好的稀土硅酸盐材料来弱化涂层质量不稳定对涂层水氧腐蚀抗力的影响。

  • Ren等[50]将RE2O3(RE=Y、Ho、Er和Yb)与SiO2 以摩尔比1 ∶1 ∶1 ∶1 ∶4混合后在1550℃ 保温1 h合成(Y0.25Ho0.25Er0.25Yb0.25)2 SiO5(YHoErYb) 高熵粉体,并在1600℃、30 MPa压力、氩气气氛中热压1 h制备了YHoErYb块体材料。如图7 所示,不同温度下YHoErYb块体的热导率和CTE均明显低于单组分RE2 SiO5 的热导率和CTE值。这是因为掺入不同原子半径的RE会引起RE2 SiO5 晶格的畸变。晶格畸变和RE原子间的相对原子质量的差别增强了声子的非谐散射,降低了晶格热导率。 YHoErYb的弹性刚度很高(室温至1600 K,YHoErYb的杨氏模量远低于单组元RE2 SiO5 的杨氏模量,YHoErYb的实测杨氏模量值比理论计算值高8%以上),能够抵抗温度升高时因晶格非谐振动给材料内部带来的热应力。此外, X2-RE2 SiO5 中存在两种具有不同Grüneisen常数的声子。正Grüneisen常数的声子会增加材料的CTE,负Grüneisen常数的声子则会降低材料的CTE。掺杂多种RE原子会给材料带来明显的晶格畸变和化学键偏差,改变低频声子的非简谐振动,这有助于增加负Grüneisen常数声子的数量,使YHoErYb的CTE减小。以上研究表明低热导率、高CTE的YHoErYb是一种理想的环境障涂层面层材料。

  • Dong等[51] 通过溶胶-凝胶法制备了(Yb0.2Y0.2Lu0.2Sc0.2Gd0.2)2Si2O7((5RE0.2)2Si2O7)粉体,在1600℃热压3 h获得(5RE0.2)2 Si2O7 致密块体,并通过浆料刷涂-高温烧结在Cf/SiC基体上制备了( 5RE0.2)2 Si2O7 涂层。如图8 所示, 在1400℃考核200 h后(5RE0.2 )2 Si2O7 块体的比重仅增加3.7 mg/m 2,表现出很好的高温抗水氧腐蚀性能,这主要是因为高熵体系中原子的扩散速度很慢[52] 使得其不容易被高温水汽侵蚀。在1250℃、 50%H2O-50%O2 考核条件, 有(5RE0.2)2 Si2O7 涂层保护的Cf/SiC基体在考核300 h后只有轻微失重,涂层的弯曲强度保留率达86%。这是因为涂层的抗水氧腐蚀能力除了受涂层自身抗水氧能力的影响外,还与涂层和基体的结合状况有关。(5RE0.2)2 Si2O7 块体的CTE仅为(3.7~5.7) ×10-6 K-1,与SiCf/SiC((4.5~5.5) × 10-6 K-1) 和Cf/SiC((3.5~5.0)×10-6 K-1)的CTE相近。涂层与基体间的应力很小,长时间考核后涂层仍与基体紧密结合,不会因结合力小而脱落。以上研究表明高熵稀土硅酸盐陶瓷是一种理想的环境障涂层面层材料,能在高温水氧条件下保持非常高的稳定性和优异的抗水氧腐蚀性能。

  • 图7 YHoErYb和X2-RE2 SiO5 的热导和CTE与温度的关系[50]

  • Fig.7 Temperature dependent thermal conductivity and CTE of YHoErYb and X2-RE2 SiO5 [50]

  • 图8 (5RE0.2)2 Si2O7 块体和涂层在1400℃、50%H2O-50%O2 考核时的重量变化[51]

  • Fig.8 Weight change of(5RE0.2)2Si2O7 bulk and coating corroded in 50%H2O-50%O2 water-vapor atmosphere at 1400℃ [51]

  • 3 环境障涂层粘结层发展面临的问题

  • 为了更好地阻止高温燃气对硅基基体的侵蚀,通常选用抗水氧腐蚀能力强的稀土硅酸盐作为环境障涂层的面层材料。但稀土硅酸盐面层材料的CTE与硅基基体的CTE有较大差别,需要在面层与硅基基体间制备粘结层。粘结层的CTE介于面层材料和硅基基体的CTE之间,能缓解面层材料和硅基基体由于CTE差异过大导致的面层开裂、脱落,实现涂层与基体更好的结合。当航空发动机高温燃气中的O2、H2O沿面层的裂纹渗入涂层内部时,粘结层还起阻挡作用,阻止O2、H2O继续向内渗透,避免基体被燃气环境侵蚀。此外,部分环境障涂层面层材料会与硅基基体的氧化产物SiO2 反应生成硅酸盐,给涂层中带来生长应力,不利于涂层与基体结合。因此,需要粘结层隔绝面层材料与基体,提高环境障涂层的高温稳定性。

  • 随着面层材料的更新换代,环境障涂层的面层材料经过了三个发展阶段,与之匹配的粘结层的发展也经过了三个阶段:第一代粘结层为与YSZ面层匹配的莫来石涂层;第二代粘结层为与BSAS面层匹配的含BSAS的混合粘结层;第三代粘结层为与稀土硅酸盐面层材料匹配的硅粘结层。以上三代粘结层的应用均存在一定问题。

  • 3.1 第一代莫来石粘结层

  • 第一代粘结层材料是莫来石。莫来石最初被单独用作环境障涂层,之后发展为与YSZ面层匹配的粘结层,用来缓解YSZ与硅基基体间因CTE差异过大而导致的热失配。莫来石也可用作稀土硅酸盐面层的粘结层。如图9 所示,大气等离子制备的莫来石/YSZ双层涂层在1300℃、90%H2O/平衡O2、 1 atm、 2 h/循环的条件下考核200 h后与基体的结合仍较为紧密[4]。但莫来石中的SiO2 活度高,当燃气环境中的H2O沿YSZ的裂纹渗入涂层内部后与莫来石中的SiO2 反应生成挥发性Si(OH)4,导致涂层内部出现较多孔洞,降低莫来石和YSZ间的结合强度。

  • 图9 mullite/YSZ涂层保护SiC基体水氧考核后的形貌[4]

  • Fig.9 Modified mullite/YSZ-coated SiC in cyclic water vapor furnace [4]

  • 3.2 第二代BSAS混合粘结层

  • 第二代粘结层是包含BSAS的混合粘结层, 通常为BSAS与莫来石或BSAS与Si组成的混合涂层。然而尽管有环境障涂层保护,长时间水氧考核后基体表面的Si原子会被渗入涂层的O2 或O 2-氧化生成SiO2。 BSAS与SiO2 反应生成高氧气渗透率的玻璃相,会加速高温水汽对硅基基体的侵蚀。因此需要在BSAS混合涂层下制备Si层以提高涂层体系的化学稳定性。硅涂层充当 “牺牲层”,吸收扩散而来的O2 或O 2-,推迟基体被氧化。如图10 所示,在1400℃ 考核100 h后环境障涂层中出现大面积的低熔点玻璃相,玻璃相被高速燃气流冲刷走后给涂层界面处留下很多大尺寸孔洞,大幅降低了涂层与基体的结合强度。因此,玻璃相的产生和挥发极大地限制了BSAS混合粘结层的使用温度[21]

  • 图10 Si/莫来石+BSAS/Er2 SiO5 涂层保护SiC基体在1400℃、90%H2O-平衡O2 条件考核100 h后的截面形貌[21]

  • Fig.10 Cross-section of silicon/mullite+BSAS/Er2 SiO5 after 100 h in 90%H2O-balance O2 at 1400℃ [21]

  • 3.3 第三代硅粘结层

  • 第三代粘结层材料是硅,最初与BSAS配合共同承担粘结层作用,现单独作为稀土硅酸盐面层与硅基基体的粘结层。图11 所示为大气等离子喷涂Si/Yb2 Si2O7 涂层在110~1316℃、90%H2O/10%O2、流速44 mm/s的水氧条件下考核不同周期后的截面形貌。

  • 图11 不同状态下Si/Yb2 Si2O7 涂层的截面形貌[32]

  • Fig.11 BSE mode SEM micrographs of Si/Yb2 Si2O7 coated system before and after steam cycling [32]

  • 可以发现考核1000 个周期后,在硅粘结层的过渡作用下Yb2 Si2O7 涂层仍能保持与SiC基体紧密结合的状态。考核持续2000 个周期后, 在应力作用下Yb2 Si2O7 面层与硅粘结层间出现少量横向裂纹。受扩散进入涂层的O2 和O 2-的影响,硅粘结层表面被轻微氧化,面层与粘结层中间出现SiO2 薄层[32]。硅粘结层可以缓解硅基基体与稀土硅酸盐面层材料因CTE不匹配而造成的涂层开裂问题。此外,硅粘结层还充当牺牲层的角色,当O2 沿面层裂纹或晶格渗入涂层内部后与硅单质反应生成SiO2,通过消耗O2 来保护硅基基体不被氧化。目前,硅粘结层/稀土硅酸盐面层是稳定性最好、性能最优的环境障涂层体系。

  • 4 第三代硅粘结层的改性

  • 随着对环境障涂层研究的日益深入,科研工作者发现硅材料用作第三代粘结层时存在一定局限性。首先,为了实现10 以上的高推重比,航空发动机涡轮前端温度至少要达到1727℃,而硅单质的熔点仅为1414℃。尽管面层能减少环境向基体传递的热量,但热平衡状态下粘结层的温度也远超过硅的熔点。硅材料较低的熔点不利于航空发动机推重比的继续提高。

  • 环境障涂层面层与硅粘结层界面产生的热生长氧化物SiO2(TGO) 是环境障涂层在燃气环境中失效的重要原因。在服役过程中,高温水汽中的氧元素以分子或离子形式渗入涂层内部[53-55]与Si粘结层反应生成SiO2。 Si单质转变为SiO2 时体积膨胀约2.2 倍[56];降温过程中, SiO2 在220℃ 左右发生相变,由 β 相转变为 α 相,并伴随~5%的体积收缩[56-59];此外,α-SiO2 的CTE( 1.03 × 10-5K-1) 与硅的粘结层的CTE((4~5)×10-6K-1)差别很大[56]。在以上原因的综合作用下,面层和粘结层界面及TGO内部产生很大的应力。当TGO中的内应力大于其强度极限时,TGO内部产生裂纹并不断扩展,使得环境障涂层剥落。

  • 为了克服硅粘结层熔点低的缺点,降低TGO对涂层使用性能的影响,科研工作者逐渐将工作重点转移到粘结层的改性上。

  • 4.1 提高粘结层使用温度的改性

  • SiC的熔点为2700℃,远高于硅材料的熔点。此外,SiC还具有与硅基基体相近的CTE,科研工作者考虑用SiC取代Si用作环境障涂层中的粘结层材料[20, 60-61]。 Han等[61] 在沉积有SiC涂层的SiCf/SiC基体上通过大气等离子喷涂制备了Yb2Si2O7 涂层,在室温~1500℃温度范围内对样品进行热震考核。考核发现,涂层与基体结合状况良好,热震考核364 次后涂层中出现贯穿裂纹,判定涂层失效。这说明SiC粘结层能很好地将面层与硅基基体粘结起来。 Seifert等[62] 通过化学气相沉积在C/C-SiC基体上制备了SiC粘结层, 并通过低压等离子喷涂制备Y2 SiO5 + Y2 Si2O7 混合面层。在1623~1923 K的风洞考核中,SiC/Y2 SiO5 + Y2 Si2O7 涂层质量损失少于0.6%,表现出很好的抗高温氧化和腐蚀抗力。当考核温度升高到1923 K后涂层的表面状况仍然没有明显变化。以上研究均说明SiC粘结层能有效提高环境障涂层的使用温度,在环境障涂层领域有很好的应用前景。

  • 除了使用高熔点的SiC替换硅用作粘结层外,还可以通过向硅粘结层中掺入其他物高熔点相来提高粘结层的使用温度。由于HfO2 具有熔点高(~2800℃) 和高温蠕变速率低(1400℃ 时25 mol%HfO2/75 mol%Si的蠕变速率为~10-6 s-1)等特性,Harder [63]提出制备Si+HfO2 混合粘结层以提高其使用温度。 Harder采用等离子喷涂-物理气相沉积( PS-PVD) 在 α-SiC基体表面制备了25 mol%HfO2 +75 mol%Si混合粘结层。由于Si的熔点远低于HfO2 的熔点,沉积过程中Si充分熔化并流动,形成了以25 mol%HfO2 为“砖”、以75 mol%Si为“粘结剂” 的混合粘结层。考核发现, 由于HfO2 的加入, 由25 mol%HfO2 + 75 mol%Si粘结层和83 mol%Yb2 Si2O7 + 17 mol%Yb2 SiO5 面层组成的双层环境障涂层的使用温度提高到了1485℃。

  • 4.2 减小TGO破坏涂层的改性

  • 针对TGO引起的涂层失效这一问题,科研工作者提出直接改性和间接改性两种方法抑制硅粘结层被氧化后生成的TGO对环境障涂层的破坏。

  • 直接改性即直接向硅粘结层中加入其他组分,通过调整粘结层的组分降低TGO的生长速度,实现硅粘结层使用性能的提升。

  • Anton等[64]通过磁控溅射在SiC基体表面分别制备了Si + 36 mol%HfO2 和纯Si单层涂层,并在1523 K高温氧化。如图12 所示,氧化1000 h后Si涂层表面的TGO的厚度达到5.6 μm,占Si粘结层总厚度的39%,且TGO层中存在很多大尺寸裂纹。 Si-HfO2 混合粘结层表面TGO的生长速率与纯Si表面TGO的生长速率基本相同,但TGO中没有裂纹并与涂层紧密结合。这是因为随着氧化时间延长,原本在HfO2 +Si混合粘结层中均匀分布的HfO2 在涂层表面富集并长大。 HfO2 与扩散进入HfO2 的TGO反应生成HfSiO4 抑制了TGO在反复相变中开裂的倾向。因此,向硅粘结层中直接掺入HfO2 能有效提高了硅粘结层的化学、机械稳定性,阻止了TGO层开裂。

  • 间接改性即向环境障涂层面层或中间层中加入改性组分,利用改性组分消耗O2 或降低O2 在TGO中的渗透率来减轻TGO对环境障涂层的破坏。

  • 图12 粘结层在1523 K氧化1000 h后TGO的截面形貌[64]

  • Fig.12 TGO formed on top of bond coating after 1000 h furnace cycle testing at 1523 K [64]

  • Klemm等[65] 通过大气等离子喷涂在SiCf/SiC基体上制备Si粘结层,并通过溶液等离子喷涂制备Yb2 Si2O7 + SiC中间层和Yb2 SiO5 面层。涂层在1200℃ 高温氧化和水氧考核100 h后的形貌分别如图13 所示。高温下,O2 沿Yb2 SiO5 面层中的裂纹侵入涂层后与中间层中的SiC反应生成的SiO2 可以封填裂纹。 SiC作为“吸氧剂”消耗了进入涂层内部的O2,阻止O2 沿中间层中的孔洞、裂纹抵达硅粘结层,进而阻止O2 与硅粘结层反应。尽管H2O会沿裂纹进入中间层,在与SiO2 反应生成挥发性Si(OH)4 的同时消耗SiC氧化生成的SiO2,但只有SiC被消耗完后,氧化剂才能进一步侵入与硅粘结层反应。试验证明将SiC加入中间层很好地推迟了TGO的出现。

  • 图13 不同状态Si/Yb2 Si2O7 +SiC/Yb2 SiO5 涂层的截面形貌和氧化示意图[65]

  • Fig.13 Cross-section and oxidation schematic diagram of Si/Yb2 Si2O7 +SiC/Yb2 SiO5 environmental barrier coatings system on SiCf/SiC(N) composite [65]

  • Lee等[56] 通过大气等离子喷涂制备了Si/Yb2 Si2O7 双层环境障涂层,并向Yb2 Si2O7 面层中加入Al2O3、Y3Al5O12 等含有Al2O3 的氧化物作为改性剂。将改性及未改性的涂层样品放在1316℃、90%H2O/10%O2 条件中考核,考核1000 h后涂层的截面形貌如图14 所示。

  • 图14 不同环境障涂层在1316℃、90%H2O+O2、1000 h/1000 循环条件下考核后的截面形貌和能谱结果[56]

  • Fig.14 Cross-section and EDS chemical analysis of different environmental barrier coatings after 1000 h/1000 cycles at 1316℃ in 90%H2O+O2 [56]

  • 可以发现未添加改性氧化物的Si/Yb2 Si2O7 涂层在高温水氧条件下考核1000 h后TGO的厚度约为20 μm, 超过了无裂纹的TGO厚度阈值[32],因此可以在TGO看到很多裂纹。添加改性氧化物后Si/Yb2 Si2O7 +6%Al2O3、Si/Yb2 Si2O7 + 1.39%莫来石+ 4.66%YAG涂层体系中TGO厚度的最大值不超过4 μm。向Yb2 Si2O7 面层中添加改性氧化物后TGO的厚度减少了80%,涂层的使用寿命延长了~20 倍。这是因为高温下,改性氧化物中的部分Al原子扩散进入TGO,改变了SiO2 的空间结构,导致O2 在TGO中的溶解度降低。当O2 在TGO中的溶解度降低后,O2 穿透TGO与硅粘结层反应的速度急剧下降,使得TGO层的生长速率减慢。由此可见,改性氧化物的添加改变了TGO的化学性质,成功抑制了TGO的继续生成。

  • 5 结语及展望

  • 文中对影响环境障涂层使用效果的原因进行分析,明确指出YSZ的CTE过大、BSAS使用温度过低是分别限制了第一代、第二代环境障涂层发展的主要因素。

  • 第三代硅粘结层/稀土硅酸盐面层体系是目前最具应用前景的环境障涂层,但也有较多因素制约其发展。稀土硅酸盐材料自身的抗水氧腐蚀能力和稀土硅酸盐面层的质量决定了环境障涂层对航空发动机热端硅基基体的保护能力。粘结层硅材料熔点低、易氧化分别是限制环境障涂层服役温度、涂层失效的重要原因。通过分析已有研究成果,总结得出现有的第三代环境障涂层的改进措施。开发具有更强水氧腐蚀抗力、更优异物理化学性能的高熵稀土硅酸盐被证实是提升环境障涂层面层使用性能的有效措施。直接改性和间接改性大幅度减弱了TGO对涂层的影响,能显著延长涂层的使用时间。用高熔点的SiC直接取代硅或向硅粘结层中加入高熔点HfO2 能提升环境障涂层的服役温度,有助于高推重比航空发动机的发展。

  • 目前关于第三代环境障涂层的研究,大部分只从单一角度出发改进涂层的防护性能。因此, 多功能耦合环境障涂层将会是未来环境障涂层发展的重要方向。

  • 多功能耦合环境障涂层包括以下几点:

  • (1) 高熵稀土硅酸盐与自愈合材料耦合面层。将抗水氧腐蚀能力优异的高熵稀土硅酸盐与SiC等具备自愈合能力的材料耦合,制备环境障涂层的混合面层。该混合面层有望表现出更强的抗水氧腐蚀能力。

  • (2) 高熔点氧化物、改性剂与硅耦合粘结层。将高熔点氧化物、改性剂与硅混合制备粘结层,可有效克服硅材料使用温度低,易生成TGO等缺点。

  • (3) 耦合面层与耦合粘结层组合。将耦合面层与耦合粘结层组合,有望得到抗水氧腐蚀能力优异、高温抗氧化性强、使用温度高的环境障涂层。此外,选择稀土硅酸盐面层材料时可兼顾材料的热导率。选用低热导率的稀土硅酸盐发展环/热障功能一体化的涂层也是提高涂层使用温度的有效措施。

  • 参考文献

    • [1] 张立同,成来飞,徐永东,等.自愈合碳化硅陶瓷基复合材料研究及应用进展[J].航空材料学报,2006,26(3):226-232.ZHANG L T,CHENG L F,XU Y D,et al.Progress on self-healing silicon carbide ceramic matrix composites and its ap-plications[J].Journal of Aeronautical Materials,2006,26(3):226-232(in Chinese).

    • [2] PLYASUNOV A V,ZYUBIN A S,ZYUBINA T S.Thermo-dynamic properties of Si(OH)4(g)based on combined ex-perimental and quantum chemistry data [J].Journal of the American Ceramic Society,2018,101(11):4921-4926.

    • [3] FEDERER J I.Alumina base coatings for protection of SiC ceramics[J].Journal of Materials Engineering,1990,12(2):141-149.

    • [4] LEE K N.Current status of environmental barrier coatings for Si-Based ceramics [J].Surface and Coatings Technology,2000,133-134:1-7.

    • [5] LEE K N,MILLER R A.Development and environmental durability of mullite and mullite/YSZ dual layer coatings for SiC and Si3N4 ceramics[J].Surface and Coatings Technolo-gy,1996,86-87(part-P1):142-148.

    • [6] LEE K N,MILLER R A,JACOBSON N S.New generation of plasma-sprayed mullite coatings on silicon-carbide [J].Journal of the American Ceramic Society,1995,78(3):705-710.

    • [7] OPILA E J.Paralinear Oxidation of CVD SiC in Water Vapor [J].Journal of the American Ceramic Society,1997,80(1):197-205.

    • [8] RICHARDS B T,WADLEY H N G.Plasma spray deposition of tri-layer environmental barrier coatings[J].Journal of the European Ceramic Society,2014,34(12):3069-3083.

    • [9] LIU L,ZHENG W,MA Z,et al.Study on water corrosion behavior of ZrSiO4 materials[J].Journal of Advanced Ce-ramics,2018,7(4):336-342.

    • [10] KLEMM H.Corrosion of silicon nitride materials in gas tur-bine environment[J].Journal of the European Ceramic Soci-ety,2002,22:2735-2740.

    • [11] 马壮,刘玲,郑伟.航空发动机环境障涂层:材料及性能 [J].现代技术陶瓷,2019,40(5):331-344.MA Z,LIU L,ZHENG W.Environmental barrier coating for aeroengines:materials and properties [J].Advanced Ceram-ics,2019,40(5):331-344(in Chinese).

    • [12] LEE K N,MILLER R A,JACOBSON N S.Plasma sprayed mullite coatings on silicon-base ceramics[EB/OL].https://ntrs.nasa.gov/search.jsp?R= 20080005971.

    • [13] LEE K N,MILLER R A,JACOBSON N S,et al.Environ-mental Durability of Mullite Coating/SiC and Mullite-YSZ Coating/SiC Systems [ M].John Wiley & Sons,Inc.,1995.

    • [14] LEE K N.Environmental Barrier Coatings Having a YSZ Top Coat[J].Proceedings of IGTI,2002:GT-2002-30626.

    • [15] LEE K N.Key durability issues with mullite-based environ-mental barrier coatings for Si-based ceramics[J].Journal of Engineering for Gas Turbines and Power,2000,122(4):632-636.

    • [16] LEE K N.Contamination effects on interfacial porosity during cyclic oxidation of mullite-coated silicon carbide[J].Journal of the American Ceramic Society,1998,81(12):2232-3329.

    • [17] LEE K N,FOX D S,ELDRIDGE J I,et al.Upper tempera-ture limit of environmental barrier coatings based on mullite and BSAS [J].Journal of the American Ceramic Society,2003(8):1299-1306.

    • [18] 王超,乔瑞庆,吴玉胜,等.Si 基陶瓷表面环境障涂层的研究进展[J].中国陶瓷工业,2017,24(2):28-33.WANG C,QIAO R Q,WU Y S,et al.Developments of en-vironmental barrier coatings on the Si-based ceramics [J].China Ceramic Industry,2017,24(2):28-33(in Chi-nese).

    • [19] 贺世美,牟仁德,陆峰,等.BSAS 环境障涂层抗水蒸汽性及其失效机理[J].失效分析与预防,2011,6(1):44-49.HE S M,MU R D,LU F,et al.Vapor resistance and failure mechanism of BSAS environment barrier coatings[J].Failure Analysis and Prevention,2011,6(1):44-49(in Chinese).

    • [20] LU L,CHENG L,HONG Z,et al.Fabrication and Water-vapor Corrosion Resistance of Ba0.25 Sr0.75Al2 Si2O8 Environ-mental Barrier Coating[J].Journal of Inorganic Materials,2011,26(7):701-706.

    • [21] LEE K N,FOX D S,BANSAL N P.Rare earth silicate envi-ronmental barrier coatings for SiC/SiC composites and Si3N4 ceramics [J].Journal of the European Ceramic Society,2005,25(10):1705-1715.

    • [22] 田志林,王京阳.稀土硅酸盐陶瓷材料研究进展[J].现代陶瓷技术,2018,39(5):295-320.TIAN Z L,WANG J Y.Research progress of rare earth sili-cate ceramics[J].Advanced Ceramics,2018,39(5):295-320(in Chinese).

    • [23] LI Y,LUO Y,TIAN Z,et al.Theoretical exploration of the abnormal trend in lattice thermal conductivity for monosili-cates RE2 SiO5(RE = Dy,Ho,Er,Tm,Yb and Lu)[J].Journal of the European Ceramic Society,2018,38(10):3539-3546.

    • [24] AL NASIRI N,PATRA N,JAYASEELAN D D,et al.Wa-ter vapour corrosion of rare earth monosilicates for environ-mental barrier coating application[J].Ceramics Internation-al,2017,43(10):7393-7400.

    • [25] TIAN Z,ZHENG L,WANG J,et al.Theoretical and experi-mental determination of the major thermo-mechanical proper-ties of RE2 SiO5(RE = Tb,Dy,Ho,Er,Tm,Yb,Lu,and Y)for environmental and thermal barrier coating applications [J].Journal of the European Ceramic Society,2016,36(1):189-202.

    • [26] AL NASIRI N,PATRA N,HORLAIT D,et al.Thermal Properties of Rare-Earth Monosilicates for EBC on Si-Based Ceramic Composites [J].Journal of the American Ceramic Society,2016,99(2):589-596.

    • [27] SUN Z,LI M,ZHOU Y.Thermal properties of single-phase Y2 SiO5 [J].Journal of the European Ceramic Society,2009,29(4):551-557.

    • [28] FERNÁNDEZ-CARRIÓN A J,ALLIX M,BECERRO A I,et al.Thermal Expansion of Rare-Earth Pyrosilicates [J].Journal of the American Ceramic Society,2013,96(7):2298-2305.

    • [29] WANG Y,LIU J.First-principles investigation on the corro-sion resistance of rare earth disilicates in water vapor [J].Journal of the European Ceramic Society,2009,29(11):2163-2167.

    • [30] LUO Y,SUN L,WANG J,et al.Material-genome perspec-tive towards tunable thermal expansion of rare-earth di-sili-cates[J].Journal of the European Ceramic Society,2018,38(10):3547-3554.

    • [31] HAN J,WANG Y,LIU R,et al.Study on water vapor cor-rosion resistance of rare earth monosilicates RE2 SiO5(RE = Lu,Yb,Tm,Er,Ho,Dy,Y,and Sc)from first-principles calculations[J].Heliyon,2018,4(10):e857.

    • [32] RICHARDS B T,YOUNG K A,de FRANCQUEVILLE F,et al.Response of ytterbium disilicate-silicon environmental barrier coatings to thermal cycling in water vapor[J].Acta Materialia,2016,106:1-14.

    • [33] WANG Y,NIU Y,ZHONG X,et al.Water vapor corrosion behaviors of plasma sprayed RE2 SiO5 (RE = Gd,Y,Er)coatings[J].Corrosion Science,2020,167:108529.

    • [34] XIAO J,LIU Q,LI J,et al.Microstructure and high-tem-perature oxidation behavior of plasma-sprayed Si/Yb2 SiO5 environmental barrier coatings[J].Chinese Journal of Aero-nautics,2019,32(8):1994-1999.

    • [35] GARCIA E,LEE H,SAMPATH S.Phase and microstruc-ture evolution in plasma sprayed Yb2 Si2O7 coatings [J].Journal of the European Ceramic Society,2019,39(4):1477-1486.

    • [36] FENG F,JANG B,PARK J Y,et al.Effect of Yb2 SiO5 ad-dition on the physical and mechanical properties of sintered mullite ceramic as an environmental barrier coating material [J].Ceramics International,2016,42(14):15203-15208.

    • [37] APARICIO M,DURÁN A.Yttrium Silicate Coatings for Oxi-dation Protection of Carbon-Silicon Carbide Composites[J].Journal of the American Ceramic Society,2000,83(6):1351-1355.

    • [38] JANG B,FENG F,LEE K,et al.Thermal behavior and me-chanical properties of Y2 SiO5 environmental barrier coatings after isothermal heat treatment [J].Surface and Coatings Technology,2016,308:24-30.

    • [39] KLEMM H.Silicon Nitride for High-Temperature Applica-tions[J].Journal of the American Ceramic Society,2010,93(6):1501-1522.

    • [40] MECHNICH P,BRAUE W.Air plasma-sprayed Y2O3 coat-ings for Al2O3/Al2O3 ceramic[J].Journal of the European Ceramic Society,2013,33(13-14):2645-2653.

    • [41] VU H D,NANKO M.Crack-healing performance and oxida-tion behavior of SiC dispersed yttrium silicate composites[J].Journal of Asian Ceramic Societies,2020,8(2):298-308.

    • [42] COSTA G C C,JACOBSON N S.Mass spectrometric meas-urements of the silica activity in the Yb2O3-SiO2 system and implications to assess the degradation of silicate-based coat-ings in combustion environments[J].Journal of the Europe-an Ceramic Society,2015,35(15):4259-4267.

    • [43] BAKAN E,SOHN Y J,KUNZ W,et al.Effect of processing on high-velocity water vapor recession behavior of Yb-silicate environmental barrier coatings[J].Journal of the European Ceramic Society,2019,39(4):1507-1513.

    • [44] DAYI E N,AL NASIRI N.Diffusion study of rare-earth ox-ides into silica layer for environmental barrier coating applica-tions[J].Journal of the European Ceramic Society,2019,39(14):4216-4222.

    • [45] MAIER N,NICKEL K G,RIXECKER G.High temperature wa-ter vapour corrosion of rare earth disilicates(Y,Yb,Lu)2Si2O7 in the presence of Al(OH)3 impurities[J].Journal of the Euro-pean Ceramic Society,2007,27(7):2705-2713.

    • [46] AL NASIRI N,PATRA N,PEZOLDT M,et al.Investiga-tion of a single-layer EBC deposited on SiC/SiC CMCs:Pro-cessing and corrosion behaviour in high-temperature steam [J].Journal of the European Ceramic Society,2019,39(8):2703-2711.

    • [47] UENO S,JAYASEELAN D D,OHJI T.Comparison of water vapor corrosion behavior of silicon nitride with various EBC layers[J].Journal of Ceramic Processing Research,2004,5(4):355-359.

    • [48] UENO S,JAYASEELAN D D,OHJI T.Development of ox-ide-based EBC for silicon nitride[J].International Journal of Applied Ceramic Technology,2004,1(4):362-373.

    • [49] ZHANG W,LIAW P K,ZHANG Y.Science and technology in high-entropy alloys[J].Science China Materials,2018,61(1):2-22.

    • [50] REN X,TIAN Z,ZHANG J,et al.Equiatomic quaternary(Y1/4Ho1/4Er1/4Yb1/4 )2 SiO5 silicate:A perspective multi-functional thermal and environmental barrier coating material [J].Scripta Materialia,2019,168:47-50.

    • [51] DONG Y,REN K,LU Y,et al.High-entropy environmental barrier coating for the ceramic matrix composites[J].Journal of the European Ceramic Society,2019,39(7):2574-2579.

    • [52] TSAI K Y,TSAI M H,YEH J W.Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J].Acta Materialia,2013,61(13):4887-4897.

    • [53] DEAL B E,GROVE A S.General Relationship for the Ther-mal Oxidation of Silicon [J].Journal of Applied Physics,1965,36(12):3770-3778.

    • [54] ROHBECK N,MORRELL P,XIAO P.Degradation of ytter-bium disilicate environmental barrier coatings in high temper-ature steam atmosphere[J].Journal of the European Ceramic Society,2019,39(10):3153-3163.

    • [55] LU Y,WANG Y.Formation and growth of silica layer be-neath environmental barrier coatings under water-vapor envi-ronment[J].Journal of Alloys and Compounds,2018,739:817-826.

    • [56] LEE K N.Yb2 Si2O7 environmental barrier coatings with re-duced bond coat oxidation rates via chemical modifications for long life [J].Journal of the American Ceramic Society,2019,102(3):1507-1521.

    • [57] LU Y,CAO Y,ZHAO X.Optimal rare-earth disilicates as top coat in multilayer environmental barrier coatings [J].Journal of Alloys and Compounds,2018,769:1026-1033.

    • [58] RICHARDS B T,BEGLEY M R,WADLEY H N G,et al.Mechanisms of Ytterbium Monosilicate/Mullite/Silicon Coat-ing Failure During Thermal Cycling in Water Vapor [J].Journal of the American Ceramic Society,2015,98(12):4066-4075.

    • [59] ARAI Y,AOKI Y,KAGAWA Y.Effect of cristobalite for-mation on the delamination resistance of an oxide/Si/(SiC/SiC)environmental barrier coating system after cyclic high temperature thermal exposure[J].Scripta Materialia,2017,139:58-62.

    • [60] LIU J,ZHANG L,LIU Q,et al.Structure design and fabri-cation of environmental barrier coatings for crack resistance [J].Journal of the European Ceramic Society,2014,34(8):2005-2012.

    • [61] HAN J,WANG Y,LIU R,et al.Thermal shock behavior of mixed ytterbium disilicates and ytterbium monosilicates com-posite environmental barrier coatings[J].Surface and Coat-ings Technology,2018,352:348-353.

    • [62] SEIFERT H J,WAGNER S,FABRICHNAYA O,et al.Yt-trium Silicate Coatings on Chemical Vapor Deposition-SiC-Precoated C/C-SiC:Thermodynamic Assessment and High-Temperature Investigation[J].Journal of the American Ce-ramic Society,2005,88(2):424-430.

    • [63] HARDER B J.Oxidation performance of Si-HfO2 environ-mental barrier coating bond coats deposited via plasma spray-physical vapor deposition[J].Surface & Coatings Technolo-gy,2020,384:8.

    • [64] ANTON R,LEISNER V,WATERMEYER P,et al.Hafnia-doped silicon bond coats manufactured by PVD for SiC/SiC CMCs[J].Acta Materialia,2020,183:471-483.

    • [65] KLEMM H,SCHONFELD K,KUNZ W.Delayed Formation of Thermally Grown Oxide in Environmental Barrier Coatings for Non-Oxide Ceramic Matrix Composites [J].Coatings,2020,10(1):11.

  • 参考文献

    • [1] 张立同,成来飞,徐永东,等.自愈合碳化硅陶瓷基复合材料研究及应用进展[J].航空材料学报,2006,26(3):226-232.ZHANG L T,CHENG L F,XU Y D,et al.Progress on self-healing silicon carbide ceramic matrix composites and its ap-plications[J].Journal of Aeronautical Materials,2006,26(3):226-232(in Chinese).

    • [2] PLYASUNOV A V,ZYUBIN A S,ZYUBINA T S.Thermo-dynamic properties of Si(OH)4(g)based on combined ex-perimental and quantum chemistry data [J].Journal of the American Ceramic Society,2018,101(11):4921-4926.

    • [3] FEDERER J I.Alumina base coatings for protection of SiC ceramics[J].Journal of Materials Engineering,1990,12(2):141-149.

    • [4] LEE K N.Current status of environmental barrier coatings for Si-Based ceramics [J].Surface and Coatings Technology,2000,133-134:1-7.

    • [5] LEE K N,MILLER R A.Development and environmental durability of mullite and mullite/YSZ dual layer coatings for SiC and Si3N4 ceramics[J].Surface and Coatings Technolo-gy,1996,86-87(part-P1):142-148.

    • [6] LEE K N,MILLER R A,JACOBSON N S.New generation of plasma-sprayed mullite coatings on silicon-carbide [J].Journal of the American Ceramic Society,1995,78(3):705-710.

    • [7] OPILA E J.Paralinear Oxidation of CVD SiC in Water Vapor [J].Journal of the American Ceramic Society,1997,80(1):197-205.

    • [8] RICHARDS B T,WADLEY H N G.Plasma spray deposition of tri-layer environmental barrier coatings[J].Journal of the European Ceramic Society,2014,34(12):3069-3083.

    • [9] LIU L,ZHENG W,MA Z,et al.Study on water corrosion behavior of ZrSiO4 materials[J].Journal of Advanced Ce-ramics,2018,7(4):336-342.

    • [10] KLEMM H.Corrosion of silicon nitride materials in gas tur-bine environment[J].Journal of the European Ceramic Soci-ety,2002,22:2735-2740.

    • [11] 马壮,刘玲,郑伟.航空发动机环境障涂层:材料及性能 [J].现代技术陶瓷,2019,40(5):331-344.MA Z,LIU L,ZHENG W.Environmental barrier coating for aeroengines:materials and properties [J].Advanced Ceram-ics,2019,40(5):331-344(in Chinese).

    • [12] LEE K N,MILLER R A,JACOBSON N S.Plasma sprayed mullite coatings on silicon-base ceramics[EB/OL].https://ntrs.nasa.gov/search.jsp?R= 20080005971.

    • [13] LEE K N,MILLER R A,JACOBSON N S,et al.Environ-mental Durability of Mullite Coating/SiC and Mullite-YSZ Coating/SiC Systems [ M].John Wiley & Sons,Inc.,1995.

    • [14] LEE K N.Environmental Barrier Coatings Having a YSZ Top Coat[J].Proceedings of IGTI,2002:GT-2002-30626.

    • [15] LEE K N.Key durability issues with mullite-based environ-mental barrier coatings for Si-based ceramics[J].Journal of Engineering for Gas Turbines and Power,2000,122(4):632-636.

    • [16] LEE K N.Contamination effects on interfacial porosity during cyclic oxidation of mullite-coated silicon carbide[J].Journal of the American Ceramic Society,1998,81(12):2232-3329.

    • [17] LEE K N,FOX D S,ELDRIDGE J I,et al.Upper tempera-ture limit of environmental barrier coatings based on mullite and BSAS [J].Journal of the American Ceramic Society,2003(8):1299-1306.

    • [18] 王超,乔瑞庆,吴玉胜,等.Si 基陶瓷表面环境障涂层的研究进展[J].中国陶瓷工业,2017,24(2):28-33.WANG C,QIAO R Q,WU Y S,et al.Developments of en-vironmental barrier coatings on the Si-based ceramics [J].China Ceramic Industry,2017,24(2):28-33(in Chi-nese).

    • [19] 贺世美,牟仁德,陆峰,等.BSAS 环境障涂层抗水蒸汽性及其失效机理[J].失效分析与预防,2011,6(1):44-49.HE S M,MU R D,LU F,et al.Vapor resistance and failure mechanism of BSAS environment barrier coatings[J].Failure Analysis and Prevention,2011,6(1):44-49(in Chinese).

    • [20] LU L,CHENG L,HONG Z,et al.Fabrication and Water-vapor Corrosion Resistance of Ba0.25 Sr0.75Al2 Si2O8 Environ-mental Barrier Coating[J].Journal of Inorganic Materials,2011,26(7):701-706.

    • [21] LEE K N,FOX D S,BANSAL N P.Rare earth silicate envi-ronmental barrier coatings for SiC/SiC composites and Si3N4 ceramics [J].Journal of the European Ceramic Society,2005,25(10):1705-1715.

    • [22] 田志林,王京阳.稀土硅酸盐陶瓷材料研究进展[J].现代陶瓷技术,2018,39(5):295-320.TIAN Z L,WANG J Y.Research progress of rare earth sili-cate ceramics[J].Advanced Ceramics,2018,39(5):295-320(in Chinese).

    • [23] LI Y,LUO Y,TIAN Z,et al.Theoretical exploration of the abnormal trend in lattice thermal conductivity for monosili-cates RE2 SiO5(RE = Dy,Ho,Er,Tm,Yb and Lu)[J].Journal of the European Ceramic Society,2018,38(10):3539-3546.

    • [24] AL NASIRI N,PATRA N,JAYASEELAN D D,et al.Wa-ter vapour corrosion of rare earth monosilicates for environ-mental barrier coating application[J].Ceramics Internation-al,2017,43(10):7393-7400.

    • [25] TIAN Z,ZHENG L,WANG J,et al.Theoretical and experi-mental determination of the major thermo-mechanical proper-ties of RE2 SiO5(RE = Tb,Dy,Ho,Er,Tm,Yb,Lu,and Y)for environmental and thermal barrier coating applications [J].Journal of the European Ceramic Society,2016,36(1):189-202.

    • [26] AL NASIRI N,PATRA N,HORLAIT D,et al.Thermal Properties of Rare-Earth Monosilicates for EBC on Si-Based Ceramic Composites [J].Journal of the American Ceramic Society,2016,99(2):589-596.

    • [27] SUN Z,LI M,ZHOU Y.Thermal properties of single-phase Y2 SiO5 [J].Journal of the European Ceramic Society,2009,29(4):551-557.

    • [28] FERNÁNDEZ-CARRIÓN A J,ALLIX M,BECERRO A I,et al.Thermal Expansion of Rare-Earth Pyrosilicates [J].Journal of the American Ceramic Society,2013,96(7):2298-2305.

    • [29] WANG Y,LIU J.First-principles investigation on the corro-sion resistance of rare earth disilicates in water vapor [J].Journal of the European Ceramic Society,2009,29(11):2163-2167.

    • [30] LUO Y,SUN L,WANG J,et al.Material-genome perspec-tive towards tunable thermal expansion of rare-earth di-sili-cates[J].Journal of the European Ceramic Society,2018,38(10):3547-3554.

    • [31] HAN J,WANG Y,LIU R,et al.Study on water vapor cor-rosion resistance of rare earth monosilicates RE2 SiO5(RE = Lu,Yb,Tm,Er,Ho,Dy,Y,and Sc)from first-principles calculations[J].Heliyon,2018,4(10):e857.

    • [32] RICHARDS B T,YOUNG K A,de FRANCQUEVILLE F,et al.Response of ytterbium disilicate-silicon environmental barrier coatings to thermal cycling in water vapor[J].Acta Materialia,2016,106:1-14.

    • [33] WANG Y,NIU Y,ZHONG X,et al.Water vapor corrosion behaviors of plasma sprayed RE2 SiO5 (RE = Gd,Y,Er)coatings[J].Corrosion Science,2020,167:108529.

    • [34] XIAO J,LIU Q,LI J,et al.Microstructure and high-tem-perature oxidation behavior of plasma-sprayed Si/Yb2 SiO5 environmental barrier coatings[J].Chinese Journal of Aero-nautics,2019,32(8):1994-1999.

    • [35] GARCIA E,LEE H,SAMPATH S.Phase and microstruc-ture evolution in plasma sprayed Yb2 Si2O7 coatings [J].Journal of the European Ceramic Society,2019,39(4):1477-1486.

    • [36] FENG F,JANG B,PARK J Y,et al.Effect of Yb2 SiO5 ad-dition on the physical and mechanical properties of sintered mullite ceramic as an environmental barrier coating material [J].Ceramics International,2016,42(14):15203-15208.

    • [37] APARICIO M,DURÁN A.Yttrium Silicate Coatings for Oxi-dation Protection of Carbon-Silicon Carbide Composites[J].Journal of the American Ceramic Society,2000,83(6):1351-1355.

    • [38] JANG B,FENG F,LEE K,et al.Thermal behavior and me-chanical properties of Y2 SiO5 environmental barrier coatings after isothermal heat treatment [J].Surface and Coatings Technology,2016,308:24-30.

    • [39] KLEMM H.Silicon Nitride for High-Temperature Applica-tions[J].Journal of the American Ceramic Society,2010,93(6):1501-1522.

    • [40] MECHNICH P,BRAUE W.Air plasma-sprayed Y2O3 coat-ings for Al2O3/Al2O3 ceramic[J].Journal of the European Ceramic Society,2013,33(13-14):2645-2653.

    • [41] VU H D,NANKO M.Crack-healing performance and oxida-tion behavior of SiC dispersed yttrium silicate composites[J].Journal of Asian Ceramic Societies,2020,8(2):298-308.

    • [42] COSTA G C C,JACOBSON N S.Mass spectrometric meas-urements of the silica activity in the Yb2O3-SiO2 system and implications to assess the degradation of silicate-based coat-ings in combustion environments[J].Journal of the Europe-an Ceramic Society,2015,35(15):4259-4267.

    • [43] BAKAN E,SOHN Y J,KUNZ W,et al.Effect of processing on high-velocity water vapor recession behavior of Yb-silicate environmental barrier coatings[J].Journal of the European Ceramic Society,2019,39(4):1507-1513.

    • [44] DAYI E N,AL NASIRI N.Diffusion study of rare-earth ox-ides into silica layer for environmental barrier coating applica-tions[J].Journal of the European Ceramic Society,2019,39(14):4216-4222.

    • [45] MAIER N,NICKEL K G,RIXECKER G.High temperature wa-ter vapour corrosion of rare earth disilicates(Y,Yb,Lu)2Si2O7 in the presence of Al(OH)3 impurities[J].Journal of the Euro-pean Ceramic Society,2007,27(7):2705-2713.

    • [46] AL NASIRI N,PATRA N,PEZOLDT M,et al.Investiga-tion of a single-layer EBC deposited on SiC/SiC CMCs:Pro-cessing and corrosion behaviour in high-temperature steam [J].Journal of the European Ceramic Society,2019,39(8):2703-2711.

    • [47] UENO S,JAYASEELAN D D,OHJI T.Comparison of water vapor corrosion behavior of silicon nitride with various EBC layers[J].Journal of Ceramic Processing Research,2004,5(4):355-359.

    • [48] UENO S,JAYASEELAN D D,OHJI T.Development of ox-ide-based EBC for silicon nitride[J].International Journal of Applied Ceramic Technology,2004,1(4):362-373.

    • [49] ZHANG W,LIAW P K,ZHANG Y.Science and technology in high-entropy alloys[J].Science China Materials,2018,61(1):2-22.

    • [50] REN X,TIAN Z,ZHANG J,et al.Equiatomic quaternary(Y1/4Ho1/4Er1/4Yb1/4 )2 SiO5 silicate:A perspective multi-functional thermal and environmental barrier coating material [J].Scripta Materialia,2019,168:47-50.

    • [51] DONG Y,REN K,LU Y,et al.High-entropy environmental barrier coating for the ceramic matrix composites[J].Journal of the European Ceramic Society,2019,39(7):2574-2579.

    • [52] TSAI K Y,TSAI M H,YEH J W.Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J].Acta Materialia,2013,61(13):4887-4897.

    • [53] DEAL B E,GROVE A S.General Relationship for the Ther-mal Oxidation of Silicon [J].Journal of Applied Physics,1965,36(12):3770-3778.

    • [54] ROHBECK N,MORRELL P,XIAO P.Degradation of ytter-bium disilicate environmental barrier coatings in high temper-ature steam atmosphere[J].Journal of the European Ceramic Society,2019,39(10):3153-3163.

    • [55] LU Y,WANG Y.Formation and growth of silica layer be-neath environmental barrier coatings under water-vapor envi-ronment[J].Journal of Alloys and Compounds,2018,739:817-826.

    • [56] LEE K N.Yb2 Si2O7 environmental barrier coatings with re-duced bond coat oxidation rates via chemical modifications for long life [J].Journal of the American Ceramic Society,2019,102(3):1507-1521.

    • [57] LU Y,CAO Y,ZHAO X.Optimal rare-earth disilicates as top coat in multilayer environmental barrier coatings [J].Journal of Alloys and Compounds,2018,769:1026-1033.

    • [58] RICHARDS B T,BEGLEY M R,WADLEY H N G,et al.Mechanisms of Ytterbium Monosilicate/Mullite/Silicon Coat-ing Failure During Thermal Cycling in Water Vapor [J].Journal of the American Ceramic Society,2015,98(12):4066-4075.

    • [59] ARAI Y,AOKI Y,KAGAWA Y.Effect of cristobalite for-mation on the delamination resistance of an oxide/Si/(SiC/SiC)environmental barrier coating system after cyclic high temperature thermal exposure[J].Scripta Materialia,2017,139:58-62.

    • [60] LIU J,ZHANG L,LIU Q,et al.Structure design and fabri-cation of environmental barrier coatings for crack resistance [J].Journal of the European Ceramic Society,2014,34(8):2005-2012.

    • [61] HAN J,WANG Y,LIU R,et al.Thermal shock behavior of mixed ytterbium disilicates and ytterbium monosilicates com-posite environmental barrier coatings[J].Surface and Coat-ings Technology,2018,352:348-353.

    • [62] SEIFERT H J,WAGNER S,FABRICHNAYA O,et al.Yt-trium Silicate Coatings on Chemical Vapor Deposition-SiC-Precoated C/C-SiC:Thermodynamic Assessment and High-Temperature Investigation[J].Journal of the American Ce-ramic Society,2005,88(2):424-430.

    • [63] HARDER B J.Oxidation performance of Si-HfO2 environ-mental barrier coating bond coats deposited via plasma spray-physical vapor deposition[J].Surface & Coatings Technolo-gy,2020,384:8.

    • [64] ANTON R,LEISNER V,WATERMEYER P,et al.Hafnia-doped silicon bond coats manufactured by PVD for SiC/SiC CMCs[J].Acta Materialia,2020,183:471-483.

    • [65] KLEMM H,SCHONFELD K,KUNZ W.Delayed Formation of Thermally Grown Oxide in Environmental Barrier Coatings for Non-Oxide Ceramic Matrix Composites [J].Coatings,2020,10(1):11.

  • 手机扫一扫看