- 工程前沿 -
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

温玉清(1976—),男(汉),副教授,博士;研究方向:金属表面处理;E-mail:2006027@glut.edu.cn

中图分类号:TG174.45

文献标识码:A

文章编号:1007-9289(2020)05-0030-10

DOI:10.11933/j.issn.1007-9289.20200716004

参考文献 1
ABBASI S,NOURI M,ROUHAGHDAM A S.A novel com-bined method for fabrication of stable corrosion resistance su-perhydrophobic surface on Al alloy [J].Corrosion Science,2019,159:108144.
参考文献 2
LU J Q,WEI G Y,YU Y D,et al.Aluminum alloy AA2024 anodized from the mixed acid system with enhanced mechani-cal properties [J].Surfaces and Interfaces,2018,13:46-50.
参考文献 3
YU M,DONG H,SHI H B,et al.Effects of graphene oxide-filled sol-gel sealing on the corrosion resistance and paint ad-hesion of anodized aluminum [J].Applied Surface Science,2019,479:105-113.
参考文献 4
KOSLOWSKI N,SANCTIS S,HOFFMANN R C,et al.Synthesis,dielectric properties and application in a thin film transistor device of amorphous aluminum oxide AlxOy using a molecular based precursor route [J].Journal of Materials Chemistry C,2019,7(4):1048-1056.
参考文献 5
CHOI E Y,KIM J H,KIM B J,et al.Development of mois-ture-proof polydimethylsiloxane/aluminum oxide film and sta-bility improvement of perovskite solar cells using the film [J].RSC Advances,2019,9(21):11737-11744.
参考文献 6
XIA D H,PAN C C,QIN Z B,et al.Covalent surface mod-ification of LY12 aluminum alloy surface by self-assembly do-decyl phosphate film towards corrosion protection [J].Pro-gress in Organic Coatings,2020,143:105638.
参考文献 7
ZHANG X,ZHAO J,MO J L,et al.Fabrication of superhy-drophobic aluminum surface by droplet etching and chemical modification [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2019,567:205-212.
参考文献 8
HAMDY A S,BUTT D P.Novel anti-corrosion nano-sized vanadia-based thin films prepared by sol-gel method for alu-minum alloys [J].Journal of Materials Processing Technolo-gy,2007,181(1-3):76-80.
参考文献 9
ALI I,QUAZI M M,ZALNEZHAD E,et al.Hard anodizing of aerospace AA7075-T6 aluminum alloy for improving sur-face properties [J].Transactions of the Indian Institute of Metals,2019,72(10):2773-2781.
参考文献 10
ZHANG X J,LUO X,OU W X.Effect of Er on the charac-teristics of an oxide coating prepared by micro-arc oxidation on a 7075 aluminum alloy [J].International Journal of Elec-trochemical Science,2020,15:3445-3452.
参考文献 11
TSAI S Y,LIN C H,JIAN Y J,et al.The fabrication and characteristics of electroless nickel and immersion Au-polytet-rafluoroethylene composite coating on aluminum alloy 5052 as bipolar plate [J].Surface and Coatings Technology,2017,313:151-157.
参考文献 12
ZANG J,YU S,ZHU G,et al.Fabrication of superhydro-phobic surface on aluminum alloy 6061 by a facile and effec-tive anodic oxidation method [J].Surface and Coatings Technology,2019,380:125078.
参考文献 13
周芝凯,宋丹,王国威,等.铝合金阳极氧化的研究进展 [J].热加工工艺,2020,49(18):8-11.ZHOU Z K,SONG D,WANG G W,et al.Research pro-gress of aluminum alloy anodic oxidation [J].Hot working technology,2020,49(18):8-11(in Chinese).
参考文献 14
MONDAL J,MARQUES A,AARIK L,et al.Development of a thin ceramic-graphene nanolaminate coating for corrosion protection of stainless steel [J].Corrosion Science,2016,105:161-169.
参考文献 15
SHANG W,CHEN B Z,SHI X C,et al.Electrochemical corrosion behavior of composite MAO/sol-gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol-gel technique [J].Journal of Alloys and Com-pounds,2009,474(1-2):541-545.
参考文献 16
WINKLER D A,BREEDON M,WHITE P,et al.Using high throughput experimental data and in silico models to dis-cover alternatives to toxic chromate corrosion inhibitors [J].Corrosion Science,2016,106:229-235.
参考文献 17
SHANG W,HE C B,WEN Y Q,et al.Performance evalua-tion of triethanolamine as corrosion inhibitor for magnesium alloy in 3.5 wt% NaCl solution [J].RSC Advances,2016,6(115):113967-113980.
参考文献 18
MA M M.WEN Y Q,SHANG W,et al.Preparation and corrosion resistance of micro-arc oxidation/self-assembly com-posite film on 6061 aluminum alloy [J].International Jour-nal of Electrochemical Science,2019,14:11731-11743.
参考文献 19
WANG D H,NI Y H,HUO Q,et al.Self-assembled mono-layer and multilayer thin films on aluminum 2024-T3 sub-strates and their corrosion resistance study [J].Thin Solid Films,2005,471(1-2):177-185.
参考文献 20
MOFIDABADI A H J,BAHLAKEH G,RAMEZANZADEH B.Fabrication of a novel hydrophobic anti-corrosion film based on Eu2O3/stearic acid on steel surface;Experimental and detailed computer modeling studies [J].Journal of the Taiwan Institute of Chemical Engineers,2020,114:228-240.
参考文献 21
ANSARI K R,QURAISHI M A,SINGH A.Isatin deriva-tives as a non-toxic corrosion inhibitor for mild steel in 20% H2 SO4 [J].Corrosion Science,2015,95:62-70.
参考文献 22
LI Y J,GAO W,CI L J,et al.Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation [J].Carbon,2010,48(4):1124-1130.
参考文献 23
WEN Y Q,KONG D,SHANG W,et al.Corrosion resist-ance performance of the self-assembled reduction of gra-phene/silane composite films [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2019,562:247-254.
参考文献 24
KHASKHOUSSI A,CALABRESE L,PROVERBIO E.Su-perhydrophobic self-assembled silane monolayers on hierar-chical 6082 aluminum alloy for anti-corrosion applications [J].Applied Sciences,2020,10(8):2656.
参考文献 25
SUN R,ZHAO J,LI Z,et al.Preparation of mechanically durable superhydrophobic aluminum surface by sandblasting and chemical modification [J].Progress in Organic Coat-ings,2019,133:77-84.
参考文献 26
ZHAO X,YUAN S,JIN Z Q,et al.Fabrication of composite coatings with core-shell nanofibers and their mechanical prop-erties,anticorrosive performance,and mechanism in seawater [J].Progress in Organic Coatings,2020,149:105893.
参考文献 27
ZHU G Y,CUI X K,ZHANG Y,et al.Poly(vinyl bu-tyral)/Graphene oxide/poly(methylhydrosiloxane)nano-composite coating for improved aluminum alloy anticorrosion [J].Polymer,2019,172:415-422.
参考文献 28
CHEN M A,OU Y C,YU C Y,et al.Corrosion perform-ance of epoxy/BTESPT/MAO coating on AZ31 alloy [J].Surface Engineering,2015,32(1):38-46.
参考文献 29
陈明安,谢玄,戚海英,等.2A12-T6 铝合金表面双-(γ-三乙氧基硅丙基)四硫化物薄膜的特性 [J].物理化学学报,2006,22(8):1025-1029.CHEN M A,XIE X,QI H Y,et al.Characteristics of bis_ triethoxysilylpropyl_ tetrasulfide film on aluminum alloy sur-face [J].Acta Phys.Chim.Sin.,2006,22(8):1025-1029(in Chinese).
参考文献 30
ZHU H Z,YUE L F,ZHUANG C,et al.Fabrication and characterization of self-assembled graphene oxide/silane coat-ings for corrosion resistance [J].Surface and Coatings Tech-nology,2016,304:76-84.
参考文献 31
SUN J,WANG C,SONG J L,et al.Multi-functional appli-cation of oil-infused slippery Al surface:from anti-icing to corrosion resistance [J].Journal of Materials Science,2018,53(23):16099-16109.
参考文献 32
SUN W,WANG L D,YANG Z Q,et al.Fabrication of polydimethylsiloxane-derived superhydrophobic surface on a-luminium via chemical vapour deposition technique for corro-sion protection [J].Corrosion Science,2017,128:176-185.
参考文献 33
LU Z,WANG P,ZHANG D.Super-hydrophobic film fabri-cated on aluminium surface as a barrier to atmospheric corro-sion in a marine environment [J].Corrosion Science,2015,91:287-296.
参考文献 34
SHANG W,WU F,WEN Y Q,et al.Corrosion resistance and mechanism of graphene oxide composite coatings on mag-nesium alloy [J].Industrial & Engineering Chemistry Re-search,2018,58(3):1200-1211.
目录contents

    摘要

    为了研究具有不同官能团的自组装膜层微观结构对铝合金表面耐腐蚀性能的影响,通过自组装膜技术在铝合金表面分别制备月桂酸、双(γ-三乙氧基硅基丙基)四硫化物(BTESPT)、癸二酸铵这 3 种自组装膜层。 采用 SEM、XRD、 FT-IR 对自组装膜层进行结构表征,并分别对 3 种膜层的电化学性能和耐腐蚀性能进行研究。 结果表明,3 种分子都在铝合金表面成膜,但 BTESPT 自组装膜最为致密。 通过交流阻抗测试和极化曲线测试,3 种膜层的阻抗值分别达到了 3. 3×10 7 、1. 1×10 15 和 6. 8×10 7 Ω·cm 2 ,腐蚀电流密度分别为 4. 5×10 -7 、5. 6×10 -8 和 9. 6×10 -8 A/ cm 2 ,通过拟合电路分析膜层耐腐蚀机理。 盐雾试验结果显示,BTESPT 自组装膜层在第 16 天才产生腐蚀点,要优于另外 2 种自组装膜层。 分析推导认为 BTESPT 自组装膜的微观致密结构为膜层具有更优的耐腐蚀性能提供了保证。

    Abstract

    In order to study the influence of the microstructure of self-assembled films with different functional groups on the corrosion resistance of aluminum alloy. Lauric acid, bis(γ-triethoxysilylpropyl) tetrasulfide (BTESPT) and ammonium sebacate self-assembled film were prepared on the surface of Al by self-assembled film technology. Scanning electron microscope, X-ray energy spectrometer, contact angle analyzer, and infrared spectrometer were used to characterize the films, the electrochemical and corrosion protection performance of the films were discussed respectively. The results shows that the three self-assembled films all have been successfully prepared, moreover, the BTESPT film structure was densest among the films. The EIS and Tafel plot shows that the impedance values of the three layers have reached 3. 3×10 7 , 1. 1×10 15 , 6. 8×10 7 Ω·cm 2 , the corrosion current density reached 4. 5×10 -7 , 5. 6×10 -8 , 9. 6×10 -8 A/ cm 2 . Corrosion mechanism of the film is discussed by the fitting circuit diagram. Salt spray test results shows that the corrosion point appeared on the 16th day of the BTESPT film. A result is obtained that the BTESPT film has the best corrosion resistance due to its dense film structure.

  • 0 引言

  • 铝及铝合金以其良好的物理化学性质,已广泛应用于航天航空、家用餐具、家用电器、交通轨道和重工业等领域[1-3]。然而,铝及铝合金因其标准电极电位为负值,表面氧化膜不够致密,易受到腐蚀性离子的侵蚀而发生腐蚀,从而导致其应用受到了一定的限制[4-7]。近年来,由于腐蚀造成的经济损失和安全问题受到越来越多的关注,因此,铝及铝合金的耐腐蚀研究逐渐得到了重视。目前,铝及铝合金的腐蚀防护技术主要有阳极氧化、微弧氧化、无铬钝化、有机涂装、化学镀镍等方法[8-13]。然而这些方法存在制备成本高、工艺复杂,环境污染等缺点。在大力提倡绿色化学的新形势下,着力开发基于环境友好,工艺简单、成本低廉、耐腐蚀性能良好的铝及铝合金表面处理工艺具有重要的意义[14-17]

  • 自组装膜(SAMs)技术是近年来逐渐发展起来的一种金属表面腐蚀防护技术。其原理是通过成膜剂在金属表面自发发生化学反应,形成网状交联膜层,充当金属基体和腐蚀介质之间的屏障,从而达到腐蚀防护作用[18-20]。自组装膜的制备方法简单、成本低且无污染,为铝合金的腐蚀防护提供了一种有效的途径。自组装膜按照其主成膜剂种类的不同,主要分为有机硅烷类、有机羧酸类、有机膦酸类、醇类、胺类和吡啶类等, 以上自组装膜的形成都可以有效地提高铝合金表面的耐腐蚀性能[21-23]

  • 随着对自组装膜层逐渐深入的研究,研究者发现不同种类的自组装膜层的形貌结构差异巨大,其耐腐蚀性能也不尽相同。为了在不同的金属基体表面选择合适的自组装膜层,文中通过自组装膜技术分别在铝合金表面制备了月桂酸自组装膜、双( γ-三乙氧基硅基丙基) 四硫化物(BTESPT) 自组装膜以及癸二酸铵自组装膜[6,18],重点研究其表面形态结构和化学成份, 并用电化学测试、盐雾试验等手段研究其耐腐蚀性能,进一步了解不同自组装膜层的形貌结构及其耐腐蚀性差异,为自组装膜层在铝合金表面腐蚀防护方面的应用提供了新的思路[12,24-26]

  • 1 试验与方法

  • 1.1 材料

  • 6061 铝合金的成分及含量如表1 所示,试验所用材料有:月桂酸、无水乙醇、氢氧化钠、硅酸钠、磷酸钠、氯化钠、双(γ-三乙氧基硅基丙基)四硫化物(BTESPT)、硝酸、癸二酸铵,其中月桂酸由上海麦克林生化科技有限公司生产,无水乙醇、BTESPT由江西新益农化工有限公司生产,其余药品均由广东汕头市西陇化工有限公司生产。

  • 表1 6061 铝合金的成分及其质量分数

  • Table1 Composition and mass fraction of 6061 Aluminum alloy(w/%)

  • 1.2 膜层制备

  • 将铝合金分别用180、600、1000 和1500 号的砂纸打磨后用蒸馏水冲洗干净, 放入除油液(10 g/L硅酸钠,40 g/L磷酸钠) 中,在80℃ 条件下除油1 min。接着将样品分别放入无水乙醇和蒸馏水中超声清洗10 min,将样品记为Pr-Al。将Pr-Al在70℃条件下浸入pH=14 的氢氧化钠溶液中120 min, 随后用蒸馏水冲洗烘干, 在25℃条件下浸入30 g/L的月桂酸( LA) 自组装液中60 min,将制备好的样品在100℃ 条件下干燥1 h,取出后记为LA-Al并用包装袋封装待测试。将Pr-Al在50℃条件下浸入40 g/L的氢氧化钠溶液中3 min,用蒸馏水冲洗后烘干再浸入质量分数5%的硝酸中6 min,蒸馏水冲洗,干燥备用。按照四硫化物(BTESPT) ∶蒸馏水 ∶乙醇=1 ∶1 ∶18 的体积比配制溶液,在该溶液中滴加乙酸并调控溶液至pH为4。将配置好的溶液放入磁力搅拌器在35℃ 下搅拌2 h,在室温下超声3 h后,再室温水解48 h,制得BTESPT自组装液。将干燥好的样品在35℃ 下浸泡在BTESPT自组装液中60 min。取出用蒸馏水冲洗后在100℃ 下干燥1 h,取出后记为BTESPT-Al并用包装袋封装待测试。将Pr-Al在70℃ 条件下浸入pH=14 的氢氧化钠溶液中90 min,用蒸馏水冲洗后烘干。在25℃下浸入30 g/L的癸二酸铵(NA)自组装液中30 min,将制备好的样品在100℃ 干燥1 h,取出后记为NA-Al并用包装袋封装待测试。具体工艺流程如图1 所示。

  • 图1 样品制备流程图

  • Fig.1 Schematic illustration of sample preparation

  • 1.3 表征分析

  • 样品表面形貌通过扫描电子显微镜( SU-5000,日本高新科技公司)在5 kV加速电压下观察,工作距离5~10 μm。样品化学组成采用傅里叶红外光谱仪( TENSOR 27,德国布鲁克光谱仪器公司)测试,波数范围为400~3700 cm-1。样品的疏水性通过静态接触角测试仪(XG-CAMA,上海轩轶创析工业设备有限公司)测定,用微样进样器将去离子水滴到试样表面,控制水滴体积为5 μL, 测试5 次, 取其平均值。用上海辰华CHI760 型电化学工作站测量膜层的电化学阻抗谱(EIS)和动电位极化曲线,采用三电极体系,样品为工作电极,暴露面积为1 cm 2,铂电极为辅助电极,参比电极为饱和甘汞电极(SCE),以质量分数3.5%NaCl溶液为电解液。交流阻抗测试在开路电位下测量,正弦波扰动电位幅值为5 mV,扫描频率为10-2~10 5 Hz,阻抗测试结果用ZView2 软件进行电路拟合。极化曲线扫描电位区间为-300~300 mV,扫描速率为1 mV/s。盐雾试验采用盐水喷雾试验机(AC-60 B,澳程),以质量分数5%NaCl溶液作为腐蚀介质,设置温度为35℃,喷雾12 h后静置12 h,拍照观察表面腐蚀状态。

  • 2 结果及分析

  • 2.1 SEM形貌分析

  • 图2 为基体和3 种自组装膜层的表面形貌SEM图,其中图2( a)为铝合金基体的表面微观形貌图,可以看出,铝合金基体虽然经过前处理,但是仍然不够平整,表面充满金属纹路,且存在大量的划痕,具有较大的粗糙度,缺陷较多。图2(b) 为样品经过月桂酸自组装溶液修饰后的表面形貌图,可以看出,表面布满了片状结构物质,呈现簇状分布,大量的簇状结构聚集在表面形成膜层并将基体覆盖。图2(c)为样品经过BTESPT自组装溶液修饰后的样品形貌图,可以看出,样品表面能看见明显的网状结构膜层,而且自组装的膜层覆盖均匀致密、表面较平坦,几乎没有裂纹, 也没有明显堆积的迹象, 表面网状结构的孔径大小不一,这可能是自组装过程中自组装液中的分子水解不均匀导致的。图2(d)为样品经过癸二酸铵自组装溶液修饰后的表面形貌图,可以看出,自组装分子呈现聚集成颗粒状的膜层分布,这些颗粒大小不一,表面有一定程度的堆积和少量裂缝,分布较均匀但不够致密。

  • 图2 不同样品的SEM形貌

  • Fig.2 SEM morphologies of sample

  • 2.2 EDS成分分析

  • 图3 为不同膜层的表面元素分布和相应的成分分析谱图。图3(a)显示了月桂酸膜层的表面成份分布和分析谱图,可以看出,月桂酸中的C元素和O元素主要分布在簇状结构位置,且成分分析谱中有很强的C峰和O峰,这说明月桂酸膜层成功构建在铝合金表面,膜层主要呈现簇状结构。图3(b)显示了BTESPT膜层的表面成分分布和分析谱图,可以看出,BTESPT自组装分子的特征元素S和Si在铝合金表面分布均匀,没有明显的缺陷点,且特征元素S和Si在成分分析谱图中均有相应的峰出现,这说明BTESPT成功覆盖在铝合金表面,形成了致密的自组装膜层。图3(c)显示了癸二酸铵膜层的表面成份分布和分析谱图,可以看出,表面元素分布均匀,但表面有明显的的裂缝,癸二酸铵中的特征元素N在成分分析谱图中有相应的峰出现,这说明癸二酸铵膜层也成功构建。上述结果表明,3 种膜层均已成功在铝合金表面上制备。

  • 图3 不同膜层的EDS成分分析

  • Fig.3 EDS composition analysis of membrane layers

  • 2.3 静态接触角分析

  • 自组装膜层表面的疏水性有助于提高金属表面的耐腐蚀性能。为此,针对3 种自组装膜层分别测试了它们的静态接触角大小,测试结果如图4 所示。从图中可以看出,铝合金基体的静态接触角只有25.1°。 3 种膜层的静态接触角均大于基体的静态接触角,其中月桂酸膜层的静态接触角为151°,达到了超疏水状态,这可能是月桂酸膜层表面的簇状粗糙结构提升了表面疏水性。 BTESPT膜层静态接触角为102°,处于疏水状态, 这是由于BTESPT膜层表面平整,BTESPT作为低表面能物质,可提升表面疏水性。癸二酸铵膜层的静态接触角仅为66°,处于亲水状态。通过比较分析,认为月桂酸和BTESPT这2 种自组装膜的疏水性有助于提高铝合金表面的耐腐蚀性能。

  • 图4 不同样品的静态接触角

  • Fig.4 Wetting contact angle of different samples

  • 2.4 红外分析

  • 图5 是月桂酸自组装膜吸收红外光谱图,从图中可以看出, 427.50 cm-1、 512.02 cm-1 是Al-O键的振动峰值,936.57 cm-1、1468.05 cm-1、 1552.62 cm-1 处的红外吸收峰值是来自-COO和Al的键合,2051.06 cm-1 表示的是C=O键的振动峰值,2852.46 cm-1、2924.43 cm -1 分别是-CH2 的不对称伸缩振动峰值和-CH3 的对称振动峰值,3423.89 cm-1、3565.96 cm-1 是-OH缔合的伸缩振动峰值[27]。综上可知,月桂酸分子在铝合金表面形成了自组装分子层。

  • 图5 月桂酸膜层样品的红外谱图

  • Fig.5 FT-IR of lauric acid film

  • 图6 为BTESPT自组装膜的吸收红外光谱, 从图中可以看出,690 cm-1 是C-O-C的伸缩振动峰值,794.97 cm-1 为-SiC的对称伸缩振动吸收峰值,882.27 cm-1 为-SiO的非对称伸缩振动峰值,952.28 cm-1 是Al-O-Si的伸缩振动峰值, 1038.69 cm-1 为Si-O-Si的振动峰值,1244.56 cm-1 是Si-O-C的振动峰值,1300.91 cm-1 和1340.14 cm-1 分别是-CH3 的不对称伸缩振动峰值和-SiO2 在-CH2CH2CH3 的振动峰值, 1409.87 cm-1、 1441.50 cm-1、 1646.60 cm-1、 2282.69 cm-1、 2348.70 cm-1、和2925.93 cm-1 均是-CH2 的不对称伸缩振动峰值,3317.79 cm-1 是-OH的缔合的伸缩振动峰值[28]。这些基团的存在说明BTESPT分子能很好地在铝合金表面成膜。

  • 图6 BTESPT膜层样品的红外谱图

  • Fig.6 FT-IR of BTESPT film

  • 图7 为癸二酸铵自组装膜红外吸收光谱,从图中可以看出,435.67 cm-1、458.82 cm-1 是Al-O键的振动峰值,2101.91 cm-1 是-COOR(酯基)键的振动峰值,2928.19 cm-1 是-CH2 的不对称伸缩振动峰值和-CH3 的对称振动峰值,1058.38 cm-1、 1412.21 cm-1、 1464.14 cm-1、 1543.4 cm-1 和3411.57 cm-1 均是-OH缔合的伸缩振动峰值。以上峰可以看出,癸二酸铵分子在铝合金表面形成了自组装分子层。由于BTESPT分子具有大量的C-C长键、C-O-C键、Si-O和C S等化学键,这些基团的存在能够更好地使BTESPT分子在金属基体表面成膜,有利地增加了自组装膜致密程度,从而有利于提高铝合金表面的耐腐蚀性能[29]

  • 图7 癸二酸铵膜层样品的红外谱图

  • Fig.7 FT-IR of ammonium sebacate

  • 2.5 电化学性能分析

  • 2.5.1 极化曲线分析

  • 图8 为铝合金基体及3 种不同自组装膜的Tafel极化曲线。通常更小的腐蚀电流密度表示样品具有更弱的电子传输能力和良好的耐腐蚀性能[30-32]。通过Tafel外推法将获得的数据列在表2 中,从表中可以看出,铝合金基体具有最大的腐蚀电流密度,这说明铝合金有很强的腐蚀倾向。与铝合金基体相比,3 种膜层的腐蚀电流密度都有不同程度地减小,其中癸二酸铵自组装膜层的腐蚀电流密度降低了2 个数量级,BTESPT和月桂酸自组装膜层的腐蚀电流密度都分别下降了3 个数量级左右,但是BTESPT自组装膜层有更小的腐蚀电流密度值。

  • 图8 铝合金基体及不同自组装膜的极化曲线图

  • Fig.8 Polarization curves of aluminum alloy substrate and three different self-assembled films

  • 通过腐蚀抑制效率可以更加直观地评价膜层的腐蚀防护性能,其表达式如下:

  • ηp=icorr 0-icorr icorr 0
    (1)
  • 式中: icorr 0为基体的腐蚀电流密度,i corr 为膜层腐蚀电流密度。

  • 表2 铝合金基体及三种不同自组装膜的电化学极化曲线参数

  • Table2 Electrochemical polarization curve parameters of aluminum alloy substrate and three different self-assembled films

  • 通过式(1)可计算出3 种膜层的腐蚀抑制效率分别为96.83%、 99.61%、 99.32%。这说明3 种膜层都可以提高耐腐蚀性能,但是BTESPT自组装膜层有着最佳的腐蚀保护性能。自组装膜层的耐腐蚀性能与膜层的微结构有关。结合SEM图可以看出,3 种自组装分子都在铝合金表面形成了自组装膜层,它们都能起到阻挡腐蚀介质的作用,从而提高耐腐蚀性能。通过比较后发现,在3 种自组装膜中,BTESPT自组装膜层致密且均匀,表面平整无缺陷,因此具有更好的腐蚀防护性能。

  • 2.5.2 交流阻抗谱分析

  • 为了更好地理解自组装膜层的耐腐蚀行为, 在质量分数3.5%NaCl溶液中对上述4 个样品进行交流阻抗测量,交流阻抗谱如图9 所示,其中 Z′为实部阻抗,Z″为虚部阻抗。并对阻抗数据进行了等效电路拟合,等效电路图如图10 所示, 拟合数据见表3。从能奎斯特图(图9)中可以看出,4 种样品的阻抗谱均呈现圆弧状,半圆形有凹陷存在,这表明样品的电化学行为是非理想电容行为,因此在等效电路中使用常相位角元件(CPE)进行建模。在拟合实验数据的等效电路图(图10)中,R1 为铝合金自身电阻,Rs 为溶液电阻,Rct 为自组装膜层电阻,Rdl 为电荷转移电阻,Cct为自组装膜层电容,Cdl 为双电层电容,L1 为感抗。弥散系数n是一个与频率色散有关的因素,n1 为铝合金和溶液界面的弥散系数,n2 为膜层和溶液界面的弥散系数,n值在0.5~1 之间变化,可用来衡量膜层的不均匀性。随着n值的增大, 膜层的不均匀性降低。根据获得的拟合数据,可以用下式计算膜层电容量和双电层电容量[32-34] :

  • CX=RXRn1nRX
    (2)
  • 其中, C 为电容,R 为电阻,下标 X 表示不同膜层和双电层,Rn 为非理想电容。由于溶液中腐蚀离子在膜层中起着载流子的作用,因此自组装膜层的耐腐蚀性能可能是受到溶液中腐蚀性离子的影响。通过对比电阻值来评估膜层的腐蚀防护性能。自组装膜层电阻 Rct 主要与自组装膜层对于载流子的抵抗性有关。从表3 中的数据可以看出,BTESPT自组装膜层有着最大的 Rct 值,这说明该膜层对载流子有着最大的抵抗作用,载流子的渗透作用最弱。由n值可以看出, BTESPT膜层有着最少的表面缺陷和最好的膜层均一性,其电化学行为最接近于理想电容。电荷转移电阻 Rdl 主要用来评估样品暴露在溶液中载流子的转移阻力。从表3 中的数据可以看出基体的电荷转移电阻仅为4171 Ω,3 种自组装膜层的电荷转移电阻均大于基体的电荷转移电阻,这说明3 种自组装膜层都可以作为基体和腐蚀介质之间的屏障,从而阻挡腐蚀离子的渗透,提高耐腐蚀性能。通过对3 种膜层之间的电荷转移电阻进行对比,可以看出,BTESPT膜层有着最大的 Rdl 值,比其他2 种膜层的 Rdl 值提高8 个数量级。而另外2 种自组装膜层的 Rdl 值相差不大。表面膜层腐蚀保护性能通过总电阻 Rct +Rdl 衡量,BTESPT膜层同样拥有最大值,这说明同其他膜层相比,BTESPT膜层具有更好的抗离子传输性能,更低的腐蚀速率,有助于提高铝合金基体的耐腐蚀性能。

  • 图9 铝合金基体及3 种不同自组装膜的电化学阻抗图

  • Fig.9 Electrochemical impedance graph of aluminum alloy substrate and three different self-assembled films

  • 图10 等效电路图

  • Fig.10 Equivalent circuit diagram

  • 表3 电化学阻抗拟合结果

  • Table3 Fitting results of electrochemical impedance

  • 2.6 中性盐雾试验

  • 图11 所示为不同样品中性盐雾试验结果是中性盐雾试验结果。图11(a)~(d)分别为铝合金基体、癸二酸铵自组装膜、BTESPT自组装膜以及月桂酸自组装膜盐雾腐蚀不同时间的表面形貌图。从上述图中可以看出:在图11( a) 中,没有进行盐雾试验之前的铝合金基体表面平整、洁白,盐雾腐蚀至4 d,铝合金基体表面出现了白锈的腐蚀现象。而有自组装膜样品表面没有任何的变化。随着盐雾腐蚀试验时间的延长,铝合金基体表面的白锈增多、增大,说明铝合金表面的腐蚀进一步严重了。在图11(b)中,盐雾腐蚀至7 d,月桂酸自组装膜出现白锈,但膜层总体存在。在图11( d) 中,盐雾腐蚀至13 d,癸二酸铵自组装膜有黑点出现,但腐蚀现象不明显。随着时间的增加,癸二酸铵自组装膜和月桂酸自组装膜的膜层逐渐被破坏。在图11( c) 中,BTESPT自组装膜经过盐雾试验至16 d,膜层才显示出微小的腐蚀孔,说明该自组装膜层耐腐蚀性能最好。这是由于自组装膜在铝合金表面起到了机械隔离腐蚀介质和基体的作用,从而提高了铝合金的耐腐蚀性能。与月桂酸、癸二酸铵自组装膜相比,BTESPT自组装膜的耐蚀性能更好,这可能是由于BTESPT比月桂酸、癸二酸铵能更好地形成致密的自组装膜层,从而提高了铝合金表面的耐蚀性能。

  • 图11 不同样品中性盐雾试验结果

  • Fig.11 Test results of neutral salt spray of different samples

  • 3 结论

  • (1) 采用SEM、EDS、WCA、FT-IR等形貌及成分表征手段分别对月桂酸自组装膜、BTESPT自组装膜以及癸二酸铵自组装膜进行测试分析, 结果显示3 种自组装膜层都具有各自的特点,其中BTESPT自组装膜层在铝合金表面呈网状分布,膜层致密均匀,无缺陷存在,比其他2 种膜层具有更优的微观结构。

  • (2) 电化学性能测试表明,3 种自组装膜层对铝合金基体均有一定的腐蚀防护性能,但是BTESPT自组装膜的阻抗值最大,腐蚀电流密度最小,腐蚀防护效率达到99.61%。通过中性盐雾试验也表明BTESPT自组装膜的耐腐蚀性能要优于另外两种自组装膜的耐腐蚀性能。

  • (3) 通过对3 种自组装分子在金属表面的自组装膜分析可知,膜层的腐蚀防护性能和膜层微观形貌有着密切关系,致密且平整的膜层能够有效地阻挡载流子的渗透和转移,从而达到最好的腐蚀防护性能。

  • 参考文献

    • [1] ABBASI S,NOURI M,ROUHAGHDAM A S.A novel com-bined method for fabrication of stable corrosion resistance su-perhydrophobic surface on Al alloy [J].Corrosion Science,2019,159:108144.

    • [2] LU J Q,WEI G Y,YU Y D,et al.Aluminum alloy AA2024 anodized from the mixed acid system with enhanced mechani-cal properties [J].Surfaces and Interfaces,2018,13:46-50.

    • [3] YU M,DONG H,SHI H B,et al.Effects of graphene oxide-filled sol-gel sealing on the corrosion resistance and paint ad-hesion of anodized aluminum [J].Applied Surface Science,2019,479:105-113.

    • [4] KOSLOWSKI N,SANCTIS S,HOFFMANN R C,et al.Synthesis,dielectric properties and application in a thin film transistor device of amorphous aluminum oxide AlxOy using a molecular based precursor route [J].Journal of Materials Chemistry C,2019,7(4):1048-1056.

    • [5] CHOI E Y,KIM J H,KIM B J,et al.Development of mois-ture-proof polydimethylsiloxane/aluminum oxide film and sta-bility improvement of perovskite solar cells using the film [J].RSC Advances,2019,9(21):11737-11744.

    • [6] XIA D H,PAN C C,QIN Z B,et al.Covalent surface mod-ification of LY12 aluminum alloy surface by self-assembly do-decyl phosphate film towards corrosion protection [J].Pro-gress in Organic Coatings,2020,143:105638.

    • [7] ZHANG X,ZHAO J,MO J L,et al.Fabrication of superhy-drophobic aluminum surface by droplet etching and chemical modification [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2019,567:205-212.

    • [8] HAMDY A S,BUTT D P.Novel anti-corrosion nano-sized vanadia-based thin films prepared by sol-gel method for alu-minum alloys [J].Journal of Materials Processing Technolo-gy,2007,181(1-3):76-80.

    • [9] ALI I,QUAZI M M,ZALNEZHAD E,et al.Hard anodizing of aerospace AA7075-T6 aluminum alloy for improving sur-face properties [J].Transactions of the Indian Institute of Metals,2019,72(10):2773-2781.

    • [10] ZHANG X J,LUO X,OU W X.Effect of Er on the charac-teristics of an oxide coating prepared by micro-arc oxidation on a 7075 aluminum alloy [J].International Journal of Elec-trochemical Science,2020,15:3445-3452.

    • [11] TSAI S Y,LIN C H,JIAN Y J,et al.The fabrication and characteristics of electroless nickel and immersion Au-polytet-rafluoroethylene composite coating on aluminum alloy 5052 as bipolar plate [J].Surface and Coatings Technology,2017,313:151-157.

    • [12] ZANG J,YU S,ZHU G,et al.Fabrication of superhydro-phobic surface on aluminum alloy 6061 by a facile and effec-tive anodic oxidation method [J].Surface and Coatings Technology,2019,380:125078.

    • [13] 周芝凯,宋丹,王国威,等.铝合金阳极氧化的研究进展 [J].热加工工艺,2020,49(18):8-11.ZHOU Z K,SONG D,WANG G W,et al.Research pro-gress of aluminum alloy anodic oxidation [J].Hot working technology,2020,49(18):8-11(in Chinese).

    • [14] MONDAL J,MARQUES A,AARIK L,et al.Development of a thin ceramic-graphene nanolaminate coating for corrosion protection of stainless steel [J].Corrosion Science,2016,105:161-169.

    • [15] SHANG W,CHEN B Z,SHI X C,et al.Electrochemical corrosion behavior of composite MAO/sol-gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol-gel technique [J].Journal of Alloys and Com-pounds,2009,474(1-2):541-545.

    • [16] WINKLER D A,BREEDON M,WHITE P,et al.Using high throughput experimental data and in silico models to dis-cover alternatives to toxic chromate corrosion inhibitors [J].Corrosion Science,2016,106:229-235.

    • [17] SHANG W,HE C B,WEN Y Q,et al.Performance evalua-tion of triethanolamine as corrosion inhibitor for magnesium alloy in 3.5 wt% NaCl solution [J].RSC Advances,2016,6(115):113967-113980.

    • [18] MA M M.WEN Y Q,SHANG W,et al.Preparation and corrosion resistance of micro-arc oxidation/self-assembly com-posite film on 6061 aluminum alloy [J].International Jour-nal of Electrochemical Science,2019,14:11731-11743.

    • [19] WANG D H,NI Y H,HUO Q,et al.Self-assembled mono-layer and multilayer thin films on aluminum 2024-T3 sub-strates and their corrosion resistance study [J].Thin Solid Films,2005,471(1-2):177-185.

    • [20] MOFIDABADI A H J,BAHLAKEH G,RAMEZANZADEH B.Fabrication of a novel hydrophobic anti-corrosion film based on Eu2O3/stearic acid on steel surface;Experimental and detailed computer modeling studies [J].Journal of the Taiwan Institute of Chemical Engineers,2020,114:228-240.

    • [21] ANSARI K R,QURAISHI M A,SINGH A.Isatin deriva-tives as a non-toxic corrosion inhibitor for mild steel in 20% H2 SO4 [J].Corrosion Science,2015,95:62-70.

    • [22] LI Y J,GAO W,CI L J,et al.Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation [J].Carbon,2010,48(4):1124-1130.

    • [23] WEN Y Q,KONG D,SHANG W,et al.Corrosion resist-ance performance of the self-assembled reduction of gra-phene/silane composite films [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2019,562:247-254.

    • [24] KHASKHOUSSI A,CALABRESE L,PROVERBIO E.Su-perhydrophobic self-assembled silane monolayers on hierar-chical 6082 aluminum alloy for anti-corrosion applications [J].Applied Sciences,2020,10(8):2656.

    • [25] SUN R,ZHAO J,LI Z,et al.Preparation of mechanically durable superhydrophobic aluminum surface by sandblasting and chemical modification [J].Progress in Organic Coat-ings,2019,133:77-84.

    • [26] ZHAO X,YUAN S,JIN Z Q,et al.Fabrication of composite coatings with core-shell nanofibers and their mechanical prop-erties,anticorrosive performance,and mechanism in seawater [J].Progress in Organic Coatings,2020,149:105893.

    • [27] ZHU G Y,CUI X K,ZHANG Y,et al.Poly(vinyl bu-tyral)/Graphene oxide/poly(methylhydrosiloxane)nano-composite coating for improved aluminum alloy anticorrosion [J].Polymer,2019,172:415-422.

    • [28] CHEN M A,OU Y C,YU C Y,et al.Corrosion perform-ance of epoxy/BTESPT/MAO coating on AZ31 alloy [J].Surface Engineering,2015,32(1):38-46.

    • [29] 陈明安,谢玄,戚海英,等.2A12-T6 铝合金表面双-(γ-三乙氧基硅丙基)四硫化物薄膜的特性 [J].物理化学学报,2006,22(8):1025-1029.CHEN M A,XIE X,QI H Y,et al.Characteristics of bis_ triethoxysilylpropyl_ tetrasulfide film on aluminum alloy sur-face [J].Acta Phys.Chim.Sin.,2006,22(8):1025-1029(in Chinese).

    • [30] ZHU H Z,YUE L F,ZHUANG C,et al.Fabrication and characterization of self-assembled graphene oxide/silane coat-ings for corrosion resistance [J].Surface and Coatings Tech-nology,2016,304:76-84.

    • [31] SUN J,WANG C,SONG J L,et al.Multi-functional appli-cation of oil-infused slippery Al surface:from anti-icing to corrosion resistance [J].Journal of Materials Science,2018,53(23):16099-16109.

    • [32] SUN W,WANG L D,YANG Z Q,et al.Fabrication of polydimethylsiloxane-derived superhydrophobic surface on a-luminium via chemical vapour deposition technique for corro-sion protection [J].Corrosion Science,2017,128:176-185.

    • [33] LU Z,WANG P,ZHANG D.Super-hydrophobic film fabri-cated on aluminium surface as a barrier to atmospheric corro-sion in a marine environment [J].Corrosion Science,2015,91:287-296.

    • [34] SHANG W,WU F,WEN Y Q,et al.Corrosion resistance and mechanism of graphene oxide composite coatings on mag-nesium alloy [J].Industrial & Engineering Chemistry Re-search,2018,58(3):1200-1211.

  • 参考文献

    • [1] ABBASI S,NOURI M,ROUHAGHDAM A S.A novel com-bined method for fabrication of stable corrosion resistance su-perhydrophobic surface on Al alloy [J].Corrosion Science,2019,159:108144.

    • [2] LU J Q,WEI G Y,YU Y D,et al.Aluminum alloy AA2024 anodized from the mixed acid system with enhanced mechani-cal properties [J].Surfaces and Interfaces,2018,13:46-50.

    • [3] YU M,DONG H,SHI H B,et al.Effects of graphene oxide-filled sol-gel sealing on the corrosion resistance and paint ad-hesion of anodized aluminum [J].Applied Surface Science,2019,479:105-113.

    • [4] KOSLOWSKI N,SANCTIS S,HOFFMANN R C,et al.Synthesis,dielectric properties and application in a thin film transistor device of amorphous aluminum oxide AlxOy using a molecular based precursor route [J].Journal of Materials Chemistry C,2019,7(4):1048-1056.

    • [5] CHOI E Y,KIM J H,KIM B J,et al.Development of mois-ture-proof polydimethylsiloxane/aluminum oxide film and sta-bility improvement of perovskite solar cells using the film [J].RSC Advances,2019,9(21):11737-11744.

    • [6] XIA D H,PAN C C,QIN Z B,et al.Covalent surface mod-ification of LY12 aluminum alloy surface by self-assembly do-decyl phosphate film towards corrosion protection [J].Pro-gress in Organic Coatings,2020,143:105638.

    • [7] ZHANG X,ZHAO J,MO J L,et al.Fabrication of superhy-drophobic aluminum surface by droplet etching and chemical modification [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2019,567:205-212.

    • [8] HAMDY A S,BUTT D P.Novel anti-corrosion nano-sized vanadia-based thin films prepared by sol-gel method for alu-minum alloys [J].Journal of Materials Processing Technolo-gy,2007,181(1-3):76-80.

    • [9] ALI I,QUAZI M M,ZALNEZHAD E,et al.Hard anodizing of aerospace AA7075-T6 aluminum alloy for improving sur-face properties [J].Transactions of the Indian Institute of Metals,2019,72(10):2773-2781.

    • [10] ZHANG X J,LUO X,OU W X.Effect of Er on the charac-teristics of an oxide coating prepared by micro-arc oxidation on a 7075 aluminum alloy [J].International Journal of Elec-trochemical Science,2020,15:3445-3452.

    • [11] TSAI S Y,LIN C H,JIAN Y J,et al.The fabrication and characteristics of electroless nickel and immersion Au-polytet-rafluoroethylene composite coating on aluminum alloy 5052 as bipolar plate [J].Surface and Coatings Technology,2017,313:151-157.

    • [12] ZANG J,YU S,ZHU G,et al.Fabrication of superhydro-phobic surface on aluminum alloy 6061 by a facile and effec-tive anodic oxidation method [J].Surface and Coatings Technology,2019,380:125078.

    • [13] 周芝凯,宋丹,王国威,等.铝合金阳极氧化的研究进展 [J].热加工工艺,2020,49(18):8-11.ZHOU Z K,SONG D,WANG G W,et al.Research pro-gress of aluminum alloy anodic oxidation [J].Hot working technology,2020,49(18):8-11(in Chinese).

    • [14] MONDAL J,MARQUES A,AARIK L,et al.Development of a thin ceramic-graphene nanolaminate coating for corrosion protection of stainless steel [J].Corrosion Science,2016,105:161-169.

    • [15] SHANG W,CHEN B Z,SHI X C,et al.Electrochemical corrosion behavior of composite MAO/sol-gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol-gel technique [J].Journal of Alloys and Com-pounds,2009,474(1-2):541-545.

    • [16] WINKLER D A,BREEDON M,WHITE P,et al.Using high throughput experimental data and in silico models to dis-cover alternatives to toxic chromate corrosion inhibitors [J].Corrosion Science,2016,106:229-235.

    • [17] SHANG W,HE C B,WEN Y Q,et al.Performance evalua-tion of triethanolamine as corrosion inhibitor for magnesium alloy in 3.5 wt% NaCl solution [J].RSC Advances,2016,6(115):113967-113980.

    • [18] MA M M.WEN Y Q,SHANG W,et al.Preparation and corrosion resistance of micro-arc oxidation/self-assembly com-posite film on 6061 aluminum alloy [J].International Jour-nal of Electrochemical Science,2019,14:11731-11743.

    • [19] WANG D H,NI Y H,HUO Q,et al.Self-assembled mono-layer and multilayer thin films on aluminum 2024-T3 sub-strates and their corrosion resistance study [J].Thin Solid Films,2005,471(1-2):177-185.

    • [20] MOFIDABADI A H J,BAHLAKEH G,RAMEZANZADEH B.Fabrication of a novel hydrophobic anti-corrosion film based on Eu2O3/stearic acid on steel surface;Experimental and detailed computer modeling studies [J].Journal of the Taiwan Institute of Chemical Engineers,2020,114:228-240.

    • [21] ANSARI K R,QURAISHI M A,SINGH A.Isatin deriva-tives as a non-toxic corrosion inhibitor for mild steel in 20% H2 SO4 [J].Corrosion Science,2015,95:62-70.

    • [22] LI Y J,GAO W,CI L J,et al.Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation [J].Carbon,2010,48(4):1124-1130.

    • [23] WEN Y Q,KONG D,SHANG W,et al.Corrosion resist-ance performance of the self-assembled reduction of gra-phene/silane composite films [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2019,562:247-254.

    • [24] KHASKHOUSSI A,CALABRESE L,PROVERBIO E.Su-perhydrophobic self-assembled silane monolayers on hierar-chical 6082 aluminum alloy for anti-corrosion applications [J].Applied Sciences,2020,10(8):2656.

    • [25] SUN R,ZHAO J,LI Z,et al.Preparation of mechanically durable superhydrophobic aluminum surface by sandblasting and chemical modification [J].Progress in Organic Coat-ings,2019,133:77-84.

    • [26] ZHAO X,YUAN S,JIN Z Q,et al.Fabrication of composite coatings with core-shell nanofibers and their mechanical prop-erties,anticorrosive performance,and mechanism in seawater [J].Progress in Organic Coatings,2020,149:105893.

    • [27] ZHU G Y,CUI X K,ZHANG Y,et al.Poly(vinyl bu-tyral)/Graphene oxide/poly(methylhydrosiloxane)nano-composite coating for improved aluminum alloy anticorrosion [J].Polymer,2019,172:415-422.

    • [28] CHEN M A,OU Y C,YU C Y,et al.Corrosion perform-ance of epoxy/BTESPT/MAO coating on AZ31 alloy [J].Surface Engineering,2015,32(1):38-46.

    • [29] 陈明安,谢玄,戚海英,等.2A12-T6 铝合金表面双-(γ-三乙氧基硅丙基)四硫化物薄膜的特性 [J].物理化学学报,2006,22(8):1025-1029.CHEN M A,XIE X,QI H Y,et al.Characteristics of bis_ triethoxysilylpropyl_ tetrasulfide film on aluminum alloy sur-face [J].Acta Phys.Chim.Sin.,2006,22(8):1025-1029(in Chinese).

    • [30] ZHU H Z,YUE L F,ZHUANG C,et al.Fabrication and characterization of self-assembled graphene oxide/silane coat-ings for corrosion resistance [J].Surface and Coatings Tech-nology,2016,304:76-84.

    • [31] SUN J,WANG C,SONG J L,et al.Multi-functional appli-cation of oil-infused slippery Al surface:from anti-icing to corrosion resistance [J].Journal of Materials Science,2018,53(23):16099-16109.

    • [32] SUN W,WANG L D,YANG Z Q,et al.Fabrication of polydimethylsiloxane-derived superhydrophobic surface on a-luminium via chemical vapour deposition technique for corro-sion protection [J].Corrosion Science,2017,128:176-185.

    • [33] LU Z,WANG P,ZHANG D.Super-hydrophobic film fabri-cated on aluminium surface as a barrier to atmospheric corro-sion in a marine environment [J].Corrosion Science,2015,91:287-296.

    • [34] SHANG W,WU F,WEN Y Q,et al.Corrosion resistance and mechanism of graphene oxide composite coatings on mag-nesium alloy [J].Industrial & Engineering Chemistry Re-search,2018,58(3):1200-1211.

  • 手机扫一扫看