- 工程前沿 -
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

韩东晓(1986—),男(汉),高工,博士;研究方向:表面处理;E-mail:handongxiao@live.cn

中图分类号:TG174.46;TB324

文献标识码:A

文章编号:1007-9289(2020)05-0018-12

DOI:10.11933/j.issn.1007-9289.20201102001

参考文献 1
ZHANG D,XING P,PAN R M,et al.Preparation and sur-face properties study of novel fluorine-containing methacrylate polymers for coating [J].Materials,2018,11(11):14.
参考文献 2
YAO W,LI Y,HUANG X.Fluorinated poly(meth)acry-late:synthesis and properties [J].Polymer,2014,55(24):6197-6211.
参考文献 3
GRAINGER D W,STEWART C W.Fluorinated coatings and films:motivation and significance [ M] ∥Castner D.Fluorinated Surfaces,Coatings,and Films.Washington,DC;American Chemical Society.2001:1-14.
参考文献 4
IEZZI R A,GABOURY S,WOOD K.Acrylic-fluoropolymer mixtures and their use in coatings [J].Prog Org Coat,2000,40(1):55-60.
参考文献 5
BAO Y,MA J,ZHANG X,et al.Recent advances in the modification of polyacrylate latexes [J].J.Mater.Sci.,2015,50(21):6839-6863.
参考文献 6
HA J W,PARK I J,LEE S B.Hydrophobicity and sliding behavior of liquid droplets on the fluorinated latex films [J].Macromolecules,2005,38(3):736-744.
参考文献 7
CHEN Y,ZHANG C,CHEN X.Emulsifier-free latex of fluorinated acrylate copolymer [J].Eur.Polym.J.,2006,42(3):694-701.
参考文献 8
PARK I J,LEE S-B,CHOI C K.Surface properties of the fluorine-containing graft copolymer of poly((perfluoroalkyl)ethyl methacrylate)-g-poly(methyl methacrylate)[J].Mac-romolecules,1998,31(21):7555-7558.
参考文献 9
THOMAS R R,ANTON D R,GRAHAM W F,et al.Prepa-ration and surface properties of acrylic polymers containing fluorinated monomers [J].Macromolecules,1997,30(10):2883-2890.
参考文献 10
LI J,WANG Q,SU C,et al.Preparation and characteriza-tion of fluorine-containing acrylate copolymers by 60Co γ-ray radiation co-polymerization [J].Eur Polym J,2007,43(7):2928-2934.
参考文献 11
ZHOU J H,WANG L,ZHA X H,et al.Synthesis of Ag/fluorine-containing polyacrylate latex stabilized by Ag nanop-article hybrid amphiphilic random copolymer micelles via Pickering emulsion polymerization and its application on fab-ric finishing [J].Cellulose,2020,27(15):9123-9134.
参考文献 12
HU Y,ZHANG C,CHEN Y,et al.Preparation and struc-ture of fluorinated/non-fluorinated polyacrylate gradient emul-sion blend film [J].Mater Lett,2010,64(19):2091-2093.
参考文献 13
ZHOU J H,ZHANG L,MA J Z.Fluorinated polyacrylate e-mulsifier-free emulsion mediated by poly(acrylic acid)-b-po-ly(hexafluorobutyl acrylate)trithiocarbonate via ab initio RAFT emulsion polymerization [J].Chem.Eng.J.,2013,223:8-17.
参考文献 14
GUO T Y,TANG D,SONG M,et al.Copolymerizations of butyl methacrylate and fluorinated methacrylates via RAFT miniemulsion polymerization [J].J.Polym.Sci.,Part A:Polym.Chem.,2007,45(22):5067-5075.
参考文献 15
XIAO X,LIU J.Synthesis and characterization of fluorine-containing polyacrylate emulsion with core-shell structure [J].Chin.J.Chem.Eng.,2008,16(4):626-630.
参考文献 16
CHENG X,CHEN Z,SHI T,et al.Synthesis and character-ization of core-shell LIPN-fluorine-containing polyacrylate la-tex [J].Colloids and Surfaces A:Physicochemical and En-gineering Aspects,2007,292(2):119-124.
参考文献 17
XIAO X,WANG Y.Emulsion copolymerization of fluorina-ted acrylate in the presence of a polymerizable emulsifier [J].Colloids and Surfaces A:Physicochemical and Engi-neering Aspects,2009,348(1):151-156.
参考文献 18
PONNUPANDIAN S,CHAKRABARTY A,MONDAL P,et al.POSS and fluorine containing nanostructured block copol-ymer;Synthesis via RAFT polymerization and its application as hydrophobic coating material [J].Eur.Polym.J.,2020,131:10.
参考文献 19
MORENT R,de GEYTER N,VERSCHUREN J,et al.Non-thermal plasma treatment of textiles [J].Surf Coat Technol,2008,202(14):3427-3449.
参考文献 20
CHENG S,CHEN Y,CHEN Z.Core-shell latex containing fluorinated polymer rich in shell [J].J.Appl.Polym.Sci.,2002,85(6):1147-1153.
参考文献 21
CHEN L,WU F.Effect of different surfactants on colloidal and polymer properties of fluorinated acrylate latex [J].Journal of Saudi Chemical Society,2014,18(5):545-550.
参考文献 22
CUI X,ZHONG S,GAO Y,et al.Preparation and charac-terization of emulsifier-free core-shell interpenetrating poly-mer network-fluorinated polyacrylate latex particles [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,324(1):14-21.
参考文献 23
CUI X J,ZHONG S L,WANG H Y.Emulsifier-free core-shell polyacrylate latex nanoparticles containing fluorine and silicon in shell [J].Polymer,2007,48(25):7241-7248.
参考文献 24
XIONG S,GUO X,LI L,et al.Preparation and character-ization of fluorinated acrylate copolymer latexes by miniemul-sion polymerization under microwave irradiation [J].J.Flu-orine.Chem.,2010,131(3):417-425.
参考文献 25
CHEN Z,CUI X,JIANG W,et al.Synthesis and character-ization of fluoropolymer modified polyacrylate in emulsion polymerization [J].J.Appl.Polym.Sci.,2006,99(2):558-562.
参考文献 26
ZHANG S,ZHAO J,CHU G,et al.Synthesis,characteriza-tion and properties of a novel fluorinated methacrylate poly-mer [J].J.Fluorine.Chem.,2011,132(11):915-919.
参考文献 27
CHEN L,SHI H,WU H,et al.Study on the double fluori-nated modification of the acrylate latex [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,368(1):148-153.
参考文献 28
CASAZZA E,MARIANI A,RICCO L,et al.Synthesis,characterization,and properties of a novel acrylic terpolymer with pendant perfluoropolyether segments [J].Polymer,2002,43(4):1207-1214.
参考文献 29
MALSHE V C,SANGAJ N S.Fluorinated acrylic copolymers Part I:Study of clear coatings [J].Prog.Org.Coat.,2005,53(3):207-211.
参考文献 30
MALSHE V C,ELANGO S,BHAGWAT S S,et al.Fluori-nated acrylic copolymers Part II:Polymeric surfactants [J].Prog.Org.Coat.,2005,53(3):212-216.
参考文献 31
WANG J,MAO G,OBER C K,et al.Liquid crystalline,semifluorinated side group block copolymers with stable low energy surfaces:synthesis,liquid crystalline structure,and critical surface tension [J].Macromolecules,1997,30(7):1906-1914.
参考文献 32
KRISHNAN S,AYOTHI R,HEXEMER A,et al.Anti-bio-fouling properties of comblike block copolymers with am-phiphilic side chains [J].Langmuir,2006,22(11):5075-5086.
参考文献 33
HAN D,ZHU L,CHEN Y,et al.Synthesis of fluorinated monomer and formation of hydrophobic surface therefrom [J].RSC Advances,2015,5(29):22847-22855.
目录contents

    摘要

    使用含有不同长度全氟碳链的全氟烷基乙基醇分别与甲基丙烯酸氯和甲苯二异氰酸酯反应,制备了两种不同的含氟单体 TEMAc-n 和 FnTDI,然后分别通过自由基共聚合反应和对合成好的常规含羟基丙烯酸酯共聚物进行后改性两种路线,制备了两类含有相同全氟碳链结构的氟改性丙烯酸酯共聚物 xTEMAc-n 和 xFnTDI 及其涂层。 利用傅里叶变换红外光谱(FT-IR)和核磁共振( 19 F NMR)技术对单体和相应共聚物的化学结构进行了表征,用示差扫描量热法(DSC) 测试了共聚物的玻璃化转变温度,通过静态水接触角、X 射线光电子能谱(XPS)和原子力显微镜(AFM)对共聚物膜层的表面性能进行了表征。 结果表明,制备合成了预期的含氟单体和含氟共聚物。 随着含氟单体的引入,共聚物的玻璃化转变温度升高,涂层的疏水性能提高。 含氟链段的长度对涂层疏水性的贡献大于氟含量的影响,与自由基共聚合方法制备氟改性共聚物 xTEMAc-n 相比,使用异氰酸酯基含氟单体对常规含羟基丙烯酸酯共聚物进行后改性制备的氟改性共聚物 xFnTDI,成膜时含氟链段更容易向涂层表面迁移,引入较少的含氟单体就可以获得优异的疏水性能。

    Abstract

    Perfluoroalkyl ethyl alcohol containing different length of perfluoroalkyl chains were employed to prepared two series of flourine-containing monomers TEMAc-n and FnTDI by reaciton with chlorine methacrylate and toluene diisocyanate. Two series of fluoro-modified acrylate copolymers xTEMAc-n and xFnTDI, and coatings therefrom were prepared with the TEMAc-n monomers through free radical polymerization with vinyl monomers and FnTDI via reaction of the isocyanate groups in their own molecules with the hydroxyl groups in the side chains of the acrylic copolymers, respectively. The chemical structure of the monomers and the corresponding copolymers were investigated by Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance ( 19 F NMR). Glass-transition temperature (Tg) of the copolymers were confirmed with differential scanning calorimetry (DSC). Surface properties of the copolymer coatings were characterized by static water contact angle, X-ray photoelectron spectrometer (XPS) and atomic force microscope (AFM), respectively. Results showed that the fluorine-containing monomers and the fluoro-modified copolymers were prepared as expected. Both Tg of the copolymers and hydrophobicity of the corresponding coatings increased as the fluorine-containing monomers were copolymerized. The length of the perfluoroalkyl chains played a more important role in improvement of the copolymer coatings hydrophobicity than fluorine content. More fluorine-containing segments migrated to the coatings surface during the film formation of the copolymers xFnTDI, resulting in more excellent hydrophobicity of the coatings, compared with the copolymers xTEMAc-n.

  • 0 引言

  • 含氟丙烯酸酯共聚物是一类典型的低表面能涂层材料,通常是在丙烯酸酯共聚物中引入含氟链段,改变原聚合物的结构,从而改变共聚物和涂层的性能。含氟丙烯酸酯共聚物涂层不仅可以保留丙烯酸酯涂层原有的特性,还可以赋予涂层优异的表面特性,因而在纺织、皮革、建筑、防腐等领域有广泛的应用前景[1-4]

  • 含氟丙烯酸酯共聚物一般是通过带有乙烯基的含氟单体与其他常规丙烯酸单体和含有乙烯基的其他单体通过自由基聚合反应制得的[2, 5],常用的含氟单体有甲基丙烯酸全氟烷基乙酯( FEMA) [6-10]、丙烯酸六氟丁酯( HFBA, G01) [11-13]、甲基丙烯酸六氟丁酯( HFMBA, G02) [12, 14-17]、甲基丙烯酸三氟乙酯( TFEMA, G03) [14, 18-20]、甲基丙烯酸十二氟庚酯(DFHMA, G04) [21-25]、甲基丙烯酸-2-三氟乙氧基-乙酯[26] 等。

  • 除了利用含有乙烯基的含氟单体制备含氟丙烯酸酯共聚物之外,还可以先制备带有活性官能团的丙烯酸酯共聚物,然后利用共聚物中官能团的活性对共聚物进行后改性[27-32]。 Han等[33] 利用含有全氟链段的1H,1H,2H,2H-十三氟1-正辛醇与甲苯二异氰酸酯(TDI)反应,制备了一种一端为全氟烷基端链、一端为异氰酸酯基的含氟单体,并用其与常规丙烯酸酯共聚物中侧链上的端羟基反应制备了一系列含氟丙烯酸酯共聚物,利用较少的含氟单体改性制得了疏水性能优异的低表面能丙烯酸酯共聚物涂层。

  • 文中利用一系列含有不同长度全氟链段的全氟代烷基乙醇与甲基丙烯酰氯反应,制备了含有与全氟烷基乙基醇的全氟链段相同的甲基丙烯酸氟代烷基酯,使用该含氟单体与常规丙烯酸酯类单体通过传统自由基聚合制备了含氟丙烯酸酯共聚物。同时利用全氟代烷基乙基醇与甲苯二异氰酸酯制备了含有不同全氟链段长度的含氟单体,并用其与常规丙烯酸酯共聚物中侧链上的端羟基反应制备了一系列含氟丙烯酸酯共聚物。通过考察两种改性方法制备的含氟丙烯酸酯共聚物涂层的疏水性能,探讨了不同改性方法和不同共聚物结构对其涂层疏水性能的影响。

  • 1 试验部分

  • 1.1 试验材料

  • 试验采用的材料如下: 甲基丙烯酸甲酯(MMA),北京东方亚克力化学品有限公司;丙烯酸丁酯(BA)、过氧化二苯甲酰(BPO),西陇化工股份有限公司;甲基丙烯酸羟乙酯( HEMA),天津市津科精细化工研究所;丙烯酸(AA)、二甲苯、乙酸丁酯, 北京化工厂; 甲苯二异氰酸酯(TDI),天津登科化学试剂有限公司;2-全氟丁基乙基醇( C4F9C2H4OH)、 2-全氟己基乙基醇( C6F13C2H4OH)、 2-全氟辛基乙基醇( C8F17C2H4OH)、 2-全氟烷基乙基醇(CNF2 N +1C2H4OH, N =8,10,12…),阜新恒通氟化学有限公司;二月桂酸二丁基锡,国药集团化学品有限公司;甲基丙烯酰氯,邹平铭兴化工有限公司;N3375 固化剂,拜耳公司(己二异氰酸酯的三聚体)。所有试剂均未进行预处理直接使用。

  • 1.2 含氟单体的合成和改性丙烯酸酯共聚物的制备

  • 1.2.1 通过自由基聚合法制备常规丙烯酸酯共聚物

  • 设计合成含羟基的丙烯酸酯共聚物,单体含量质量分数为40%,单体组成为MMA ∶ BA ∶ HEMA ∶AA=45 ∶40 ∶10 ∶5;引发剂采用BPO,用量占单体总量的质量分数为1%;其余为溶剂,溶剂组成为二甲苯 ∶乙酸丁酯=3 ∶2。合成路线见图1。

  • 图1 常规丙烯酸酯共聚物的合成路线

  • Fig.1 Synthesis of common acrylate copolymer

  • 1.2.2 通过自由基聚合法制备含氟丙烯酸酯共聚物

  • 首先按照图2 的合成路线,利用全氟烷基乙基醇(FOH)先与甲基丙烯酰氯反应,得到与氟醇含有相同全氟链段的甲基丙烯酸氟代烷基酯,记作TEMAc-n,n为全氟碳原子个数。然后与其他常规丙烯酸单体原位聚合,得到不同氟链长的氟改性丙烯酸酯共聚物。

  • 图2 不同氟链长甲基丙烯酸氟代烷基酯TEMAc-n的合成路线

  • Fig.2 Synthesis of TEMAc-n with perfluoroalkyl chains of different length

  • 用合成的TEMAc-n单体与常规丙烯酸酯类单体通过原位自由基聚合制备氟改性丙烯酸酯共聚物, TEMAc-n单体占甲基丙烯酸羟乙酯(HEMA) 量的摩尔分数分别为10%、 20%和40%,引入TEMAc-n单体时,按质量等比例减少除HEMA之外其他单体。合成的氟改性丙烯酸酯共聚物记作xTEMAc-n,x为含氟单体TEMAc-n与共聚物中甲基丙烯酸羟乙酯的摩尔比,n为含氟单体中全氟碳原子个数。反应路线见图3。选取不同含氟原料,制备了一系列不同含量不同全氟链段长度的氟改性丙烯酸酯共聚物,分别为10%TEMAc-4、20%TEMAc-4、40%TEMAc-4; 10%TEMAc-6、20%TEMAc-6、40%TEMAc-6; 10%TEMAc-8、20%TEMAc-8、40%TEMAc-8; 10%TEMAc-N、20%TEMAc-N、40%TEMAc-N(N=8,10,12…)。

  • 图3 含有不同长度全氟链段的TEMAc-n单体改性丙烯酸酯共聚物的合成路线

  • Fig.3 Synthesis of fluorine-modified acrylate copolymers by TEMAc-n with perfluoroalkyl chains of different length

  • 1.2.3 利用含氟单体通过后改性法制备含氟丙烯酸酯共聚物

  • 采用全氟烷基乙基醇(FOH)为氟源,甲苯二异氰酸酯(TDI)为二官能团反应物,按照图4 的反应路线,利用FOH中-OH与TDI中-NCO的反应,-OH ∶-NCO=1 ∶2(物质的量之比),合成一端含有全氟链段、一端含有反应活性较高的-NCO的含氟单体。改变氟醇种类,可以制得含有不同长度全氟链段的异氰酸酯基含氟单体,记作FnTDI,n为全氟碳原子个数。选取不同含氟原料,制备了一系列含有不同全氟链段长度的含氟单体,分别为F4TDI、 F6TDI、 F8TDI和FNTDI(N=8,10,12…)。

  • 图4 含有不同长度全氟链段的FnTDI单体的合成路线

  • Fig.4 Synthesis of FnTDI with perfluoroalkyl chains of different length

  • 使用FnTDI单体改性1.2.1 节中制备的常规丙烯酸酯共聚物PA,记作xFnTDI,其中n为全氟碳原子个数,x为FnTDI与共聚物中羟基的摩尔比。合成路线见图5。选取不同含氟单体FnTDI,改变不同用量,制备了一系列不同含量不同全氟链段长度的氟改性丙烯酸酯共聚物,分别为1%F4TDI、2%F4TDI、5%F4TDI、10F4TDI;1%F6TDI、2%F6TDI、5%F6TDI、10F6TDI;1%F8TDI、 2%F8TDI、 5%F8TDI、 10F8TDI; 1%FNTDI、 2%FNTDI、5%FNTDI、10FNTDI(N=8,10,12…)。

  • 图5 含有不同长度全氟链段的FnTDI单体改性丙烯酸酯共聚物的合成路线

  • Fig.5 Synthesis of fluorine-modified acrylate copolymers by FnTDI with perfluoroalkyl chains of different length

  • 1.3 改性丙烯酸酯共聚物及其涂层的表征

  • 1.3.1 傅里叶变换红外光谱分析

  • 利用傅里叶变换红外光谱仪(FT-IR, Thermo Nicolet AVATAR)对常规共聚物及含氟共聚物的化学结构进行表征。共聚物烘干去除溶剂后采用溴化钾压片法进行测试。

  • 1.3.2 核磁共振分析

  • 利用400 MHz AVANCE Ⅲ Brüker核磁共振仪对氟醇和共聚物进行19 F NMR分析。测试前将氟醇、去除溶剂的共聚物溶解在CD3 SOCD3 溶剂中。

  • 1.3.3 DSC分析

  • 利用示差扫描量热仪(DSC, Mettler Toledo, DSC1)对共聚物的玻璃化转变温度进行表征。测试在氮气环境下进行, 温度范围为-20~200℃,升温速率为10℃/min。

  • 1.3.4 静态水接触角测试

  • 使用KRÜSS DSA 20 接触角测试仪(KRÜSS) 采用座滴法对不同氟含量的共聚物膜层的静态水接触角进行测试。以马口铁片和载玻片作为基材,对每个试样选取至少5 个不同位置进行测试,计算平均值。

  • 1.3.5 XPS分析

  • 使用X射线光电子能谱仪(XPS, ESCALAB 250 Xi, Thermo Fisher Scientific)来表征共聚物膜层表面的元素组成。

  • 1.3.6 AFM分析

  • 使用原子力显微镜(Veeco DI) 对载玻片基材上的共聚物膜层进行表征。采用轻敲模式,通过分析得到膜层表面的均方根粗糙度 Rq

  • 2 结果与讨论

  • 2.1 氟改性丙烯酸酯共聚物的表征

  • 将未改性的常规丙烯酸酯共聚物PA与通过不同方法制备的两种氟改性丙烯酸酯共聚物10%TEMAc-8 与10%F8TDI进行FT-IR分析,所得红外谱图见图6。 3 种丙烯酸酯共聚物都在3441 cm-1 处出现了-OH的特征伸缩振动峰,在2958 cm-1 和2875 cm-1 处出现了-CH3 的反对称伸缩和对称伸缩振动峰,在1733 cm-1 处出现了C=O的伸缩振动峰,在1454 cm-1 和1389 cm-1 处出现了-CH3 的反对称弯曲和对称弯曲振动峰,在1242 cm-1 和1148 cm-1 处出现了C-O-C的伸缩振动峰。 3 条曲线中都没有出现1640 cm-1 处C=C的特征峰,说明所有丙烯酸酯类单体都参与了反应,共聚物中不存在残留的乙烯基单体。氟改性丙烯酸酯共聚物10%TEMAc-8 的红外谱图中除了上述特征峰外, 1148 cm-1 处的峰强度增加,这是由于全氟烷基的吸收峰在该处叠加所致,表明含氟单体TEMAc-8 与其他常规单体通过自由基共聚反应制备的丙烯酸酯共聚物中含有氟组分。氟改性丙烯酸酯共聚物10%F8TDI的红外谱图中,除了上述特征峰之外,还出现了1532 cm-1 处-CO-NH-中N-H的特征振动峰,这些特征峰的变化说明含氟单体F8TDI与常规丙烯酸酯共聚物中的-OH发生了反应, 含氟链段通过化学键接枝到共聚物中。

  • 图6 丙烯酸酯共聚物的FT-IR谱图

  • Fig.6 FT-IR spectra of the acrylate copolymers

  • 通过DSC对丙烯酸酯共聚物的玻璃化转变温度 Tg 进行分析,结果如图7 所示。常规丙烯酸酯共聚物PA的玻璃化转变温度为14.5℃,采用摩尔分数为10%的含氟单体TEMAc-8 与其他丙烯酸酯类单体通过自由基共聚所得氟改性共聚物10%TEMAc-8 的玻璃化转变温度升高到了32.7℃,使用摩尔分数为10%的含氟单体F8TDI对丙烯酸酯共聚物后改性所得氟改性共聚物10%F8TDI的玻璃化转变温度升高到了35.1℃。每种共聚物都仅有一个 Tg,说明所有的单体都反应生成了目标共聚物,含氟单体与其他单体通过化学反应引入共聚物中生成了含氟共聚物,没有均聚物产生。同时,刚性含氟链段的引入导致改性后共聚物玻璃化转变温度升高。使用摩尔分数为10%的含氟单体F8TDI改性所得氟改性共聚物10%F8TDI的玻璃化转变温度较摩尔分数为10%的含氟单体TEMAc-8 改性所得氟改性共聚物10%TEMAc-8 的玻璃化转变温度略高, 这与使用含氟单体F8TDI改性后共聚物的支化程度、分子量等的升高有关。

  • 图7 丙烯酸酯共聚物的DSC曲线

  • Fig.7 DSC curves of the copolymers

  • 将反应物F8OH和除去溶剂后的两种氟改性丙烯酸酯共聚物10%TEMAc-8 与10%F8TDI溶于氘代试剂中进行19 F NMR分析,结果见图8。在F8OH的核磁氟谱中,-81.2 × 10-6 处为-CF3 的特征谱线,-112.4 × 10-6 处为-CF2CH2CH2OH的特征谱线,-121.0 × 10-6~-126.0× 10-6 之间的峰为其他-CF2-基团的特征谱线。由10%TEMAc-8 与10%F8TDI的19 F NMR谱图可以看出, 10%TEMAc-8 和10%F8TDI与反应物F8OH具有相同的特征谱线。由此可见,含氟组分通过设计的路线反应到含氟丙烯酸酯共聚物中。

  • 图8 氟醇F8OH和丙烯酸酯共聚物的19 F NMR谱图

  • Fig.8 19 F NMR spectra of F8OH and Fluorine-modified acrylate copolymers

  • 结合FT-IR、DSC和19 F NMR的分析结果可知,分别使用合成的TEMAc-n与FnTDI两类含氟单体,通过原位自由基聚合改性和共聚物合成后改性两种氟改性路线,成功制备了两类不同含量不同含氟链段长度的氟改性丙烯酸酯共聚物xTEMAc-n与xFnTDI,其中n为全氟碳原子个数, x为含氟单体与共聚物中羟基的摩尔比。

  • 2.2 氟改性丙烯酸酯共聚物涂层的疏水性

  • 将按照图3 和图5 的反应路线,制备的两大类含有不同数量和不同长度全氟链段的氟改性丙烯酸酯共聚物涂膜, 对涂层疏水性能进行表征。

  • 图9 为使用不同用量的具有不同长度全氟链段的甲基丙烯酸氟代烷基酯单体TEMAc-n改性丙烯酸酯共聚物涂层的静态水接触角,横坐标为共聚物中含氟链段与共聚物中羟基的摩尔比。当含氟链段长度相同时,随着氟单体用量的增加,所得氟改性共聚物涂层的接触角增大;当采用相同摩尔量的含氟单体改性时,随着单体中含氟链段长度的增加,所得共聚物涂层的接触角增大;而且当采用含氟链段较短的氟单体时,即使单体用量提高,涂层中含氟链段数量增加,所得涂层的接触角依然比采用较低用量长氟链单体改性共聚物涂层的接触角小,例如采用摩尔分数为40%的含氟单体TEMAc-4 改性共聚物40%TEMAc-4 涂层的接触角为102.8°±1.4°,而采用摩尔分数为10%的含氟单体TEMAc-N 改性共聚物10%TEMAc-N 涂层的接触角为107.8°±0.2°, 尽管前者氟含量更高,但接触角依然小于后者。

  • 图9 氟改性丙烯酸酯共聚物xTEMAc-n涂层的接触角

  • Fig.9 Water contact angles of the xTEMAc-n copolymer films

  • 涂层的疏水性与涂层表面的低表面能链段分布有关。当含氟单体的含氟链段长度固定时, 含氟单体用量增加,涂层中向表面迁移并富集的含氟链段增多,涂层的疏水性提高,接触角增大。当含氟单体的氟链长度较短时,含氟链段向涂层表面的迁移能力较低,达到平衡时涂层表面富集的氟含量不高;而当氟单体的含氟链段长度较长时,氟链段向涂层表面迁移的能力较强,即使含氟单体的用量较低,但是由于长氟链较强的迁移能力,涂层表面富集的氟组分仍然比含量较高的短氟链单体改性共聚物涂层的含量高,故而宏观表现为接触角大,疏水性好。

  • 图10 为使用不同量的含有不同长度全氟链段的含氟单体FnTDI改性丙烯酸酯共聚物涂层的静态水接触角,横坐标为共聚物中含氟链段与共聚物中羟基的摩尔比。与采用甲基丙烯酸氟代烷基酯单体TEMAc-n改性丙烯酸酯共聚物涂层的接触角规律类似,当单体FnTDI的含氟链段长度相同时,随着单体用量的增加,所得氟改性共聚物涂层的接触角增大;当采用相同摩尔量的含氟单体改性时,随着含氟单体中氟链长度的增加,所得共聚物涂层的接触角增大;而且当采用含氟链段较短的氟单体时,即使提高含氟单体用量,依然比采用较低用量长氟链单体改性共聚物涂层的接触角小,例如采用摩尔分数为10%的含氟单体F4TDI改性共聚物时,所得共聚物涂层10%F4TDI的接触角为93.4°±3.0°,而仅采用摩尔分数为1%的含氟单体F8TDI时,所得改性共聚物涂层1%F8TDI的接触角则为114.2°±0.5°, 远大于摩尔分数为10%的含氟单体F4TDI改性共聚物涂层的接触角。

  • 图10 氟改性丙烯酸酯共聚物xFnTDI涂层的接触角

  • Fig.10 Water contact angles of the xFnTDI copolymer films

  • 另外,F8TDI与FNTDI单体改性共聚物涂层的接触角类似,当全氟碳原子个数超过8 时,全氟链段长度再增加,接触角增大不明显,这表明涂层表面含氟链段的分布达到饱和,即使氟链长度增加,涂层表面氟元素也不再增加,故涂层接触角不再增大。

  • 与采用甲基丙烯酸氟代烷基酯单体TEMAcn改性丙烯酸酯共聚物涂层不同的是, 采用FnTDI单体改性共聚物时,含氟单体FnTDI的用量远远小于TEMAc-n单体的用量。特别是当全氟碳链长度较长时,采用具有相同全氟碳链结构的含氟单体对共聚物进行改性, 使用较少的FnTDI单体即可使改性共聚物涂层获得较好的疏水性,如仅采用摩尔分数为1%的F8TDI单体对共聚物进行改性,所得1%F8TDI共聚物涂层的接触角就达到了114.2° ± 0.5°, 而当采用TEMAc-8 单体对共聚物进行改性时,即使单体用量增加至40%,所得共聚物40%TEMAc-8 涂层的接触角仅为108.8°±0.2°,小于1%F8TDI共聚物涂层的接触角。这与两种单体的改性机制有关。参照图3 和图5 中两种氟改性共聚物的合成路线,可以看出,两种含氟单体改性的共聚物分子中,含氟链段均分布在共聚物分子的侧链上,采用FnTDI单体改性共聚物时,共聚物上含氟侧链的长度较采用具有相同全氟碳链结构的TEMAc-n单体改性共聚物的含氟侧链长度要长, 这就更有利于含氟侧链向涂层表面迁移和富集。另一方面,采用TEMAc-n单体改性共聚物时, TEMAc-n单体与其他常规丙烯酸单体原位共聚生成的氟改性共聚物为无规共聚物,成膜时含氟链段向涂层表面迁移,并富集在涂层表面,有助于提高涂层的疏水性;当采用FnTDI单体改性共聚物时,FnTDI单体是在其他单体通过自由基聚合生成无规共聚物后加入共聚物中进行改性的, FnTDI中的-NCO与无规共聚物中的-OH反应, 将含氟链段接枝到共聚物的侧链上,羟基在无规共聚物中是随机分布的,FnTDI单体改性共聚物时会与空间位阻较小、反应活性较高的-OH反应,这样接枝的含氟链段不仅位阻小,而且链段长度更长,在成膜时更容易向涂层表面迁移,因此涂层表面分布的含氟链段更多,疏水性更好。

  • 为研究两种氟改性共聚物涂层的表面特性,采用原子力显微镜对两类涂层的粗糙度进行分析。图11(a)~(d)分别为采用摩尔分数为10%的不同长度全氟链段的TEMAc-n单体改性共聚物涂层的AFM高度图,图11(e)~( h)分别为采用摩尔分数为10%的不同长度全氟链段的FnTDI单体改性共聚物涂层的AFM高度图。由图11( a)~( d) 可知,使用TEMAc-n单体改性时,改性共聚物涂层的表面较平整,表面粗糙度值较小,说明含氟链段与其他碳氢链段具有很好的相容性。同时,随着含氟单体氟链段长度的增加,涂层表面粗糙度值略有增大,这也有利于涂层疏水性的提高。由图11( e)~( h)可知, 使用FnTDI单体改性时,随含氟单体氟链长度的增加, 涂层表面粗糙度值增大, 增幅较TEMAc-n体系大,涂层粗糙度值的增大也有利于疏水性能的提高。

  • 图11 氟改性丙烯酸酯共聚物涂层的AFM高度图

  • Fig.11 AFM height images of the copolymer films

  • 图12 所示为两种氟改性共聚物涂层的AFM相图。图12( a)~( d) 分别为采用摩尔分数为10%的不同长度全氟链段的TEMAc-n单体改性共聚物涂层的AFM相图,当含氟单体全氟碳原子个数n不大于8 时,涂层表面元素分布较均匀,当n大于8 时,涂层表面出现微观相分离(图12(d)),这是由于随着全氟碳链长度的增加,全氟链段结晶性增强,当全氟链段在涂层表面富集并呈现结晶形态时,即发生微观相分离,对应涂层的微观粗糙度值增大。图12(e)~(h)分别为采用摩尔分数为10%的不同长度全氟链段的FnTDI单体改性共聚物涂层的AFM相图, 用FnTDI单体改性共聚物涂层表面呈现明显的分相,特别是当使用摩尔分数为10%的FNTDI单体对共聚物进行改性时,所得共聚物涂层表面呈现严重的相分离,这表明含氟链段在涂层表面分布较多,并呈现结晶形态,因此尽管此时涂层的粗糙度值较10%F8TDI有所减小,但疏水性仍然较好。

  • 图13 为两种含氟单体改性共聚物10%TEMAc-8 和10%F8TDI涂层的XPS谱图,涂层表面各元素的原子比例见表1(其中1 s表示原子的内层1 s电子轨道)。由图13 和表1 数据可知,两种共聚物涂层表面均有氟元素分布,但同样是采用摩尔分数为10%的含氟单体对共聚物进行改性,使用TEMAc-8 单体制备的共聚物涂层表面的F/C原子比为0.10,而使用F8TDI单体改性的共聚物涂层表面的F/C原子比为0.48,后者是前者的4.8 倍,而O/C原子比则从前者的0.34 降到了后者的0.27,这表明使用等量的F8TDI单体改性共聚物涂层与TEMAc-8 单体改性共聚物涂层相比,有更多的含氟组分在涂层表面富集,使得涂层的接触角增大,疏水性能提高。

  • 图12 氟改性丙烯酸酯共聚物涂层的AFM相图

  • Fig.12 AFM phase images of the copolymer films

  • 图13 氟改性丙烯酸酯共聚物涂层的XPS谱图

  • Fig.13 XPS spectra of Fluorine-modified acrylate copolymers

  • 表1 氟改性丙烯酸酯共聚物涂层的元素组成

  • Table1 Element components of the fluorine-modified acrylate copolymer films

  • 2.3 共聚物改性及涂层疏水性能影响机制探讨

  • 使用甲基丙烯酸全氟烷基酯单体TEMAc-n和异氰酸酯基含氟单体FnTDI制备改性共聚物时,含氟链段都是接枝在共聚物分子的侧链上, 两类涂层的接触角具有类似的规律。使用同一类含氟单体制备改性涂层,当含氟单体中全氟碳链结构相同时,随着含氟单体用量的增加,涂层的接触角增大;当含氟单体的用量相同时,随着含氟单体中全氟碳链长度的增加,涂层的接触角增大。但当使用的TEMAc-n与FnTDI单体具有相同全氟链段结构,且二者的用量相同时,所得共聚物涂层的接触角相差较大,这与两种单体改性共聚物的机制有关。

  • 图14 为TEMAc-n单体原位聚合改性丙烯酸酯共聚物涂层(xTEMAc-n)的疏水影响机制示意图。 TEMAc-n单体与其他单体通过自由基聚合到无规共聚物,含氟链段在共聚物分子中无规分布,成膜时低表面能的含氟侧链会向涂层表面迁移并富集在涂层表面,降低涂层的表面能,使涂层疏水性能提高。当TEMAc-n单体的用量相同时,随着含氟链段长度的增加,氟链段向聚合物空气界面迁移的能力提高,所得共聚物涂层表面的氟含量升高,微观粗糙度值增大,涂层疏水性能提高。如图14 所示,未改性涂层的粗糙度值为0.301 nm,接触角为86.6°。当TEMAc-n单体用量占共聚物中羟基的摩尔分数为10%时, TEMAc-n单体中全氟碳链长度分别为4、6、8、N时,所得涂层的粗糙度值分别为0.286、0.326、 0.35、0.425 nm,憎水角分别为102.8°、106.4°、 108.8°和110.1°。随着全氟碳链长度的增加,涂层表面的氟含量升高,同时微观粗糙度值增大, 从而使涂层的疏水性能提高。

  • 图14 TEMAc-n单体原位聚合改性丙烯酸酯共聚物涂层(xTEMAc-n)疏水性能影响机制示意图

  • Fig.14 Schematic diagram of influence mechanism of hydrophobicity of xTEMAc-n copolymer films modified by TEMAc-n

  • 图15 为FnTDI单体后改性所得丙烯酸酯共聚物涂层( xFnTDI)的疏水影响机制示意图。含氟单体FnTDI通过-NCO与共聚物侧链上的端-OH反应,将含氟链段接枝到共聚物的侧链上。使用FnTDI对共聚物进行改性时,FnTDI分子中的-NCO为少量,共聚物分子中的-OH为过量,当FnTDI单体滴加到共聚物中时,FnTDI分子中的-NCO会优先与共聚物侧链上空间位阻较小、链段运动自由度较高的-OH反应,含氟链段接枝到共聚物中空间位阻较小、链段运动自由度较高的侧链上。因此使用FnTDI单体后改性所得改性共聚物分子中含氟侧链的空间位阻小、链段运动自由度高,易于迁移并富集在涂层表面,使涂层微观粗糙度值和接触角增大。另一方面,采用FnTDI单体后改性共聚物时,全氟碳链通过与TDI分子的反应链接到共聚物侧链上,所得含氟侧链的长度比采用相同全氟碳链结构的TEMAcn单体改性共聚物的含氟侧链长,这也有利于含氟侧链向涂层表面的迁移和富集。如图15 所示,当FnTDI单体用量占共聚物中羟基的摩尔分数为10%时,FnTDI单体中全氟碳链长度分别为4、6 和8 N时,涂层的粗糙度值分别为0.276、 0.418、0.649 和0.500 nm,憎水角分别为93.4°、 106°、117.2°和117.1°。

  • 图15 FnTDI单体后改性所得丙烯酸酯共聚物涂层(xFnTDI)疏水性能影响机制示意图

  • Fig.15 Schematic diagram of influence mechanism of hydrophobicity of xFnTDI copolymer films modified by FnTDI

  • 共聚物成膜时,共聚物分子侧链上的含氟链段会迁移并富集在涂层表面,使涂层疏水性提高。其中空间位阻小、链段运动自由度高的含氟链段的迁移能力较强。在TEMAc-n单体原位聚合制备的氟改性共聚物中,全氟链段在共聚物分子中无规分布;使用FnTDI后改性制备的含氟共聚物中,含氟链段接枝在空间位阻小、自由度高的侧链上,而且链段长度较长。因此使用FnTDI后改性所得含氟共聚物中含氟链段的迁移效率较高,涂层表面氟含量高,同时含氟链段在涂层表面的富集使涂层表面微观粗糙度值增大,因而涂层接触角增大。因此,当两种单体的全氟链段结构和用量相同时,使用FnTDI单体后改性共聚物,仅需引入较少的量就能达到较好的疏水改性效果。例如1%F8TDI涂层的接触角为114.2°, 而40%TEMAc-8 涂层的接触角为108.8°,后者的全氟链段数量是前者的40 倍,但接触角仍然比前者小,显然前者的含氟链段迁移效率更高。

  • 3 结论

  • 文中使用含有不同长度全氟碳链的全氟烷基乙基醇为氟源,分别与甲基丙烯酸氯和甲苯二异氰酸酯反应, 制备了两种不同的含氟单体TEMAc-n和FnTDI,然后分别通过自由基共聚合反应和对合成好的常规含羟基丙烯酸酯共聚物进行后改性两种路线,制备了两类含有相同全氟碳链结构的氟改性丙烯酸酯共聚物及其涂层。利用FT-IR、 19 F NMR和DSC等对共聚物的结构进行了表征,结果表明含氟组分通过设计的路线反应到共聚物中,含氟单体的引入提高了共聚物的玻璃化转变温度。通过静态水接触角、XPS和AFM对共聚物涂层进行了表征,结果表明含氟链段向涂层表面迁移并富集在涂层表面,使得涂层疏水性提高。含氟链段的长度对涂层疏水性的贡献大于氟含量的影响,与自由基共聚合方法制备氟改性共聚物xTEMAc-n相比,使用异氰酸酯基含氟单体对常规含羟基丙烯酸酯共聚物进行后改性制备的氟改性共聚物xFnTDI,成膜时含氟链段更容易向涂层表面迁移,引入较少的含氟单体就可以获得优异的疏水性能。

  • 参考文献

    • [1] ZHANG D,XING P,PAN R M,et al.Preparation and sur-face properties study of novel fluorine-containing methacrylate polymers for coating [J].Materials,2018,11(11):14.

    • [2] YAO W,LI Y,HUANG X.Fluorinated poly(meth)acry-late:synthesis and properties [J].Polymer,2014,55(24):6197-6211.

    • [3] GRAINGER D W,STEWART C W.Fluorinated coatings and films:motivation and significance [ M] ∥Castner D.Fluorinated Surfaces,Coatings,and Films.Washington,DC;American Chemical Society.2001:1-14.

    • [4] IEZZI R A,GABOURY S,WOOD K.Acrylic-fluoropolymer mixtures and their use in coatings [J].Prog Org Coat,2000,40(1):55-60.

    • [5] BAO Y,MA J,ZHANG X,et al.Recent advances in the modification of polyacrylate latexes [J].J.Mater.Sci.,2015,50(21):6839-6863.

    • [6] HA J W,PARK I J,LEE S B.Hydrophobicity and sliding behavior of liquid droplets on the fluorinated latex films [J].Macromolecules,2005,38(3):736-744.

    • [7] CHEN Y,ZHANG C,CHEN X.Emulsifier-free latex of fluorinated acrylate copolymer [J].Eur.Polym.J.,2006,42(3):694-701.

    • [8] PARK I J,LEE S-B,CHOI C K.Surface properties of the fluorine-containing graft copolymer of poly((perfluoroalkyl)ethyl methacrylate)-g-poly(methyl methacrylate)[J].Mac-romolecules,1998,31(21):7555-7558.

    • [9] THOMAS R R,ANTON D R,GRAHAM W F,et al.Prepa-ration and surface properties of acrylic polymers containing fluorinated monomers [J].Macromolecules,1997,30(10):2883-2890.

    • [10] LI J,WANG Q,SU C,et al.Preparation and characteriza-tion of fluorine-containing acrylate copolymers by 60Co γ-ray radiation co-polymerization [J].Eur Polym J,2007,43(7):2928-2934.

    • [11] ZHOU J H,WANG L,ZHA X H,et al.Synthesis of Ag/fluorine-containing polyacrylate latex stabilized by Ag nanop-article hybrid amphiphilic random copolymer micelles via Pickering emulsion polymerization and its application on fab-ric finishing [J].Cellulose,2020,27(15):9123-9134.

    • [12] HU Y,ZHANG C,CHEN Y,et al.Preparation and struc-ture of fluorinated/non-fluorinated polyacrylate gradient emul-sion blend film [J].Mater Lett,2010,64(19):2091-2093.

    • [13] ZHOU J H,ZHANG L,MA J Z.Fluorinated polyacrylate e-mulsifier-free emulsion mediated by poly(acrylic acid)-b-po-ly(hexafluorobutyl acrylate)trithiocarbonate via ab initio RAFT emulsion polymerization [J].Chem.Eng.J.,2013,223:8-17.

    • [14] GUO T Y,TANG D,SONG M,et al.Copolymerizations of butyl methacrylate and fluorinated methacrylates via RAFT miniemulsion polymerization [J].J.Polym.Sci.,Part A:Polym.Chem.,2007,45(22):5067-5075.

    • [15] XIAO X,LIU J.Synthesis and characterization of fluorine-containing polyacrylate emulsion with core-shell structure [J].Chin.J.Chem.Eng.,2008,16(4):626-630.

    • [16] CHENG X,CHEN Z,SHI T,et al.Synthesis and character-ization of core-shell LIPN-fluorine-containing polyacrylate la-tex [J].Colloids and Surfaces A:Physicochemical and En-gineering Aspects,2007,292(2):119-124.

    • [17] XIAO X,WANG Y.Emulsion copolymerization of fluorina-ted acrylate in the presence of a polymerizable emulsifier [J].Colloids and Surfaces A:Physicochemical and Engi-neering Aspects,2009,348(1):151-156.

    • [18] PONNUPANDIAN S,CHAKRABARTY A,MONDAL P,et al.POSS and fluorine containing nanostructured block copol-ymer;Synthesis via RAFT polymerization and its application as hydrophobic coating material [J].Eur.Polym.J.,2020,131:10.

    • [19] MORENT R,de GEYTER N,VERSCHUREN J,et al.Non-thermal plasma treatment of textiles [J].Surf Coat Technol,2008,202(14):3427-3449.

    • [20] CHENG S,CHEN Y,CHEN Z.Core-shell latex containing fluorinated polymer rich in shell [J].J.Appl.Polym.Sci.,2002,85(6):1147-1153.

    • [21] CHEN L,WU F.Effect of different surfactants on colloidal and polymer properties of fluorinated acrylate latex [J].Journal of Saudi Chemical Society,2014,18(5):545-550.

    • [22] CUI X,ZHONG S,GAO Y,et al.Preparation and charac-terization of emulsifier-free core-shell interpenetrating poly-mer network-fluorinated polyacrylate latex particles [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,324(1):14-21.

    • [23] CUI X J,ZHONG S L,WANG H Y.Emulsifier-free core-shell polyacrylate latex nanoparticles containing fluorine and silicon in shell [J].Polymer,2007,48(25):7241-7248.

    • [24] XIONG S,GUO X,LI L,et al.Preparation and character-ization of fluorinated acrylate copolymer latexes by miniemul-sion polymerization under microwave irradiation [J].J.Flu-orine.Chem.,2010,131(3):417-425.

    • [25] CHEN Z,CUI X,JIANG W,et al.Synthesis and character-ization of fluoropolymer modified polyacrylate in emulsion polymerization [J].J.Appl.Polym.Sci.,2006,99(2):558-562.

    • [26] ZHANG S,ZHAO J,CHU G,et al.Synthesis,characteriza-tion and properties of a novel fluorinated methacrylate poly-mer [J].J.Fluorine.Chem.,2011,132(11):915-919.

    • [27] CHEN L,SHI H,WU H,et al.Study on the double fluori-nated modification of the acrylate latex [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,368(1):148-153.

    • [28] CASAZZA E,MARIANI A,RICCO L,et al.Synthesis,characterization,and properties of a novel acrylic terpolymer with pendant perfluoropolyether segments [J].Polymer,2002,43(4):1207-1214.

    • [29] MALSHE V C,SANGAJ N S.Fluorinated acrylic copolymers Part I:Study of clear coatings [J].Prog.Org.Coat.,2005,53(3):207-211.

    • [30] MALSHE V C,ELANGO S,BHAGWAT S S,et al.Fluori-nated acrylic copolymers Part II:Polymeric surfactants [J].Prog.Org.Coat.,2005,53(3):212-216.

    • [31] WANG J,MAO G,OBER C K,et al.Liquid crystalline,semifluorinated side group block copolymers with stable low energy surfaces:synthesis,liquid crystalline structure,and critical surface tension [J].Macromolecules,1997,30(7):1906-1914.

    • [32] KRISHNAN S,AYOTHI R,HEXEMER A,et al.Anti-bio-fouling properties of comblike block copolymers with am-phiphilic side chains [J].Langmuir,2006,22(11):5075-5086.

    • [33] HAN D,ZHU L,CHEN Y,et al.Synthesis of fluorinated monomer and formation of hydrophobic surface therefrom [J].RSC Advances,2015,5(29):22847-22855.

  • 参考文献

    • [1] ZHANG D,XING P,PAN R M,et al.Preparation and sur-face properties study of novel fluorine-containing methacrylate polymers for coating [J].Materials,2018,11(11):14.

    • [2] YAO W,LI Y,HUANG X.Fluorinated poly(meth)acry-late:synthesis and properties [J].Polymer,2014,55(24):6197-6211.

    • [3] GRAINGER D W,STEWART C W.Fluorinated coatings and films:motivation and significance [ M] ∥Castner D.Fluorinated Surfaces,Coatings,and Films.Washington,DC;American Chemical Society.2001:1-14.

    • [4] IEZZI R A,GABOURY S,WOOD K.Acrylic-fluoropolymer mixtures and their use in coatings [J].Prog Org Coat,2000,40(1):55-60.

    • [5] BAO Y,MA J,ZHANG X,et al.Recent advances in the modification of polyacrylate latexes [J].J.Mater.Sci.,2015,50(21):6839-6863.

    • [6] HA J W,PARK I J,LEE S B.Hydrophobicity and sliding behavior of liquid droplets on the fluorinated latex films [J].Macromolecules,2005,38(3):736-744.

    • [7] CHEN Y,ZHANG C,CHEN X.Emulsifier-free latex of fluorinated acrylate copolymer [J].Eur.Polym.J.,2006,42(3):694-701.

    • [8] PARK I J,LEE S-B,CHOI C K.Surface properties of the fluorine-containing graft copolymer of poly((perfluoroalkyl)ethyl methacrylate)-g-poly(methyl methacrylate)[J].Mac-romolecules,1998,31(21):7555-7558.

    • [9] THOMAS R R,ANTON D R,GRAHAM W F,et al.Prepa-ration and surface properties of acrylic polymers containing fluorinated monomers [J].Macromolecules,1997,30(10):2883-2890.

    • [10] LI J,WANG Q,SU C,et al.Preparation and characteriza-tion of fluorine-containing acrylate copolymers by 60Co γ-ray radiation co-polymerization [J].Eur Polym J,2007,43(7):2928-2934.

    • [11] ZHOU J H,WANG L,ZHA X H,et al.Synthesis of Ag/fluorine-containing polyacrylate latex stabilized by Ag nanop-article hybrid amphiphilic random copolymer micelles via Pickering emulsion polymerization and its application on fab-ric finishing [J].Cellulose,2020,27(15):9123-9134.

    • [12] HU Y,ZHANG C,CHEN Y,et al.Preparation and struc-ture of fluorinated/non-fluorinated polyacrylate gradient emul-sion blend film [J].Mater Lett,2010,64(19):2091-2093.

    • [13] ZHOU J H,ZHANG L,MA J Z.Fluorinated polyacrylate e-mulsifier-free emulsion mediated by poly(acrylic acid)-b-po-ly(hexafluorobutyl acrylate)trithiocarbonate via ab initio RAFT emulsion polymerization [J].Chem.Eng.J.,2013,223:8-17.

    • [14] GUO T Y,TANG D,SONG M,et al.Copolymerizations of butyl methacrylate and fluorinated methacrylates via RAFT miniemulsion polymerization [J].J.Polym.Sci.,Part A:Polym.Chem.,2007,45(22):5067-5075.

    • [15] XIAO X,LIU J.Synthesis and characterization of fluorine-containing polyacrylate emulsion with core-shell structure [J].Chin.J.Chem.Eng.,2008,16(4):626-630.

    • [16] CHENG X,CHEN Z,SHI T,et al.Synthesis and character-ization of core-shell LIPN-fluorine-containing polyacrylate la-tex [J].Colloids and Surfaces A:Physicochemical and En-gineering Aspects,2007,292(2):119-124.

    • [17] XIAO X,WANG Y.Emulsion copolymerization of fluorina-ted acrylate in the presence of a polymerizable emulsifier [J].Colloids and Surfaces A:Physicochemical and Engi-neering Aspects,2009,348(1):151-156.

    • [18] PONNUPANDIAN S,CHAKRABARTY A,MONDAL P,et al.POSS and fluorine containing nanostructured block copol-ymer;Synthesis via RAFT polymerization and its application as hydrophobic coating material [J].Eur.Polym.J.,2020,131:10.

    • [19] MORENT R,de GEYTER N,VERSCHUREN J,et al.Non-thermal plasma treatment of textiles [J].Surf Coat Technol,2008,202(14):3427-3449.

    • [20] CHENG S,CHEN Y,CHEN Z.Core-shell latex containing fluorinated polymer rich in shell [J].J.Appl.Polym.Sci.,2002,85(6):1147-1153.

    • [21] CHEN L,WU F.Effect of different surfactants on colloidal and polymer properties of fluorinated acrylate latex [J].Journal of Saudi Chemical Society,2014,18(5):545-550.

    • [22] CUI X,ZHONG S,GAO Y,et al.Preparation and charac-terization of emulsifier-free core-shell interpenetrating poly-mer network-fluorinated polyacrylate latex particles [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,324(1):14-21.

    • [23] CUI X J,ZHONG S L,WANG H Y.Emulsifier-free core-shell polyacrylate latex nanoparticles containing fluorine and silicon in shell [J].Polymer,2007,48(25):7241-7248.

    • [24] XIONG S,GUO X,LI L,et al.Preparation and character-ization of fluorinated acrylate copolymer latexes by miniemul-sion polymerization under microwave irradiation [J].J.Flu-orine.Chem.,2010,131(3):417-425.

    • [25] CHEN Z,CUI X,JIANG W,et al.Synthesis and character-ization of fluoropolymer modified polyacrylate in emulsion polymerization [J].J.Appl.Polym.Sci.,2006,99(2):558-562.

    • [26] ZHANG S,ZHAO J,CHU G,et al.Synthesis,characteriza-tion and properties of a novel fluorinated methacrylate poly-mer [J].J.Fluorine.Chem.,2011,132(11):915-919.

    • [27] CHEN L,SHI H,WU H,et al.Study on the double fluori-nated modification of the acrylate latex [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,368(1):148-153.

    • [28] CASAZZA E,MARIANI A,RICCO L,et al.Synthesis,characterization,and properties of a novel acrylic terpolymer with pendant perfluoropolyether segments [J].Polymer,2002,43(4):1207-1214.

    • [29] MALSHE V C,SANGAJ N S.Fluorinated acrylic copolymers Part I:Study of clear coatings [J].Prog.Org.Coat.,2005,53(3):207-211.

    • [30] MALSHE V C,ELANGO S,BHAGWAT S S,et al.Fluori-nated acrylic copolymers Part II:Polymeric surfactants [J].Prog.Org.Coat.,2005,53(3):212-216.

    • [31] WANG J,MAO G,OBER C K,et al.Liquid crystalline,semifluorinated side group block copolymers with stable low energy surfaces:synthesis,liquid crystalline structure,and critical surface tension [J].Macromolecules,1997,30(7):1906-1914.

    • [32] KRISHNAN S,AYOTHI R,HEXEMER A,et al.Anti-bio-fouling properties of comblike block copolymers with am-phiphilic side chains [J].Langmuir,2006,22(11):5075-5086.

    • [33] HAN D,ZHU L,CHEN Y,et al.Synthesis of fluorinated monomer and formation of hydrophobic surface therefrom [J].RSC Advances,2015,5(29):22847-22855.

  • 手机扫一扫看