- 工程前沿 -
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

张晶晶(1982—),女(汉),副教授;博士后;研究方向:表面工程;E-mail:zhangjj@dlpu.edu.cn

中图分类号:TG178

文献标识码:A

文章编号:1007-9289(2020)03-0095-09

DOI:10.11933/j.issn.1007-9289.20191107003

参考文献 1
侯保荣,张盾,王鹏.海洋腐蚀防护的现状与未来[J].中国科学院院刊,2016,31(12):1326-1331.HOU B R,ZHANG D,WANG P.Marine corrosion and pro-tection:current status and prospect[J].Bulletin of Chinese Academy of Sciences,2016,31(12):1326-1331(in Chi-nese).
参考文献 2
郑传奇,李涛,薛仁杰.低碳高强度结构钢耐海洋大气腐蚀行为研究[J].内蒙古科技大学学报,2015,34(3):230-233.ZHENG C Q,LI T,XUE R J.Research on marine atmos-pheric corrosion behavior of low carbon high strength structur-al steel[J].Journal of Inner Mongolia University of Science and Technology,2015,34(3):230-233(in Chinese).
参考文献 3
聂薇,姚晓红,卢本才.海洋工程重防腐技术[J].造船技术,2016,43(6):82-86.NIE W,YAO X H,Lu B C.Technical of heavy duty coat-ings for marine engineering[J].Marine Technology,2016,43(6):82-86(in Chinese).
参考文献 4
童辉,韩文礼,张维,等.高速电弧喷涂铝基涂层在模拟深水环境下的腐蚀行为及改进研究 [J].天津科技,2017,44(10):71-74.TONG H,HAN W L,ZHANG W,et al.Corrosion behaviors of high velocity arc sprayed aluminum base coatings in simu-lated deep water environment and their improvement [J].Tianjin Science and Technology,2017,44(10):71-74(in Chinese).
参考文献 5
郭麒,孟天旭,席雯,等.C/C 复合材料表面 CoNiCrAl-TaHfY/Co 复合涂层的组织[J].中国表面工程,2018,31(2):29-38.GUO Q,MENG T X,XI W,et al.Microstructure of CoNi-CrAlTaHfY/Co composite coating formed on C/C composites [J].China Surface Engineering,2018,31(2):29-38(in Chinese).
参考文献 6
何俊波,李春福,姚梦佳,等.等离子喷涂 AT13/MoS2 复合涂层的组织和耐腐蚀性[J].金属热处理,2015,40(7):99-102.HE J B,LI C F,YAO M J,et al.Microstructure and corro-sion resistance of AT13/MoS2 composite coating prepared by atmospheric plasma spraying[J].Heat Treatment of Metals,2015,40(7):99-102(in Chinese).
参考文献 7
孙丽丽.水力压裂工况下典型材质损伤行为及机理研究 [D].大庆:东北石油大学,2015:23-30.SUN L L.Study on damage behavior and mechanism of typi-cal materials under hydraulic fracturing conditions [ D ].Daqing:Northeast Petroleum University,2015:23-30(in Chinese).
参考文献 8
孙秋霞.材料腐蚀与防护[M].北京:冶金工业出版社,2001:33-62.SUN Q X.Material corrosion and protection[M].Beijing:Metallurgical Industry Press,2001:33-62(in Chinese).
参考文献 9
ÇELIK I·.Structure and surface properties of Al2O3-TiO2 ceramic coated AZ31 magnesium alloy[J].Ceramics Inter-national,2016,42(12):13659-13663.
参考文献 10
ZHOU Z,WANG M,LIU L,et al.Plasma sprayed Al2O3-13% TiO2 coating sealed with organic-inorganic hybrid agent and its corrosion resistance in acid environment[J].Ceram-ics-Silikaty,2016,60(3):254-261.
参考文献 11
DAROONPARVAR M,YAJID M A M,YUSOF N M,et al.Fabrication and properties of triplex NiCrAlY/nano Al2O3-13% TiO2/nano TiO2 coatings on a magnesium alloy by at-mospheric plasma spraying method[J].Journal of Alloys and Compounds,2015,645(5):450-466.
参考文献 12
LEE J H,KIM S J.Corrosion characteristic of coated speci-men with 80Ni20Cr/Al2O3-TiO2 powder for ALBC3 [J].Journal of Ceramic Processsing Research,2015,16(2):262-266.
参考文献 13
吴让融.硅酸盐玻璃熔化温度的计算[J].玻璃与搪瓷,1989,18(2):15-18.WU R R.Calculation of melting temperature of silicate glas-ses[J].Glass and Enamel,1989,18(2):15-18(in Chi-nese).
参考文献 14
赵彦钊,殷海荣.玻璃工艺学[M].北京:化学工业出版社,2006:101-130.ZHAO Y Z,YIN H R.Glass technology [ M].Beijing:Chemical Industry Press,2006:101-130(in Chinese).
参考文献 15
WANG Z X,ZHANG J J,ZHANG H,et al.Fabrication and corrosion resistance of plasma sprayed glass powder doped Al2O3-13TiO2 coatings[J].Journal of Thermal Spray Tech-nology,2020,29(5):500-509.
参考文献 16
刘美淋,孙宏飞,于惠博,等.降低热喷涂涂层孔隙率的方法[J].腐蚀与防护,2007,28(4):171-173.LIU M L,SUN H F,YU H B,et al.Methods to reduce the porosity of thermal spray coatings[J].Corrosion and Protec-tion,2007,28(4):171-173(in Chinese).
参考文献 17
BARD A J,FAULKNER L R,LEDDY J,et al.Electro-chemical methods:Fundamentals and applications[M].New York:Wiley,1983:91-92.
参考文献 18
ZOSKI,CYNTHIA G.Handbook of electrochemistry [ M].Amsterdam:Elsevier Science,2006:50-60.
参考文献 19
FONTANA M G.Corrosion engineering[M].New York:Ta-ta McGraw-Hill Education,2005:77-90.
参考文献 20
RACZ A S,KERNER Z,NEMRTH A,et al.Corrosion re-sistance of nanosized silicon carbide-rich composite coatings produced by noble gas ion mixing[J].ACS Applied Materi-als & Interfaces,2017,9(51):44892-44899.
参考文献 21
马建龙.超音速等离子喷涂纳米 Al2O3-TiO2 复合陶瓷涂层组织结构及摩擦学性能的研究[D].天津:河北工业大学,2014:22-35.MA J L.Study on microstructure and tribological properties of nano-Al2O3-TiO2 composite ceramic coating by supersonic plasma spraying[D].Tianjin:Hebei University of Technolo-gy,2014:12-35(in Chinese).
参考文献 22
陈鹏,周晓林,逯来玉,等.金红石结构 TiO2 结构和热力学性质的第一性原理研究[J].原子与分子物理学报,2012,29(2):372-376.CHEN P,ZHOU X L,LU L Y,et al.First-principles calcu-lations for structural and thermodynamic properties of rutile TiO2 under high pressure[J].Journal of Atomic and Molecu-lar Physics,2012,29(2):372-376(in Chinese).
参考文献 23
HARJU M,JAM P,DAHLTEN,et al.Inflfluence of long-term aqueous exposure on surface properties of plasma sprayed oxides Al2O3,TiO2 and their mixture Al2O3-13TiO2 [J].Applied Surface Science,2008,254(22):7272-7279.
参考文献 24
石绪忠,许康威,武笑宇.等离子喷涂纳米氧化铝钛涂层机械性能研究[J].表面技术,2018,47(4):96-101.SHI X Z,XU K W,WU X Y.Study on mechanical proper-ties of plasma sprayed nano-alumina titanium coating [J].Surface Technology,2018,47(4):96-101(in Chinese).
参考文献 25
朱禄发,龙剑平,刘二勇,等.等离子喷涂 Al2O3-13% TiO2 涂层的海水腐蚀磨损性能 [J].中国表面工程,2015,28(6):96-103.ZHU L F,LONG J P,LIU E Y,et al.Corrosion and wear properties of plasma sprayed Al2O3-13% TiO2 coating[J].China Surface Engineering,2015,28(6):96-103(in Chi-nese).
参考文献 26
邓世均.高性能陶瓷涂层[M].北京:化学工业出版社,2004:20-43.DENG S J.High performance ceramic coating[M].Beijing:Chemical Industry Press,2004:20-43(in Chinese).
参考文献 27
ZANG J J,WANG Z H,LIN P H,et al.Corrosion of plasma sprayed NiCrAl/Al2O3 – 13 wt-% TiO2 coatings with and without sealing [J].Surface Engineering,2012,28(5):345-350.
参考文献 28
GAWEL R,KYZIOL K,JURASZ Z,et al.Oxidation resist-ance of valve steels covered with thin SiC coatings obtained by RF CVD [J].Corrosion Science,2018,145(11):16-25.
参考文献 29
SINGH L P,BHATTACHARYYA S K,AHALAWAT S.Preparation of size controlled silica nano particles and its functional role in cementitious system [J].Journal of Ad-vanced Concrete Technology,2012,10(11):345-352.
参考文献 30
HASHEMI S M,PARVIN N,VALEFI Z,et al.Comparative study on tribological and corrosion protection properties of plasma sprayed Cr2O3-YSZ-SiC ceramic coatings [J].Ce-ramics International,2019,45(17):21108-21119.
参考文献 31
ZENG Q,WAN W,CHEN L.Enhanced mechanical and electrochemical performances of silica-based coatings ob-tained by electrophoretic deposition[J].ACS Applied Mate-rials & Interfaces,2019,11(27):24308-24317.
目录contents

    摘要

    为解决等离子喷涂陶瓷涂层孔隙率高的问题,将 Al 2O3 -13%TiO2(AT13)粉体与 CaO-MgO-Al 2O3 -SiO2(G)硅酸盐玻璃粉按不同比例混合,采用等离子喷涂技术制备得到 AT13、G ∶AT13 = 1 ∶ 10(GA-1)、G ∶AT13 = 2 ∶ 10 (GA- 2)、 G ∶AT13 = 3 ∶10 (GA-3) 这 4 种涂层,对 4 种涂层的相组成和微观形貌进行了分析,利用浸泡腐蚀与电化学腐蚀试验分别对涂层耐腐蚀性能进行了研究。 结果表明:4 种涂层均由 α-Al 2O3 、γ-Al 2O3 、金红石型 TiO2 和 Al 2TiO5 相组成;AT13、 GA-1、GA-2 和 GA-3 涂层的孔隙率分别为 13. 2%、11. 4%、7. 8%和 8. 8%;在 3. 5% NaCl 溶液中浸泡腐蚀 1000 h 后,3 种 GA-X (X= 1,2,3)涂层的腐蚀面积与纯 AT13 涂层相比都有所减小;电化学阻抗(EIS)和动电位极化曲线(PD)结果表明涂层的耐腐蚀性随着玻璃粉的掺入而提高,但玻璃粉掺量不是越高越好,以 G ∶AT13= 2 ∶10 比例掺杂的涂层耐腐蚀性能最优。

    Abstract

    In order to reduce the porosity and improve the corrosion resistance of plasma sprayed ceramic coatings, CaO-MgOAl 2O3 -SiO2(G) silicate glass powders is doped into commercially used Al 2O3 -13% TiO2 (AT13) powder in different proportions. Thus, AT13, G ∶AT13 = 1 ∶10 (GA-1), G ∶AT13 = 2 ∶10 (GA-2), G ∶AT13 = 3 ∶10 (GA-3) coatings are prepared by plasma spraying. The phases and morphologies of the coating were analyzed, and the corrosion resistance of the coating was studied by immersion corrosion and electrochemical corrosion. It can be concluded that phases compositions of the tested four coatings are α-Al 2O3 , γ-Al 2O3 , rutile TiO2 and Al 2TiO5 ; the porosity of coatings are 13. 2% (AT13), 11. 4% (GA-1), 7. 8% (GA-2) and 8. 8% (GA-3), respectively. After 1000 h immersion in 3. 5% NaCl solution, the corrosion area of the GA-X (X= 1,2,3) coatings are all decreased compared with the pure AT13 coating; the electrochemical impedance (EIS) and kinetic potential polarization curve (PD) results showed that the corrosion resistance of the coatings increased with the increasing amount of the doped glass powder. GA-2 coating got the best corrosion resistance.

  • 0 引言

  • 随着海洋资源开发与利用的程度提高,作为海洋工程中主要结构构件的金属材料的腐蚀问题日益凸显。海洋环境是腐蚀性最为严酷的自然环境[1],而海水作为强电解质,会对海洋工程中长期固定于海水中的钢结构材料造成极其严重的腐蚀,缩短其服役寿命,造成巨大经济损失。海上风电场从基础结构到塔筒、机舱、各类机械零部件等都面临严重的海洋腐蚀问题。海工结构材料的修补十分困难,常规防腐方法已无法保证海上结构构件的长期使用。因此,采取一定措施进一步提高金属材料的耐腐蚀性具有重要意义[2-3]

  • 等离子喷涂技术作为材料表面强化与改性的重要方法之一,通过喷涂不同材质的涂层可提高基体材料的耐磨、耐蚀、抗高温氧化、耐辐射等性能,在不改变整体材料性能的前提下可实现对关键部件的防护[4-5]。由于陶瓷涂层具有高硬度、高耐腐蚀、耐磨损等优点而广泛用于机械的表面防护。在众多常用陶瓷涂层材料中,Al2O3-13%TiO2(AT13)复合氧化物陶瓷涂层在航空航天、军工、水利、海工等相关设备的近百种零部件上获得了应用[6]。但由于等离子喷涂工艺决定了所得涂层的层状结构,在喷涂过程中不可避免地会产生孔隙、微裂纹等缺陷,这些缺陷的存在为腐蚀介质渗入提供了通道[7]。在腐蚀环境下, 腐蚀介质通过陶瓷层的缺陷及微裂纹渗入到涂层与金属的界面并发生严重的电化学腐蚀,大量膨胀型氧化物的产生会导致涂层开裂及剥落,降低涂层在腐蚀环境中的使用寿命,限制等离子喷涂陶瓷涂层在耐腐蚀行业的应用[8-10]。由此可见,降低孔隙率、提高涂层致密度是延长涂层服役寿命的关键要素之一。

  • 多年来,很多学者在改善陶瓷涂层耐蚀性方面进行了研究。通过加强预处理、优化工艺参数来提高涂层的致密度,并已成为涂层制备的基本操作。但由于等离子喷涂工艺本身的特点决定了缺陷的存在,该方法提高致密度的程度有限。随后,对涂层后处理的研究逐渐增多,如激光重熔[11]、高温热处理[12]、封孔处理等。前两种方法虽然都能增加涂层的致密度,但会因为引入二次应力使涂层剥落失效,且成本较高。封孔处理的方法操作简单、成本低,应用较为广泛,但这种方法的耐腐蚀效果受制于封孔剂的性质,对腐蚀环境具有较强的选择性,且大多数封孔剂为有机溶剂,在腐蚀环境下长期使用易失效。在工程实际应用中,涂层的服役环境经常是多因素并存(如腐蚀、磨损、冲蚀、汽蚀、高温等),因此,仅对涂层进行封孔处理无法从根本上解决孔隙和腐蚀问题。

  • 硅酸盐玻璃作为典型的非晶态材料,在熔融状态下具有低粘度、高流动度的特点,且玻璃形成区范围较宽,具有较高的化学稳定性(除氢氟酸及高温磷酸外,几乎能耐所有无机酸及中性介质的侵蚀),热膨胀系数可调((60~100) ×10-7/℃),可根据需要选择适宜的玻璃组成[13-14]。因此,将玻璃粉与陶瓷粉混合可增加等离子喷涂过程中熔融粉末在基体表面铺展的流动度,同时,在熔融液滴快速冷却的过程中,由于玻璃熔体的粘度在熔融温度与软化温度之间具有梯度变化的规律(10~10 6.6 Pa·s),因此,玻璃片层可充分弛豫以适应陶瓷片层表面的粗糙度,并填补陶瓷颗粒之间的孔隙,亦可减少涂层内部的残余应力,从根本上降低孔隙率,形成致密涂层[15]。但目前国内外对玻璃粉掺杂陶瓷复合涂层的研究较少,尚未见相关报道。文中利用等离子喷涂领域常用的AT13 陶瓷涂层粉末,在其中掺杂不同比例的硅酸盐玻璃CaO-MgO-Al2O3-SiO2(G) 粉体,通过等离子喷涂技术制备G/AT13 玻璃陶瓷复合涂层, 并对涂层进行封孔处理,采用扫描电镜、X射线衍射仪等对涂层进行表征;通过浸泡腐蚀、电化学腐蚀的方法对涂层耐腐蚀性能进行了综合分析,阐明了不同比例玻璃粉掺杂AT13 涂层的腐蚀行为和耐腐蚀机理。

  • 1 试验

  • 1.1 玻璃粉制备

  • CaO-MgO-Al2O3-SiO2 硅酸盐玻璃粉配方如表1 所示。将配合料混合均匀后置于刚玉坩埚中,通过RK-18-16 型高温升降式电阻炉进行熔制,温度升至1400℃,保温2 h,倒入模具并快速移入550℃退火炉中退火1 h,随炉冷却,制得玻璃。将玻璃破碎后置于玛瑙球磨罐中进行球磨, 过29.96 μm筛,烘干得到玻璃粉。将制备的玻璃粉与等离子喷涂常用的Al2O3-13%TiO2 粉体分别按照质量比例1 ∶10、2 ∶10、3 ∶10 的比例球磨混合均匀,然后通过喷雾造粒的方式制备得到适宜等离子喷涂的玻璃陶瓷复合粉体。

  • 表1 硅酸盐玻璃配方

  • Table1 Formula of CaO-MgO-Al2O3-SiO2(w/%)

  • 1.2 涂层的制备

  • 以316 L不锈钢为基体,NiGrAlY为粘结层, 采用G80 等离子喷涂系统分别制备纯AT13 涂层、G ∶ AT13=1 ∶ 10( GA-1)、 G ∶ AT13=2 ∶ 10(GA-2)、G ∶AT13=3 ∶10(GA-3)玻璃陶瓷复合涂层,喷涂参数如表2 所示。所得粘结层厚度为60~80 μm,AT13 涂层和玻璃陶瓷复合涂层均为300~350 μm。

  • 表2 等离子喷涂参数

  • Table2 Parameters of the plasma spray technology

  • 1.3 封孔处理

  • 封孔处理作为等离子喷涂陶瓷涂层在腐蚀环境使用的常用处理方式,在工程中已应用多年。采用JY7050-13 有机硅树脂作为封孔剂,树脂与固化剂按5 ∶ 1的质量比混合,将试样浸入30 min后缓慢拉出, 放入115℃ 的烘箱保温15 min。

  • 1.4 粉体与涂层的微观表征

  • 采用JSM-6460LV型扫描电子显微镜对粉体及涂层形貌进行分析;采用HiroxKH-7700 超景深体视显微镜对腐蚀前后涂层表面形貌进行分析;采用X-Max50 型X射线衍射仪测定粉体和陶瓷涂层的相组成。采用X射线分析软件MDI Jade6.5 进行物相标定并分析;采用OLMPUSBX51 M光学显微镜,用DT2000 金相图像分析软件通过二值化方法测定涂层的孔隙率[16],随机选择5 个不同的区域,计算平均值。

  • 1.5 腐蚀性能测试

  • 将试样浸泡于3.5%NaCl溶液中1000 h,对比试样表面形貌变化情况,以评价涂层的耐腐蚀情况。腐蚀前,将涂层面以外的其他表面用环氧树脂封闭,以保证腐蚀面为涂层表面。

  • 电化学腐蚀采用常规的三电极电池,Ag/AgCl/KCl为参比电极,a-Pt线为参比电极,涂层为工作电极。涂层测试面积为0.9993 cm 2,腐蚀介质为3.5%NaCl溶液。采用Gamry电化学系统进行腐蚀测试。腐蚀前将试样置于25℃ 的腐蚀溶液中稳定30 min后,进行开路电势(Eocp)测定,待其值20 s内不变或者100 s内变化小于1 mV后获得涂层的电化学阻抗谱(EIS) 曲线。频率范围从10 5~10-2 Hz,交流电压为5 V。极化曲线在相对于 Eocp 的扫描速率为1 mV/s,扫描范围为-0.25~+ 0.25 V时获得。重复进行测试以确保结果的可重复性。腐蚀电位和腐蚀电流密度通过Tafel近似线性分析得出[17-20]

  • 2 结果与讨论

  • 2.1 相分析

  • 图1 为玻璃粉(G)的相组成,由图可见明显的弥散峰,说明所制备的玻璃粉为无序的非晶态。图2 所示为AT13、GA-1、GA-2 和GA-3 粉体的相组成,由图可知,粉体由 α-Al2O3、Rutile-TiO2 相组成,α-Al2O3 在25°、35°、37°、43°、57°、 66°和78°有较强的衍射峰。 α-Al2O3 是一种稳定的晶型,具有良好的抗裂纹扩展和韧化作用[21]。氧化钛以金红石型(Rutile-TiO2)结构存在,金红石型氧化钛为四方晶系,每个立方体原胞中正四价的钛离子位于立方体的顶点和体心,而负二价的氧离子位于以钛离子为顶点的平面正三角形的中心。 Rutile-TiO2 热容量随温度的增加而增大,热膨胀系数随温度升高而增加,弹性模量随温度升高而减小[22]。在Al2O3 中添加TiO2,可降低喷涂层的孔隙率,显著提高涂层的致密性和结合强度[23]

  • 图1 玻璃粉的XRD图谱

  • Fig.1 XRD patterns of the glass powder

  • 图2 AT13 和GA-X 复合粉体XRD图谱

  • Fig.2 XRD patterns of pure AT13 and GA-X composite powders

  • 图3 为纯AT13 涂层和GA-X 涂层的XRD谱图。由图可知,涂层主要由 α-Al2O3、γ-Al2O3、Rutile-TiO2 和Al2TiO5 相组成,与相应粉体的相组成相比(图2)发生了相变。在喷涂过程中,熔融的粉体快速冷却,部分 α-Al2O3 转变为亚稳态的 γ-Al2O3。另外,部分Al2O3 和TiO2 发生化学反应生成了Al2TiO5 [24-25]。玻璃粉掺入后制得的GA-X 涂层与AT13 涂层相比相组成未发生明显的变化,说明玻璃粉的掺入未对AT13 涂层的晶相产生明显影响,可能是由于复合涂层中陶瓷相比例较大,玻璃相弥散分布于陶瓷相之间,未形成明显的非晶态相衍射峰。

  • 图3 AT13 涂层和GA-X 玻璃陶瓷复合涂层的XRD图谱

  • Fig.3 XRD patterns of AT13 coating and GA-X glass-ceramic composite coatings

  • 2.2 微观形貌分析

  • 图4 为AT13、GA-1、GA-2 和GA-3 粉体的微观形貌(图4( a1)、图4( b1)、图4( c1)和图4(d1))及其相应的元素分布图4(a2)、图4(b2)、图4(c2)和图4(d2))。由图可见,玻璃粉分布于AT13 颗粒之间,随着玻璃粉掺量增加,在AT13 颗粒间填充的量逐渐增加,由于经过喷雾造粒处理,玻璃粉部分附着于AT13 颗粒表面,形成复合粉体。

  • 图5 为AT13、GA-1、GA-2 和GA-3 涂层的表面形貌,由图5( a)可见,纯AT13 涂层表面不平整,具有明显的层次感并伴有孔隙和微裂纹。涂层表面出现大量微裂纹和孔隙主要与喷涂冷却过程中涂层内部产生的较大内应力有关。

  • 与纯AT13 涂层相比,随着掺杂玻璃粉的比例增高,涂层表面平整度增加,熔融液滴铺展的片层面积增大,表面孔隙明显减少(图5(b)( c)(d)),这是由于玻璃粉高温时有很好的流动性, 在喷涂过程中随着熔融液滴撞击基体表面后迅速凝固, 起到了粘结的作用; 另外, 高温时玻璃粉粘度低流动性好, 使得其更好地填充了AT13 熔滴之间的孔隙,所以熔滴铺展较纯AT13 粉体的面积增大,形成大片层铺展,减少了表面孔隙。综上所述,随着玻璃粉掺量的增加,涂层整体表现为:表面较为平坦,结构致密,表面孔隙减少,涂层的致密度大大提高;但是当玻璃粉掺杂到G ∶AT13=3 ∶10 时,涂层表面产生了裂纹,这可能是由于等离子喷涂快速冷却时,脆性的玻璃材料导致应力集中,使其产生裂纹。因此玻璃粉的掺量不宜过高。

  • 图4 AT13 和GA-X 复合粉体的微观形貌及元素分布

  • Fig.4 Morphologies and elements distribution of AT13 and GA-X powders

  • 图5 AT13 涂层和GA-X 玻璃陶瓷复合涂层表面形貌

  • Fig.5 Surface morphologies of the AT13 coating and GA-X glass-ceramic composite coatings

  • 图6 为4 种涂层的截面形貌。在喷涂过程中粉体处于熔融、半熔融状态。半熔融的AT13 到达基体后相互堆叠产生孔隙;熔融的AT13 在凝固时体积收缩而产生裂纹。当掺杂了玻璃粉后,由于高温时玻璃粉具有良好的流动性可填充涂层的部分孔隙和微裂纹。

  • 以GA-1 涂层截面的元素分布为例,如图7 所示,Ca、Mg、Si这些玻璃粉体中的元素在涂层中分布较均匀,尤其是Si元素呈散点状分布,说明玻璃粉在涂层中充分发挥了高温粘结剂的作用[26],填充了涂层内部的部分孔隙。根据二值化的方法测得涂层平均孔隙率分别为:纯AT13 涂层13.2%、GA-1 涂层11.4%、GA-2 涂层7.8%、 GA-3 涂层8.8%。进一步说明玻璃粉很好地填充了AT13 陶瓷涂层的部分孔隙,使涂层致密性得到提高,且随着玻璃粉掺量的增加,涂层内部孔隙越来越少。

  • 图6 AT13 涂层和GA-X 玻璃陶瓷复合涂层截面形貌

  • Fig.6 Cross-sectional morphologies of the AT13 coating and GA-X glass-ceramic composite coatings

  • 图7 GA-1 玻璃陶瓷复合涂层截面元素分布

  • Fig.7 Cross sectional elements distribution of GA-1 glass-ceramic composite coatings

  • 2.3 浸泡腐蚀分析

  • 图8 为AT13、GA-1 GA-2 和GA-3 涂层腐蚀前的表面形貌,由图可知,在体视显微镜下,腐蚀前所制备的涂层表面平整,掺杂玻璃粉的涂层与纯AT13 涂层表面差别不大。图9 为4 种涂层浸泡腐蚀1000 h后的表面形貌,纯AT13 涂层浸泡腐蚀1000 h后发生了非常严重的腐蚀,表面锈迹明显并有腐蚀坑;而随着玻璃粉的掺入,从图9 中箭头所指位置可以看出,被腐蚀的面积减小, 其中,GA-2 的腐蚀面积最小。说明随着玻璃粉掺杂量的提高,涂层致密度增加,涂层耐腐蚀能力增强,但由于GA-3 表面微裂纹增加(图5(d)),为腐蚀介质提供了渗入通道,因此, GA-2 涂层的耐腐蚀性能最优。

  • 图8 AT13 涂层和GA-X 玻璃陶瓷复合涂层浸泡腐蚀前表面形貌

  • Fig.8 Surface morphologies of the AT13 coating and GA-X glass-ceramic composite coatings before immersion

  • 图9 AT13 涂层和GA-X 玻璃陶瓷复合涂层浸泡腐蚀1000 h后表面形貌

  • Fig.9 Surface morphologies of the AT13 coating and GA-X glass-ceramic composite coatings after immersion 1000 h

  • 2.4 电化学腐蚀性能

  • 2.4.1 极化曲线

  • 4 种涂层的动电位极化曲线及电化学参数如图10 和表3 所示。腐蚀电流密度 Icorr 是评估腐蚀反应动力学的主要参数,其大小与涂层耐腐蚀性能成反比。由表3 可见,AT13 涂层的腐蚀电流远大于掺杂玻璃粉的涂层,随着玻璃粉的掺杂,涂层的腐蚀速率大大降低。但GA-3 涂层相对于GA-2 的腐蚀电流密度有所升高,结果与浸泡腐蚀一致,说明玻璃粉掺杂量并不是越多越好。通过Term geary方程求出AT13、GA-1、GA-2、 GA-3 涂层极化电阻(Rρ)分别为6.1、137、840 和814 Ω·cm 2。进一步说明玻璃陶瓷复合涂层较纯陶瓷涂层耐腐蚀性能得到大幅度提高,其原因是玻璃粉掺杂后涂层孔隙率降低,致密度提高,从而耐腐蚀性能提高。其中,GA-2 涂层相对于其他涂层具有较优异的耐腐蚀性能。

  • 图10 4 种涂层的动电位极化曲线

  • Fig.10 Dynamic potential polarization curves of the four coatings

  • 表3 4 种涂层的动电位极化测量获得的腐蚀参数

  • Table3 Corrosion parameters obtained by dynamic potential polarization measurement of four coatings

  • 2.4.2 阻抗

  • 电化学阻抗谱和拟合的等效电路模型如图11~13 所示。由图11 可知,在最低10-2 Hz的频率处GA-2 涂层的绝对阻抗值最高,其具有相对较高的耐腐蚀性能。

  • 由图12 可知由于腐蚀介质渗入涂层内部, 导致在中频和低频范围内相位角下降,这是由于涂层中形成了导电渗滤通道[27-28],由于陶瓷材料具有较高的化学稳定性,而金属材料具有一定的化学活性,因此,在涂层/基体界面处开始局部腐蚀[29]。而GA-2 涂层在低频时相位角不降反升, 说明其具有良好的耐腐蚀性能。主要原因是玻璃粉掺杂后,致密度提升,在一定程度上抑制了腐蚀介质Cl-的渗入,涂层受腐蚀影响较小。 4 种涂层的容抗区域出现在相同的频率范围内,说明在这段频率范围内对应两个时间常数,即4 种涂层对应的容抗弧是由两个圆弧叠加得到,所以形成两个闭合回路,与图13 左上角电路图一致。

  • 图11 4 种涂层的Bode图,阻抗与频率图

  • Fig.11 Bode diagram, Impedance and frequency diagram of the four coatings

  • 图12 4 种涂层的Bode图,阻抗与相位角图

  • Fig.12 Bode diagram, Impedance and phase angle diagram of the four coatings

  • 图13 4 种涂层的Nyquist图,其中 Rs 是电解液电阻, CPEc 是涂层电容,RtCPEdl 是电荷转移电阻和双电层电容

  • Fig.13 Nyquist diagram of the four coatings, Rs is the electrolyte solution resistance, CPEc is the coating capacitance, Rt and CPEdl are the charge transfer resistance and the electric double layer capacitance

  • 由图13 可见,AT13 的涂层曲线半径明显很小,反映了它的低极化电阻。掺杂玻璃粉后, GA-2 涂层的阻抗半径最大,GA-2 涂层的阻抗曲线明显高于其他涂层,说明该涂层阻抗最大, 致密性最好。在一定程度上抑制了Cl-等腐蚀性离子的渗透,使其难以到达基体表面,形成了较好的阻挡层,有效地保护了基体不受腐蚀[30-31]。说明掺杂玻璃粉可以有效地提高致密度,从而提高涂层的耐腐蚀性。

  • RtRρo 分别表示涂层的耐腐蚀性能和保护性能,AT13、GA-1、GA-2 和GA-3 涂层的 Rρo 拟合值分别为135.7、 1 7487、 58 097 和26 103 Ω·cm 2;相比AT13 涂层,掺入玻璃粉后, 涂层 Rρo 明显增加,说明涂层保护性能增强,而随着玻璃粉含量的增加涂层的 Rρo 值呈先增加后降低的趋势,说明玻璃粉的掺入量对涂层耐蚀性具有一定影响,当掺入量较低时如GA-1 涂层,涂层内部孔隙和微裂纹未得到完全填充,虽然对涂层耐腐蚀性有一定程度提高,但未达到最高值, 而当玻璃粉掺量较高时,如GA-3 涂层,由于玻璃粉含量高,在冷却过程中由于玻璃相、应力集中导致涂层表面微裂纹增加,从而为腐蚀介质渗入提供了通道,使其对腐蚀的保护程度较GA-2 涂层有所降低。玻璃粉掺杂后涂层的耐腐蚀性能进一步用 Rt 的差异来说明,所对应的AT13、 GA-1、GA-2 和GA-3 涂层的 Rt 拟合值分别为5472、35 011、87 548 和205 870 Ω·cm 2,变化趋势与 Rρo 相同,进一步说明了玻璃粉掺入对涂层耐腐蚀性能的提高。

  • 3 结论

  • (1) 与纯AT13 涂层相比,随着玻璃粉掺量的提高,所制得涂层表面平整度增加、孔隙率降低,涂层致密度提高。

  • (2) 浸泡腐蚀1000 h后, AT13 涂层表面可观测到明显的腐蚀斑痕,随着玻璃粉的掺杂比例提高,涂层整体腐蚀面积减小,说明玻璃粉的掺入有效提高了涂层的耐腐蚀性。

  • (3) 电化学腐蚀结果表明,玻璃粉的掺入大大提高了涂层的耐腐蚀性能,但随着玻璃粉掺入量的提高,涂层耐腐蚀性呈现先增高后降低的趋势,以G ∶AT13=2 ∶10 比例掺杂涂层的耐腐蚀性能最优。

  • 参考文献

    • [1] 侯保荣,张盾,王鹏.海洋腐蚀防护的现状与未来[J].中国科学院院刊,2016,31(12):1326-1331.HOU B R,ZHANG D,WANG P.Marine corrosion and pro-tection:current status and prospect[J].Bulletin of Chinese Academy of Sciences,2016,31(12):1326-1331(in Chi-nese).

    • [2] 郑传奇,李涛,薛仁杰.低碳高强度结构钢耐海洋大气腐蚀行为研究[J].内蒙古科技大学学报,2015,34(3):230-233.ZHENG C Q,LI T,XUE R J.Research on marine atmos-pheric corrosion behavior of low carbon high strength structur-al steel[J].Journal of Inner Mongolia University of Science and Technology,2015,34(3):230-233(in Chinese).

    • [3] 聂薇,姚晓红,卢本才.海洋工程重防腐技术[J].造船技术,2016,43(6):82-86.NIE W,YAO X H,Lu B C.Technical of heavy duty coat-ings for marine engineering[J].Marine Technology,2016,43(6):82-86(in Chinese).

    • [4] 童辉,韩文礼,张维,等.高速电弧喷涂铝基涂层在模拟深水环境下的腐蚀行为及改进研究 [J].天津科技,2017,44(10):71-74.TONG H,HAN W L,ZHANG W,et al.Corrosion behaviors of high velocity arc sprayed aluminum base coatings in simu-lated deep water environment and their improvement [J].Tianjin Science and Technology,2017,44(10):71-74(in Chinese).

    • [5] 郭麒,孟天旭,席雯,等.C/C 复合材料表面 CoNiCrAl-TaHfY/Co 复合涂层的组织[J].中国表面工程,2018,31(2):29-38.GUO Q,MENG T X,XI W,et al.Microstructure of CoNi-CrAlTaHfY/Co composite coating formed on C/C composites [J].China Surface Engineering,2018,31(2):29-38(in Chinese).

    • [6] 何俊波,李春福,姚梦佳,等.等离子喷涂 AT13/MoS2 复合涂层的组织和耐腐蚀性[J].金属热处理,2015,40(7):99-102.HE J B,LI C F,YAO M J,et al.Microstructure and corro-sion resistance of AT13/MoS2 composite coating prepared by atmospheric plasma spraying[J].Heat Treatment of Metals,2015,40(7):99-102(in Chinese).

    • [7] 孙丽丽.水力压裂工况下典型材质损伤行为及机理研究 [D].大庆:东北石油大学,2015:23-30.SUN L L.Study on damage behavior and mechanism of typi-cal materials under hydraulic fracturing conditions [ D ].Daqing:Northeast Petroleum University,2015:23-30(in Chinese).

    • [8] 孙秋霞.材料腐蚀与防护[M].北京:冶金工业出版社,2001:33-62.SUN Q X.Material corrosion and protection[M].Beijing:Metallurgical Industry Press,2001:33-62(in Chinese).

    • [9] ÇELIK I·.Structure and surface properties of Al2O3-TiO2 ceramic coated AZ31 magnesium alloy[J].Ceramics Inter-national,2016,42(12):13659-13663.

    • [10] ZHOU Z,WANG M,LIU L,et al.Plasma sprayed Al2O3-13% TiO2 coating sealed with organic-inorganic hybrid agent and its corrosion resistance in acid environment[J].Ceram-ics-Silikaty,2016,60(3):254-261.

    • [11] DAROONPARVAR M,YAJID M A M,YUSOF N M,et al.Fabrication and properties of triplex NiCrAlY/nano Al2O3-13% TiO2/nano TiO2 coatings on a magnesium alloy by at-mospheric plasma spraying method[J].Journal of Alloys and Compounds,2015,645(5):450-466.

    • [12] LEE J H,KIM S J.Corrosion characteristic of coated speci-men with 80Ni20Cr/Al2O3-TiO2 powder for ALBC3 [J].Journal of Ceramic Processsing Research,2015,16(2):262-266.

    • [13] 吴让融.硅酸盐玻璃熔化温度的计算[J].玻璃与搪瓷,1989,18(2):15-18.WU R R.Calculation of melting temperature of silicate glas-ses[J].Glass and Enamel,1989,18(2):15-18(in Chi-nese).

    • [14] 赵彦钊,殷海荣.玻璃工艺学[M].北京:化学工业出版社,2006:101-130.ZHAO Y Z,YIN H R.Glass technology [ M].Beijing:Chemical Industry Press,2006:101-130(in Chinese).

    • [15] WANG Z X,ZHANG J J,ZHANG H,et al.Fabrication and corrosion resistance of plasma sprayed glass powder doped Al2O3-13TiO2 coatings[J].Journal of Thermal Spray Tech-nology,2020,29(5):500-509.

    • [16] 刘美淋,孙宏飞,于惠博,等.降低热喷涂涂层孔隙率的方法[J].腐蚀与防护,2007,28(4):171-173.LIU M L,SUN H F,YU H B,et al.Methods to reduce the porosity of thermal spray coatings[J].Corrosion and Protec-tion,2007,28(4):171-173(in Chinese).

    • [17] BARD A J,FAULKNER L R,LEDDY J,et al.Electro-chemical methods:Fundamentals and applications[M].New York:Wiley,1983:91-92.

    • [18] ZOSKI,CYNTHIA G.Handbook of electrochemistry [ M].Amsterdam:Elsevier Science,2006:50-60.

    • [19] FONTANA M G.Corrosion engineering[M].New York:Ta-ta McGraw-Hill Education,2005:77-90.

    • [20] RACZ A S,KERNER Z,NEMRTH A,et al.Corrosion re-sistance of nanosized silicon carbide-rich composite coatings produced by noble gas ion mixing[J].ACS Applied Materi-als & Interfaces,2017,9(51):44892-44899.

    • [21] 马建龙.超音速等离子喷涂纳米 Al2O3-TiO2 复合陶瓷涂层组织结构及摩擦学性能的研究[D].天津:河北工业大学,2014:22-35.MA J L.Study on microstructure and tribological properties of nano-Al2O3-TiO2 composite ceramic coating by supersonic plasma spraying[D].Tianjin:Hebei University of Technolo-gy,2014:12-35(in Chinese).

    • [22] 陈鹏,周晓林,逯来玉,等.金红石结构 TiO2 结构和热力学性质的第一性原理研究[J].原子与分子物理学报,2012,29(2):372-376.CHEN P,ZHOU X L,LU L Y,et al.First-principles calcu-lations for structural and thermodynamic properties of rutile TiO2 under high pressure[J].Journal of Atomic and Molecu-lar Physics,2012,29(2):372-376(in Chinese).

    • [23] HARJU M,JAM P,DAHLTEN,et al.Inflfluence of long-term aqueous exposure on surface properties of plasma sprayed oxides Al2O3,TiO2 and their mixture Al2O3-13TiO2 [J].Applied Surface Science,2008,254(22):7272-7279.

    • [24] 石绪忠,许康威,武笑宇.等离子喷涂纳米氧化铝钛涂层机械性能研究[J].表面技术,2018,47(4):96-101.SHI X Z,XU K W,WU X Y.Study on mechanical proper-ties of plasma sprayed nano-alumina titanium coating [J].Surface Technology,2018,47(4):96-101(in Chinese).

    • [25] 朱禄发,龙剑平,刘二勇,等.等离子喷涂 Al2O3-13% TiO2 涂层的海水腐蚀磨损性能 [J].中国表面工程,2015,28(6):96-103.ZHU L F,LONG J P,LIU E Y,et al.Corrosion and wear properties of plasma sprayed Al2O3-13% TiO2 coating[J].China Surface Engineering,2015,28(6):96-103(in Chi-nese).

    • [26] 邓世均.高性能陶瓷涂层[M].北京:化学工业出版社,2004:20-43.DENG S J.High performance ceramic coating[M].Beijing:Chemical Industry Press,2004:20-43(in Chinese).

    • [27] ZANG J J,WANG Z H,LIN P H,et al.Corrosion of plasma sprayed NiCrAl/Al2O3 – 13 wt-% TiO2 coatings with and without sealing [J].Surface Engineering,2012,28(5):345-350.

    • [28] GAWEL R,KYZIOL K,JURASZ Z,et al.Oxidation resist-ance of valve steels covered with thin SiC coatings obtained by RF CVD [J].Corrosion Science,2018,145(11):16-25.

    • [29] SINGH L P,BHATTACHARYYA S K,AHALAWAT S.Preparation of size controlled silica nano particles and its functional role in cementitious system [J].Journal of Ad-vanced Concrete Technology,2012,10(11):345-352.

    • [30] HASHEMI S M,PARVIN N,VALEFI Z,et al.Comparative study on tribological and corrosion protection properties of plasma sprayed Cr2O3-YSZ-SiC ceramic coatings [J].Ce-ramics International,2019,45(17):21108-21119.

    • [31] ZENG Q,WAN W,CHEN L.Enhanced mechanical and electrochemical performances of silica-based coatings ob-tained by electrophoretic deposition[J].ACS Applied Mate-rials & Interfaces,2019,11(27):24308-24317.

  • 参考文献

    • [1] 侯保荣,张盾,王鹏.海洋腐蚀防护的现状与未来[J].中国科学院院刊,2016,31(12):1326-1331.HOU B R,ZHANG D,WANG P.Marine corrosion and pro-tection:current status and prospect[J].Bulletin of Chinese Academy of Sciences,2016,31(12):1326-1331(in Chi-nese).

    • [2] 郑传奇,李涛,薛仁杰.低碳高强度结构钢耐海洋大气腐蚀行为研究[J].内蒙古科技大学学报,2015,34(3):230-233.ZHENG C Q,LI T,XUE R J.Research on marine atmos-pheric corrosion behavior of low carbon high strength structur-al steel[J].Journal of Inner Mongolia University of Science and Technology,2015,34(3):230-233(in Chinese).

    • [3] 聂薇,姚晓红,卢本才.海洋工程重防腐技术[J].造船技术,2016,43(6):82-86.NIE W,YAO X H,Lu B C.Technical of heavy duty coat-ings for marine engineering[J].Marine Technology,2016,43(6):82-86(in Chinese).

    • [4] 童辉,韩文礼,张维,等.高速电弧喷涂铝基涂层在模拟深水环境下的腐蚀行为及改进研究 [J].天津科技,2017,44(10):71-74.TONG H,HAN W L,ZHANG W,et al.Corrosion behaviors of high velocity arc sprayed aluminum base coatings in simu-lated deep water environment and their improvement [J].Tianjin Science and Technology,2017,44(10):71-74(in Chinese).

    • [5] 郭麒,孟天旭,席雯,等.C/C 复合材料表面 CoNiCrAl-TaHfY/Co 复合涂层的组织[J].中国表面工程,2018,31(2):29-38.GUO Q,MENG T X,XI W,et al.Microstructure of CoNi-CrAlTaHfY/Co composite coating formed on C/C composites [J].China Surface Engineering,2018,31(2):29-38(in Chinese).

    • [6] 何俊波,李春福,姚梦佳,等.等离子喷涂 AT13/MoS2 复合涂层的组织和耐腐蚀性[J].金属热处理,2015,40(7):99-102.HE J B,LI C F,YAO M J,et al.Microstructure and corro-sion resistance of AT13/MoS2 composite coating prepared by atmospheric plasma spraying[J].Heat Treatment of Metals,2015,40(7):99-102(in Chinese).

    • [7] 孙丽丽.水力压裂工况下典型材质损伤行为及机理研究 [D].大庆:东北石油大学,2015:23-30.SUN L L.Study on damage behavior and mechanism of typi-cal materials under hydraulic fracturing conditions [ D ].Daqing:Northeast Petroleum University,2015:23-30(in Chinese).

    • [8] 孙秋霞.材料腐蚀与防护[M].北京:冶金工业出版社,2001:33-62.SUN Q X.Material corrosion and protection[M].Beijing:Metallurgical Industry Press,2001:33-62(in Chinese).

    • [9] ÇELIK I·.Structure and surface properties of Al2O3-TiO2 ceramic coated AZ31 magnesium alloy[J].Ceramics Inter-national,2016,42(12):13659-13663.

    • [10] ZHOU Z,WANG M,LIU L,et al.Plasma sprayed Al2O3-13% TiO2 coating sealed with organic-inorganic hybrid agent and its corrosion resistance in acid environment[J].Ceram-ics-Silikaty,2016,60(3):254-261.

    • [11] DAROONPARVAR M,YAJID M A M,YUSOF N M,et al.Fabrication and properties of triplex NiCrAlY/nano Al2O3-13% TiO2/nano TiO2 coatings on a magnesium alloy by at-mospheric plasma spraying method[J].Journal of Alloys and Compounds,2015,645(5):450-466.

    • [12] LEE J H,KIM S J.Corrosion characteristic of coated speci-men with 80Ni20Cr/Al2O3-TiO2 powder for ALBC3 [J].Journal of Ceramic Processsing Research,2015,16(2):262-266.

    • [13] 吴让融.硅酸盐玻璃熔化温度的计算[J].玻璃与搪瓷,1989,18(2):15-18.WU R R.Calculation of melting temperature of silicate glas-ses[J].Glass and Enamel,1989,18(2):15-18(in Chi-nese).

    • [14] 赵彦钊,殷海荣.玻璃工艺学[M].北京:化学工业出版社,2006:101-130.ZHAO Y Z,YIN H R.Glass technology [ M].Beijing:Chemical Industry Press,2006:101-130(in Chinese).

    • [15] WANG Z X,ZHANG J J,ZHANG H,et al.Fabrication and corrosion resistance of plasma sprayed glass powder doped Al2O3-13TiO2 coatings[J].Journal of Thermal Spray Tech-nology,2020,29(5):500-509.

    • [16] 刘美淋,孙宏飞,于惠博,等.降低热喷涂涂层孔隙率的方法[J].腐蚀与防护,2007,28(4):171-173.LIU M L,SUN H F,YU H B,et al.Methods to reduce the porosity of thermal spray coatings[J].Corrosion and Protec-tion,2007,28(4):171-173(in Chinese).

    • [17] BARD A J,FAULKNER L R,LEDDY J,et al.Electro-chemical methods:Fundamentals and applications[M].New York:Wiley,1983:91-92.

    • [18] ZOSKI,CYNTHIA G.Handbook of electrochemistry [ M].Amsterdam:Elsevier Science,2006:50-60.

    • [19] FONTANA M G.Corrosion engineering[M].New York:Ta-ta McGraw-Hill Education,2005:77-90.

    • [20] RACZ A S,KERNER Z,NEMRTH A,et al.Corrosion re-sistance of nanosized silicon carbide-rich composite coatings produced by noble gas ion mixing[J].ACS Applied Materi-als & Interfaces,2017,9(51):44892-44899.

    • [21] 马建龙.超音速等离子喷涂纳米 Al2O3-TiO2 复合陶瓷涂层组织结构及摩擦学性能的研究[D].天津:河北工业大学,2014:22-35.MA J L.Study on microstructure and tribological properties of nano-Al2O3-TiO2 composite ceramic coating by supersonic plasma spraying[D].Tianjin:Hebei University of Technolo-gy,2014:12-35(in Chinese).

    • [22] 陈鹏,周晓林,逯来玉,等.金红石结构 TiO2 结构和热力学性质的第一性原理研究[J].原子与分子物理学报,2012,29(2):372-376.CHEN P,ZHOU X L,LU L Y,et al.First-principles calcu-lations for structural and thermodynamic properties of rutile TiO2 under high pressure[J].Journal of Atomic and Molecu-lar Physics,2012,29(2):372-376(in Chinese).

    • [23] HARJU M,JAM P,DAHLTEN,et al.Inflfluence of long-term aqueous exposure on surface properties of plasma sprayed oxides Al2O3,TiO2 and their mixture Al2O3-13TiO2 [J].Applied Surface Science,2008,254(22):7272-7279.

    • [24] 石绪忠,许康威,武笑宇.等离子喷涂纳米氧化铝钛涂层机械性能研究[J].表面技术,2018,47(4):96-101.SHI X Z,XU K W,WU X Y.Study on mechanical proper-ties of plasma sprayed nano-alumina titanium coating [J].Surface Technology,2018,47(4):96-101(in Chinese).

    • [25] 朱禄发,龙剑平,刘二勇,等.等离子喷涂 Al2O3-13% TiO2 涂层的海水腐蚀磨损性能 [J].中国表面工程,2015,28(6):96-103.ZHU L F,LONG J P,LIU E Y,et al.Corrosion and wear properties of plasma sprayed Al2O3-13% TiO2 coating[J].China Surface Engineering,2015,28(6):96-103(in Chi-nese).

    • [26] 邓世均.高性能陶瓷涂层[M].北京:化学工业出版社,2004:20-43.DENG S J.High performance ceramic coating[M].Beijing:Chemical Industry Press,2004:20-43(in Chinese).

    • [27] ZANG J J,WANG Z H,LIN P H,et al.Corrosion of plasma sprayed NiCrAl/Al2O3 – 13 wt-% TiO2 coatings with and without sealing [J].Surface Engineering,2012,28(5):345-350.

    • [28] GAWEL R,KYZIOL K,JURASZ Z,et al.Oxidation resist-ance of valve steels covered with thin SiC coatings obtained by RF CVD [J].Corrosion Science,2018,145(11):16-25.

    • [29] SINGH L P,BHATTACHARYYA S K,AHALAWAT S.Preparation of size controlled silica nano particles and its functional role in cementitious system [J].Journal of Ad-vanced Concrete Technology,2012,10(11):345-352.

    • [30] HASHEMI S M,PARVIN N,VALEFI Z,et al.Comparative study on tribological and corrosion protection properties of plasma sprayed Cr2O3-YSZ-SiC ceramic coatings [J].Ce-ramics International,2019,45(17):21108-21119.

    • [31] ZENG Q,WAN W,CHEN L.Enhanced mechanical and electrochemical performances of silica-based coatings ob-tained by electrophoretic deposition[J].ACS Applied Mate-rials & Interfaces,2019,11(27):24308-24317.

  • 手机扫一扫看